
Temporal Di�erene Learning Applied to a High-PerformaneGame-Playing ProgramJonathan Shae�er, Markian Hlynkafjonathan, markiang�s.ualberta.aDepartment of Computing SieneUniversity of AlbertaEdmonton, Canada T6G 2H1 Vili Jussilavili�.hut.fiLaboratory of Computational EngineeringHelsinki University of TehnologyHelsinki, FinlandAbstratThe temporal di�erene (TD) learning algo-rithm o�ers the hope that the arduous taskof manually tuning the evaluation funtionweights of game-playing programs an be au-tomated. With one exeption (TD-Gammon),TD learning has not been demonstrated tobe e�etive in a high-performane, world lassgame-playing program. Further, there has beendoubt expressed by game-program developersthat learned weights ould ompete with thebest hand-tuned weights. Chinook is the WorldMan-Mahine Chekers Champion. Its weightswere manually tuned over 5 years. This papershows that TD learning is apable of ompetingwith the best human e�ort.1 IntrodutionThe most time-onsuming aspet of building a high-performane game-playing program is the design, im-plementation and tuning of the evaluation funtion.Designing the knowledge-based features in the evalu-ation funtion and implementing them in a fast, eÆ-ient manner remains a diÆult task for humans, al-though there have been some limited suesses at au-tomating this task [Buro, 1995; van Rijswijk, 2001;Fawett and Utgo�, 1992℄. Historially, tuning the eval-uation funtion|adjusting the weight (importane) ofeah feature ontributing to the evaluation|has been atedious, manual task. There have been numerous at-tempts to automate this (for example, [van der Muelen,1989; Anantharaman, 1991℄), but none of these teh-niques ahieved the requisite high performane. Burohas ahieved impressive results using linear regression inhis Othello program [Buro, 2001℄, but it is not lear thatsimilar tehniques will work for a broader lass of games.Temporal di�erene (TD) learning has emerged asa powerful reinforement learning tehnique for inre-mentally tuning parameters [Sutton and Barto, 1998℄.Tesauro applied TD learning to tune the weights ofa neural net, in the proess building a world lassbakgammon program (TD-Gammon) [Tesauro, 1995℄.For several years, this remained an isolated suess story

in the games literature, as the onditions in bakgam-mon that appeared to favor TD learning did not existin other high pro�le games, suh as hess. In 1997, theTDLeaf algorithm was introdued (TD learning appliedto minimax searh) [Beal, 1997℄ and it ahieved somesuess with hess (KnightCap [Baxter et al., 1998a;1998b; 2000℄).In none of the above ases has it been possible to om-pare the performane of TD learning to that of the best-tuned human weights. TD-Gammon learned throughself-play; a human-tuned version of the program does notexist. KnightCap learned through playing speed hessagainst humans on the Internet. A human-tuned ver-sion of the program does exist, but both it and the TDversion of the program are far below grandmaster levelin strength. Also, tuning for speed hess is not ne-essarily representative of what needs to be learned fortournament hess (where the searh depths are greater).In all the examples of TD learning applied to games,there has been a nagging question: Can TD-learnedweights be suessful in strong (world-hampionship-alibre) game-playing programs? For hallenging games,suh as hess, game developers have expressed doubtthat tuned weights would be suÆient to ahieve thehighest levels of performane.Chinook is the World Man-Mahine Chekers Cham-pion [Shae�er, 1997℄. Its evaluation funtion weightswere tuned manually over a period of 5 years. Theywere extensively tested both in self-play games and inhundreds of games against top human players (inlud-ing playing 96 games for the World Chekers Champi-onship). This paper investigates whether the tuning ofevaluation funtion weights in Chinook an be replaedby TDLeaf learning. The experimental data indiatesthat the answer is \yes", as well as giving new insightsinto TD learning in game-playing programs. This is the�rst known attempt to ondut a detailed study thatompares hand-tuned and TD-trained weights in an es-tablished high-performane game program.2 Temporal Di�erene LearningTemporal di�erene learning is an unsupervised rein-forement learning algorithm [Sutton and Barto, 1998℄.It learns from experiene without a model of the en-



vironment's dynamis, and updates its estimates basedon other, as yet unon�rmed, estimates. Thus, TD anlearn without waiting for a �nal outome on a given task;it evaluates the sub-steps between evaluations.The TD(�) algorithm an be suintly expressed asfollows [Sutton and Barto, 1998℄. Given a series of pre-ditions, P0:::Pt+1 (searh results from a game in thisontext), then the weights in the evaluation funtion anbe modi�ed as follows:�wt = �(Pt+1 � Pt) tXk=1 �t�krwPk (1)The hange in weights (�wt) depends upon the predi-tions (Pk) and the gradient of the predited value of thekth state with respet to the weights (rPk).The � term is a deay-rate parameter. It determinesthe extent to whih learning is a�eted by subsequentstates. A � of zero is equivalent to learning only fromthe next state. A � of 1 indiates learning only from the�nal reinforement signal; in the ase of a game, the �nalwon/lost assessment. � is a step size parameter: the pro-portion of adjustment to allow on eah iteration. Thus,the � parameter determines whether the algorithm is ap-plying short or long range predition, while � determineshow quikly this learning takes plae.TD(�) is a proven algorithm for reinforement lean-ing. One of its important advantages is that it an beomputed inrementally. However, to apply it to prob-lems utilizing searh, some re�nements are required. TheTDLeaf algorithm is essentially TD learning applied tominimax searh. TDLeaf was originally implemented byBeal and Smith [Beal, 1997℄, though not under the nameTDLeaf (whih is attributed to [Baxter et al., 1998a;1998b℄). The rux of the algorithm is not to use the po-sition at the root of the searh tree to tune the searh.Instead, tuning takes plae using the position of the leafnode at the end of the prinipal variation of the searh.The prinipal variation is the line of best play; the po-sition at the end of this line of play has had its valuebaked-up to the root of the searh.TDLeaf was implemented in the hess programKnightCap [Baxter et al., 1998a; 1998b℄. Baxter et. alreport that the program's hess rating rose from 1650to 2150 in three days (308 games). While this soundsimpressive, there are a few aveats that need to bementioned. First, the results were ahieved at speedhess; there is no indiation that these results will applyto (slower) over-the-board hess. Seond, the learningplateaued well before ahieving a high level of play. Fi-nally, despite the early promise of TDLeaf, no one hasdemonstrated that it an out-perform the best set ofhuman-tuned weights. Many researhers ative in theomputer games ommunity (inluding the �rst author)have publily doubted that TD learning is apable ofahieving the high level of performane required in agame-playing program.3 TrainingChinook's evaluation funtion is the linear ombination

of 23 knowledge-based features for eah of 4 game phases.Two features annot be modi�ed (the value of a hekerand the value of a king) beause of some searh odedependenies. Hene, a total of 84 parameters need tobe tuned.1Chinook supports an integer evaluation funtion andinteger weights. TD learning is inherently a real-numbertask. Thus, Chinook was modi�ed to aept oatingpoint values. However, the �nal position evaluationwould be onverted to an integer, allowing these hangesto be restrited to the evaluation funtion.Chinook and the TD learning (TDL) were kept as sep-arate programs whih ommuniated with eah other us-ing text �les. The �le Chinook reads in inludes informa-tion about the opening sequene, searh depth, numberof turns to play, and the weights for both sides. Aftera game �nishes, Chinook outputs a �le ontaining theresult of the game and evaluations for eah weight om-ponent. TDL uses this �le to adjust the weights and thenstarts a new game with the revised weights. During thisproess TDL also saves information about the progressof the learning, suh as the results of eah played gameand the value of the weights after eah game. Beausenot all weights are updated every turn, we also reordthe frequeny at whih weights are modi�ed to disoverif some game situations happen so seldomly that the or-responding weight does not get muh training.The TDLeaf algorithm in TDL operates on pairs ofmoves. The weights of move i are updated based in partupon the evaluation at move i+1. Not all pairs of moveswere andidates for TDLeaf updating. Capture movesare fored in hekers, so if only one move is legal in aposition, no updating would our. Also, oasionallyChinook's searh algorithm was inapable of reoveringthe prinipal variation as far as the leaf node. In thisase, TDLeaf ould not be applied.The training routine was as follows:1. Chinook is used to play two weight �les against eahother.2. TDL modi�es one or both of the weight �les basedon the game played.3. This proedure is iterated until learning is seen toplateau (typially before 10,000 iterations).To prevent the programs from playing the same movesin every game, an opening book was used whih inludedthe standard 144 hekers openings, eah 3 ply long. Thelearning rate � was hosen to be 0.01 and the TD pa-rameter � was set to 0.95. These values were hosenbased on the KnightCap experiene, but �nding the bestsettings remains an open question.Several di�erent approahes were attempted for learn-ing. Eah experiment involved starting with all weightsset to zero, train using TD learning, and then evaluate1Note that the 21 tunable features are eah the result ofa funtion that itself may ontain many parameters. Theselower-level parameters are not addressed in this paper.



the learned weights by using them in a math againstthe tournament version of Chinook.The �rst approah involved training the weights byplaying against tournament Chinook (teaher learning).The goal was to determine how e�etive the learning wasgiven the bene�t of a high-performane teaher. Theseond set of tests involved self-play (self-play learning).Here the goal was to see if the learning ould boot-strapitself to ahieve high performane. In both ases, sepa-rate experiments were performed using 5, 9, and 13-plysearhes, generating separate weights for the blak andwhite sides.Examining the output of a training session shows thatthe performane of the learned weights against tourna-ment Chinook rapidly improves at the beginning of thesession due to the poor starting values. After this initialperiod, the rate of improvement slows until at roughly4,000 games a stable state is reahed.2 In the experi-ments, only 84 weights had to be learned. In ontrast,KnightCap had to learn 1,500 parameters in its �rst setof experiments. This was later expanded to 6,000 pa-rameters [Baxter et al., 1998a℄. The small number ofparameters used in Chinook aounts for the relativelyfast learning phase.4 ResultsTrained weight sets were tested against the tournamentversion of Chinook. Evaluation onsisted of a 288-gamemath (eah program playing both sides of the 144 open-ings). All versions of the program used Chinook's 6-pieeendgame databases. Tournament Chinook has no knowl-edge of how to play simpli�ed endgame positions beauseit assumes that the database will always be used. Usingthe databases had the bene�t of speeding up the exper-iments sine, one a position with 6 or fewer piees wasreahed, the databases would give the �nal result of thegame, thereby ending the game.4.1 BaselineHow important are the evaluation funtion weights? Theobvious way to answer this question is to set all theweights to zero and see how the program performs. Ine�et, this \zero knowledge" program uses only mate-rial for its evaluation. The result of the math is notsurprising: a 34{254 game loss to tournament Chinookwith 15-ply searhes (the endgame database knowledgesalvaged many draws). Sine both programs used thesame searh depth, the quality of the knowledge is solelyresponsible for the math sore. As an additional datapoint, all the weights were set to one. Now the pro-gram \knows" how to evaluate a position, but it doesnot understand the relative importane of eah feature.Having some knowledge is obviously bene�ial, as thisprogram loses by a smaller margin (an average sore of94.5{193.5).2KnightCap required fewer training games, but its per-formane levels o� at a playing strength that is onsiderablybelow world-hampionship aliber.

4.2 Teaher LearningFigures 1a, 1b, and 1 shows the performane of whiteand blak weights that were trained using 5, 9, and 13-ply searhes, respetively. The x-axis shows the searhdepth used for the evaluation, and the y-axis shows thenumber of wins minus losses from the learning program'spoint of view.The 5-ply-trained weight set does well against Chi-nook when playing games with a searh depth of 5 ply,but performane quikly tapers o� as the programs playgames using larger searh depths (Figure 1a). A simi-lar pattern is seen with the 9-ply-trained weights (Fig-ure 1b). The experiment shows the learned weights de-feating Chinook in mathes up to 9-ply, but taperingo� with deeper searhes. Whereas with 5-ply searhes,the results of training using the white positions domi-nates those for the blak positions, with 9-ply searhesthe di�erene between the two sets of weights essentiallydisappears.For the 13-ply results (Figure 1), the data is not aslear. As before performane seems strong around thetraining searh depth (13-ply) and there is the suggestionthat it is beginning to taper o� for deeper searhes (itwould take several weeks to get the 17-ply data). Unlikethe previous graphs, the performane of the weights us-ing searh depths shallower than the training depth arepoorer. However, the di�erene between the 7-ply and13-ply results in Figure 1 represents only a 7% improve-ment, well within the statistial variability expeted.The graphs reveal an important insight for anyone us-ing TD learning in game-playing programs: the weightsmust be trained using the depths of searh expeted tobe seen in pratie. Deeper searhes provide a more a-urate approximation of the root position's true valuefor the TD algorithm to learn. This suggests that theKnightCap weights that were obtained using speed hesswill not perform well in slower tournament hess (simi-larly, [Anantharaman, 1991℄ needs deeper searhes to bee�etive). In e�et, there is no free lunh; you an't useshallow searh results to approximate deep results.We experimented with reating separate weight setsfor playing white and blak. The purpose was to see ifthe speialization of the weight sets ould lead to betterplay, given that white generally has an opening advan-tage. Surprisingly, using the blak weights only whenplaying blak, and the white weights only when playingwhite, does not seem to be statistially signi�antly bet-ter in our experiments. After the opening phase of thegame, the resulting types of positions seen are similarfor white and blak, resulting in a similar learning ex-periene. This is more pronouned with deeper searhes(sine the searh an see \beyond" the opening) than it iswith shallower searhes. This would aount for the largedi�erene between the white and blak performane inFigure 1a.The previous experiments have not been entirely fair.Both the training and evaluation was done using thesame 144 starting positions. The good results for thelearned weights might be a onsequene of the program



-40

-20

0

20

40

5 7 9 11 13 15

W
in

s 
- 

L
os

se
s

Search Depth

Base

-40

-20

0

20

40

5 7 9 11 13 15

W
in

s 
- 

L
os

se
s

Search Depth

Black

-40

-20

0

20

40

5 7 9 11 13 15

W
in

s 
- 

L
os

se
s

Search Depth

5-ply learning

White

-40

-20

0

20

40

5 7 9 11 13 15

W
in

s 
- 

L
os

se
s

Search Depth

Base

-40

-20

0

20

40

5 7 9 11 13 15

W
in

s 
- 

L
os

se
s

Search Depth

Black

-40

-20

0

20

40

5 7 9 11 13 15

W
in

s 
- 

L
os

se
s

Search Depth

9-ply learning

White

-40

-20

0

20

40

5 7 9 11 13 15

W
in

s 
- 

L
os

se
s

Search Depth

Base

-40

-20

0

20

40

5 7 9 11 13 15

W
in

s 
- 

L
os

se
s

Search Depth

Black

-40

-20

0

20

40

5 7 9 11 13 15

W
in

s 
- 

L
os

se
s

Search Depth

13-ply learning

White

Figure 1: Teaher learning: a) 5-ply, b) 9-ply and ) 13-ply.
40

45

50

55

60

0 2 4 6 8 10 12 14 16

W
in

ni
ng

 P
er

ce
nt

ag
e

Search Depth

Equality

40

45

50

55

60

0 2 4 6 8 10 12 14 16

W
in

ni
ng

 P
er

ce
nt

ag
e

Search Depth

Black

40

45

50

55

60

0 2 4 6 8 10 12 14 16

W
in

ni
ng

 P
er

ce
nt

ag
e

Search Depth

White

Figure 2: 786 game mathes using 13-ply learning.being trained to play the same opening positions thatare used in the evaluation. To get another indiator ofthe performane of the trained data, a seond experimentwas performed. From a olletion of games played by for-mer world hampion Marion Tinsley, all positions 8-plyinto the games were extrated (393 positions). These po-sitions were used as the openings for a 786-game mathbetween the learned weights and tournament Chinook.Figure 2 shows the results for both the 13-ply whiteand blak trained weight sets, expressed as the perent-age of total points sored (over 786 games). At deepersearh depths, the tuned weights perform slightly betterthan the hand-tuned weights, although the di�erene isnot statistially signi�ant. Given the math length, itis safe to say that the performane of the TD weights isomparable to that of the best hand-tuned e�ort.4.3 Self-Play LearningIn this set of experiments, the program learned throughself-play without the bene�t of having a strong oppo-nent to train against. All the self-play results analyzedto date are onsistent with that seen in the previous se-tion, with the exeption that the training takes longerto plateau. The 13-ply-trained blak weight sets sored50.2% of the points in a 786-game math (using 15-ply searhes) with tournament Chinook, while the whiteweights sored 48.3%.The self-play data strongly indiates that a goodteaher is not needed for the program to learn a setof evaluation funtion weights that ahieves world-hampionship-alibre performane. This is wonderful

0

5

10

15

20

5 10 15 20 25

C
or

re
ct

 M
ov

e

Search Depth

Chinook (tournament) weights

0

5

10

15

20

5 10 15 20 25

C
or

re
ct

 M
ov

e

Search Depth

Black (13-ply teacher) weights

0

5

10

15

20

5 10 15 20 25

C
or

re
ct

 M
ov

e

Search Depth

White (13-ply teacher) weights

Figure 3: Chinook test set data.news for game-program developers, as it suggests thatmanual weight tuning may be a thing of the past.The KnightCap self-play results are not as good asthose reported here. This is likely a onsequene of thenumber of parameters being tuned; fewer parameters areeasier to �t.4.4 Additional DataThere is a test set of 19 positions (taken from Chinookgames) that have proven to be partiularly diÆult forthe program to solve. In these positions, the oppo-nents (mostly humans players) demonstrated profoundinsights into the game that Chinook, at the time thegame was played, ould not math. None of the po-sitions is easily resolved by searh; the quality of theknowledge is the ritial fator. Most of these positionswere the motivation for adding additional features tothe evaluation funtion and/or making major hangesto the feature weights. During the development of theprogram, these positions were often used to benhmarkthe program.Chinook has been tested on these positions using threeweight sets: original, white teaher training at 13-ply,and blak teaher training at 13-ply. The results areshown in Figure 3. For eah of the positions, the pro-gram versions searhed 5-ply to 25-ply deep (in inre-ments of 2 ply). The �gure reords whih searh depthsprodued the orret solution to the positions. Note thegeneral trend that inreased searh depth results in morefrequent orret solutions. However, in most of the po-sitions, the programs get the orret answer at the end



of an iteration, only to swith to a di�erent move onthe next iteration. All versions tested were indeisive intheir move hoie for most of the positions (a further in-diation that the positions are indeed still very hard forChinook). Both TD weight sets perform omparably tothe original weight set in Chinook. There is nothing tosuggest that one weight set is signi�antly better thanthe others.4.5 CommentsOne must aution that most of the experimental re-sults have been obtained from mahine-versus-mahinegames.3 The results may be di�erent in mahine-versus-human play. Unfortunately, with Chinook retired andthe program signi�antly stronger than all human play-ers, there are no opportunities to evaluate just how goodthe weights are in play against humans.Although TD learning promises to redue the e�ortto build a high-performane game-playing program, de-iding on the evaluation funtion features still remainslargely a manual hore. Some of the features in Chi-nook's evaluation funtion ame as the result of exten-sive human analysis of the program's play to identifyde�ienies in the program's knowledge. One a newfeature was added to the program, then the manual tun-ing would begin again. TD learning makes this a lesspainful proess. The human identi�es and adds the newknowledge; the program learns the new weight set.5 Examining the WeightsTable 1 shows Chinook's original weights and thoselearned from the white positions with 13-ply searhes.Not unexpetedly, there are some major di�erenes:1. Several of the features our rarely in ertain phasesof the game and, hene, the omputer-generatedweights may be o� (or irrelevant) beause of insuÆ-ient training. For example, \free king", \king en-ter" and \loose heker" are mainly endgame fea-tures. Over 8,533 games (a total of 238,0403 learn-ing updates), in phase 1 these features ourred only177, 16, and 184 times, respetively.2. \Value of move" is a small bonus given to the sidewhose turn it is to move. In most positions, froma human's point of view, having the right to moveis a small advantage. From the omputer's pointof view, value of move is just a onstant addedto the evaluation funtion. The negative value forthis weight suggests that, in general, the evaluationsores obtained using trained weights are a bit high,and this feature is being used to make a small linearadjustment to the value to get a better �t.3. The mobility terms are the most important part ofChinook's evaluation funtion, after material bal-ane. The omputer-generated weights are ompa-rable to the human weights in that they generallyhave the same sign and similar magnitudes.3[Berliner et al., 1990℄ mentions the pitfalls that an arisefrom basing onlusions solely on self-play games.

4. The terms \frozen", \dog hole", \loose men",\d2e7", and \free king" were late additions to theevaluation funtion. These terms were added to ad-dress problems that arose in play against humanplayers. Both human and mahine weights are af-feted by the infrequeny with whih these featuresour. It is also likely that these features are notas ommon in mahine-versus-mahine play as theyare in human-versus-mahine play.5. The biggest surprise is the di�erene in value for\trapped kings" (kings that are immobile in ornersand annot be freed). This is a symptom of theabove problem. Against omputers, some humansplay for a trapped king sine, historially, that was amajor weakness in omputer play (and, indeed, wasa problem with early versions of Chinook). The eval-uation funtion detets this situation and penalizesit heavily. However, sine the training is from self-play, Chinook never plays to \dupe" Chinook intotrapping its king. Consequently, the TD-learninginfrequently sees this feature arising and, when itdoes, it is usually not a position where this is thedeisive fator.The lesson here is that play against human players isneessary to omplete the training. Humans have theirown set of biases, prediletions, and notion of \good" and\bad". The additional training will be most pronounedin the weights of the features that infrequently our inmahine-versus-mahine play.Despite the radial di�erenes between the TD-learnedand the human-tuned set of weights, one annot disputethe suess of eah version. On the one hand, it is re-markable that TD learning is as suessful as it is giventhat the learning is based solely on game-play feedbakwith no human intervention. On the other hand, it isa triumph of human ognitive abilities that the humansolution to a ompliated optimization problem an in-deed be ompetitive with a omputer solution. The �nalresult, that the human-tuned solution and the TD-tunedsolution are roughly equivalent in performane, reetswell on both man and mahine.6 ConlusionsThere are two parts to an evaluation funtion: the fun-tion terms and the weighting of these terms. This paperstrengthens the ase that TD learning provides an ef-fetive solution to the latter problem. Learned weightsan ompete with (and perhaps exeed) the performaneof the best hand-tuned weights in a high-performanegame-playing program.TD learning opens up new opportunities for improvinga program's abilities. For example, the program ouldhave a di�erent set of weights for eah opening, or fordi�erent lasses of positions. Di�erent weights ould beused based on the expeted depth of searh. In addi-tion, the program developer an experiment with newfeatures, and let the learning algorithm deide what isrelevant. None of this would be pratial if these weightshad to be tuned manually.



Original Weights Learned WeightsName 1 2 3 4 1 2 3 4Value of move 4 3 3 2 -2.30 -6.94 -2.48 0.46Free mobility 1 2 3 4 3.40 6.50 2.77 6.47Some mobility -4 -6 -8 -10 0.89 -4.62 -8.97 -6.08Reapture mobility 3 3 3 3 -1.72 2.33 5.77 3.25No-move mobility -1 -1 -2 -4 -2.13 -4.45 -4.17 -1.30Exeption mobility 0 0 0 0 -0.47 0.89 5.56 2.47Double-ap mobility -6 -6 -6 -6 -0.15 -1.45 -2.34 -1.08Balane 5 4 3 2 1.14 4.53 1.35 -0.86Advanement -1 0 0 0 3.59 -3.54 -0.39 -0.68Centrality 2 2 1 0 -1.91 8.44 1.25 -1.86Angle 1 1 0 0 0.79 3.26 3.24 3.23Bak row 4 3 3 2 1.93 8.75 11.77 6.28Shadow 3 2 1 0 0.74 4.05 1.23 -0.19Trapped king 32 32 32 32 -0.01 -0.02 0.90 0.73Loose heker 5 5 5 5 0.03 1.38 4.76 3.72King enter 3 3 3 3 -0.01 0.89 5.65 5.94D2E7 3 2 1 0 0.09 -0.06 0.22 0.57Free king 20 20 20 20 0.38 1.66 5.37 3.69Dog-hole 5 5 5 5 -0.08 0.16 1.66 0.89Loose men 15 15 15 15 0.25 1.88 5.33 5.56Frozen 10 10 10 10 0.00 0.05 -0.09 -0.12Table 1: Comparing weights.The dream of reating a games engine that an ahievehigh performane for any board game is one step loserto reality. High-performane blak box searh enginesnow exist (e.g. [Brungger et al., 1999; Romein, 2000℄),as well as generi (mediore performane) games engines(see www.zillionsofgames.om). The last piee of thepuzzle, automatially disovering the features needed forthe evaluation funtion, remains elusive.7 AknowledgmentsFinanial support was provided by NSERC and iCORE.Referenes[Anantharaman, 1991℄ T. Anantharaman. A Statisti-al Study of Seletive Min-Max Searh. PhD thesis,Carnegie Mellon University, 1991.[Baxter et al., 1998a℄ J. Baxter, A. Tridgell, andL. Weaver. Experiments in parameter learning us-ing temporal di�erenes. ICCA Journal, 21(2):84{99,1998.[Baxter et al., 1998b℄ J. Baxter, A. Tridgell, andL. Weaver. KnightCap: A hess program that learnsby ombining TD(�) with game-tree searh. ICML,pages 28{36, 1998.[Baxter et al., 2000℄ J. Baxter, A. Tridgell, andL. Weaver. Learning to play hess using temporaldi�erenes. Mahine Learning, 40(3):243{263, 2000.[Beal, 1997℄ D. Beal. Learning piee values using tem-poral di�erenes. ICCA Journal, 20(3):147{151, 1997.[Berliner et al., 1990℄ H. Berliner, G. Goetsh,M. Campbell, and C. Ebeling. Measuring theperformane potential of hess programs. Arti�ialIntelligene, 43(1):7{21, 1990.

[Brungger et al., 1999℄ A. Brungger, A. Marzetta,K. Fukuda, and J. Nievergelt. The parallel searhbenh ZRAM and its appliations. Annals ofOperations Researh, 90:45{63, 1999.[Buro, 1995℄ M. Buro. Statistial feature ombinationfor the evaluation of game positions. JAIR, 3:373{382, 1995.[Buro, 2001℄ M. Buro. Improving heuristi mini-maxsearh by supervised learning. Arti�ial Intelligene,2001. To appear.[Fawett and Utgo�, 1992℄ T. Fawett and P. Utgo�.Automati feature generation for problem solving sys-tems. ICML, pages 144{153, 1992.[Romein, 2000℄ J. Romein. Multigame { An Environ-ment for Distributed Game-Tree Searh. PhD thesis,Vrije Universiteit, 2000.[Shae�er, 1997℄ J. Shae�er. One Jump Ahead: Chal-lenging Human Supremay in Chekers. Springer Ver-lag, 1997.[Sutton and Barto, 1998℄ R. Sutton and A. Barto. Re-inforement Learning: An Introdution. MIT Press,1998.[Tesauro, 1995℄ G. Tesauro. Temporal di�erene learn-ing and TD-Gammon. CACM, 38(3):58{68, 1995.[van der Muelen, 1989℄ M. van der Muelen. Weight as-sessment in evaluation funtions. Advanes in Com-puter Chess 5, pages 81{89, 1989.[van Rijswijk, 2001℄ J. van Rijswijk. Learning fromperfetion (a data mining approah to evaluationfuntion learning in awari). 2nd International Con-ferene on Computers and Games, 2001. To appear.


