
University of AlbertaE�ciently Searching the 15-PuzzlebyJoseph C. Culberson and Jonathan Schae�er
Technical Report TR 94{08May 1994

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

E�ciently Searching the 15-PuzzleJoseph C. Culberson Jonathan Schae�erAbstractThe A* algorithm for single-agent search has attracted consider-able attention in recent years due to Korf's iterative deepening im-provement (IDA*). The algorithm's e�ciency depends on the qualityof the lower bound estimates of the solution cost. For sliding tile puz-zles, reduction databases are introduced as a means of improving thelower bound. The database contains all solutions to the subproblemof correctly placing N tiles. For the 15-Puzzle, IDA* with reduc-tion databases (N=8) are shown to reduce the total number of nodessearched on a standard problem set of 100 positions by over 1000-fold.With the addition of transposition tables and endgame databases, animprovement of over 1700-fold is seen.1 IntroductionIn recent years, the A* algorithm for single-agent search has attracted consid-erable attention. Korf pioneered the use of iterative deepening with depth-�rst A* (IDA*), eliminating many of the di�culties of the basic A* algo-rithm [4]. Even with this enhancement, the search trees built may be quitelarge. To make the search more e�cient, one can look for algorithm improve-ments (such as removing duplicate nodes from the search [11, 10]), tighterlower-bound estimates on the solution cost (for example, the linear conictsheuristic for sliding-tile puzzles [2]) or consider a hybrid version of A* thatproduces \good" non-optimal solutions (for example, real-time search [5],linear-space best-�rst search [6]). However, with the constraint of requiringan optimal solution, few improvements to the basic IDA* algorithm havebeen proposed. Given that machines with gigabytes of RAM will soon be1

commonplace, are there ways of using memory to dramatically decrease thesize of the search tree?This paper discusses using a large memory to reduce the cost of searchingsliding tile puzzles. The 15-Puzzle is illustrated in Figure 1. The puzzleconsists of a set of 15 labeled cells arranged in a 4 � 4 square grid, with onegrid location remaining empty. The empty location is called the empty cell.We refer to the cells by their labels 0 � i � 15, where 0 indicates the emptycell. A move consists of sliding a tile into the empty square. The object isto reach a goal state in the minimum number of moves.
1 2 3

4 5 6 7

8 9 10 11

12 13 14 15Figure 1: The 15-Puzzle Goal. Figure 2: Mirror Path Reection.The problem can be generalized into an n�m puzzle. The 2 � 2 puzzleis trivial with a search space isomorphic to a 12-cycle. The 3 � 3 puzzlehas been completely solved [8]. The search space for the 15-Puzzle has16!=2 = 10; 461; 394; 944; 000 � 1013 positions. It is well known that one halfof the permutations cannot be reached from the goal, and that these canbe detected with a simple parity test [3]. Work has begun on trying to �nde�cient algorithms for solving the 5�5 puzzle ([6], for example). It is knownthat determining whether a path of a given length from an arbitrary positionto the goal exists is NP-hard for the general n� n puzzle [7].In two-person game-playing programs, there are two popular techniquesfor trading memory for time that can also be applied to single-agent search.First, transposition tables are used to record the result returned by the searchof each subtree. In the event that another search path transposes into a savedline, the value of the subtree can be retrieved from the table, allowing reuseof the previously computed result. Marsland and Reinefeld have shown thatthis technique can reduce the size of a search tree in half [10], but Taylor andKorf have shown that �nite state machines can do better [11].Second, endgame databases are used to record a subset of states in the2

search space that are close to the solution state(s). In two-person game-playing programs, the usual method is to compute the value (win/loss/draw)for all positions with N or fewer pieces on the board. When the search reachesa position with N or fewer pieces, the value from the database is retrievedand further search along that path is unnecessary. In single-agent search, allpositions in the search space within a distance of N of the solution can besaved. To the best of our knowledge, results have not been reported showingthe e�ectiveness of this technique on single-agent search.Given a gigabyte of RAM, are these techniques the most e�ective wayto use the memory? This paper introduces reduction databases as a new ap-proach for solving sliding tile puzzles (the 15-Puzzle) using IDA*. A human-like approach to solving the problem non-optimally is to move some of thetiles into their correct position, thereby reducing the complexity of the re-maining problem to be solved. A reduction database contains the minimalnumber of moves required to correctly place N designated tiles. Given anarbitrary position, the positions of the N designated tiles are used to indexinto the reduction database to �nd the minimal number of moves requiredto correctly place those N tiles. Further, because of symmetries in the puz-zle (mirror, horizontal, vertical and diagonal) a position can be mapped toalternate images, each of which can be looked up in the reduction database.The maximum over all the database lookups results in a lower bound on thesolution cost. Essentially, a reduction database can be viewed as a collectionof solutions to subproblems.Gasser has also developed a technique for using memory to reduce the costof solving sliding tile puzzles [1]. He uses a database of patterns to achievea 50-fold reduction in the tree sizes. Patterns consist of combinations of upto 4 tiles. For each pattern the database contains the minimum number ofmoves required to maneuver the tiles into their correct positions, ignoringthe constraints of the blank tile. Essentially, these databases improve theManhattan distance metric by taking into account that movement of someof the tiles will conict with each other.In this paper, the results of using reduction databases, transposition ta-bles and endgame databases are reported for solving the 15-Puzzle. Ona standard set of 100 test positions, reduction databases reduce the totalnumber of nodes over all the problems by 1038-fold compared to using justthe Manhattan distance. The addition of transposition tables and endgamedatabases improve this to a 1707-fold reduction in the search trees built.3

2 Database FundamentalsA position is a permutation of the cells with respect to the goal or identitypermutation � as indicated in Figure 1(a). Speci�cally, for a position p, p[i]is the cell in location i. The permutation for a position is obtained by a leftto right, top to bottom traversal of the puzzle. Given permutations a and b,c = a[b] is the permutation obtained by 8i; c[i] = a[b[i]] and c[a] = b is thepermutation obtained by 8i; c[a[i]] = b[i]. We can compute the inverse a�1of a by a�1[a] = � . c[b[a]] = (c[b])[a] for any a; b; c which we abbreviate asabc. Also, c[b] = a and c = a[b�1] are equivalent de�nitions of c.In any position, a move consists of moving one of the orthogonally adja-cent cells into the empty location. However, we prefer to think of a move asswapping the empty cell with one of its neighbors, and will specify a moveby the direction the empty cell moves, with l; r; u; d corresponding to left,right, up and down respectively. Two positions are adjacent in the puzzlespace if one can be obtained from the other in a single move. The distancebetween two positions is the minimum number of moves required to produceone from the other. The cost of a position is the distance from the goal tothe position. A path P (� ; p) from one position (p) to another is a sequenceof moves (permutation �) transforming the �rst into the second. Note thatfor each path there is a corresponding sequence of positions.2.1 Mirror PositionsFor every path P (� ; p) there is an equal length path P 0(� ; p0) obtained fromP by reecting the moves across the main diagonal. P 0 is obtained from P(or vice versa) by the replacements l u; u l; r u; u r for each movein P . We call P 0 the mirror path of path P and p0 the mirror of position p.Figure 2 illustrates the path reection.Let m be the permutation that reects the puzzle across the main diag-onal. Thus, m = (0; 4; 8; 12; 1; 5; 9; 13; 2; 6; 10; 14; 3; 7; 11; 15). By induction,if the kth move of the path P moves cell i to location j, then move k of thepath P 0 moves cell m[i] to location m[j]. Thus, the image (under m) of theith cell of a position p will be in the m[i]th position of the mirror p0, or inshorthand m[p[i]] will be in p0[m[i]]. So p0 is de�ned by p0[m] = m[p]. Themirror p0 is then a reection and permutation of p across the main diagonal.Since for every path P (� ; p) there is an equal length path P 0(� ; p0) and4

vice versa, it follows thatLemma 2.1 Any lower bound on the cost of a position p or its mirror p0applies to both p and p0.These facts can be used to great advantage while searching for the cost of aposition. In databases, we need only store information about a position andnot its mirror, resulting in a nearly 50% reduction. (We get slightly less than50% because some positions are self-mirrors, for example the goal position).2.2 Reduction DatabasesAn image is the partial speci�cation of a permutation (or position). That is,the cells occupying certain locations are unspeci�ed. These unspeci�ed cellsare called blanks. Note the distinction between blank cells and the emptycell. In all of the images we use in this paper the empty cell will be speci�ed.
3

7

11

12 13 14 15

8 9 10

12 13 14 15Figure 3: The Fringe and Corner Target Images.A target image is a partial speci�cation of the goal position. A reductiondatabase or image database (RDB) is the set of all images which can beobtained by permutations of a target image. Two target images for whichwe have built databases are shown in Figure 3. We refer to these databasesas the fringe and the corner respectively.For each image in a database, we compute the distance (minimumnumberof moves) to the target image. We refer to this distance as the cost of theimage. Note that the distance includes the cost of moving the blank cellswhen required to place the speci�ed cells, but does not require the blanks tobe in any particular order. Since the speci�ed cells are in their �nal locationsin the target image we haveLemma 2.2 For any position, for any image database, the cost of the imageinduced by the position with respect to the database is a lower bound on thecost of the position. 5

In addition to lower bounds, we can also obtain upper bounds from anRDB. We will consider the fringe database as an example, but similar argu-ments apply to any RDB.In addition to the cost of obtaining the fringe target image, we store thepermutation associated with one optimal move sequence that generates it.Then, for any position, applying that permutation results in a new position,with only the 3 � 3 subpuzzle remaining to be solved. Since the solutionof the 8-puzzle is easily computed, adding the two costs together yields anupper bound on the total cost.By modifying this RDB slightly, we can also obtain additional lowerbounds and a tighter upper bound. Instead of a single fringe target im-age, we consider the set of nine targets in which the empty cell is located inone of the upper 3� 3 locations of the puzzle, and the speci�ed cells are thesame as in the fringe target image.We compute the cost of solving each position of the 8-puzzle by searchingit in the 15-puzzle. In this case, 172 positions have a reduced cost of 2 overthe standard 8-puzzle. This gives us a tighter upper bound in some cases.To obtain a tighter lower bound let f be the cost of reaching a targetimage in this database, and r be the cost of solving the remaining 8-puzzle.Consider any other path from the current position to the goal, with cost to afringe image f 0 and 8-puzzle cost of r0. Since r is a minimum cost solution ofthe �rst 8-puzzle subgoal within the 15-puzzle, then r � f +f 0+ r0, and thusf 0+ r0 � r� f . When r > 2f , this gives a better lower bound than f . If it isfeasible to wait until the search reaches at least once to a position in whichthe target image is realized, then it is not necessary to store the permutationto use this improved lower bound. Instead, the result can be backed up in adepth �rst search.However, both the upper bounds and the improved lower bounds havealmost no e�ect when the other databases and simpli�cations are includedin the IDA* search. In addition, the storage required for the permutationsis signi�cant. For these reasons, these techniques are not of much practicalbene�t.2.3 Using SymmetryUsing the properties of mirror positions discussed earlier, it is possible toobtain two lower bounds from a database, one for p and one for p0. In this6

case, the mirror of a blank cell is assumed to be blank. Notice, however, thatdue to the symmetry of the fringe target image, the cost of an image and itsmirror are always equal in the fringe RDB.Using other symmetries of the 15-Puzzle, even better lower bounds can beobtained. Let v be the permutation induced by reection about the verticalaxis, h be the permutation induced by reection across the horizontal axis andd be the permutation induced by reection across the transverse diagonal.Consider the image in Figure 4. Given the fringe RDB, the distance to thisimage can be found by de�ning v̂ = v, with the exception that v̂[0] = 0 andv̂[3] = 1 and vice versa. Now de�ne the vertical reection of a position p bypv[v] = v̂[p]. Since v = v�1 and v̂ = v̂�1, computing pv for any position pand looking up pv in the fringe RDB produces the minimum distance from pto the image in Figure 4. But any position matching the image in Figure 4is three moves away from a target image which is obtained by moving theempty cell three steps to the left. Note in particular that this move sequenceleaves cell 1 in its correct location.
12 13 14 15

1

4

8Figure 4: Image Reection Across the Vertical Axis.A similar argument holds for any RDB. Thus, a lower bound on reachingthe goal can be obtained by computing pv for any position p, looking up thecost in the RDB and subtracting three.A similar case holds for the reection h.For d, the initial reection carries the empty cell to the lower right corner.This requires 6 moves of the empty cell to create a target image. Thus, itis necessary to subtract 6 from the RDB cost. However, there are severaldistinct paths (with respect to the e�ects on speci�ed cells) of length six.Thus, there are several di�erent lookups that may be performed for thereection d.Finally, for each of the positions obtained by reecting across h; v; d, themirror of the position can also be computed and looked up in the appropriate7

RDB. None of these mirrors are e�ective in the fringe because, as notedpreviously, the fringe target image is symmetric with respect to the mirror.From the preceding discussion, it might be concluded that the fringe is ata disadvantage because symmetry means the mirror never yields improvedlower bounds. On one hand, we intuitively expect that the fringe databasewill yield somewhat tighter lower bounds on average for a single lookup. Thereason is that once the fringe target image is achieved, it is quite unlikely thatthe speci�ed cells will be disturbed in completing the rest of the solution.In fact, as previously mentioned, at most two moves can be saved from anyposition matching the fringe target image over the corresponding solutionrestricted to 8-puzzle moves. On the other hand, the corner target imagemay be signi�cantly disturbed in order for the solution to be completed.This argument places some intuitive limits on which target images are likelyto be useful. For example, a target image in which only alternate cells arespeci�ed could seemingly be very far from the goal. Such a database wouldlikely yield weak lower bounds for most positions.These are never-the-less intuitive arguments, and detailed analysis, eitherexperimental or analytical, remains to be done.3 ExampleTable 1 shows the results of looking up a position in the reduction database(position number 79 in the Korf set [4], the simplest problem in the set).The table shows all the images for the original position (O): its mirror (M),horizontal (H), horizontal mirror (HM), vertical (V), vertical mirror (VM),diagonal (D) and diagonal mirror (DM). Note that there are 10 diagonalimages for the corner and only 6 for the fringe (since there are more uniqueminimal paths for the empty cell to traverse from square 15 to square 0).For this position, the Manhattan distance is 28. Looking up the originalposition in the fringe database yields a lower bound of 38 (the maximumover all the images examined). Over all 100 Korf test positions, reductiondatabases using the fringe improved the Manhattan distance 92 times foran average gain of 6:9 (the other 8 positions were the same as Manhattan).Using the corner database, the bound was improved 94 times with an averagegain of 6.1, stayed the same 5 times, and was not as good once (by 2).8

Name Position DB Value Subtract BoundCornerO 0 1 9 7 11 13 5 3 14 12 4 2 8 6 10 15 28 0 28M 0 14 11 2 4 7 3 9 6 5 1 10 13 12 8 15 32 0 32HO 7 10 1 0 3 5 14 8 2 4 15 13 12 9 6 11 35 3 32HM 2 8 13 0 10 3 7 4 9 1 5 6 12 11 15 14 35 3 32VO 8 10 6 3 2 4 12 14 11 1 9 15 0 13 5 7 37 3 34VM 1 4 8 3 10 9 13 6 12 7 15 5 0 2 11 14 29 3 26DO 4 5 9 7 13 15 3 1 12 10 2 11 8 6 14 0 32 6 26DO 1 6 9 7 13 4 3 5 12 14 2 11 8 10 15 0 22 6 16DO 1 9 13 7 14 4 3 2 12 10 6 11 8 5 15 0 32 6 26DO 1 5 9 11 14 4 7 2 13 10 3 8 12 6 15 0 34 6 28DO 1 9 10 7 13 4 3 5 12 14 2 11 8 6 15 0 30 6 24DO 1 6 10 11 13 4 3 5 12 14 2 8 9 7 15 0 34 6 28DO 1 5 13 11 14 4 3 2 12 10 6 8 9 7 15 0 36 6 30DO 4 9 10 7 13 15 3 1 12 11 2 5 8 6 14 0 36 6 30DO 4 6 9 7 13 15 3 1 12 11 2 5 8 10 14 0 32 6 26DO 4 6 10 5 13 15 3 1 12 11 2 8 9 7 14 0 38 6 32DM 4 7 3 2 5 14 10 9 6 12 8 15 13 11 1 0 30 6 24DM 1 7 3 2 6 15 14 9 10 12 8 4 13 11 5 0 30 6 24DM 1 7 3 6 9 15 10 13 5 12 8 4 14 11 2 0 32 6 26DM 1 11 7 3 5 15 10 9 6 13 12 4 14 8 2 0 32 6 26DM 1 7 3 2 9 15 14 10 6 12 8 4 13 11 5 0 30 6 24DM 1 11 3 2 6 15 14 10 7 12 9 4 13 8 5 0 28 6 22DM 1 11 3 6 5 15 10 13 7 12 9 4 14 8 2 0 32 6 26DM 4 7 3 2 9 14 11 10 6 12 8 15 13 5 1 0 30 6 24DM 4 7 3 2 6 14 11 9 10 12 8 15 13 5 1 0 30 6 24DM 4 5 3 2 6 14 11 10 7 12 9 15 13 8 1 0 28 6 22FringeO 0 1 9 7 11 13 5 3 14 12 4 2 8 6 10 15 38 0 38HO 4 9 3 0 1 5 14 8 2 7 15 13 12 10 6 11 29 3 26VO 2 8 13 0 9 1 4 7 10 3 5 6 12 11 15 14 31 3 28DO 1 10 6 7 14 11 3 2 13 5 8 4 12 9 15 0 34 6 28DO 1 10 13 7 14 11 3 2 12 5 6 4 8 9 15 0 38 6 32DO 1 10 6 7 13 11 3 5 12 14 2 4 8 9 15 0 30 6 24DO 4 10 6 11 13 15 7 1 12 5 3 8 2 9 14 0 38 6 32DO 4 10 6 11 13 15 3 1 12 5 2 8 9 7 14 0 36 6 30DO 4 10 6 7 13 15 3 1 12 11 2 5 8 9 14 0 34 6 28Table 1: Position #79 and its Images.9

4 ExperimentsIterative-deepening A* for the 15-Puzzle was implemented using the Manhat-tan distance heuristic estimate (MD), transposition tables (TT, with 218 po-sitions [10]), endgame databases (DB, all solutions of length <= 25 moves),fringe reduction database (FR) and corner reduction database (CO). Thefringe and corner databases were built using retrograde analysis and eachcontains 16 � 15 � 14 � 13 � 12 � 11 � 10 � 9 = 518,918,400 positions, onebyte each. The programs were written in C and run on a BBN TC2000 atLawrence Livermore Laboratories. The TC2000 has 128 processors and 1GB of RAM. The program would load the databases into shared memoryand search each test position in parallel. An experiment consisted of runningthe 100 test positions given by Korf [4].Table 2 summarizes the results. Transposition tables reduce the totaltree size over all 100 test problems by a factor of 2.7-fold1. This is somewhatbetter than the results reported by Marsland and Reinefeld [10] (a 2-foldreduction) for two reasons: 1) the hash function used is slightly better [9]and 2) both a position and its mirror image are looked up in the table (sinceeach position has a mirror position with an equivalent solution length, thesearch results for one are applicable to the other2). However, even withthese improvements, the results are still inferior to Taylor and Korf's 3.6-fold reduction in tree size through the use of a �nite state machine to detectduplicate states [11].Endgame databases on their own reduce the search space a factor of1.9-fold. The database of all positions with solution length of 25 consistsof 36; 142; 146 positions (most of the mirror positions are removed), com-pressed into 106 MB. Transposition tables use considerably less memory (218entries with 12 bytes/entry = 3.1 MB in these experiments) and achievebetter performance results. However, increasing the size of the transpositiontable provides decreasing bene�ts, whereas increasing the size of the endgame1This measurement is used for compatibility with other works. However, it is notnecessarily a fair comparison, since the larger trees have a greater inuence on the �nalresult than the smaller trees.2This suggests a better implementation would be to always \normalize" the board, bynot allowing mirror position in the search. For example, one simple normalization thatwould eliminate most of the mirror positions would be to keep the empty square on orbelow the diagonal. If a move causes the empty square to move above the diagonal, reectit to below the diagonal. 10

database provides increasing bene�ts. In this experiment, the combinationof the two resulted in a 4.1-fold decrease in the search trees.Table 2 shows that the fringe database reduces the search trees by 345-fold, and the corner database is even better with a 437-fold reduction. Sincethe fringe is symmetric, it has fewer images to look up (9) than for thecorner (26). Thus, the corner's lower bound is maximized over more values,generally giving a tighter bound. When transposition tables and endgamedatabases are used with the corner database, a further 1.7-fold reduction isseen, yielding a total reduction of 773-fold.Experiment Total Nodes Tree Size % ImprovementMD 36,302,808,031 100.00 1.0MD+DB 19,419,742,608 53.49 1.9MD+TT 13,662,973,000 37.64 2.7MD+TT+DB 8,869,627,254 24.43 4.1MD+FR 105,067,478 0.29 345.5MD+CO 83,125,633 0.23 436.7MD+TT+DB+FR 52,839,191 0.15 687.0MD+TT+DB+CO 46,987,450 0.13 772.6Table 2: Results Summary.Examination of the data produced by the reduction databases showedthat for many positions they produced complimentary results: positionswhere the corner did poorly often had the fringe doing well, and visa-versa.Obviously the program could be modi�ed to take the maximum over bothdatabases, but since each database is 520 MB this does not seem practical.Instead, the program was modi�ed to use half of each database. Each reduc-tion database was broken into 16 parts - one for each square that could beempty. If the 4� 4 board is viewed as a checkerboard, then for half of thesquares the corresponding fringe database (F) would be read into memoryand for the other half, the corresponding corner database (C) would be read(as in Figure 5a). Given a position, the images for which the appropriate re-duction database is in memory are looked up. For example, Figure 5b showsthe position of an empty square (O) and where the it would appear in allthe images of that position. The original position (O), its mirror (M), cornerdiagonal (DO) and corner diagonal mirror (DM) images would be looked up11

using the corner database, while the fringe vertical (VO), the fringe verticalmirror (VM), the fringe horizontal (HO) and the fringe horizontal mirror(HM) images would be looked up in the fringe database. When the emptysquare moves once, the original position, mirror, fringe DO and fringe DMimages would be looked up using the fringe database, while the corner VO,the corner VM, the HO and the corner HM images would be looked up inthe corner database. Essentially, this scheme allows us to use half of eachdatabase to achieve the bene�ts of having both.
F C F

F F

FF

F F

C

CC

C C

CC

M VM

DMHM

HO

DO

O

VOFigure 5: a) 15-Puzzle as a Checkerboard. b) Looking up a Position.Using half of the corner and fringe databases (BT) without any otherenhancements results in the tree size being reduced by 1038-fold. Tables 3and 4 show the results of using BT combined with transposition tables andendgame databases. For comparison purposes, the 100 Korf positions andthe size of their Manhattan distance search trees are shown. Using bothdatabases gives a 2.5-fold improvement over just using the corner database,resulting in a search size that is 0.059% of the Manhattan trees, a 1707-foldreduction. The average problem has its tree size reduced by a factor of 1775.The linear conicts heuristic (LC) is a recently proposed improvement tothe Manhattan distance heuristic [2]. It improves the Manhattan distancemeasure by recognizing when two tiles in the same row/column will conictwith each other moving into their correct position (a linear conict). Tables3 and 4 include the results of using linear conicts with and without thedatabases. The databases improve this heuristic 214-fold. Note that whenthe memory tables are not used, linear conicts reduces the Manhattan treesby 9.7-fold. With the database, a small improvement of 1.071 is seen, im-plying most of the bene�ts of linear conicts are captured in the reductiondatabases. 12

MD MD+TT+DB+BT Improvement LC LC+TT+DB+BT Improvement1 276361933 28977 9537 12205622 28478 4292 15300442 80054 191 4556066 76408 603 565994203 682529 829 156590305 654265 2394 62643179 40798 1535 9051743 39675 2285 11020325 124746 88 2677665 111686 246 32201660 50682 635 4151681 49454 847 387138094 370549 1045 97264709 365079 2668 39118937 47756 819 3769803 45889 829 1650696 4411 374 88587 3106 2910 198758703 584055 340 48531590 564714 8611 150346072 259862 579 25537947 249039 10312 546344 3170 172 179627 3026 5913 11861705 6740 1760 1051212 6370 16514 1369596778 71892 19051 53050798 70868 74915 543598067 387056 1404 130071655 374282 34816 17984051 14532 1238 2421877 14500 16717 607399560 411001 1478 100843885 356736 28318 23711067 9440 2512 5224644 9045 57819 1280495 4773 268 385368 4502 8620 17954870 78997 227 3642637 72445 5021 257064810 239410 1074 43980447 236112 18622 750745755 434487 1728 79549135 409107 19423 15971319 25659 622 770087 19785 3924 42693209 73051 584 15062607 72213 20925 100734844 49508 2035 13453742 48938 27526 226668645 261722 866 50000802 255581 19627 306123421 56465 5421 31152541 55821 55828 5934442 2837 2092 1584196 2733 58029 117076111 59776 1959 10085237 54377 18530 2196593 2637 833 680253 2591 26331 2351811 1128 2085 538885 1127 47832 661041936 2176909 304 183341086 1969359 9333 480637867 367663 1307 28644836 333084 8634 20671552 59518 347 1174413 51037 2335 47506056 4673 10166 9214046 4660 197736 59802602 56116 1066 4657635 54648 8537 280078791 187652 1493 21274606 181121 11738 24492852 26340 930 4946980 25392 19539 19355806 29233 662 3911622 29065 13540 63276188 92937 681 13107556 91043 14441 51501544 100283 514 12388515 94749 13142 877823 2219 396 217287 2159 10143 41124767 187585 219 7034878 147917 4844 95733125 51932 1843 3819540 46438 8245 6158733 14116 436 764472 13724 5646 22119320 21065 1050 1510386 19465 7847 1411294 769 1835 221530 766 28948 1905023 15243 125 255046 12608 2049 1809933698 512255 3533 203873876 496204 41150 63036422 164203 384 6225179 153052 41Table 3: Results for the 100 Korf Positions (I).13

MD MD+TT+DB+BT Improvement LC LC+TT+DB+BT Improvement51 26622863 69695 382 4683053 66326 7152 377141881 203099 1857 33691152 197048 17153 465225698 358807 1297 125641729 346544 36354 220374385 111930 1969 26080658 109220 23955 927212 1447 641 163076 1442 11356 1199487996 314872 3809 166183824 311350 53457 8841527 10241 863 3977808 10105 39458 12955404 21647 598 3563940 21303 16759 1207520464 148213 8147 90973286 146131 62360 3337690331 3429574 973 256537527 3047593 8461 7096850 13364 531 672958 12849 5262 23540413 32331 728 8463997 30229 28063 995472712 494062 2015 20999335 444812 4764 260054152 155874 1668 43522755 154996 28165 18997681 19181 990 2444272 18526 13266 1957191378 826670 2368 394246897 811211 48667 252783878 118678 2130 47499461 117263 40568 64367799 23123 2784 6959506 23060 30269 109562359 25425 4309 5186586 24412 21270 151042571 96851 1560 40161672 96463 41671 8885972 3666 2424 539386 3594 15072 1031641140 85060 12128 55514359 83436 66573 3222276 10870 296 1130806 10431 10874 1897728 30106 63 310311 25658 1275 42772589 54052 791 5796659 52611 11076 126638417 205942 615 25481595 195302 13077 18918269 66473 285 5479396 63727 8678 10907150 33812 323 2722094 33118 8279 540860 2066 262 107087 1859 5880 132945856 336552 395 39801474 314887 12681 9982569 10445 956 1088122 10204 10782 5506801123 825333 6672 203606264 788489 25883 65533432 14831 4419 2155879 14475 14984 106074303 66087 1605 17323671 65271 26585 2725456 3460 788 933952 3459 27086 2304426 12003 192 237465 9915 2487 64926494 26929 2411 7928513 26857 29588 6320047980 2611177 2420 422768850 2398192 17689 166571021 266442 625 29171606 252407 11690 7171137 9541 752 649590 9135 7191 602886858 472683 1275 91220186 461788 19892 1101072541 472553 2330 68307451 458495 14993 1599909 2224 719 350207 2184 16094 1337340 22823 59 390367 20005 2095 7115967 23040 309 1517919 21854 6996 12808564 26877 477 1157733 25096 4697 1002927 2592 387 166565 2452 6898 183526883 80307 2285 41564668 79903 52099 83477694 116601 716 18038549 112525 160100 67880056 352705 192 17778221 328188 54TTL 36302808031 21261747 3759631279 19850843AVG 100.0 0.059 1774.648 100.0 0.528 214.626Table 4: Results for the 100 Korf Positions (II).14

In Table 5, the 100 positions have been sorted into groups of 20 basedon the number of nodes required to solve the MD tree. The results showthat the 20 easiest problems bene�t by a factor of 628 (142 for LC) usingdatabases and tables, while the 20 hardest problems bene�t by a factor of3,706 (313 for LC). This suggests that the improvements are limited only bythe small problems, whose solution trees become close to the minimal tree.Problems MD LC01-20 628 14221-40 745 11641-60 1679 25161-80 2116 25181-100 3706 313Table 5: Results Grouped by Size of Search Tree.Obviously, the enhancements presented in this paper increase the costof evaluating a node in the search tree. The question arises whether theadditional work done by the node evaluation is outweighed by the reduc-tion in search tree size. Our implementation of the program is simple andregenerates images at each node (as many as 26), rather than maintainingall the information incrementally. Further, the program uses the maximumnumber of images for computing a bound. The diagonal images contributethe least to the bound (since they have 6 subtracted from their bounds) andeliminating them will more than double the speed of the program, while onlyincreasing the tree by a small percent. Even without these enhancements theprogram runs roughly 6 times faster in real time compared to MD, while itruns roughly 1.5 times faster than LC. However, using BT by itself, with onlythe original and mirror position queried in the reduction database, results ina larger search tree, but the program runs 12 times faster than MD in realtime. There is a trade-o� here: increased cost per node versus better lowerbound. We have not done experiments to �nd which combination minimizesexecution time. 15

5 ConclusionsReduction databases are an e�ective means for signi�cantly reducing thesize of search trees in the 15-Puzzle. By using lower bounds on the costof solving sub-problems, a heuristic that is signi�cantly more e�ective thanthe Manhattan distance is obtained. The large reduction in search tree sizedoes not give an equivalent reduction in the execution time required to solvethe problem. This is largely due to the simplicity of the Manhattan distanceheuristic, since it is inexpensive to compute. For other problems where a morecomputationally expensive lower bound is required, the relative e�ciency ofthe reduction databases at run-time will improve.Since we had access to a gigabyte of RAM, we used the largest reductiondatabases that we could (8 tiles). A reduction database that placed only7 tiles would required 57 MB. The smaller databases would provide weakerlower bounds for the 15-Puzzle, but they would still be signi�cantly betterthan MD.This work can be extended to the 24-Puzzle. For the 15-Puzzle, thereduction database places 8 of the 16 tiles. Using comparable storage forthe 24-Puzzle, the database will only be able to contain 6 of the 25 tiles.Because of the complexity of this problem, it is too expensive to searchfor optimal solutions. Instead, the e�ort has been in �nding approximatesolutions quickly [5]. The database information can be used to increase theaccuracy of any heuristic estimate. The larger the puzzle, the more e�ectivebecome the images. For example, the cost of placing 6 tiles on one side of theboard may have little e�ect on the cost of placing the mirror of the 6 tileson the other side of the board. Thus the maximum value from the reductiondatabase of the images will decrease slowly. This suggests that a two-levelheuristic estimate may be an e�ective real-time search strategy: given twostates with the same reduction database maximumvalue, search the one withthe smallest sum (or average) of the individual database image values. Thiswill concentrate e�ort on lines which are making a greater contribution tothe overall solution of the problem.With the 8-Puzzle trivially solvable and any 15-Puzzle image being solv-able with a relatively small search, there may be ways to combine theseresults to help obtain good bounds on the solution lengths for the 24-Puzzle.For example, the 24-Puzzle can be viewed as being composed of several over-lapping 15- or 8-Puzzles. A function would have to be developed that allowed16

the results of these overlapping problems to be combined.Although reduction databases have only been applied to the 15-puzzle,the idea in principle is applicable to other single-agent search domains. Byconstructing a (possibly large) database of solutions to subproblems, largeimprovements in search e�ciency are possible.AcknowledgementsOur thanks to Richard Korf for making his implementation of linear con-icts available to us. This work originated out of discussions with AlexanderReinefeld. Thanks to Brent Gorda and the MPCI project at Lawrence Liv-ermore Laboratories for making machine time available to us.This research was funded by the Natural Sciences and Engineering Re-search Council of Canada, grants OGP-8173 and OGP-8053.References[1] R. Gasser. Combining Search with Databases: An Improved 15 Puz-zle Algorithm, internal report, Department of Computer Science, ETHZurich, 1994.[2] O. Hansson, A. Mayer and M. Yung. Criticizing Solutions to RelaxedModels Yields Powerful Admissible Heuristics. Information Sciences,vol. 63, no. 3, pp. 207-227, 1992.[3] E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms Com-puter Science Press, 1978.[4] R. Korf. Depth-First Iterative-Deepening: An Optimal Admissible TreeSearch. Arti�cial Intelligence, vol. 27, no. 1, pp. 97-109, 1985.[5] R. Korf. Real-Time Heuristic Search. Arti�cial Intelligence, vol. 42, no.2-3, pp. 189-211, 1990.[6] R. Korf. Linear-Space Best-First Search. Arti�cial Intelligence, vol. 62,no. 1, pp. 41-78, 1993. 17

[7] D. Ratner and M. Warmuth. Finding a Shortest Solution for the(N � N)-Extension of the 15-Puzzle is Intractable, Journal of Sym-bolic Computation, vol. 10, pp. 111-137, 1990.[8] A. Reinefeld. Complete Solution of the Eight-Puzzle and the Bene�t ofNode Ordering in IDA*, International Joint Conference on Arti�cialIntelligence, pp. 248-253, 1993.[9] A. Reinefeld. private communication, September, 1993.[10] A. Reinefeld and T. Marsland. Enhanced Iterative-Deepening Search,IEEE Transactions on Pattern Analysis and Machine Intelligence, toappear, 1994.[11] L. Taylor and R. Korf. Pruning Duplicate Nodes in Depth-First Search,AAAI National Conference, pp. 756-761, 1993.

18

