
Relevance Cuts: Localizing the SearchAndreas Junghanns, Jonathan Schae�erDepartment of Computing ScienceUniversity of AlbertaEdmonton, AlbertaCANADA T6G 2H1fandreas, jonathang@cs.ualberta.caAbstract. Humans can e�ectively navigate through large search spaces,enabling them to solve problems with daunting complexity. This is largelydue to an ability to successfully distinguish between relevant and irrele-vant actions (moves). In this paper we present a new single-agent searchpruning technique that is based on a move's in
uence. The in
uencemeasure is a crude form of relevance in that it is used to di�erentiatebetween local (relevant) moves and non-local (not relevant) moves, withrespect to the sequence of moves leading up to the current state. Ourpruning technique uses the m previous moves to decide if a move is rel-evant in the current context and, if not, to cut it o�. This techniqueresults in a large reduction in the search e�ort required to solve Sokobanproblems.Keywords: single-agent search, heuristic search, Sokoban, local search,IDA*1 Introduction and MotivationIt is commonly acknowledged that the human's ability to successfully navigatethrough large search spaces is due to their meta-level reasoning [4]. The relevanceof di�erent actions when composing a plan is an important notion in that process.Each next action is viewed as one logically following in a series of steps toaccomplish a (sub-)goal. An action judged as irrelevant is not considered.When searching small search spaces, the computer's speed in base-level rea-soning can e�ectively overcome the lack of meta-level reasoning by simply enu-merating large portions of the search space. However, it is a trivial matter topose a problem to the computer that is easy for a human to solve (using rea-soning) but is exponentially large to solve using standard search algorithms. Weneed to enhance computer algorithms to be able to reason at the meta-level ifthey are to successfully tackle these larger search tasks. In the world of com-puter games (two-player search), a number of meta-level reasoning algorithmicenhancements are well known, such as null-move searches [5] and futility cut-o�s[11]. For single-agent search, macro moves [9] are an example.In this paper, we introduce relevance cuts. The search is restricted in theway it chooses its next action. Only actions that are relevant to previous actions

can be performed, with a limited number of exceptions being allowed. The exactde�nition of relevance is domain dependent.Consider an artist drawing a picture of a wildlife scene. One way of drawingthe picture is to draw the bear, then the lake, then the mountains, and �nallythe vegetation. An alternate way is to draw a small part of the bear, then drawa part of the mountains, draw a single plant, work on the bear again, anotherplant, maybe a bit of lake, etc. The former corresponds to how a human woulddraw the picture: concentrate on an identi�able component and work on it untila desired level of completeness has been achieved. The latter corresponds toa typical computer method: the order in which the lines are drawn does notmatter, as long as the �nal result is achieved.Unfortunately, most search algorithms do not follow the human example. Ateach node in the search, the algorithm will consider all legal moves regardless oftheir relevance to the preceding play. For example, in chess, consider a passed\a" pawn and a passed \h" pawn. The human will analyze the sequence of movesto, say, push the \a" pawn to queen. The computer will consider dubious (butlegal) lines such as push the \a" pawn one square, push the \h" pawn one square,push the \a" pawn one square, etc. Clearly, considering alternatives like this isnot cost-e�ective.What is missing in the above examples is a notion of relevance. In the chessexample, having pushed the \a" pawn and then decided to push the \h" pawn,it seems silly to now return to considering the \a" pawn. If it really was nec-essary to push the \a" pawn a second time, why weren't both \a" pawn movesconsidered before switching to the \h" pawn? Usually this switching back andforth (or \ping-ponging") does not make sense but, of course, exceptions can beconstructed.In other well-studied single-agent search domains, such as the N-puzzle andRubik's Cube, the notion of relevance is not important. In both these problems,the geographic space of moves is limited, i.e. all legal moves in one position are\close" (or local) to each other. For two-player games, the e�ect of a move maybe global in scope and therefore moves almost always in
uence each other (this ismost prominent in Othello, and less so in chess). In contrast, a move in the gameof Go is almost always local. In non-trivial, real-world problems, the geographicspace might be large, allowing for local and non-local moves.This paper introduces relevance cuts and demonstrates their e�ectiveness inthe one-player game Sokoban. For Sokoban we use a new in
uence metric thatre
ects the structure of the maze. A move is considered relevant if it is in
uencingall the previous m moves made. The search is only allowed to make relevantmoves with respect to previous moves and only a limited number of exceptionsis permitted. With these restrictions in place, the search is forced to spend itse�ort locally, since random jumps within the search area are discouraged. In themeta-reasoning sense, forcing the program to consider local moves is making itadopt a pseudo-plan; an exception corresponds to a decision to change plans.This results in a decrease of the average branching factor of the search tree.

For our Sokoban program Rolling Stone, relevance cuts result in a large re-duction of the search space. These reductions are on top of an already highlye�cient1 searcher. On a standard set of 90 test problems, relevance cuts allowRolling Stone to increase the number of problems it can solve from 39 to 44.Given that the problems increase exponentially in di�culty, this relatively smallincrease in the number of problems solved represents a large increase in searche�ciency.2 Sokoban and Related WorkSingle-agent search (A*) has been extensively studied in the literature. Thereare a plethora of enhancements to the basic algorithm, allowing the applicationdeveloper to customize their implementation. The result is an impressive reduc-tion in the search e�ort required to solve challenging applications (see [10] fora recent example). However, the applications used to illustrate the advances insingle-agent search e�ciency are \easy" in the sense that they have some (or all)of the following properties:1. e�ective, inexpensive lower-bound estimators,2. small branching factor in the search tree, and3. moderate solution lengths.The sliding-tile puzzles are the best known examples of these problems. Prob-lem domains such as these also have the important property that given a solvablestarting state, every move preserves the solvability (although not necessarily theoptimality).Sokoban is a popular one-player computer game. The game originated inJapan, although the original author is unknown. The game's appeal comes fromthe simplicity of the rules and the intellectual challenge o�ered by deceptivelyeasy problems.Figure 1 shows a sample Sokoban problem.2 The playing area consists ofrooms and passageways, laid out on a rectangular grid of size 20x20 or less.Littered throughout the playing area are stones (shown as circular discs) andgoals (shaded squares). There is a man whose job it is to move each stone to agoal square. The man can only push one stone at a time and must push frombehind the stone. A square can only be occupied by one of a wall, stone or manat any time. Getting all the stones to the goal squares can be quite challenging;doing this in the minimum number of moves is much more di�cult.To refer to squares in a Sokoban problem, we use a coordinate notation. Thehorizontal axis is labeled from \A" to \T", and the vertical axis from \a" to \t"1 Of course, \highly e�cient" here is meant in terms of a computer program. Humansshake their heads in disbelief when they see some of the ridiculous lines of playconsidered in the search.2 This is problem 1 of the standard 90-problem suite available athttp://xsokoban.lcs.mit.edu/xsokoban.html.

He-Ge Hd-Hc-Hd Fe-Ff-Fg Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Rh-Rg Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Qi-Ri Fc-Fd-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Qg Ge-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Rh Hd-He-Ge-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Pi-Qi Ch-Dh-Eh-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-QhFig. 1. Sokoban Problem 1 With One Solution(assuming the maximumsized 20x20 problems), starting in the upper left corner.A move consists of pushing a stone from one square to another. For example, inFigure 1 the move Fh-Eh moves the stone on Fh left one square. We use Fh-Eh-Dh to indicate a sequence of pushes of the same stone. A move, of course, is onlylegal if there is a valid path by which the man can move behind the stone andpush it. Thus, although we only indicate stone moves (such as Fh-Eh), implicitin this is the man's moves from its current position to the appropriate squareto do the push (for Fh-Eh the man would have to move from Li to Gh via thesquares Lh, Kh, Jh, Ih and Hh).Unlike most single-agent search problems studied in the literature, a singleSokoban move can change a problem from being solvable to unsolvable. Forexample, in Figure 1, making the move Fh-Fg creates an unsolvable problem. Itrequires a non-trivial analysis to verify this deadlock. This is a simple example,since deadlock con�gurations can be large and span the entire board. Identifyingdeadlock is critical to prevent a lot of futile searching.The standard 90 problems range from easy (such as problem 1 above) todi�cult (requiring hundreds of stone pushes). A global score �le is maintainedshowing who has solved which problems and how e�cient their solution is (alsoat http://xsokoban.lcs.mit.edu/xsokoban.html). Thus solving a problem is onlypart of the satisfaction; improving on your solution is equally important.Sokoban has been shown to be PSPACE-complete [2,3]. Dor and Zwick showthat the game is an instance of a motion planning problem, and compare thegame to other motion planning problems in the literature [3]. For example,Sokoban is similar to Wilfong's work with movable obstacles, where the manis allowed to hold on to the obstacle and move with it, as if they were one object

[12]. Sokoban can be compared to the problem of having a robot in a warehousemove a number of speci�ed goods from their current location to their �nal des-tination, subject to the topology of the warehouse and any obstacles in the way.When viewed in this context, Sokoban is an excellent example of using a gameas an experimental test-bed for mainstream research in arti�cial intelligence.Sokoban is a di�cult problem domain for computers because of the followingreasons:1. it has a complex lower-bound estimator (O(n3), given n goals),2. the branching factor is large and variable (potentially over 100),3. the solution may be very long (some problems require over 500 moves tosolve optimally),4. the search space complexity is O(1098) for problems restricted to a 20x20area only, and5. some reachable states are unsolvable (deadlock).For sliding-tile puzzles, there are algorithms for generating a non-optimalsolution. In Sokoban, because of the presence of deadlock, often it is very di�cultto �nd any solution.Our previous attempts to solve Sokoban problems using standard single-agent search techniques are reported in [7]. There, using our program RollingStone, we compare the di�erent techniques and their usefulness with respect tothe search e�ciency when solving Sokoban problems. IDA* [8] was augmentedwith a sophisticated lower bound estimator, transposition tables, move ordering,macro moves and deadlock tables. Even though each of the standard single-agentsearch enhancements we investigated resulted in signi�cant improvements (oftenseveral orders of magnitude in search-tree size reduction), at the time we wereable to solve only 20 problems of a 90-problem test suite.In [6] we introduced a new search enhancement, pattern searches, a methodthat dynamically �nds deadlocks and improved lower bounds. Since a single movecan introduce a deadlock, before playing a move we perform a pattern search toanalyze if deadlock will be introduced by that move. The pattern search attemptsto identify the conditions for a deadlock and, if all the conditions are satis�ed,saves a pattern of stones that is the minimal board con�guration required for thedeadlock. During the IDA* search, a new position can be matched with thesepatterns to see if it contains a deadlock. As a side bene�t, these pattern searchescan also identify arbitrary increases to the lower bound (e.g. a deadlock increasesthe lower bound to 1).The notion of bit (stone) patterns is similar to the Method of Analogies [1].Pattern searches are a con
ict-driven top-down proof of correctness, while theMethod of Analogies is a bottom-up heuristic approximation.Pattern searches allow us to now solve 39 of the 90 problems [6]3. Althoughpattern searches can be enhanced to make them more e�cient, we concludedthat they are inadequate to successfully solve all 90 Sokoban test positions.3 Note that [6] reports slightly di�erent numbers than this paper, caused by subsequentre�nements to the pattern searches and bug �xes.

Even with all the enhancements, and the cumulative improvements of severalorders of magnitude in search e�ciency, the search trees are still too deep andthe e�ective branching factor too high. Hence, we need to �nd further ways toimprove the search e�ciency.3 Relevance CutsAnalyzing the trees built by an IDA* search quickly reveals that the searchalgorithm considers move sequences that no human would ever consider. Evencompletely unrelated moves are tested in every legal combination { all in ane�ort to prove that there is no solution for the current threshold. How can aprogram mimic an \understanding" of relevance? We suggest that a reasonableapproximation of relevance is in
uence. If two moves are not in
uencing eachother then they are very unlikely to be relevant to each other. If a programhad a good \sense" of in
uence, it could assume that in a given position allprevious moves belong to a (unknown) plan of which a continuation can onlybe a move that is relevant { in our approximation, is in
uencing whatever wasplayed previously.Thus, the general idea for relevance cuts is to prevent the program fromtrying all possible move sequences. Moves tried have to be relevant to previouslyexecuted moves. This can be achieved in di�erent, domain speci�c, ways. Thefollowing shows one implementation for the domain of Sokoban. Even thoughthe speci�cs aren't necessarily applicable to other domains, the basic philosophyof the approach is.3.1 In
uenceWhen judging how two squares in a Sokoban maze are in
uencing each other,Euclidean distance is not adequate. Taking the structure of the maze into accountwould lead to a simple geographic distance which is still not proportional within
uence. For example, consider two squares connected by a tunnel; the squaresare equally in
uencing each other, no matter how long the tunnel is. Figure 1shows several tunnels of which one consists of the squares Ff and Fg. Prolongingthe tunnel without changing the general topology of the problem would changethe geographic distance, but not the in
uence.The following is a list of properties we would like the in
uence measure tore
ect:Alternatives: The more alternatives that exist on a path between two squares,the less they in
uence each other. That is, squares in the middle of a roomwhere stones can go in all 4 directions should decrease in
uence more thansquares in a tunnel, where no alternatives exist.Goal-Skew: Squares on the optimal path to any goal should have strongerin
uence than squares o� the optimal path.

Connection: Two neighboring squares connected such that a stone can movebetween them should in
uence each other more than two squares connectedsuch that only the man can move between them.Tunnel: In a tunnel, in
uence remains the same: It does not matter how longthe tunnel is (one could, for example, collapse a tunnel into one square).Our �rst implementation of relevance cuts used small o�-line searches tostatically precalculate a (20x20)x(20x20) table containing the in
uence valuesfor each square of the maze to every other square in the maze. Between everypair of squares, a breadth-�rst search is used to �nd the path(s) with the largestin
uence. The algorithm is similar to a shortest-path �nding algorithm, exceptthat we are using in
uence here and not geographic distance. The smaller thein
uence number, the more two squares are in
uencing each other.Note that in
uence is not necessarily symmetric (dist(a; b) 6= dist(b; a)). Asquare close to a goal in
uences squares further away more than it is in
uencedby them. Furthermore, dist(a; a) is not necessarily 0. A square in the middle ofa room will be less in
uenced by each of its many neighbors than a square ina tunnel. To re
ect that, squares in the middle of a room receive a larger biasthan more restricted squares.The exact numbers used in our implementation are the following (with thename of the wish-list item following in parenthesis). Each square on the pathbetween the start and goal squares adds 2 for each direction (o� the path consid-ered) a stone can be pushed and 1 for each direction the man can go. Thus, themaximumone square can add for alternatives is 4 (alternatives). However, everysquare that is part of an optimal path towards any of the goals from the startsquare will add only half of that amount (goal-skew). If the connection from theprevious square on the path to the current squares can be taken by a stone only1 is added, else 2 (connection). If the previous square is in a tunnel, 0 is added(tunnel), regardless of all other properties.3.2 Relevance Cut RulesGiven the above in
uence measure, we can now proceed to explain how to usethat information to cut down on the number of moves considered in each position.To do this, we need to de�ne distant moves. Given two moves, m1.from-m1.toand m2.from-m2.to, move m2 is distant with respect to move m1 if the fromsquares of the moves (m1:from and m2:from) do not in
uence each other.More precisely, two moves in
uence each other ifIn
uenceTable[m1:from][m2:from] < dwhere In
uenceTable is the table of precalculated values and d is a tunablethreshold.Relevance cuts eliminate some moves that are distant from the previousmoves played, and therefore are considered not relevant to the search. Thereare two ways that a move can be cut o�:

1. If within the last m moves more than k distant moves were made. This cutwill discourage arbitrary switches between non-related areas of the maze.2. A move that is distant with respect to the previous move, but not distant toa move in the past m moves. This will not allow switches back into an areapreviously worked on and abandoned just brie
y.In our experiments, we set k to 1. This way, the �rst cut criterion will entailthe second. The parameters d andm are set according to the following propertiesof the maze. The maximal in
uence distance, d, is set to half the average in
uencevalue from all squares to the squares on optimal paths to any goal, but not lessthan 6. The length of history used, m, is set to the average in
uence value of allsquares to all other non-dead squares in the maze, but not less than 10.3.3 ExampleFigure 2 shows an example where humans immediately identify that solving thisproblem involves solving two separate sub-problems. Solving the left and rightside of the problem is completely independent. An optimal solution needs 82moves; Rolling Stone's lower bound estimator returns a value of 70. StandardIDA* will need 7 iterations to �nd a solution (our lower-bound estimator pre-serves the odd/even parity of the solution length). In each of the iterations butthe last, IDA* will try every possible (legal) move combination with moves fromboth sides of the problem. This way IDA* proves for each of the 6 iterations ithat the problem cannot be solved with 70+2�i moves, regardless of the order ofthe considered moves. Clearly, this is unnecessary and ine�cient. Solving one ofthe sub-problems requires only 4 iterations, since the lower bound is o� by only6. Considering this position as two separate problems will result in an enormousreduction in the search complexity.
Fig. 2. Example Maze With Locality

Our implementation considers all moves on the left and on the right side asdistant from each other. This way only a limited number of switches is consideredduring the search. Our parameter settings allow for only one non-local move per9-move sequence. For this contrived problem, relevance cuts decrease the numberof nodes searched from 32,803 nodes to 24,748 nodes while still returning anoptimal solution (the pattern searches were turned o� for simplicity). Althoughthis is a signi�cant reduction, it is only a small step towards achieving all thepossible savings. For example, one of the sub-problems can be solved by itself inonly 329 nodes! The di�erence between 329 and 32,803 illustrates why IDA* inits current form is inadequate for solving large, non-trivial real-world problems.Clearly, more sophisticated methods are needed.3.4 DiscussionFurther re�nement of the parameters used are certainly possible and necessaryif the full potential of relevance cuts is to be achieved. Some ideas with regardsto this issue will be discussed in the future work section.The overhead of the relevance cuts is negligible, at least for our currentimplementation. The in
uence of two moves can be established by a simple tablelookup. This is in stark contrast to our pattern searches, where the overheaddominates the cost of the search for most problems.4 Experimental ResultsRolling Stone has been tested using the 90-problem test set using searches limitedto 20,000,000 nodes. Our previous best version of Rolling Stone was capable ofsolving 39 of the test problems. With the addition of relevance cuts, the numberof problems solved has increased to 444. Table 1 shows a comparison of RollingStone with and without relevance cuts for each of the 44 solved problems.For each program version in Table 1, the third column gives the number ofIDA* iterations that the program took to solve the problem. Note that problems#9, #21 and #51 are now solved non-optimally, taking at least one iterationlonger than the program without relevance cuts. This con�rms the unsafe natureof the relevance cuts. However, since none of the problems solved before is lostand 5 more are solved, the gamble paid o�. Long ago we abandoned our originalgoal of obtaining optimal solutions to Sokoban problems. The size of the searchspace dictates radical pruning measures if we want to have any chance of solvingsome of the tougher problems.Of the 5 new problems solved, #11 is of interest. Without relevance cuts,only 17 IDA* iterations could be completed within our pre-set limit of 20,000,000nodes. Relevance cuts allow Rolling Stone to search 19 iterations and solve the4 Note that we \cheat" with problem #46, as we allow it to go 47,000 nodes beyondthe 20 million node limit. A bug �x pushed it beyond the 20 million limit and wewanted it to count in the statistics. We tested all the unsolved problems without therelevance cuts to 50 million nodes and no other problem was solved.

without relevance cuts with relevance cutstop level nodes total nodes # iterations top level nodes total nodes # iterations1 32 270 2 32 270 22 200 3,251 2 177 2,764 23 392 10,486 2 301 10,395 24 394 10,556 1 392 10,554 15 5,999 121,502 3 6,079 152,082 36 170 1,593 3 151 1,574 37 12,378 156,334 5 6,821 68,202 58 152,919 3,066,098 6 89,838 1,806,540 69 11,572 234,454 5 14,963 307,006 810 834,147 16,678,800 4 340,935 6,815,512 411 > 998,299 > 20,000,000 17 337,143 6,759,590 1917 1,160 14,891 7 1,250 14,740 719 890,100 17,829,863 9 88,575 1,814,505 921 38,371 765,392 9 47,854 970,776 1034 > 1,651,897 > 20,000,000 9 227,525 4,495,028 938 333,257 844,882 42 236,351 748,024 4240 > 998,236 > 20,000,000 7 311,618 6,239,163 843 112,610 2,270,703 8 60,120 1,215,022 845 729,333 14,646,623 9 250,157 5,059,596 946 > 2,022,198 > 20,000,000 12 1,004,325 20,047,197 1549 > 17,074,823 > 20,000,000 11 2,303,495 3,047,672 1351 725 2,611 1 2,049 18,368 253 182 3,737 1 185 3,740 154 283,609 4,381,171 9 255,827 3,884,844 955 1,696,996 3,194,830 3 603,190 1,349,908 356 4,318 34,429 6 3,817 31,388 657 61,900 1,084,732 5 45,339 797,766 560 5,929 116,103 3 1,252 24,403 362 2,720 71,578 5 1,984 46,534 563 10,195 197,922 3 21,131 390,422 364 194,846 3,900,639 10 32,706 652,857 1065 364 12,971 5 364 12,971 567 239,515 2,177,787 13 160,936 2,103,866 1368 128,716 2,651,559 11 16,814 355,306 1170 841,495 15,003,603 3 94,792 1,949,842 372 1,908 43,260 5 3,168 72,647 573 11,371 247,816 3 14,791 292,799 378 75 809 1 75 783 179 362 4,017 5 200 3,512 580 805 15,513 1 2,081 48,220 181 1,251 40,806 4 1,074 29,698 482 8,500 181,571 5 4,643 97,406 583 635 15,423 1 389 13,106 184 272,160 521,068 4 153,220 443,508 4> 29,637,064 >190,559,653 6,748,129 72,210,106Table 1. Experimental Data

problem. Given that the cost of an extra iteration is large (and can typicallybe a factor of about 5,000 per iteration [6]), a gain of 2 iterations represents amassive improvement.The tree size for each program version given in Table 1 is broken into twonumbers. Top-level nodes refers to that portion of the search tree that IDA*is applied to. Total nodes includes the top-level nodes and the pattern searchnodes. Clearly, for some problems (such as #45) the cost of performing patternsearches overwhelms the search e�ort, whereas in other problems (such as #53)they are a small investment. Further details on pattern searches and when theyare executed can be found in [6].The magnitude of the top-level nodes can be misleading; super�cially it lookslike these problems can be \trivially" solved with few nodes. Using standardIDA* with our sophisticated lower bound estimator fails to solve any of the 90test problems within our limit of 20,000,000 nodes. Consequently, we added aplethora of enhancements to the program, including transposition tables, macromoves, move ordering and deadlock tables, each of which is capable of reducingthe search tree size by one or more orders of magnitude [7]! Thus the small top-level node counts reported in the table are the result of extensive improvementsto the search algorithm.Relevance cuts reduce the number of top-level nodes by at least a factor of 4.5.Note that since the program not using relevance cuts cannot solve 5 problems,this factor may be a gross underestimation of the actual impact.With respect to the total search nodes, relevance cuts improve search e�-ciency by almost a factor of three. Again, this is a lower bound. In particular,problem #11 still requires an enormous amount of search, given that it still has2 iterations to go before it can �nd the solution.Comparing node numbers of individual searches is di�cult because of manyvolatile factors in the search. For example, a relevance cut might eliminate abranch from the search justi�ably, but a pattern search there would have uncov-ered valuable information that would have been useful for reducing the searchin other parts of the tree. Problem #80 is one such example: despite the rele-vance cuts the node count goes up from 99 to 123 nodes; an important discoverywas not made and the rest of the search increases. However, the overall trendis in favor of the relevance cuts. An excellent example is problem #70: the toplevel node count is cut down to 3,006 nodes and a solution is found. Previously579,037 nodes were considered without �nding a solution.Figures 3 and 4 plot the amount of e�ort to solve a problem, using thenumbers from Table 1 sorted by total nodes. An additional data point is givenwith a curve that shows what the program's performance was with all the stan-dard single-agent search techniques implemented, before pattern searches whereadded. Figure 3 shows the impact of the relevance cuts. The exponential growthin di�culty with each additional problem solved is dampened, allowing for moreproblems solved with the same number of nodes. Figure 4 is a logarithmic rep-resentation of Figure 3. The �gure more clearly shows that up to about the 25thproblem (ordered according to number of nodes needed to solve) there is very

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

0 5 10 15 20 25 30 35 40 45

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

without pattern search
with pattern search and without relevance cuts

with pattern search and with relevance cuts

Fig. 3. The E�ect of Relevance Cuts
1

10

100

1000

10000

100000

1e+06

1e+07

0 5 10 15 20 25 30 35 40 45

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

without pattern search
with pattern search and without relevance cuts

with pattern search and with relevance cutsFig. 4. The E�ect of Relevance Cuts (Log Scale)little di�erence in e�ort required; the relevance cuts do not save signi�cant por-tions of the small search trees. However, with larger search trees, the success ofrelevance cuts gets more pronounced.5 Conclusions and Future WorkRelevance cuts provide a crude approximation of human-like problem-solvingmethods by forcing the search to favor local moves over global moves. Thissimple idea provides large reductions in the search tree size, at the expense ofpossibly returning a longer solution. Given the breadth and depth of Sokobansearch trees, �nding optimal solutions is a secondary consideration; �nding anysolution is challenging enough.There are several ideas on how to improve the e�ectiveness of relevance cuts.

{ Use di�erent distances depending on crowding. If many stones are crowdingan area, it is likely that the relevant area is larger than it would be with lessstones blocking each other.{ The current in
uence measure can most likely be improved. A thoroughinvestigation of all the parameters used could lead to substantial improve-ments.{ There are several parameters used in the relevance cuts. The setting of thoseis already dependent of properties of the maze. These parameters are criticalfor the performance of the cuts and are also largely responsible for increasedsolution lengths. More research on those details is needed to fully exploit thepossibilities relevance cuts are o�ering.{ So far, Rolling Stone is painting locally, but is not yet \object oriented".If a
ower and the bear are close, painting both at the same time is verylikely. Better methods are needed to further understand subgoals, ratherthan localizing by area.Although relevance cuts introduce non-optimality, this is not an issue. Oncehumans solve a Sokoban problem, they have two choices: move on to anotherproblem (they are satis�ed with the result), or try and re-solve the same problemto get a better solution.Rolling Stone could try something similar. Having solvedthe problem once, if we want a better solution, we can reduce the probability ofintroducing non-optimality in the search by decreasing the aggressiveness of therelevance cuts. This will make the searches larger but, on the other hand, thelast iteration does not have to be searched, since a solution for that thresholdwas already found.Relevance cuts are yet another way to signi�cantly prune Sokoban searchtrees. We have no shortage of promising ideas, each of which potentially o�ersanother order of magnitude reduction in the search tree size. Although thissounds impressive, our experience suggests that each factor of 10 improvementseems to only yield another 4 or 5 problems being solved. At this rate, we willhave do a lot of research if we want to successfully solve all 90 problems!6 AcknowledgementsThe authors would like to thank the German Academic Exchange Service, theKillam Foundation and the Natural Sciences and Engineering Research Councilof Canada for their support.References1. G. Adelson-Velskiy, V. Arlazarov, and M. Donskoy. Some methods of controllingthe tree search in chess programs. Arti�cial Intelligence, 6(4):361{371, 1975.2. J. Culberson. Sokoban is PSPACE-complete. Technical Report TR97-02, Depart-ment of Computing Science, University of Alberta, Edmonton, Alberta, Canada,1997. ftp://ftp.cs.ualberta.ca/pub/TechReports/1997/TR97-02.

3. D. Dor and U. Zwick. SOKOBAN and other motion planning problems, 1995. At:http://www.math.tau.ac.il/~ddorit.4. M. Ginsberg. Essentials in Arti�cial Intelligence. Morgan Kaufman Publishers,San Francisco, 1993.5. G. Goetsch and M.S. Campbell. Experiments with the null-move heuristic. InT.A. Marsland and J. Schae�er, editors, Computers, Chess, and Cognition, pages159{181, New York, 1990. Springer-Verlag.6. A. Junghanns and J. Schae�er. Single-agent search in the presence of deadlock. InAAAI-98, pages 419{424, Madison/WI, USA, July 1998.7. A. Junghanns and J. Schae�er. Sokoban: Evaluating standard single-agent searchtechniques in the presence of deadlock. In Advances in Arti�cial Intelligence, pages1{15. Springer Verlag, 1998.8. R.E. Korf. Depth-�rst iterative-deepening: An optimal admissible tree search.Arti�cial Intelligence, 27(1):97{109, 1985.9. R.E. Korf. Macro-operators: A weak method for learning. Arti�cial Intelligence,26(1):35{77, 1985.10. R.E. Korf. Finding optimal solutions to Rubik's Cube using pattern databases. InAAAI{97, pages 700{705, 1997.11. J. Schae�er. Experiments in Search and Knowledge. PhD thesis, Univ. of Waterloo,Canada, 1986.12. G. Wilfong. Motion planning in the presence of movable obstacles. In 4th ACMSymposium on Computational Geometry, pages 279{288, 1988.

