Relevance Cuts: Localizing the Search

Andreas Junghanns, Jonathan Schaeffer

Department of Computing Science
University of Alberta
Edmonton, Alberta
CANADA T6G 2H1

{andreas, jonathan}@cs.ualberta.ca

Abstract. Humans can effectively navigate through large search spaces,
enabling them to solve problems with daunting complexity. This is largely
due to an ability to successfully distinguish between relevant and irrele-
vant actions (moves). In this paper we present a new single-agent search
pruning technique that is based on a move’s influence. The influence
measure is a crude form of relevance in that it is used to differentiate
between local (relevant) moves and non-local (not relevant) moves, with
respect to the sequence of moves leading up to the current state. Our
pruning technique uses the m previous moves to decide if a move is rel-
evant in the current context and, if not, to cut it off. This technique
results in a large reduction in the search effort required to solve Sokoban
problems.

Keywords: single-agent search, heuristic search, Sokoban, local search,

IDA*

1 Introduction and Motivation

It is commonly acknowledged that the human’s ability to successfully navigate
through large search spaces is due to their meta-level reasoning [4]. The relevance
of different actions when composing a plan is an important notion in that process.
Each next action is viewed as one logically following in a series of steps to
accomplish a (sub-)goal. An action judged as irrelevant is not considered.

When searching small search spaces, the computer’s speed in base-level rea-
soning can effectively overcome the lack of meta-level reasoning by simply enu-
merating large portions of the search space. However, it is a trivial matter to
pose a problem to the computer that is easy for a human to solve (using rea-
soning) but is exponentially large to solve using standard search algorithms. We
need to enhance computer algorithms to be able to reason at the meta-level if
they are to successfully tackle these larger search tasks. In the world of com-
puter games (two-player search), a number of meta-level reasoning algorithmic
enhancements are well known, such as null-move searches [5] and futility cut-offs
[11]. For single-agent search, macro moves [9] are an example.

In this paper, we introduce relevance cuts. The search is restricted in the
way 1t chooses its next action. Only actions that are relevant to previous actions

can be performed, with a limited number of exceptions being allowed. The exact
definition of relevance is domain dependent.

Consider an artist drawing a picture of a wildlife scene. One way of drawing
the picture is to draw the bear, then the lake, then the mountains, and finally
the vegetation. An alternate way is to draw a small part of the bear, then draw
a part of the mountains, draw a single plant, work on the bear again, another
plant, maybe a bit of lake, etc. The former corresponds to how a human would
draw the picture: concentrate on an identifiable component and work on it until
a desired level of completeness has been achieved. The latter corresponds to
a typical computer method: the order in which the lines are drawn does not
matter, as long as the final result is achieved.

Unfortunately, most search algorithms do not follow the human example. At
each node in the search, the algorithm will consider all legal moves regardless of
their relevance to the preceding play. For example, in chess, consider a passed

“a” pawn and a passed “h” pawn. The human will analyze the sequence of moves

to, say, push the “a” pawn to queen. The computer will consider dubious (but

legal) lines such as push the “a” pawn one square, push the “h” pawn one square,
push the “a” pawn one square, etc. Clearly, considering alternatives like this is
not cost-effective.

What is missing in the above examples is a notion of relevance. In the chess
[Tbl

example, having pushed the “a” pawn and then decided to push the “h” pawn,

it seems silly to now return to considering the “a” pawn. If it really was nec-

essary to push the “a” pawn a second time, why weren’t both “a” pawn moves
considered before switching to the “h” pawn? Usually this switching back and
forth (or “ping-ponging”) does not make sense but, of course, exceptions can be

constructed.

In other well-studied single-agent search domains, such as the N-puzzle and
Rubik’s Cube, the notion of relevance is not important. In both these problems,
the geographic space of moves is limited, i.e. all legal moves in one position are
“close” (or local) to each other. For two-player games, the effect of a move may
be global in scope and therefore moves almost always influence each other (this is
most prominent in Othello, and less so in chess). In contrast, a move in the game
of Go is almost always local. In non-trivial, real-world problems, the geographic
space might be large, allowing for local and non-local moves.

This paper introduces relevance cuts and demonstrates their effectiveness in
the one-player game Sokoban. For Sokoban we use a new influence metric that
reflects the structure of the maze. A move is considered relevant if it is influencing
all the previous m moves made. The search i1s only allowed to make relevant
moves with respect to previous moves and only a limited number of exceptions
is permitted. With these restrictions in place, the search is forced to spend its
effort locally, since random jumps within the search area are discouraged. In the
meta-reasoning sense, forcing the program to consider local moves is making it
adopt a pseudo-plan; an exception corresponds to a decision to change plans.
This results in a decrease of the average branching factor of the search tree.

For our Sokoban program Rolling Stone, relevance cuts result in a large re-
duction of the search space. These reductions are on top of an already highly
efficient! searcher. On a standard set of 90 test problems, relevance cuts allow
Rolling Stone to increase the number of problems it can solve from 39 to 44.
Given that the problems increase exponentially in difficulty, this relatively small
increase in the number of problems solved represents a large increase in search
efficiency.

2 Sokoban and Related Work

Single-agent search (A*) has been extensively studied in the literature. There
are a plethora of enhancements to the basic algorithm, allowing the application
developer to customize their implementation. The result is an impressive reduc-
tion in the search effort required to solve challenging applications (see [10] for
a recent example). However, the applications used to illustrate the advances in
single-agent search efficiency are “easy” in the sense that they have some (or all)
of the following properties:

1. effective, inexpensive lower-bound estimators,
2. small branching factor in the search tree, and
3. moderate solution lengths.

The sliding-tile puzzles are the best known examples of these problems. Prob-
lem domains such as these also have the important property that given a solvable
starting state, every move preserves the solvability (although not necessarily the
optimality).

Sokoban is a popular one-player computer game. The game originated in
Japan, although the original author is unknown. The game’s appeal comes from
the simplicity of the rules and the intellectual challenge offered by deceptively
easy problems.

Figure 1 shows a sample Sokoban problem.? The playing area consists of
rooms and passageways, laid out on a rectangular grid of size 20x20 or less.
Littered throughout the playing area are stones (shown as circular discs) and
goals (shaded squares). There is a man whose job it is to move each stone to a
goal square. The man can only push one stone at a time and must push from
behind the stone. A square can only be occupied by one of a wall, stone or man
at any time. Getting all the stones to the goal squares can be quite challenging;
doing this in the minimum number of moves is much more difficult.

To refer to squares in a Sokoban problem, we use a coordinate notation. The
horizontal axis i1s labeled from “A” to “I”, and the vertical axis from “a” to “t”

1 Of course, “highly efficient” here is meant in terms of a computer program. Humans
shake their heads in disbelief when they see some of the ridiculous lines of play
considered in the search.

2 This is problem 1 of the standard 90-problem suite available at
http://xsokoban.lcs.mit.edu/xsokoban.html.

ABCDEFGHI JKLMNOPAQRS

R = 00 "0 QAN TS

He-Ge Hd-He-Hd Fe-Ff-Fg Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-
Oh-Ph-Qh-Rh-Rg Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-
Ph-Qh-Qi-Ri Fe-Fd-Fe-Ff-Fg-Fh-Gh-Hh-Th-Jh-Kh-Lh-Mh-
Nh-Oh-Ph-Qh-Qg Ge-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-
Nh-Oh-Ph-Qh-Rh Hd-He-Ge-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-
Lh-Mh-Nh-Oh-Ph-Pi-Qi Ch-Dh-Eh-Fh-Gh-Hh-Ih-Th-Kh-Lh-
Mh-Nh-Oh-Ph-Qh

Fig. 1. Sokoban Problem 1 With One Solution

(assuming the maximum sized 20x20 problems), starting in the upper left corner.
A move consists of pushing a stone from one square to another. For example, in
Figure 1 the move Fh-Eh moves the stone on Fh left one square. We use Fh-FEh-
Dh to indicate a sequence of pushes of the same stone. A move, of course, is only
legal if there i1s a valid path by which the man can move behind the stone and
push it. Thus, although we only indicate stone moves (such as Fh-FEh), implicit
in this is the man’s moves from its current position to the appropriate square
to do the push (for Fh-FEh the man would have to move from Li to Gh via the
squares Lh, Kh, Jh, Th and Hh).

Unlike most single-agent search problems studied in the literature, a single
Sokoban move can change a problem from being solvable to unsolvable. For
example, in Figure 1, making the move Fh-Fg creates an unsolvable problem. It
requires a non-trivial analysis to verify this deadlock. This is a simple example,
since deadlock configurations can be large and span the entire board. Identifying
deadlock 1s critical to prevent a lot of futile searching.

The standard 90 problems range from easy (such as problem 1 above) to
difficult (requiring hundreds of stone pushes). A global score file is maintained
showing who has solved which problems and how efficient their solution is (also
at http://xsokoban.lcs.mit.edu/xsokoban.html). Thus solving a problem is only
part of the satisfaction; improving on your solution is equally important.

Sokoban has been shown to be PSPACE-complete [2,3]. Dor and Zwick show
that the game is an instance of a motion planning problem, and compare the
game to other motion planning problems in the literature [3]. For example,
Sokoban is similar to Wilfong’s work with movable obstacles; where the man
is allowed to hold on to the obstacle and move with it, as if they were one object

[12]. Sokoban can be compared to the problem of having a robot in a warehouse
move a number of specified goods from their current location to their final des-
tination, subject to the topology of the warehouse and any obstacles in the way.
When viewed in this context, Sokoban is an excellent example of using a game
as an experimental test-bed for mainstream research in artificial intelligence.

Sokoban is a difficult problem domain for computers because of the following
reasons:

1. it has a complex lower-bound estimator (O(n?), given n goals),

2. the branching factor is large and variable (potentially over 100),

3. the solution may be very long (some problems require over 500 moves to
solve optimally),

4. the search space complexity is O(10%%) for problems restricted to a 20x20
area only, and

5. some reachable states are unsolvable (deadlock).

For sliding-tile puzzles, there are algorithms for generating a non-optimal
solution. In Sokoban, because of the presence of deadlock, often it is very difficult
to find any solution.

Our previous attempts to solve Sokoban problems using standard single-
agent search techniques are reported in [7]. There, using our program Rolling
Stone, we compare the different techniques and their usefulness with respect to
the search efficiency when solving Sokoban problems. IDA* [8] was augmented
with a sophisticated lower bound estimator, transposition tables, move ordering,
macro moves and deadlock tables. Even though each of the standard single-agent
search enhancements we investigated resulted in significant improvements (often
several orders of magnitude in search-tree size reduction), at the time we were
able to solve only 20 problems of a 90-problem test suite.

In [6] we introduced a new search enhancement, patiern searches, a method
that dynamically finds deadlocks and improved lower bounds. Since a single move
can introduce a deadlock, before playing a move we perform a pattern search to
analyze if deadlock will be introduced by that move. The pattern search attempts
to 1dentify the conditions for a deadlock and, if all the conditions are satisfied,
saves a pattern of stones that is the minimal board configuration required for the
deadlock. During the IDA* search, a new position can be matched with these
patterns to see if it contains a deadlock. As a side benefit, these pattern searches
can also identify arbitrary increases to the lower bound (e.g. a deadlock increases
the lower bound to oo).

The notion of bit (stone) patterns is similar to the Method of Analogies [1].
Pattern searches are a conflict-driven top-down proof of correctness, while the
Method of Analogies is a bottom-up heuristic approximation.

Pattern searches allow us to now solve 39 of the 90 problems [6]3. Although
pattern searches can be enhanced to make them more efficient, we concluded
that they are inadequate to successfully solve all 90 Sokoban test positions.

Note that [6] reports slightly different numbers than this paper, caused by subsequent
refinements to the pattern searches and bug fixes.

Even with all the enhancements, and the cumulative improvements of several
orders of magnitude in search efficiency, the search trees are still too deep and
the effective branching factor too high. Hence, we need to find further ways to
improve the search efficiency.

3 Relevance Cuts

Analyzing the trees built by an IDA* search quickly reveals that the search
algorithm considers move sequences that no human would ever consider. Even
completely unrelated moves are tested in every legal combination — all in an
effort to prove that there is no solution for the current threshold. How can a
program mimic an “understanding” of relevance? We suggest that a reasonable
approximation of relevance is influence. If two moves are not influencing each
other then they are very unlikely to be relevant to each other. If a program
had a good “sense” of influence, it could assume that in a given position all
previous moves belong to a (unknown) plan of which a continuation can only
be a move that is relevant — in our approximation, is influencing whatever was
played previously.

Thus, the general idea for relevance cuts i1s to prevent the program from
trying all possible move sequences. Moves tried have to be relevant to previously
executed moves. This can be achieved in different, domain specific, ways. The
following shows one implementation for the domain of Sokoban. Even though
the specifics aren’t necessarily applicable to other domains, the basic philosophy
of the approach is.

3.1 Influence

When judging how two squares in a Sokoban maze are influencing each other,
Euclidean distance is not adequate. Taking the structure of the maze into account
would lead to a simple geographic distance which is still not proportional with
influence. For example, consider two squares connected by a tunnel; the squares
are equally influencing each other, no matter how long the tunnel is. Figure 1
shows several tunnels of which one consists of the squares Ffand Fg. Prolonging
the tunnel without changing the general topology of the problem would change
the geographic distance, but not the influence.

The following is a list of properties we would like the influence measure to
reflect:

Alternatives: The more alternatives that exist on a path between two squares,
the less they influence each other. That is, squares in the middle of a room
where stones can go in all 4 directions should decrease influence more than
squares in a tunnel, where no alternatives exist.

Goal-Skew: Squares on the optimal path to any goal should have stronger
influence than squares off the optimal path.

Connection: Two neighboring squares connected such that a stone can move
between them should influence each other more than two squares connected
such that only the man can move between them.

Tunnel: In a tunnel, influence remains the same: It does not matter how long
the tunnel is (one could, for example, collapse a tunnel into one square).

Our first implementation of relevance cuts used small off-line searches to
statically precalculate a (20x20)x(20x20) table containing the influence values
for each square of the maze to every other square in the maze. Between every
pair of squares, a breadth-first search is used to find the path(s) with the largest
influence. The algorithm is similar to a shortest-path finding algorithm, except
that we are using influence here and not geographic distance. The smaller the
influence number, the more two squares are influencing each other.

Note that influence is not necessarily symmetric (dist(a,b) # dist(b,a)). A
square close to a goal influences squares further away more than it is influenced
by them. Furthermore, dist(a, a) is not necessarily 0. A square in the middle of
a room will be less influenced by each of its many neighbors than a square in
a tunnel. To reflect that, squares in the middle of a room receive a larger bias
than more restricted squares.

The exact numbers used in our implementation are the following (with the
name of the wish-list item following in parenthesis). Each square on the path
between the start and goal squares adds 2 for each direction (off the path consid-
ered) a stone can be pushed and 1 for each direction the man can go. Thus, the
maximum one square can add for alternatives is 4 (alternatives). However, every
square that is part of an optimal path towards any of the goals from the start
square will add only half of that amount (goal-skew). If the connection from the
previous square on the path to the current squares can be taken by a stone only
1 is added, else 2 (connection). If the previous square is in a tunnel, 0 is added
(tunnel), regardless of all other properties.

3.2 Relevance Cut Rules

Given the above influence measure, we can now proceed to explain how to use
that information to cut down on the number of moves considered in each position.
To do this, we need to define distant moves. Given two moves, mlI.from-mli.to
and m2.from-m2.to, move m2 is distant with respect to move ml if the from
squares of the moves (ml.from and m2.from) do not influence each other.
More precisely, two moves influence each other if

Influence Table] m1.from [m2.from] < d

where InfluenceTable 1s the table of precalculated values and d is a tunable
threshold.

Relevance cuts eliminate some moves that are distant from the previous
moves played, and therefore are considered not relevant to the search. There
are two ways that a move can be cut off:

1. If within the last m moves more than k£ distant moves were made. This cut
will discourage arbitrary switches between non-related areas of the maze.

2. A move that is distant with respect to the previous move, but not distant to
a move 1n the past m moves. This will not allow switches back into an area
previously worked on and abandoned just briefly.

In our experiments, we set £ to 1. This way, the first cut criterion will entail
the second. The parameters d and m are set according to the following properties
of the maze. The maximal influence distance, d, is set to half the average influence
value from all squares to the squares on optimal paths to any goal, but not less
than 6. The length of history used, m, is set to the average influence value of all
squares to all other non-dead squares in the maze, but not less than 10.

3.3 Example

Figure 2 shows an example where humans immediately identify that solving this
problem involves solving two separate sub-problems. Solving the left and right
side of the problem is completely independent. An optimal solution needs 82
moves; Rolling Stone’s lower bound estimator returns a value of 70. Standard
IDA* will need 7 iterations to find a solution (our lower-bound estimator pre-
serves the odd/even parity of the solution length). In each of the iterations but
the last, IDA* will try every possible (legal) move combination with moves from
both sides of the problem. This way IDA* proves for each of the 6 iterations 7
that the problem cannot be solved with 7042 %¢ moves, regardless of the order of
the considered moves. Clearly, this is unnecessary and inefficient. Solving one of
the sub-problems requires only 4 iterations, since the lower bound is off by only
6. Considering this position as two separate problems will result in an enormous
reduction in the search complexity.

ABCDEFGHI JKLMNOPQ

B - Fe —Toe =0 am; o

Fig. 2. Example Maze With Locality

Our implementation considers all moves on the left and on the right side as
distant from each other. This way only a limited number of switches is considered
during the search. Qur parameter settings allow for only one non-local move per
9-move sequence. For this contrived problem, relevance cuts decrease the number
of nodes searched from 32,803 nodes to 24,748 nodes while still returning an
optimal solution (the pattern searches were turned off for simplicity). Although
this 1s a significant reduction, 1t is only a small step towards achieving all the
possible savings. For example, one of the sub-problems can be solved by itself in
only 329 nodes! The difference between 329 and 32,803 illustrates why IDA* in
its current form is inadequate for solving large, non-trivial real-world problems.
Clearly, more sophisticated methods are needed.

3.4 Discussion

Further refinement of the parameters used are certainly possible and necessary
if the full potential of relevance cuts is to be achieved. Some ideas with regards
to this issue will be discussed in the future work section.

The overhead of the relevance cuts is negligible, at least for our current
implementation. The influence of two moves can be established by a simple table
lookup. This is in stark contrast to our pattern searches, where the overhead
dominates the cost of the search for most problems.

4 Experimental Results

Rolling Stone has been tested using the 90-problem test set using searches limited
to 20,000,000 nodes. Our previous best version of Rolling Stone was capable of
solving 39 of the test problems. With the addition of relevance cuts, the number
of problems solved has increased to 44*. Table 1 shows a comparison of Rolling
Stone with and without relevance cuts for each of the 44 solved problems.

For each program version in Table 1, the third column gives the number of
IDA* iterations that the program took to solve the problem. Note that problems
#9, #21 and #51 are now solved non-optimally, taking at least one iteration
longer than the program without relevance cuts. This confirms the unsafe nature
of the relevance cuts. However, since none of the problems solved before is lost
and b more are solved, the gamble paid off. Long ago we abandoned our original
goal of obtaining optimal solutions to Sokoban problems. The size of the search
space dictates radical pruning measures if we want to have any chance of solving
some of the tougher problems.

Of the 5 new problems solved, #11 is of interest. Without relevance cuts,
only 17 IDA* iterations could be completed within our pre-set limit of 20,000,000
nodes. Relevance cuts allow Rolling Stone to search 19 iterations and solve the

* Note that we “cheat” with problem #46, as we allow it to go 47,000 nodes beyond
the 20 million node limit. A bug fix pushed it beyond the 20 million limit and we
wanted it to count in the statistics. We tested all the unsolved problems without the
relevance cuts to 50 million nodes and no other problem was solved.

3

without relevance cuts

top level nodes

total nodes

iterations

with relevance cuts

top level nodes

total nodes

iterations

1 32 270 2 32 270 2
2 200 3,251 2 177 2,764 2
3 392 10,486 2 301 10,395 2
4 394 10,556 1 392 10,554 1
5 5,999 121,502 3 6,079| 152,082 3
6 170 1,593 3 151 1,574 3
7 12,378 156,334 5 6,821 68,202 5
8 152,919 3,066,098 6 89,838| 1,806,540 6
9 11,572 234,454 5 14,963| 307,006 8
10 834,147| 16,678,800 4 340,935| 6,815,512 4
11 > 998,299 > 20,000,000 17 337,143 6,759,590 19
17 1,160 14,891 7 1,250 14,740 7
19 890,100| 17,829,863 9 88,575 1,814,505 9
21 38,371 765,392 9 47,854 970,776 10
34| > 1,651,897|> 20,000,000 9 227,525| 4,495,028 9
38 333,257 844,882 42 236,351 748,024 42
40 > 998,236 > 20,000,000 7 311,618 6,239,163 8
43 112,610| 2,270,703 8 60,120| 1,215,022 8
45 729,333| 14,646,623 9 250,157| 5,059,596 9
46| > 2,022,198| > 20,000,000 12 1,004,325 20,047,197 15
49|| > 17,074,823| > 20,000,000 11 2,303,495| 3,047,672 13
51 725 2,611 1 2,049 18,368 2
53 182 3,737 1 185 3,740 1
54 283,600| 4,381,171 9 255,327| 3,884,844 9
55 1,696,996 3,194,330 3 603,190| 1,349,908 3
56 4,318 34,429 6 3,817 31,388 6
57 61,000| 1,084,732 5 45,339 797,766 5
60 5,929 116,103 3 1,252 24,403 3
62 2,720 71,578 5 1,984 46,534 5
63 10,195 197,922 3 21,131| 390,422 3
64 194,846 3,900,639 10 32,706| 652,857 10
65 364 12,971 5 364 12,971 5
67 239,515 2,177,787 13 160,936| 2,103,866 13
68 128,716 2,651,559 11 16,814 355,306 11
70 841,495| 15,003,603 3 94,792| 1,949,842 3
72 1,908 43,260 5 3,168 72,647 5
73 11,371 247 316 3 14,791 292,799 3
78 75 809 1 75 783 1
79 362 4,017 5 200 3,512 5
80 805 15,513 1 2,081 48,220 1
81 1,251 40,806 4 1,074 29,698 4
82 8,500 181,571 5 4,643 97,406 5
83 635 15,423 1 389 13,106 1
84 272,160 521,068 4 153,220 443,508 4
> 29,637,064]>190,559,653 6,748,129] 72,210,106

Table 1. Experimental Data

problem. Given that the cost of an extra iteration is large (and can typically
be a factor of about 5,000 per iteration [6]), a gain of 2 iterations represents a
massive improvement.

The tree size for each program version given in Table 1 is broken into two
numbers. Top-level nodes refers to that portion of the search tree that IDA*
is applied to. Total nodes includes the top-level nodes and the pattern search
nodes. Clearly, for some problems (such as #45) the cost of performing pattern
searches overwhelms the search effort, whereas in other problems (such as #53)
they are a small investment. Further details on pattern searches and when they
are executed can be found in [6].

The magnitude of the top-level nodes can be misleading; superficially it looks
like these problems can be “trivially” solved with few nodes. Using standard
IDA* with our sophisticated lower bound estimator fails to solve any of the 90
test problems within our limit of 20,000,000 nodes. Consequently, we added a
plethora of enhancements to the program, including transposition tables, macro
moves, move ordering and deadlock tables, each of which is capable of reducing
the search tree size by one or more orders of magnitude [7]! Thus the small top-
level node counts reported in the table are the result of extensive improvements
to the search algorithm.

Relevance cuts reduce the number of top-level nodes by at least a factor of 4.5.
Note that since the program not using relevance cuts cannot solve 5 problems,
this factor may be a gross underestimation of the actual impact.

With respect to the total search nodes, relevance cuts improve search effi-
ciency by almost a factor of three. Again, this is a lower bound. In particular,
problem #11 still requires an enormous amount of search, given that it still has
2 1terations to go before it can find the solution.

Comparing node numbers of individual searches 1s difficult because of many
volatile factors in the search. For example, a relevance cut might eliminate a
branch from the search justifiably, but a pattern search there would have uncov-
ered valuable information that would have been useful for reducing the search
in other parts of the tree. Problem #80 is one such example: despite the rele-
vance cuts the node count goes up from 99 to 123 nodes; an important discovery
was not made and the rest of the search increases. However, the overall trend
is in favor of the relevance cuts. An excellent example is problem #70: the top
level node count 1s cut down to 3,006 nodes and a solution is found. Previously
579,037 nodes were considered without finding a solution.

Figures 3 and 4 plot the amount of effort to solve a problem, using the
numbers from Table 1 sorted by total nodes. An additional data point is given
with a curve that shows what the program’s performance was with all the stan-
dard single-agent search techniques implemented, before pattern searches where
added. Figure 3 shows the impact of the relevance cuts. The exponential growth
in difficulty with each additional problem solved is dampened, allowing for more
problems solved with the same number of nodes. Figure 4 is a logarithmic rep-
resentation of Figure 3. The figure more clearly shows that up to about the 25th
problem (ordered according to number of nodes needed to solve) there is very

2e+07 T T T T

without pattern search —
1.8e+07 with pattern search and without relevance cuts --
with pattern search and with relevance cuts -
1.6e+07 | / R
B
S
g 1.4e+07 4
8 12e+07 | 1
8
[=4
c let07 - 1
o
>
g 8et06 |
8
£ 6e+06 - 4
2
T 4er06 - 1
2et+06 - 1
0 L L B et L L
0 5 10 15 20 25 30 35 40 45
problems solved ordered by effort
Fig. 3. The Effect of Relevance Cuts
1e+07 F e
1e+06]
B
=
(5}
g 100000 |
4]
8 10000 F 1
£
o .
= -/ 4
5 1000 7
] /
])
S 100 | without pattern search —— 1
© with pattern search and without relevance cuts -----
10 with pattern search and with relevance cuts -
1

0 5 10 15 20 25

30 35 40 45
problems solved ordered by effort

Fig. 4. The Effect of Relevance Cuts (Log Scale)

little difference in effort required; the relevance cuts do not save significant por-
tions of the small search trees. However, with larger search trees, the success of
relevance cuts gets more pronounced.

5 Conclusions and Future Work

Relevance cuts provide a crude approximation of human-like problem-solving
methods by forcing the search to favor local moves over global moves. This
simple idea provides large reductions in the search tree size, at the expense of
possibly returning a longer solution. Given the breadth and depth of Sokoban
search trees, finding optimal solutions is a secondary consideration; finding any
solution is challenging enough.

There are several ideas on how to improve the effectiveness of relevance cuts.

— Use different distances depending on crowding. If many stones are crowding
an area, 1t is likely that the relevant area is larger than it would be with less
stones blocking each other.

— The current influence measure can most likely be improved. A thorough
investigation of all the parameters used could lead to substantial improve-
ments.

— There are several parameters used in the relevance cuts. The setting of those
1s already dependent of properties of the maze. These parameters are critical
for the performance of the cuts and are also largely responsible for increased
solution lengths. More research on those details is needed to fully exploit the
possibilities relevance cuts are offering.

— So far, Rolling Stone is painting locally, but is not yet “object oriented”.
If a flower and the bear are close, painting both at the same time is very
likely. Better methods are needed to further understand subgoals, rather
than localizing by area.

Although relevance cuts introduce non-optimality, this is not an issue. Once
humans solve a Sokoban problem, they have two choices: move on to another
problem (they are satisfied with the result), or try and re-solve the same problem
to get a better solution. Rolling Stone could try something similar. Having solved
the problem once, if we want a better solution, we can reduce the probability of
introducing non-optimality in the search by decreasing the aggressiveness of the
relevance cuts. This will make the searches larger but, on the other hand, the
last iteration does not have to be searched, since a solution for that threshold
was already found.

Relevance cuts are yet another way to significantly prune Sokoban search
trees. We have no shortage of promising ideas, each of which potentially offers
another order of magnitude reduction in the search tree size. Although this
sounds impressive, our experience suggests that each factor of 10 improvement
seems to only yield another 4 or 5 problems being solved. At this rate, we will
have do a lot of research if we want to successfully solve all 90 problems!

6 Acknowledgements

The authors would like to thank the German Academic Exchange Service, the
Killam Foundation and the Natural Sciences and Engineering Research Council
of Canada for their support.

References

1. G. Adelson-Velskiy, V. Arlazarov, and M. Donskoy. Some methods of controlling
the tree search in chess programs. Artificial Intelligence, 6(4):361-371, 1975.

2. J. Culberson. Sokoban is PSPACE-complete. Technical Report TR97-02, Depart-
ment of Computing Science, University of Alberta, Edmonton, Alberta, Canada,
1997. ftp://ftp.cs.ualberta.ca/pub/TechReports/1997 /TRI7-02.

10.

11.

12.

D. Dor and U. Zwick. SOKOBAN and other motion planning problems, 1995. At:
http://www.math.tau.ac.il/~ddorit.

M. Ginsberg. Fssentials in Artificial Intelligence. Morgan Kaufman Publishers,
San Francisco, 1993.

. G. Goetsch and M.S. Campbell. Experiments with the null-move heuristic. In

T.A. Marsland and J. Schaeffer, editors, Computers, Chess, and Cognition, pages
159-181, New York, 1990. Springer-Verlag.

A. Junghanns and J. Schaeffer. Single-agent search in the presence of deadlock. In
AAAI-98, pages 419-424, Madison/WI, USA, July 1998.

A. Junghanns and J. Schaeffer. Sokoban: Evaluating standard single-agent search
techniques in the presence of deadlock. In Advances in Artificial Intelligence, pages
1-15. Springer Verlag, 1998.

R.E. Korf. Depth-first iterative-deepening: An optimal admissible tree search.
Artificial Intelligence, 27(1):97-109, 1985.

. R.E. Korf. Macro-operators: A weak method for learning. Artificial Intelligence,

26(1):35-77, 1985.

R.E. Korf. Finding optimal solutions to Rubik’s Cube using pattern databases. In
AAAI-97, pages 700-705, 1997.

J. Schaeffer. Fxperiments in Search and Knowledge. PhD thesis, Univ. of Waterloo,
Canada, 1986.

G. Wilfong. Motion planning in the presence of movable obstacles. In 4th ACM
Symposium on Computational Geometry, pages 279-288, 1988.

