
VCS: VARIABLE CLASSIFIER SYSTEMS

Lingyan Shu
Jonathan Schaeffer

Computing Science Department,
University of Alberta,

Edmonton, Alberta
Canada T6G 2H1
shu@alberta.uucp

jonathan@alberta.uucp

ABSTRACT

Classifier systems (CS) have proven to
be useful tools for the study of genetic
algorithm based learning. Unfortunately,
there are a number of difficulties with the
formalization that limit the representa-
tional capabilities and, hence, its prob-
lem solving abilities and the speed at
which it can learn. This paper introduces
VCS - Variable Classifier Systems - that
augment the traditional CS with the
binding of constants in messages to vari-
ables in rule conditions. For a large class
of problems, VCS allows for a more suc-
cinct representation of the solution space
than is possible with CS, increasing the
likelihood of a genetic search success-
fully solving the problem. Variables
make it possible for these systems to
represent information in ways similar to
high level symbolic representations, nar-
rowing the gap between classifier sys-
tems and conventional learning systems.

1. Introduction

Genetic learning systems have relatively simple
representation structures. Usually, little prior knowledge is
built into such systems. As a result, genetic learning models
work well with incomplete information and noise. Also,
they can be used with multiple domains at the same time,
allowing the transfer of information from one domain to
another [Hol86]. In contrast, the symbolic concept acquisi-
tion and the knowledge intensive, domain specific learning
systems [MCM86] contain numerous built-in concepts,
representation structures and domain specific constraints. It
is easier for a human to communicate with such systems.
These systems take advantage of a variety of rich
knowledge sources (built-in knowledge, knowledge models,
advice, etc.) and tend to be more efficient than the genetic
learning approaches. Researchers have noticed that com-
bining strategies, such as learning from advice, into genetic
learning would provide a more powerful model in the sense
of effectiveness and efficiency [BeF88, HHN86].

Representation issues are an important factor that affects
the realization of this suggestion.

The prevalent representation framework for genetic
algorithm based machine learning is the classifier system
[Gol83, Gol88, HoR78, HHN86, Hol86, Rio86, Wil86].
Classifier systems are general purpose inductive machine
learning systems which use genetic algorithms
[Boo82, DeJ75, Hol75] and the bucket brigade algorithm as
the learning mechanisms. Rules in a classifier systems are
represented by strings of symbols. For example, most of
the classifier systems use strings over the alphabet {0, 1, #}
to represent rules, where "#" means either "0" or "1". This
unified representation is amenable to the use of genetic
operators as the learning mechanism. Also, low-level
representations, such as bit strings, are capable of describ-
ing cognitive processes because many cognitive phenomena
occur below the level represented by symbolic models
[BeF88]. These characteristics make genetic learning more
effective and general in many ways than symbolic concept
acquisition and domain specific learning. However,
because of the representation limitations, some knowledge
which can be represented symbolically cannot be ade-
quately represented in classifier systems. The simplistic
representation scheme makes it hard to manipulate
knowledge and to add built-in knowledge and models
which can be used to describe features common to the prob-
lem domain. Compared with symbolic representations sys-
tems, it is difficult for classifier systems to abstract and
explain events. They are incapable of representing informa-
tion about commonly occurring patterns, such as what
frames or semantic nets do in symbolic representations.

This paper introduces VCS - Variable Classifier Sys-
tems - in which classifier systems (CS) are evolved to
include variables. Conditions and actions in rules are bro-
ken into fields, each of which can contain a constant(s)
(using notation similar to the CS {0,1,#}), or a named vari-
able. Variables can be used to ensure equality and move
information between fields. The result is that variables
allow some problems to have their solutions expressed in a
succinct manner, reducing the amount of work required by
genetic search to solve a problem. As well, variables pro-
vide a way of describing an abstract world, allowing for the
building of model rules and knowledge structures as in high

level symbolic representation systems. It thus becomes
possible to combine the advantages of high and low level
representations into one framework.

2. VCS Framework

VCS is a low-level representation framework, similar
to a classifier system, in which the idea of a variable is
introduced. Variables are used to describe abstract relations
in a succinct manner, reducing the size of the solution set
for many problems. Variables make VCS more powerful in
expressiveness than CS. Some of the representational diffi-
culties inherent in classifier systems [Sch88] can be over-
come in the VCS framework.

VCS retains the structure of classifier systems. There
are message and rule lists and, in each cycle, messages
match rule conditions generating new messages from
matching actions. Genetic operators and the bucket brigade
operate as in CS. Rules can be negated and have multiple
conditions. The difference between VCS and CS lies in the
syntax and semantics of messages and rules.

The basic symbols in VCS are the alphabet {0, 1, ?,
*} and a set of logical field placeholders. The question
mark "?" sign replaces the "#" in classifier systems and
represents the don’t care or don’t know situation. The
"don’t know" situation can be used as a prompt for the user
to provide some information. This allows the system to
communicate with the external world by providing useful
feedback and prompting for useful information. The sym-
bols "0" and "1" in a condition can be matched only by "0"
and "1" in a message respectively. The "?" in a condition
can be matched by "0", "1" or "?". A "?" in a message can
only be matched by "?" in a condition, this being a major
distinction between the "?" and the "#" of classifier sys-
tems.

Messages, conditions, and actions are implemented as
fixed length bit strings. The semantics of this representa-
tion are that they are composed of a number of fields, each
field representing some piece of information of the problem
domain. To distinguish the implementation (unreadable
strings of "1"s and "0"s) from the semantics, field identifi-
cation placeholders are inserted in messages, conditions,
and actions to identify the contents of each field. For reada-
bility, we use the notation P contents to name a field, where
the identifier contents is meant as a meaningful interpreta-
tion of that field’s contents. For brevity, we often name
fields numerically {P 1 , P 2 , P 3 , ..., P n}. For example, con-
sider the blocks world, an oft-cited example that many
problem solving programs use. In the VCS representation,
a rule condition could consist of two fields:

P name: the name of a block
P relation : relations between this block and other blocks

and the condition could be represented as
P name 10 P relation 0110110

where "10" is the name of a block and "0110110" are its
relationships. Removing the field names yields the familiar
classifier system notation. Field names are interpretation

aids and do not affect the underlying implementation.

So far, there is little that is different from classifier
systems. The major difference is the inclusion of the "*"
operator into rule conditions and actions (but not mes-
sages). The "*" character in a field (anywhere in the field)
indicates that the contents of the field should not be inter-
preted as a constant but as a variable. For example, a 3 bit
field could contain *01, 00*, or *?*, any of which indicates
that the field is to be treated as a variable. Again, it is
important to separate the semantics from the implementa-
tion. The {0, 1, ?, *} notation is for the implementation.
Instead, we prefer to use names for our variables, such as x,
y, and z (instead of *01, 00*, *?*) to increase the clarity.
Using the blocks world example again, the condition

P name x P relation y
indicates that the two fields are variables. For example, the
condition

P 1 *00 P 2 ?1 P 3 0**0 P 4 *00
is equivalent to

P 1 x P 2 ?1 P 3 y P 4 x
where P 1’s x is different from P 4’s x.

The semantics of matching messages with rule condi-
tions are different from CS. A condition field containing
only {0, 1, ?} is treated as a constant and matches the
corresponding field in a message if all the characters match
(recalling the slightly different semantics of the ? men-
tioned above). A condition field that is a variable matches
the corresponding field in the message, regardless of the
contents of that field. As such, we view each field as being
a parameter of the rule; matching then becomes the binding
of values (from the message) to parameters (conditions of
the rule).

The user must define his messages in terms of the
number of fields and the size of each field. Names do not
have to be unique; two fields with the same name must be
the same size. Fields with the same name have the ability
to exchange information between them through variables.
If the same variable appears in more than one condition
field of the same name, then it must be bound to the same
value in all cases, otherwise the matching fails (see example
below). This feature allows the equality relationship to
hold between fields in (multiple) conditions.

Variables can also appear as part of the action of a
rule. The variable takes its value from that assigned in the
condition. If the variable does not appear in the condition
part, the variable in the action part will randomly take a
value from the value domain of the field. Consider the rule
in which the "/" is used to separate condition from action

P 1 11 P 2 *00 P 2 *01 /
P 1 01 P 2 *01 P 2 *00

with semantics
P 1 11 P 2 x P 2 y / P 1 01 P 2 y P 2 x

Then the message
P 1 11 P 2 101 P 2 111

will match the rule, and result in the information exchange
between the last two fields. The resulting message will be

P 1 01 P 2 111 P 2 101
Note that information exchange can only occur between the
second and third fields since they have the same name. The
exchange of values between fields is not possible in classif-
ier systems, without enumerating all the possibilities.

When using variables, some rules with different
appearances may have the same semantics. For example
the rules

if v i and v i + 1 then v i + 2

if v j and v j + 1 then v j + 2

have the same meaning. To avoid this, our system enforces
a normalized representation for rules. In this representa-
tion, each rule must use the minimum number of variables
possible, and the variable names must be ordered and
sequentially starting from a fixed name (e.g., v 1 , v 2 , v 3 , ...
). We say that the order of v i + 1 is higher than the order of
v i . In a rule, a higher order variable name for a parameter
can be used only after all the lower order variables of the
same parameter have been used. Under this policy,

P 1 v 1 P 1 v 2 / P 1 v 2 P 1 v 1

is legal. But
P 1 v 2 P 1 v 1 / P 1 v 1 P 1 v 2

is not. As a result, there are many illegal rule combinations.
The semantics of VCS insist that semantically illegal rules
with respect to variable usage are not allowed to be created.
This greatly reduces the search space of possible rules.

One last note on variables. A field may not be
defined large enough to hold the name of all possible vari-
ables that could occupy it. For example, if there are n fields
and a particular field is only 1 bit long, one cannot represent
n variable names. VCS recognizes this and expands fields,
if necessary, so they can properly accommodate all possible
values. The extra bits are hidden from the user.

3. Properties of VCS

3.1. Simplicity

VCS inherits the simplicity of classifier systems.
Every concept and situation can be generated by the genetic
operators due to the uniform representation.

3.2. Expressiveness

VCS can be considered as a general parameter
representation framework. To use the framework, the
designers need only decide what fields are required to
describe their problem (as in CS). Compared with CS, VCS
is more expressive. One obvious example is that a classifier
system can not represent relationships among fields without
enumerating all possibilities. For example, as has already
been shown, the symmetric relation "if R(x, y) then R(y, x)"
is easy to do in VCS but not in CS. Another example is the
transitive relation "if R(x, y) and R(y, z) then R(x, z)".
Using multiple conditions in VCS (separated by commas),
this relation could be represented as

P 1 x P 1 y, P 1 y P 1 z / P 1 x P 1 z
In classifier systems, there is no way to enforce equality of

fields between conditions.

3.3. Search Space

Classifier systems use strings on the alphabet {0, 1,
#} yielding a search space of size 3l , given l characters in a
message. In VCS, the "*" augments the alphabet {0, 1, ?},
yielding an upper bound of 4l on the search space. Normal-
izing the representation greatly reduces the number of
semantically correct possibilities.

What is a bound on the search space, given normal-
ized and semantically correct rules? An upper bound on the
average search space is S VCS = 3l + N n * 3ma, where N n is
the number of all legal strings that contain variables, n is
the number of fields, m is the average length of the fields,
and a is the average number of the fields which are con-
stants in a legal string that contains variables. Given n
fields, it is possible to have up to n variables in a rule. Then
N n = f (n, 0) + f (n, 1) + ... + f (n, n) , where f (n, 0) is the number
of strings with n fields that has no variable name in the last
field; f (n, i) is the number of the strings containing variables
and having variable v i in the last field. Then

N n = f (n, 0) + ... f (n, n)

f (1 , 0) = 1
f (1 , 1) = 1

f (n, i) =
j = i − 1
Σ

n − 1

f ((n − 1) , j) , i = 1 , ... ,n

f (n, 0) =
j = 0
Σ

n − 1

f ((n − 1) , j) , n = 1 , 2 , 3 , . . .

For most practical values of n, m and l (l = n×m), S VCS is
much closer to 3l than 4l .

We can also look at the search space in another way.
Illegal = (n − 2) × (n + 1)(n − 1) × 3ma is a lower
bound for the number of the illegal patterns. Thus
4l − Illegal is an upper bound for the average search space.

VCS still maintains the implicit parallelism of classif-
ier systems. In CS, each string is a representative of 2l

schemata. In VCS, the "*" is used and any string could be
an instance of a string containing a "*". Given that all pos-
sible combinations of {0, 1, ?, *} were legal, the search
space would be 4l and each string is a representative of 3l

schemata. However, normalization and semantics make
these numbers smaller, similar to that for CS.

Using multiple conditions in a classifier has the
potential to reduce the search space for some problems. In
the fixed length single condition CS representation, the con-
dition string must include all information necessary for
solving the problem. For example, a representation for the
game of tic-tac-toe might include all 9 squares on the board
[Sch88]. However, VCS allows relationships to hold
between multiple conditions. This permits smaller mes-
sages to be used, using multiple conditions to bind them
together. For example, in the tic-tac-toe case, one could
have each message representing the contents of one square.
Then using three conditions for a rule, one can define in a
single rule the information that 3 in a row wins. This is not

possible in classifier systems.

Consider another example. The task is to check
whether there are some terminals available in a room con-
taining 6 terminals. We can use 2-bit strings to represent
the state of terminal: occupied = 00, available = 01, and
damaged = 10. Since there are 6 terminal, we use 3-bit
strings to represent the terminal names: terminal 1 = 001,
terminal 2 = 010, etc. We want to represent a usage con-
straint

if two or more terminals are available

then two or more people can use them.

In the CS representation, the condition of the rule would
contain information on all 6 terminals, for example:

00 01 00 00 01 10
with the names of the terminals represented implicitly by
their position in the rule. The usage constraint would then
be represented as

00 00 ## ## ## ## / (terminals 1&2 available)

00 ## 00 ## ## ## / (terminals 1&3 available)

etc.

O(N 2) rules are needed to represent all the conditions of
the usage constraint, where N is the number of terminals.

In the VCS representation, the constraint can be
represented as:

P name x P state 00, P name y P state 00 /

(terminals x & y available)

In the VCS representation, only 5 bits are needed for each
condition; a total of 10 bits. In contrast, the solution space
consists of only one rule . Note that CS can properly
express the same multiple condition as in VCS, but it is not
possible in CS to pass both terminal names to the action
part.

Some problems can have their solutions expressed
succinctly in VCS, allowing for a simpler solution and a
correspondingly faster search.

3.4. Position Independent Property

In CS, representation inherits from the genetic exam-
ple. Locus information is represented implicitly by the posi-
tions of the bits in one string. In VCS representation, locus
information can be represented explicitly, making it possi-
ble to manipulate locus information. Assume n is the
number of the fields in a string, m is the average length of a
field and s is the average number conditions per rule (given
the presence of multiple conditions).  log 2 n extra bits
may be needed to represent this information. If s is small
enough and 2m >  log 2 n , the actual string length will not

Strictly speaking, the VCS solution is incomplete. If two
messages exist stating that terminal 1 is available, then they
could match the VCS rule, yielding the incorrect action "ter-
minals 1 & 1 available". A solution could involve the use of
default hierarchies, i.e. using an extra rule to eliminate dupli-
cate entries. A condition such as
"P name x P state 00 , P name x P state 00" would find dupli-
cates. This cannot be done in CS.

increase.

3.5. Register Property

When genetic algorithms are used as tools of function
optimization, no message passing is involved. When
applied to learning, message passing is an important factor
that affects both the effectiveness and the efficiency of a
system. The message passing scheme of the CS is not
effective in some situations (see the following examples).
The effect of the VCS field identifications and variables
provides the system with a register ability: a value stored in
a variable can be used in a variety of places. The following
examples show that in some situations, VCS can easily do
what CS cannot.

Example 1

Variables allow values to move to different fields.
Consider the rule

if x is on y then y is below x.
There is no way of representing this relation in CS, short of
enumerating all possibilities. The VCS solution for the
above problem is:

P 1 01 P 2 *0 P 2 *1 / P 1 10 P 2 *1 P 2 *0

(on) x y / (below) y x

with the values of x and y in the condition being passed
correctly to the action part.

Example 2

In CS, message passing can cause a performance
bias. Consider the rule

if object is small and moving fast
then slow-down or ignore

A classifier representation might look like this:
1 1 / 1 #

(small) (fast) / (tag) (slow-down or ignore)

Only message 11 can fire this rule. Through the message
passing, the # always gets value 1. If value 0 means
"ignore", then this case will never be chosen.

Consider the rule
if object is small or big
then slow-down or stop

The classifier representation could be:
1 / # 1

(small or big) (fast) / (slow or stop) (misc)

Under the classifier system message passing rules, this
equates to:

0 1 / 0 1

(small) (fast) / (slow) (misc)

and

1 1 / 1 1

(big) (fast) / (stop) (misc)

which is not the original meaning. The VCS solution for
this rule is

P 1 10 P 2 10 / P 3 *1 P 1 11

(small) (fast) / (slow-down or ignore) (misc)

With register capabilities, we can group some proper-
ties together to form concepts. By assigning and changing
the range of a field P i , we actually changed the concept P i .
Also, the register property allows equations to be expressed
in VCS which can not be done in CS.

The VCS framework has some other potentials for
inductive learning. For example, by using a new identifica-
tion sign P n + 1 or by augmenting the value field of P i , the
problem space can be augmented. Thus, a four-block world
can be enlarged to a five-block world without much change.

3.6. Build Structures by Building Abstract Relations

In classifier systems, existing knowledge can be
incorporated into the system by an initial classifier pool or
by the input messages. However, it is hard to incorporate
into these systems the relations among the knowledge com-
ponents. Structural knowledge cannot be easily built in and
manipulated. The strength of the structural knowledge
representations lies in the ability to represent relations
among the knowledge components through the representa-
tion structure itself, providing an efficient way to manipu-
late these relations.

Frames and semantic networks are two popular struc-
tural knowledge representations. Super-ordinate (super)
and sub-ordinate (sub) are two relations that appear in these
high-level structural representations. Also, they are the
relations among different levels of default hierarchies.
These relations are partial orderings on their domains. By
including rules such as

if X super Y and Y super Z then X super Z

if X sub Y and Y sub Z then X sub Z

if X sub Y then Y super X

we can build a knowledge structure into the system. By
using abstract relations, we link the corresponding
knowledge together. Then in default hierarchy situations,
knowledge can be triggered in the same way as using a high
level structural representation. Notice that the tagging
method of representing inheritance in Belew and Forrest’s
work [BeF88] cannot activate concepts with sub-ordinate
and super-ordinate relations in two directions at same time.
This implies that the tagging classifier representation of the
semantic network is not equivalent to the high level seman-
tic network representation. However, by adding in the
above three relation model rules, the representation is
equivalent to the semantic network representation.

4. Problems in VCS

There are still some problems in VCS that need further
study. The use of variables increases the complexity of the
systems. Variable matching, binding, and normalization are
extensions not occurring in classifier systems. Clearly,
VCS represents a more complicated implementation.

Right now, VCS knows about equality of variables
between fields. Inequality between variables is cumber-
some, but can be achieved through extra rules that test for

equality and have the rule negated (i.e. using default hierar-
chies). There are no provisions for other boolean or
mathematical relationships between fields.

VCS, with a fixed size rule list and fixed size mes-
sage lengths, is not a Turing machine. However, the suc-
cinctness of solutions increases the space of problems
potentially solvable by VCS.

5. Conclusions and Further Work

VCS is a low-level representation framework with
some high-level representation abilities. Compared with
the variable scheme used in Smith’s LS-1 [Gol88, Smi80],
the VCS variable scheme is more general. The variable
sign "*" in VCS is treated uniformly as other symbols. It is
possible to implement learning mechanisms that are used in
other frameworks in VCS. Knowledge structures can be
built into VCS applications with some model relation rules.
Future work includes examining how VCS would help
establishing and maintaining rule associations such as
chains and default hierarchies.

VCS also has promise for use in chunked learning.
The traditional view of chunks is that they are the compact
representations of several items. A schema is an example
of a chunk. The more recent view of chunks is that they
could also be data structures representing processes or pro-
cedures. From this point of view, functions in conventional
programming languages are examples of chunks. The intro-
duction of variables to classifier systems makes rules begin
to look like functions. Values are bound to function param-
eters when a message matches a condition. The action part
is just the return value(s) from the function call. Between
the condition and action parts is a simple function body. If
VCS continues to evolve, making the function describing
the mapping of input to output values more sophisticated,
then these systems become more like a conventional pro-
gramming language. The only major difference is the
method used for representing values and variables. Maybe
this implies that the simple binary representations of CS
and VCS should be the next area for evolution. The imple-
mentation of chunks as functions would make the
knowledge being structured as a lattice rooted in a set of
pre-existing primitives [RoN86]. How to detect, encode
and decode a chunk in VCS, perhaps using techniques from
traditional programming languages, would be an interesting
research project.

The VCS system described in this paper has been
designed, and is being implemented.

Acknowledgments

Joe Culberson, Renee Elio, and Randy Goebel helped
clarify many of the ideas presented in this paper. Financial
assistance from the Natural Sciences and Engineering
Research Council of Canada is greatly appreciated.

References

[BeF88] R.K. Belew and S. Forrest, Learning and Pro-
gramming in Classifier Systems, Machine
Learning 3, (1988), 193-224, Kluwer Academic
Publishers.

[Boo82] L.B. Booker, Intelligent Behavior as an Adapta-
tion in the Environment, Ph.D. Thesis, Technical
Report, University of Michigan, 1982.

[DeJ75] K.A. DeJong, An Analysis of the Behavior of a
Class of Genetic Adaptive Systems, Ph.D.
Thesis, University of Michigan, 1975.

[Gol83] D.E. Goldberg, Computer-Aided Gas Pipeline
Operation Using Genetic Algorithms and Rule
Learning, Ph.D. Thesis, University of Michigan,
1983.

[Gol88] D.E. Goldberg, Genetic Algorithms in Search,
Optimization & Machine Learning, Addison-
Wesley Publishing Company, 1988.

[Hol75] J.H. Holland, Adaptation in Natural and Artifi-
cial Systems, The University of Michigan Press,
1975.

[HoR78] J.H. Holland and J.S. Reitman, Cognitive Sys-
tems Based on Adaptive Algorithms, in Pattern
Directed Inference Systems, D.A. Waterman and
F. Hayes-Roth (ed.), Academic Press, New
York, 1978, 313-329.

[HHN86] J.H. Holland, K.J. Holyoak, R.E. Nisbett and
P.R. Thagard, Induction: Processes of Inference,
Learning, and Discovery, MIT Press, Cam-
bridge, 1986.

[Hol86] J.H. Holland, Escaping Brittleness: The Possi-
bilities of General Purpose Learning Algorithms
Applied to Parallel Rule-Based Systems, in
Machine Learning II, R.S. Michalski, J.G. Car-
bonell and T.M. Mitchell (ed.), 1986.

[MCM86] Introduction, in Machine Learning II, R.S.
Michalski, J.G. Carbonell and T.M. Mitchell
(ed.), 1986.

[Rio86] R.L. Riolo, LETSEQ: An Implementation of the
CFS-C Classifier System in a Task Domain that
Predicts Letter Sequences, Technical Report,
University of Michigan, 1986.

[RoN86] Paul S. Rosenbloom and Allen Newell, The
Chunking of Goal Hierarchies : A Generalized
Model of Practice, in Machine Learning II, R.S.
Michalski, J.G. Carbonell and T.M. Mitchell
(ed.), 1986.

[Sch88] D. Schuurmans, Representation and Selection
Techniques for Genetic Learning Systems,
M.Sc. Thesis, University of Alberta, 1988.

[Smi80] S.F. Smith, A learning system based on genetic
adaptive algorithms, Ph.D. Thesis, University of

Pittsburgh, 1980.

[Wil86] S.W. Wilson, Knowledge Growth in an Artifi-
cial Animal, in Adaptive and Learning Systems:
Theory and Applications, K.S. Narendra (ed.),
Plenum, New York, 1986, 255-264.

