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Abstract

True distance memory-based heuristics (TDHs) were recently
introduced as a way to obtain admissible heuristics for ex-
plicit state spaces. In this paper, we introduce a new TDH, the
portal-based heuristic. The domain is partitioned into regions
and portals between regions are identified. True distances be-
tween all pairs of portals are stored and used to obtain admis-
sible heuristics throughout the search. We introduce an A*-
based algorithm that takes advantage of the special properties
of the new heuristic. We study the advantages and limitations
of the new heuristic. Our experimental results show large per-
formance improvements over previously-reported TDHs for
commonly used classes of maps.

1 Introduction

A common research direction in heuristic search is to de-
velop techniques which allow larger problems to be solved
with fixed resources. However, there are domains, such
as map-based searches (common in GPS navigation, com-
puter games, and robotics), where solving a “small” prob-
lem rapidly is most important. Although optimal paths can
be found relatively quickly with simple heuristics, this might
still not be enough for some real-time domains. A significant
body of work has been performed to speed up such searches
by compromising on the solution quality (e.g., (Bulitko et al.
2008)). In this paper, we address using memory to improve
performance while still returning optimal solutions.

A class of memory-based heuristics, true distance heuris-
tics (TDHs), was introduced in (Sturtevant et al. 2009;
Felner et al. 2009). TDHs store distances between selected
pairs of states in the original state space (hence the term true
distance). This information is used to compute admissible
heuristic values between any pair of states. The different
TDHs are distinguished by the pair selection criteria and by
the way the heuristic is calculated.

We introduce a new type of TDH, the portal-based true
distance heuristic (PTDH), or simply the portal heuristic
(PH). First, the state space is partitioned into disjoint regions
as shown in Figure 1 (left). States on the borders between
the regions are called portals (denoted p in the figure). True
distances between all pairs of portals (solid arrows in the fig-
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Figure 1: PH (left) : Direction enhancement (right).

ure) are pre-computed and stored. These distances are then
used to compute an admissible heuristic for any two states.

Consider the left-most region (A) and right-most region
(B) in Figure 1 (left). Every path between states a ∈ A and
b ∈ B consists of three stages: (1) exiting A via one of the
portals (pA), (2) entering B via one of the portals (pB), and
(3) reaching b. Since the exact distance between all pairs of
portals (denoted d(pA, pB)) is available, the heuristic value
h(a, b) is obtained by adding heuristic estimates of d(a, pA)
and d(b, pB) to d(pA, pB). Taking the minimum among all
pairs of portals pA and pB guarantees admissibility.

PH has a number of interesting properties that can be uti-
lized to speed up the search. In particular, the search graph
can be collapsed to only include (1) states in the start and
goal regions, and (2) edges connecting portals of these re-
gions. We introduce Portal-Based Search (PBS), an algo-
rithm that uses this property to divide the path-finding prob-
lem into smaller sub-problems. A number of enhancements
that further speed up PBS are presented. In particular, with
only a moderate amount memory, a perfect heuristic can be
produced for some families of graphs. Experimental results
on grid-based maps show that PBS outperforms search with
other TDHs, in many cases by an order of magnitude. How-
ever, PH also has some limitations and its relative perfor-
mance for some types of graphs over other TDHs degrades.

PH can be used in conjunction with any graph partition-
ing algorithm. This paper concentrates on the new heuristic
itself while the influence of a particular way of partitioning
the graph is not discussed.

2 Related Work

Pattern databases (PDBs) (Culberson & Schaeffer 1998)
are a powerful method for automatically building admissi-
ble memory-based heuristics based on domain abstractions.
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However, (Sturtevant et al. 2009; Felner et al. 2009) showed
that PDBs work well only for implicit exponential domains,
such as combinatorial problems, where a single goal state
is usually specified and good abstractions of the domain are
available. PDBs are not well-suited for explicit domains,
such as map-based path finding, where a path between any
arbitrary pair of states might be needed.

Unlike PDBs, which store distances in an abstract state
space, TDHs store accurate distances between selected pairs
of states in the original, unabstracted state space. A per-
fect heuristic could store all-pairs-shortest-path distances.
Since this is not practical due to time and memory limi-
tations, TDHs pre-compute and store only a small part of
this information. The following TDHs were introduced in
(Sturtevant et al. 2009; Felner et al. 2009). Let V be the set
of states1 and d(x, y) be the cost of the shortest path between
x, y ∈ V .

(1) Differential heuristic (DH). Choose the set K ⊂ V
(|K| ≪ |V |) of canonical states. For each state x, the dis-
tances to all canonical states (i.e. d(x, s) for all s ∈ K)
are pre-computed and stored in the database. For arbitrary
states a and b, |d(a, s)−d(b, s)| is a lower bound on d(a, b).
The differential heuristic between arbitrary states a and b is
h(a, b) = max

s∈K
|d(a, s) − d(b, s)|.

(2) Canonical heuristic (CH). Choose the set K ⊂
V (|K| ≪ |V |) of canonical states. For each canon-
ical state, the distances to all other canonical states are
pre-computed and stored in the database (primary data).
For each non-canonical state x, the distances to the m
closest canonical states (denoted C1(x), C2(x), . . . , Cm(x))
are stored (secondary data). The canonical heuris-
tic between arbitrary states a and b is h(a, b) =

max
1≤i,j≤m

[d(Ci(a), Cj(b)) − d(a, Ci(a)) − d(b, Cj(b))].

(3) Border heuristic (BH). The domain is split into dis-
joint regions. The states of a region that have neighbors in
other regions are called border states. For each pair of re-
gions A and B, the distance d(A, B), defined as the mini-
mal distance between the border states of A and B, is pre-
computed and stored in the database (primary data). In
addition, for each state x, the distance to the closest bor-
der state of its region (denoted DB(x) where B stands for
“border”) is stored (secondary data). The border heuristic
between arbitrary states a ∈ A and b ∈ B is h(a, b) =
d(A, B) + DB(a) + DB(b).2

The gateway heuristic (GH) (Björnsson & Halldórsson
2006) is an approach that is related to PH. In GH portals are
defined by grouping a number of neighboring border states
which form a line segment into a single gate. A similar

1Throughout the paper, we use the term state to refer to states of
the domain. The term vertex is used in graph-theoretical contexts.
The term node refers to the search tree of A*.

2Some forms of these TDHs have appeared before. For exam-
ple, the DH heuristics were independently used by a number of
previous researchers (Goldberg & Harrelson 2005; Ng & Zhang
2002). However, the current line of research started by (Sturte-
vant et al. 2009; Felner et al. 2009) is the first to deeply explore
these heuristics and provide theoretical analysis and thorough ex-
perimental results.

composite-portal idea appeared in (Botea, Müller, & Schaef-
fer 2004) but for non-optimal search. In this sense GH may
be seen as a continuum between BH and PH. In PH portals
may only have a single gate state while in BH all border
states of a given region are grouped together.

It is important to note that, in order to obtain an admissible
heuristic, GH uses a specialized map partitioning algorithm
that looks for regions of certain shape (namely, whose bor-
ders consist of horizontal and vertical chains of states; these
chains become the gates) and works well for the maps en-
countered in video games. The algorithm starts forming a
new region at the top leftmost state that has not been pre-
viously assigned to any region and proceeds to “flood” the
map until a certain stopping condition is met. At that point,
the region is fixed without an option for further partitioning.
Hence, the memory needs of the partitioning algorithm used
in conjunction with GH are fixed. This is a very important
consideration when comparing GH to PH or any other TDH,
that are designed to use any given amount of memory.

The advantage of PH over all these heuristics is due to
storing distances between individual border states. This re-
sults in more accurate heuristic estimates and enables the
Portal-Based Search algorithm described below.

The algorithmics community has researched path-finding
in explicit graphs (e.g., (Bauer et al. 2008)). Their work
is usually based on Dijkstra’s algorithm and does not use
admissible heuristics in the same way that the AI commu-
nity does. These methods use graph-theory abstractions to
reduce the search space (e.g., by eliminating nodes and/or
adding short-cut edges). Their research is orthogonal to that
reported in the AI literature. Future work may see the AI
and algorithmic efforts combined.

3 Portal-Based TDH

Given a graph G = (V, E), a k-way graph partitioning of
G is defined as partitioning of V into k disjoint subsets,
V1, V2, . . . , Vk . The subgraphs induced by these subsets are
called partitions. Optimal or good k-way partitioning can
be defined in a number of ways. For our purposes, a good
partitioning has two properties: (1) the partition sizes are as
balanced as possible (ideally, ∀i |Vi| = |V |/k), and (2)
the number of edges of E whose incident vertices belong to
different partitions (crossing edges) is minimized.

Consider the graph G = (V, E), whose vertices corre-
spond to the states in the search space. Suppose that G has
been partitioned and that G′ is the subgraph induced by the
crossing edges and their incident vertices. Choose a vertex
cover of G′ (minimal vertex cover is known to be NP-hard,
so an approximation is adequate). The states that correspond
to the vertices in the vertex cover are called portals. We de-
note the set of all portals by P . The partitions with the por-
tals removed are called regions. A portal is therefore a state
that has neighbor(s) in two or more regions. Although a por-
tal is not considered part of a region, “portal p of region A”
will informally mean that portal p has neighbors among the
states of region A.

In the two-way partitioning example in Figure 2a, the
graph was split along the dashed line and the bold edges are
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Figure 2: Regions and portals.

the crossing edges. The dashed ellipse in Figure 2b encir-
cles the graph induced by the crossing edges. Choosing the
minimal vertex cover results in the two bold states becoming
portals.

Assume that the graph has been partitioned into k regions
and that a local heuristic hR (e.g. Manhattan distance) is
defined for each region R and that the true distance be-
tween every pair of portals is pre-computed and stored in
the database. The portal heuristic (PH) between two states
located in different regions, a ∈ A and b ∈ B, is defined as:

h(a, b) = min
pA∈A,pB∈B

(hA(a, pA) + d(pA, pB) + hB(pB, b)) ,

where pA and pB are portals of A and B, respectively.
When one of the states (say a) is a portal, the heuristic
takes the form: h(pA, b) = min

pB

(d(pA, pB) + hB(pB , b)).

When both states belong to one region (a, b ∈ A) then
h(a, b) = hA(a, b). It is easy to see that if the local heuris-
tics are admissible, then the portal heuristic is admissible.

Assume there are |P | portals. A straightforward imple-
mentation of PH has the following memory requirements:

(1) Portals: Since portals usually belong to two regions,
2|P | memory is needed to list the portals of each region.3

|P | memory is needed to store the portals’ locations.
(2) Inter-portal distances: |P |(|P | − 1)/2 memory to

store true distances between portals (primary data).
(3) Region identification: |V | memory to assign each

state to a region (secondary data).

This adds up to a total of |V | + 3|P | + |P |(|P | − 1)/2
memory.

4 Partitioning the State Space

PH’s performance depends on partitioning the state space
into regions, ideally of similar size with few border states.
The benefits of finer partitioning (i.e. more regions) are
three-fold. First, it puts more start-goal pairs in different re-
gions, thus enabling PH. Second, in many cases, smaller re-
gions possess a smaller number of portals resulting in a less
expensive computation of the portal heuristic. Lastly, we
will see that finer partitioning provides an additional large
benefit for the Portal-Based Search algorithm defined below.
Of course, finer partitioning requires more memory.

The emphasis of the current paper is on the performance
of PH, while the influence of a particular partitioning al-
gorithm on the effectiveness of the heuristic is a research
question that we leave for future work. In the following,

3This assumes that the number of portals which belong to more
than two regions is negligible.

we describe a partitioning algorithm that has the desirable
properties of minimizing the number of crossing edges and
balancing the sizes of the regions.

Our algorithm, called counter-based graph-partitioning,
partitions a graph into two regions based on an approxima-
tion of the betweenness centrality (BC) (Holzer et al. 2004;
Geisberger, Sanders, & Schultes 2008) metric of the edges.4

BC is a measure of how popular an edge is with respect to
using it as a member of shortest paths between vertices of the
graph. Partitioning using this metric is based on the observa-
tion that edges connecting components of a well-partitioned
(i.e., balanced sizes of components and few crossing edges)
graph possess a large BC value.

The algorithm’s initialization step assigns a counter to
each edge and initializes all counters to 0. Each subsequent
step consists of randomly choosing two vertices and find-
ing a shortest path between them. The counters of the edges
along the shortest path are increased. Edges whose coun-
ters reach a pre-defined limit are deleted from the graph and
cannot be used again for the shortest path calculation.

This process is continued until the deletion of an edge puts
the two vertices of the current step in different connected
components. Vertices that may have been disconnected from
the graph by the earlier steps are assigned to either of the two
components. Portals are identified by an approximation of
the minimal vertex cover. The components with the portals
removed become the new regions.

This algorithm produces a two-way graph partitioning.
To obtain a finer partitioning, we repeatedly apply the al-
gorithm to the region with the largest number of states (al-
lowing for roughly balanced region sizes) until the memory
requirements of PH reach a pre-set limit.

5 Enhancements to PH

PH can be enhanced in a number of ways. The most im-
portant is the Portal-Based Search (PBS) algorithm which
exploits the fact that the graph can be collapsed.

5.1 The Portal-Based Search (PBS) Algorithm

Recall the example in Figure 1 (left). Every path between
states a ∈ A and b ∈ B has to exit A through one of the
portals pA and enter B through one of the portals pB . Since
the exact distances between portals are known, the search
graph can be collapsed as follows. First, all regions except
A and B are removed from consideration. Second, the re-
gions A and B are connected by macro-edges pA-pB with
the appropriate weights retrieved from the TDH database.
The corresponding collapsed search graph of Figure 1 in-
cludes the left region (A), the right region (B), and the four
macro-edges shown as straight solid arrows.

The following 3-step algorithm, Portal-Based Search
(PBS), exploits the collapsed graph structure to find an opti-
mal path by solving a series of sub-problems.

4The classical betweenness centrality index is defined for a ver-
tex v as

∑
s,t∈V

|SPst(v)|/|SPst|, where SPst is the set of all

shortest paths between s and t and SPst(v) is the set of such paths
passing through v. We used a similar definition applied to edges.
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Step 1: Finding the portals pA and pB on the optimal
path. This is solved by applying an A∗-search powered with
PH to the collapsed search graph. After this step, we have
a partial optimal path that contains a single macro-edge pA-
pB . To construct the complete path, the macro-edge needs
to be refined. This is accomplished by the next two steps.

Step 2: Finding the remaining portals on the optimal
path. We need to replace the macro-edge (pA, pB) of the
partial optimal path by a sequence of portals. Suppose that
the portal pA is on the boundary of regions A and C. The
second portal on the optimal path is a portal pC that mini-
mizes d(pA, pC) + d(pC , pB).5 Whenever there is a tie, we
choose the portal closest to pA. The remaining portals are
found similarly.

Step 3: Finding an optimal path between each pair of
successive portals. Note that each pair of successive portals
belong to the same region. Furthermore, the way of break-
ing ties in Step 2 above guarantees that we do not need to
consider any state outside of that region (even for concave-
shaped regions). Thus, each of these searches constitutes a
sub-problem that can be solved independently by searching
within one region using the local heuristic of that region.

5.2 Choice of Search Direction

The third step of PBS finds the shortest path between succes-
sor portals, say pi and pi+1. This search could be conducted
starting from pi towards pi+1 or vice versa. Figure 1 (right)
illustrates this idea. Searching from pi with the Manhattan
distance heuristic will result in exploring all of the cells in-
side the room, while searching from pi+1 will save this ef-
fort. For each pair of portals that share the same region a
bit is stored in the PH’s database to indicate which search
direction leads to the least-effort search.

5.3 Run-time Optimizations

The following optimizations can reduce the time cost of
computing the value of PH:

(1) Some portals are irrelevant for a given pair of
start/goal regions. For example, assume a search from re-
gion A to region B. Let pA be a portal in A such that, for
every portal pB in B, there exists another portal in A, p′A,
for which there is a shortest path from pA to pB that passes
through p′A. In such a case pA can be removed from any
heuristic calculation between regions A and B. This can be
calculated online or done off-line (saved in a table). In our
experiments we adopted the online option.

(2) When searching from a ∈ A to b ∈ B, b as the goal
state is fixed throughout the search. As long as the search
remains in A, the heuristic estimate from each pA to b is
fixed and needs to be computed only once.

These run-time optimizations were enabled in all of the
reported experiments.

5Alternatively, for each macro-edge, the next portal can be
stored, but this adds memory to every entry in the primary data
of the TDH database.

5.4 Achieving Perfect Portal Heuristics

Recall that a state a ∈ A has the identity of its region stored
in the secondary data. Suppose that, in addition to this, we
store distances d(a, pA) from this state to its region’s portals.
Now, finding the optimal path between states a ∈ A and
b ∈ B (A 6= B) can be done in time that is linear in the
length of the optimal path by modifying the PBS algorithm:

(1) Choose the pair of portals pA and pB that minimizes
the expression d(a, pA) + d(pA, pB) + d(pB , b). This is a
perfect heuristic.

(2) The macro-edge (pA, pB) is refined as in Step 2 of
PBS.

(3) Compute the path from a to pA. The second state on
the path (call it a′) is chosen among the neighbors of a such
that d(a, pA)− cost(a, a′) = d(a′, pA). The rest of the path
is computed similarly.

We call this option the perfect portal heuristic (PPH).
PPH is only available if a and b are in different regions.
If they are in the same region, then the differential heuris-
tic hd(a, b) = |d(a, p) − d(b, p)|, where p is a portal in the
region of a and b, can be used.

If each region has m portals on average, then additional
m|V | memory is required in the secondary data to store all
state-portal distances. For a given amount of memory, PPH
allows for the partitioning of the domain into a smaller num-
ber of regions as compared to the basic PH. This tradeoff
will be studied below.

6 Experimental Results

Experiments were performed using three types of grid-based
maps: rooms, mazes and maps taken from the popular game
BALDUR’S GATE. An example for each type of map, along
with its partitioning is shown in Figure 3. The white cells are
portals. We used the same five 256×256 rooms maps (rooms
are 8 × 8 with randomly opened doors between rooms) and
256 × 256 mazes that were used in (Sturtevant et al. 2009;
Felner et al. 2009).6 We handled these maps as four-
connected grids and used Manhattan distance (MD) as the
benchmark heuristic. We scaled the mazes to the size of
512 × 512 to increase the branching factor, the same way
it was done in (Sturtevant et al. 2009; Felner et al. 2009).
The BALDUR’S GATE maps differ considerably from each
other. Hence, the averaging of results is not meaningful. We
only report results for one BALDUR’S GATE map of size
148 × 139, but similar trends were obtained for other maps.
Since diagonal moves are frequently allowed in computer
games, we handled the BALDUR’S GATE maps as eight-
connected and used the octile distance as the benchmark
heuristic. In all cases the results were averaged over 1, 000
randomly chosen state-goal pairs.

6.1 Portal Heuristic Analysis

Two important attributes that influence the efficiency of PH
are: (1) The number of portals per region. More portals per

6We have conducted experiments with rooms and mazes of dif-
ferent sizes as well. Although the exact numbers were different,
the trends were similar to the ones reported below.
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Number of portals per region. #Regions (Probability of start-goal in diff. regions)

Mem |V |/64 |V |/16 |V |/4 |V | 4|V | 16|V | |V |/64 |V |/16 |V |/4 |V | 4|V |
Rooms 11.9 9.1 6.9 5.1 3.9 2.8 99 (0.83) 111 (0.93) 142 (0.98) 228 (0.99) 441(0.99)
Mazes 3.9 3.9 4.0 3.9 4.0 4.0 32 (0.96) 64 (0.98) 130 (0.99) 260 (0.99) 520 (0.99)
B. Gate 8.4 12.8 14.6 17.5 18.6 19.9 5 (0.55) 10 (0.68) 16 (0.85) 19 (0.92) 27 (0.96)

Table 1: Properties of environments w.r.t. partitioning. Memory does not include the |V | needed to identify states with regions.

Figure 3: Rooms (left), mazes (center), Baldur’s Gate maps
(right) and their partitioning using |V |/4 memory.

region will make the calculation of PH harder and increase
the memory requirements of PPH. Also, with more portals
per region, a smaller number of regions is available for a
given amount of memory. (2) The percentage of start-goal
pairs that fall into different regions. For such pairs PH is
available. For pairs within the same region, only the local
heuristic is available.

Table 1 shows how these attributes are affected by the
available memory. Our three domains cover a broad range
of possibilities. Room maps represent environments where
further partitioning the graph results in a decrease in the
number of portals per region. Mazes represent environments
where adding memory does not affect the number of portals
per region. Finally, BALDUR’S GATE maps represent envi-
ronments where further partitioning the graph results in an
increase of the number of portals per region.

Table 2 shows the performance of different variants of
PH on room maps (similar trends were obtained for mazes).
Time and Nodes are the ratios of those obtained with the
MD heuristic (i.e., 0.5 means half that required by MD). The
rows in Table 2 represent the amount of memory allowed
(beyond the |V | needed to identify each state with a region).
The columns correspond to different versions of PH. The
best variant is highlighted in bold.

The first column (PH) corresponds to regular A* with the
PH heuristic (without any enhancements). This simple ver-
sion of PH reduces the search effort (compared to MD) by
a large factor when sufficient memory is available. With
8|V | memory, the speedup is an order of magnitude. Since
constant time per node is used for database lookups (and
finding the minimum among these lookups), the improve-
ment in the actual time is somewhat smaller than the reduc-
tion in the number of expanded nodes. The second column
(PH+ME) corresponds to adding the macro-edges enhance-
ment, i.e. searching with PBS. This reduces the search effort
by up to an additional factor of two. Adding the correct di-
rections enhancement to PBS yields a small improvement.

This version is denoted in the reminder of the paper as PHe
(for PH-enhanced). Note that as larger amounts of memory
become available, the enhancements become less effective.
The reason is that the regions are already small and a further
increase in memory does not decrease the amount of the lo-
cal search portion (Step 1 of PBS) by much.

PPH needs substantially more memory to store the dis-
tances from each state to the portals of its region. Out of the
five room maps that we considered, this becomes available
with 6|V | memory for three maps and with 7|V | for the other
two maps. For mazes (not shown in Table 2), PPH becomes
available for even a smaller amount of memory.

It is reasonable to expect that availability of a perfect
heuristic would result in great performance improvements.
Our results show that, at least for the rooms maps, this is
not always the case. We attribute this to two artifacts of
our off-line partitioning stage. First, the secondary data is
stored as soon as enough memory is available. Second, par-
titioning is stopped as soon as the memory limit is attained.
This may result in a small number of regions (each of large
size) and many start-goal pairs being located in the same re-
gion – in which case the perfect heuristic is not available.
Continuation of partitioning into more regions after reach-
ing the memory limit may result in less secondary data if the
number of portals per region decreases. This is a domain-
dependent attribute of room maps which affected the results
of PPH. For mazes, this stopping criterion is more effective
because the number of portals per region does not decrease
with more regions. Thus, PPH outperforms PHe for mazes,
as detailed below. Improving on the off-line stage scheme
for PPH based on domain-dependent attributes is a subject
of future research.

6.2 Comparison With Previous Work

(Sturtevant et al. 2009) compared canonical heuristics (CH)
and differential heuristics (DH) on rooms and mazes and
concluded that DH provide better results on both domains.
In addition, (Felner et al. 2009) defined the border heuris-
tic (BH). However, BH was never compared to the other
TDHs for grid-based maps. We compare all these TDHs
here. For DH we used the advanced placement algorithm to
place canonical states. CH is parameterized by the number
of canonical states m to which distances from each state are
stored. Results are provided for the best m value.

The relative performance compared to MD for a variety
of TDHs is shown in Figure 4 for time (rooms, left; mazes,
right) and Table 3 for nodes. For |V | memory, DH already
achieves a significant improvement over MD. PH and BH
need |V | memory to assign each cell of the grid to a region.
Another |V | memory is used by BH to store the distances
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Avg path length: 217; MD time: 0.00768sec; MD nodes: 5340

Nodes Time

PH PH+ME PHe PPH PH PH+ME PHe PPH

|V |/64 0.794 0.597 0.584 N/A 1.633 0.679 0.667 N/A
|V |/16 0.564 0.313 0.294 N/A 1.043 0.339 0.320 N/A
|V |/4 0.353 0.163 0.147 N/A 0.561 0.173 0.157 N/A
|V | 0.199 0.095 0.084 N/A 0.289 0.103 0.094 N/A
4|V | 0.111 0.067 0.061 N/A 0.160 0.079 0.074 N/A
6|V | 0.093 0.062 0.058 0.147 0.137 0.067 0.073 0.140
7|V | 0.086 0.061 0.057 0.143 0.129 0.066 0.073 0.119
8|V | 0.080 0.060 0.056 0.079 0.121 0.066 0.073 0.051

Table 2: Performance of PH (rooms maps). Memory does not include the |V | needed to identify states with regions.

Figure 4: Time performance of TDHs.

DH CH BH PHe PPH

Rooms

|V | 0.796 N/A N/A N/A N/A
2|V | 0.639 N/A 0.714 0.084 N/A
4|V | 0.418 0.688 0.293 0.064 N/A
8|V | 0.275 0.484 0.196 0.057 0.143

Mazes

|V | 0.480 N/A N/A N/A N/A
2|V | 0.270 N/A N/A 0.104 N/A
4|V | 0.170 0.236 0.113 0.089 0.123
8|V | 0.123 0.160 0.103 0.079 0.043

Table 3: Nodes (compared to MD) on rooms and mazes.

from each cell to its region’s border. For larger amounts of
memory, the border-based heuristics (BH and PH) outper-
form the other TDHs by a large margin. All versions of PH
outperform BH. Unlike rooms, for mazes the number of por-
tals per region stays constant. Therefore, for mazes, when-
ever 5|V | or more memory is available, PPH significantly
outperforms PHe.

Baldur’s gate maps. We conducted experiments with 8-
connected BALDUR’S GATE maps. Since the number of
portals per region gets larger with the increased amount of
memory, these maps are a showcase of a limitation of the
PH. The results are shown in Table 4. It is interesting to
note that PH still outperforms other TDHs when not too

DH CH BH PHe

Nodes

2|V | 0.600 N/A N/A 0.163
3|V | 0.427 0.733 0.773 0.152
8|V | 0.208 0.532 0.690 0.131

Time

2|V | 0.674 N/A N/A 0.316
3|V | 0.489 0.792 0.930 0.333
8|V | 0.278 0.612 0.858 0.325

Table 4: Results for 8-connected BALDUR’S GATE maps.

much memory is available. When the amount of memory in-
creases (see the 8|V | row), the number of portals per region
increases too and the relative performance of PH degrades
as expected and it is no longer the best TDH. PPH is not
available here, since the high number of portals per region
precludes storing the secondary data.

6.3 Comparison With the Gateway Heuristic

We now compare PH to GH. Recall from the introduction
that GH uses a specialized map partitioning algorithm that
incurs fixed memory requirements. There we explained that
this artifact of GH is needed to guarantee admissibility. In
contrast, PH uses an iterative partitioning algorithm that can
fit the available amount of memory. It is because of this dis-
tinction between GH and PH (and all other TDHs) that we
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cannot compare the two heuristics for a large range of mem-
ory amounts as was done in our comparison of the different
versions of PH and the other TDHs. Rather, the amount of
memory will be dictated by the GH’s partitioning algorithm
and the maps being used.

We implemented GH and experimented with the same
maps and test cases that were used above. For both room
and maze maps, the partitioning algorithm of GH tends to
form small regions with the result of using a large amount
of memory. For the rooms maps, 1,027 regions with 2,719
gates7 were formed on average, using 72|V | memory. The
number of expanded nodes compared to the MD heuristic
is 0.062, which is comparable to the number of nodes ex-
panded by PHe with 5|V | memory. For the maze maps,
4,185 regions with 8,443 gates were formed on average, us-
ing 272|V | memory. The number of expanded nodes com-
pared to the MD heuristic is 0.057, which is better than PHe,
but worse than PPH which uses 5|V | memory.

The BALDUR’S GATE maps is the kind of environment
that GH were designed for. A total of 91 regions with
255 gates were formed, which corresponds to using about
6.36|V | memory. The number of expanded nodes com-
pared to the octile distance heuristic is 0.685 and the time is
0.982. These results are comparable to the results reported
in (Björnsson & Halldórsson 2006) (although their time re-
sults are somewhat better, which must be due to using less
generic code with specific optimizations). As reported in Ta-
ble 4 PH expanded about a fourth of this number of nodes
and used only about a third of this time.

7 Conclusions and Future Work

We introduced the portal heuristic, a new TDH which in
most cases outperforms previous TDHs. The two most im-
portant advantages of PH over previous TDHs are the more
accurate heuristic values and the ability to sub-divide the
path-finding problem into a number of smaller problems by
applying the Portal-Based Search algorithm. In addition, a
perfect heuristic (PPH) can be produced with a moderate
amount of memory for states located in different regions.

The main limitation of PH is that its performance depends
on whether the underlying graph can be partitioned into re-
gions that are connected with each other by a small number
of edges. This is true, for example, when corridors or areas
surrounded by obstacles exist in the graph. This is the case
with the room and maze maps. In these cases, the number
of portals per region is rather low when we further continue
to partition the graph. Thus, PH substantially outperformed
other TDHs. PH is not that effective when there are too
many portals per region. Both the memory needs and the
computation time are increased in this case and the relative
performance of PH compared to other TDHs decreases. The
BALDUR’S GATE maps is a showcase of this limitation.

This research can be extended in several interesting ways.

7Note that GH uses two-sided gates and stores four distances
for each pair of gates. In our implementation, we created one-sided
gates that belong to only one region with a nearly equivalent result-
ing heuristic. In fact, our results are comparable to those reported
in (Björnsson & Halldórsson 2006).

(1) In this paper we have only experimented with grid-
based graphs. In order to better demonstrate the advantages
and limitations of PH it should be also implemented on other
graphs such as real road maps, robot’s visibility graphs etc.

(2) A graph partitioning algorithm was proposed that ap-
peared to have the desirable properties of balancing the sizes
of the regions and minimizing the number of edges between
the regions. It remains to be seen how sensitive PH’s perfor-
mance is to the partitioning, and whether there exists a more
PH-oriented partitioning algorithm.

(3) We have shown that run-time optimizations can be ap-
plied to improve the efficiency of PH despite the presence
of a high number of portals per region. Continuing this line
of research may make PH applicable to graphs that do not
possess good partitioning properties.

(4) The gateway heuristic (GH) proposed by (Björnsson &
Halldórsson 2006) offers an attractively low computational
cost. However, in its current form, GH is limited to grids, in-
curs a fixed amount of memory needs and, most importantly,
does not produce as high heuristic values as PH. However,
one could conceive of a generalization that would combine
the generic partitioning scheme of PH with the computa-
tional efficiency of GH through using a more flexible mech-
anism of grouping portals into gates.
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