
ARTIFICIAL INTELLIGENCE 185

RESEARCH NOTE

Low Overhead Alternatives to SSS*

T.A. Marsland, Alexander Reinefeld*
and Jonathan Schaeffer
C o m p u t i n g S c i e n c e D e p a r t m e n t , U n i v e r s i t y o f A l b e r t a ,

E d m o n t o n , A l b e r t a , C a n a d a

Recommended by W. Bibel and H. Kaindl

ABSTRACT
Of the many minimax algorithms, sss* is noteworthy because it usually searches the smallest game
trees. Its success can be attributed to the accumulation and use o f information acquired while
traversing the tree. The main disadvantages o f sss* are its high storage needs and management costs.
This paper describes a class o f methods, based on the popular alpha-beta algorithm, that acquire and
use information to guide a tree search. They retain a given search direction and yet are as good as
sss*, even while searching random trees. Further, although some of these new algorithms also
require substantial storage, they are more flexible and can be programmed to use only the space
available, at the cost o f some degradation in performance.

1. Introduction

After more than a decade of use, the efficiency of the widely used alpha-beta
(0~[3) algorithm for searching game trees was questioned by Stockman's intro-
duction of the State Space Search (sss*) [1]. By saving information during the
search, sss* tries to expand subtrees in a bes t - f i r s t manner. Since the informa-
tion maintenance entails significant overheads, sss*'s application is restricted to
the search of small trees. More recently, m i n i m a l w i n d o w search techniques
[2-4[have also been found superior to cx[3 for applications [5] as well a s for
artificially constructed trees [6-8]. Minimal window search is more efficient
than e~13 whenever the current subtree is inferior to the best subtree visited so
far. If the current subtree is superior, it must be searched a second time to
compute its correct value. Like et[3, minimal window search normally expands

* Present address: Fachbereich Informatik, Universit~it Hamburg, Schlueterstrasse 70, 2000
Hamburg 13, Fed. Rep. Germany.

Artificial Intelligence 31 (1987) 185-199
0004-3702/87/$3.50 © 1987, Elsevier Science Publishers B,V. (North-Holland)

186 T.A. M A R S L A N D ET AL.

more nodes than sss*. However, unlike odD, minimal window search occasion-
ally obtains the correct minimax value while traversing smaller trees than sss*.

In this paper, new information acquisition methods to improve minimax
search arelPresented. Minimal window search, modeled here by the NEGA-
SCOUT (NS) variant [7], is enhanced so that the initial search of a subtree
gathers information for use if a second search is needed. The resultant
algorithm will be referred to as INFORMED NEGASCOUT (INS). It is compared to
PARTIALLY INFORMED NEGASCOUT (PNS) [9] , a compromise algorithm that uses
less storage.

A study of sss*'s traversal of nonrandom trees shows that many nodes are
stored, but subsequently are not expanded. This disadvantage is reduced by
another algorithm, here called DUAL*, which uses the dual of sss* and hence
incorporates some directional properties by doing a left to right search at the
root. Thus, most subtrees are searched with a better bound than sss* would
use. Our experiments show that DUAL* often traverses smaller trees than sss*,
even in the random case. The performance of these algorithms is compared on
both random and strongly ordered [4] trees of uniform width w and constant
depth d. Experiments show that for odd-ply trees the new algorithms are
comparable to sss* in terms of nodes visited, and yet have significantly lower
overheads.

2. Minimal Window Search

Minimal window search relies on being able to prove a subtree inferior, rather
than on finding its true value. Aspiration or narrow window search [10] also
employs this notion by seeking a value for a tree within tight limits. If these
limits take on adjacent values, then one has a zero-width or minimal window.
The minimax value, v, of a tree may be determined by invoking the NEGASCOUT
function as follows:

v = NS(p, ~, /3, d);

where p represents the root position, (a , / 3) the search window, and d the
remaining search depth. After the expansion of the first successor with an
appropriate window (a , /3) , the others are traversed with the minimal window
(a, a + 1), where a represents the best available merit (score) not less than a.
Clearly, every minimal window search fails. If it fails low (v ~< a), then the
subtree is inferior and can be ignored. If the search fails high (v > a), it may be
necessary to re-search the subtree with the opened window (v , /3) to determine
its exact value. No re-search is needed if v >//3, since the cut-off value has
already been achieved, nor if d ~< 2 [7]. If the minimax value, v, of a tree were

1 NEGASCOUI is based on ideas from scour [2] and Palphabeta (PAB) [3, 6]. It is equivalent to
Principal Variation Search (vvs) [4, 5], but has some practical implementat ion advantages. On
narrow trees all these algorithms have similar average performance [8].

LOW OVERHEAD ALTERNATIVES TO SSS* 187

known, the most efficient aspiration etl3 search would use the narrow window
(v - 1, v + 1). All but one of the subtrees would then be refuted cheaply by
using such a window. This raises the possibility of developing algorithms that
scan the range of plausible values for the tree, successively moving a narrow
window to eliminate subtrees until only one remains.

2.1. Refutation wall

It is well known that the narrower the range of the search window, the
smaller the tree that is traversed. What is not so well known is how the tree
size varies with the location of the window relative to the minimax value, v, of
the tree. For a window of (s, s + 1), the node count partly, depends on the
difference i = s - v, which will be referred to as the distance to the minimal
window. An experiment was conducted to explore this point, using twenty
different random uniform trees of constant width w and depth d. Each tree had
a known minimax value, v, and was searched fifty times using the following
distinct windows

(v + i , v + i + l) for i = - 2 5 , - 2 4 , - 2 3 23, 24,

which covered all distances from - 2 5 to +24. For each distance, the node
count was averaged over the twenty trees. Figure 1 shows two sample plots of
average nodes visited (normalized to the largest value) versus distance. One
graph is for a set of random uniform trees and the other for a set of strongly
ordered trees. 2

As the distance of the window from the minimax value decreases, the node
count increases slightly until a window of (v - 1, v) is reached. When the
window moves to (v, v + 1) the node count rises abruptly! Figure 1 shows that
the better the tree order, the larger the increase. Thus it is easier to show that
a tree has a value greater than the window bound, than to prove that it does
not. In the latter case all immediate descendants of the root must be examined,
while in the former case the search stops as soon as a value greater than s is
found. The steep rise in the node count when the window reaches v will be
referred to as the refutation wall. The step function shape of the wall is less
pronounced in typical applications, but the consequences are just as important
[11].

2.2. Ignore-left and prove-best cut-offs

Other than the current window, NEGASCOUT does not retain information. If a
re-search occurs, all nodes of the initial search are revisited plus some
additional ones. In an initial search, one piece of information that is inexpen-

2 Redefined here so that the left-most descendant has a 60% chance of being best, otherwise the
best is found with equal probability from the other w - 1 siblings.

188 T.A. MARSLAND ET AL.

-d
o

e¢

Z

<

110 ,

1001

90--4

80-

70 -

6 0 -

50 -

40-

30--

20--

I0--

0
-25

.' d = 5 , w = 10, r a n d o m

d = 4 , w=20, ordered

I I I I
-20 -15 -10 -5

I 1 I I
0 5 I0 15

Dis tance from M i n i m a x V a l u e

20 25

FIG. 1. R e f u t a t i o n wal l .

sive to maintain is the subvariation (path) to the leftmost terminal node that
caused the failure. At even depths from the start of the re-search, all branches
previously lying to the left of the subvariation can be ignored. These branches
have already been examined and shown to be inferior. Such an ignore-left
cut-off is illustrated with the first successor of node D in Fig. 2(a). Node F
cannot possibly return a better value, because it did not stop the initial search
and therefore is ignored in Fig. 2(b).

Another piece of information that can be kept is the merit for each successor
of nodes an odd depth away from the root of the re-search. At these nodes,
such as node B in Fig. 2(a), a /3 cut-off has not occurred and the merits
represent upper bounds on the exact values of the subtrees. This information
can be used in three ways. First, the bounds can be used to re-order the

LOW O V E R H E A D ALTERNATIVES TO SSS*

~<-50 >---35

189

(-35,oo)

ignore- ..."""
left .."
cut~61~"

(,
~-33

rove best cut-offs

=-30

(a) Initial Search

FIG. 2. Three cut-off types.

(b) Re-Search

successors, hence improving the probabili ty that the best subtree will be seen
sooner. For example, in Fig. 2(b), subtree D is re-expanded first and then E
and C. Secondly, D will be proved superior to both E and C if a re-search of
subtree D returns a value ~>20, since it is already known from the initial search
that the value of E is ~<20 and of C is ~<10. Figure 2(b) shows that this
prove-best cut-off eliminates nodes E and C. If both D and E return values
between 10 and 20, a prove-best cut-off discards node C. Finally, assuming a
prove-best cut-off does not occur, the upper bounds can be used to narrow the
window for a re-search. Node D can be searched with the narrow window
(- 3 5 , ~), perhaps returning the value v 1 > - 1 0 . Since v I is the search window
it is a lower bound on the true merit , and so node E can be searched with the
narrower window (- 2 0 , v~). If this search returns the value v2, then node C
can use the window (- 1 0 , max{v 1, v2)). Each time, the true value is guaran-
teed to lie inside the window and no further re-searches occur within a
re-search.

2 . 3 . INFORMED NEGASCOUT (INS)

The basis for INFORMED NEGASCOUT is the recursive saving of prove-best and
ignore-left information at the nodes visited during the initial minimal window

190 T.A. MARSLAND ET AL.

search, and using that information to guide the re-search. A description of the
entire subtree generated by the initial search is saved in case a re-search is
necessary. The w subtree values are retained for every odd subtree level where
a prove-best cut-off might occur. Analogously, ignore-left information is saved
for all intermediate (even) levels. This accounts, in a symmetrical way, for all
possible ignore-left and prove-best cut-offs in all regions of the re-search tree.

An examination of the INS algorithm, presented in a C language pseudo code
in Fig. 3, reveals that only/3 and prove-best cut-offs are recognized, illustrating
that ignore-left cut-offs can also be treated as a special case of prove-best. One
way of transforming an ignore-left cut-off into a prove-best one is to initialize
to - ~ the merit of each inferior successor Pl Pi i, with the remaining
nodes retaining a value of +~. After the sorting operation, the successor list
becomes pi , Pw, Pl P~ 1, and a simple prove-best cut-off trims the
inferior nodes. In terms of storage requirements, however, a distinction should
be made. In the initial search, at ignore-left nodes only the number i of the
best successor need be saved, while at prove-best nodes the merits returned by
all w successors are retained. These storage management issues have been
hidden by the SaveInfo and Get lnfo routines, which access and maintain the
data structure used to gather information from the initial search.

Unlike sss*, INS'S ignore-left and prove-best cut-off information is such that
it can be maintained in a hash table (similar to the transposition tables used in
chess programs [4]). Thus INS'S storage requirements can be tailored to the
memory size of the system on which it is running. To obtain maximum cut-offs,
all information must be retained and not lost through hash conflicts. For results
presented here, a tree-like linked data structure was used instead of a hash
table, ensuring that all information was retained and maximum cut-offs were
achieved. In addition, an integer array of size w is used at each level to hold
the upper bounds of the prove-best cut-offs that are returned during the initial
search. As a compromise, PNS only retains these upper bounds at the first level.
Note also the essential differences between the memory scheme used by iNS
and the simple use of transposition tables in chess programs [4]. First the INS
method is general-purpose and applicationqndependent, and second transposi-
tion tables are used only to guide the re-search down the principal variation.
Although modifying transposition tables to provide ignore-left and prove-best
cut-offs is a possibility, this would not be space-efficient and is not at present
being done.

3. The DUAL* Algorithm

sss* is a powerful algorithm for searching random trees, even though it often
does not use all the information it stores, especially in applications where trees
are well ordered. Simple examples can be constructed where the directional
algorithm NS is better than sss* [12]. Because directional searches have

LOW O V E R H E A D ALTERNATIVES TO sss* 191

i n t INS (p, a , 3, d e p t h , r e s e a r c h)
p o s i t i o n p; i n t d e p t h , a , 3, r e s e a r c h ;
{

i n t i , v, a, b, k ind , r e s f t a g ;
i n t m e r i t [w] , s u c c [w] ;

i f (dep th == 0)
r e t u r n (E v a l u a t e (p)) ;

s u c c [] = Gene ra t e (p) ;
r e s f t a g = r e s e a r c h ;
if (research == TRUE) {

kind = Getlnfo (p, merit[]);
Sort (succ[], merit[]);

}
else

kind = PROVEBEST;

/ * Assume w s u c c e s s o r s * /

/* returns move list with w>O sons */
/* save re-search flag */

/* get merits of successors */
/* and sort them */

a = m+ ;

b = ~; /* use open window for first successor */
for (i=1; i~<w; i++)
{

v = -INS (succ[i], -b, -Max(a, a), depth-l, resflag);
if (v > a)

if (i == 1 II v _< a II v >~ ~ I I depth ~< 2)
a = v;

else if (research == TRUE && kind == PROVEBEST)
a = v; /* searched with a narrow window */

e l s e /* re-search */
a = -INS (succ[i], -3, -v, depth-l, TRUE);

if (a ~ 3) {
kind = IGNORELEFT;
goto done;

}

if (resftag == TRUE)
if (Max(a, a) ~ merit[i+1]) {

a = Max(a, merit[i+1]);
kind = IGNORELEFT;
goto done;

}
else

b : m e r i t [i + 1] ;
e l s e

b = Max(a , ~) + 1;

i f (k i n d == IGNORELEFT)
r e s f t a g = FALSE;

I* 3 cut-off *I

/* omit case i == w too */

/* prove-best cut-off */

/* narrow window */

/* minimal window */

/* h a v e n ' t seen r i g h t - m o s t sons of node * /
}

done:
i f (r e s e a r c h == FALSE)

S a v e I n f o (p, k ind , m e r i t []) ;
r e t u r n (a) ;

}

~G. 3. INFORMED NEGASCOUT (INS).

/ * s a v e i n f o f o r l a t e r r e - s e a r c h * /

benefits, we present in Fig. 4 DUAL*, a small variation on sss* that does a left
to right search at the root node of subtrees that are each fully expanded by the
dual of sss*. The dual of sss* is formed from sss* by exchanging the tests for
MIN and MAX nodes, by doing a maximization instead of a minimization, and by
changing the insert operation to maintain the OPEN list (stack) in increasing

192 T.A. MARSLAND ET AL.

int DUAL (root, bound)
{

push (root, LIVE, bound);
while (true)
{

)
)

pop (node, status, h);
if (status == LIVE)
{

/* bound is initially -oo */

/* save root node */

/* restore node description */

if (node is a LEAFNODE)
insert (node, SOLVED, Max (Evaluate(node), h));

if (node is a MAXNODE)
push (node.l, LIVE, h);

if (node is a MINNODE)
for (j=w; j>O; j--)

push (node.j, LIVE, h);
}
else
{

/* Phase 1 */

]* save first successor *[

/* save all successors */

/* node status == SOLVED */
/* Phase 2 */

if (node == root)
return(h); /* problem solved */

if (node is a MAXNODE)
{

purge (parent(node)); /* remove parent's successors */
push (parent(node), SOLVED, h); /* save updated parent */

}
if (node is a MINNODE)

if (node has an unexamined brother)
push (brother(node), LIVE, h); /* save next sibling */

else
push (parent(node), SOLVED, h);

FIG. 4. The DUAL* algorithm.

order. A similar routine was used by Kumar and Kanal in their proposed
parallel algorithm for game tree search [13]. In their simulation w processes
were used at the root node, each searching a game subtree with an algorithm
called dual-ss*. Unfortunately they did not report on the effectiveness of their
method for the one process case. Our results for DUAL* may be those missing
data.

Although DUAL* would be the normal function to search a game tree rooted
at a MIN node, we have taken here the unusual step of using it to search a MAX
rooted tree. So, in contrast to sss*, DUAL* does a strict left to right search at
the root, ensuring that the right successors profit f rom bounds already estab-
lished. This usage stems from our interest in forming new hybrid algorithms
which capitalize on the even/oddness of the remaining search depth. Clearly,
sss* and DUAL* share the same node descriptor, which consists of a node
identifier (node), the node status (status which is either LIVE or SOLVED) and the
merit (h). Similarly, the OPEN list actions of pop(p, s, h) and push(p, s, h) in
Fig. 4 are clear. Finally, the function insert(p, s, h) puts the node descriptor

LOW OVERHEAD ALTERNATIVES TO SSS* 193

behind all nodes of equal merit and purge(p) deletes from OPEN all node
descriptors which are successors of p.

4. Performance Comparison

There are several ways of comparing algorithms. For tree searching, the usual
measure is bot tom positions visited [14]. However, for practical purposes, this
measure is often inadequate because it fails to take into account the time and
space overheads. We detail those overheads in our report [12], and show that
although sss*, DUAL* and INS have decreasing space needs, their requirements
are still exponential with depth. INS is the fastest and its simple node descriptor
fits into less space. PNS and Ns, on the other hand, are faster still and require
negligible storage.

4.1. Terminal node visits

In practice, trees rarely have a random distribution of values at terminal nodes.
More usually application-dependent knowledge is available that allows the
searching program to examine siblings of interior nodes in order from most to
least promising. The stronger the ordering, the smaller the trees that are built.
Many papers on tree searching consider only the case of random trees.
Although these give an adequate indication of the relative performance of the
methods, they do not measure the true efficiency in typical applications. To
assess tree-searching algorithms, it is necessary to consider their performance
under differing conditions. These include varying the degree of ordering, as
well as the tree width (w) and depth (d).

4.1.1. Generating trees

Several approaches for generating trees have appeared in the literature [6, 8].
These methods usually suffer from inflexibility (for example, are restricted to
the random tree case) or require excessive storage (the trees must be pre-
computed). For our experiments a different method was developed [11], one
which is both flexible with respect to ordering and uses only O(wd) storage. It
works on the principle of deriving the value of a subtree from information
available at its parent node. Thus, the entire tree need not be generated to
know its minimax value. Rather, a minimax value is chosen and used with the
specified ordering criteria to build a tree from the root down, and by this
means ensure that consistent values are assigned throughout the tree.

Initially, the user specifies w weights reflecting the probability that each of
the w siblings at any node will be the root of the subtree having the minimax
value. These weights determine the degree of ordering for the tree, and
obviously must total 100. For a random tree each sibling has equal weight.
Assigning a weight of 100 to the first sibling and zero to the remainder
produces an optimal tree, since the left-most descendant is always best. In a

194 T.A. MARSLAND ET AL.

more typical case, with exactly w = 20 branches per node, the twenty weights
(70, 5, 5, 5, 5, 2 ~) yield strongly ordered trees as they were originally
defined [4].

Based on the pre-selected weights, at any node, r, a random number is used
to select which of the w descendants will have the known high value, v. Initially
this minimax value of the tree is computed randomly from the range -oc, oc. If
descendant i is selected as best, the values of all siblings to the left of i are
chosen randomly from the range - ~ , v - 1, and those to the right from -~c, v.
These w values are stored on a stack in an array V(k). Thus at any interior
node, r~, the value for that subtree is known from the stack as V(k). The best
successor j of r k is again randomly chosen according to the weights, and is
assigned the negative of its parent ' s minimax value, i.e., - V (k) . This approach
is applied recursively, generating a tree whose leaf values are everywhere
consistent with the computed minimax value of the tree.

To be deterministic but varied, a unique seed is associated with each tree
searched. This seed is multiplied by a function of the width and depth, so that
d-ply trees are not t reated as a proper subset of (d + 1)-ply trees of the same
uniform width. Hence, given the same w, d, weights, and seed, the same tree
will always be generated. The merit of such simulations has been questioned
because formulae exist to measure the performance of ctl3 and sss* on random
trees [15]. The ot[3 formula seems to show that simulations can sometimes be in
error by as much as 30%. Such discrepancies illustrate the wide variation in
random trees, so that even searches of a hundred independent trees may not
yield precise average results. Nevertheless our technique has many compensa-
tions, including providing results where no formula exists (e.g., new variations
of algorithms, or searches of nonrandom trees), and making possible a
comparison of all algorithms on exactly the same basis.

4.1.2. Average bottom positions seen

Figure 5 presents some representative experimental data for the case of
uniform trees of width five. The graph plots search depth versus terminal nodes
visited (expressed as a percentage of the minimal game-tree size [16]). All data
points were averaged over the same twenty sample trees, generated in the
random fashion described earlier. Two types of characteristic trees are repre-
sented: random trees, and strongly ordered trees (as redefined in Section 2.1).
Comparable data was also gathered for the cases w = 10, 15, and 20 and depths
up to the computat ional limits of our resources.

Perhaps the most interesting result is the poor performance of sss* on
odd-ply trees. If the first successor proves to be best, sss* usually expands
more nodes than either DUAL* or INS. It seems that sss*'s best-first search is
often misled into jumping from one node to another in subtrees that are later
cut off. On the other hand, sss* can be a great advantage, sometimes visiting
only one quarter of the nodes traversed by any other algorithm. This erratic

L O W O V E R H E A D A L T E R N A T I V E S T O SSS* 195

E "2

0 =

e~

(..)

Z

<

. . " ' "

.' J

/ . -

A B - r a n d o m / N ! PNS:.: ""... ::

[: ' /
• . t i : / ' INS

/ :

r t ... t I " x

\

I I . . I

" ' "
.'" I lIt

• l I ," " . , ," l

.'/" / . ' : ' " ' , / I' ~ A B - o r d e r e d
I .'" / ~ l

,,'... ,,' " ,,' /"-.< ~. L.L.... pNS S • , . . . ' . - . . .-; . - ; - - , ,
/ , - - : - _ _ ,

-.-"- "" " - ...3~.....'" / "-DUAL*

100 I I I I I I I
3 4 5 6 7 8 9 10

Search Depth

FI6. 5. W i d t h = 5, c o m p a r i s o n to m i n i m a l tree .

behavior leads to a standard deviation of about 30% in our sss* results, which
could not be reduced by averaging the data over more runs.

Another question is, why are the even-ply results so poor for directional
searches like NS? Here the answer is more clear. It is easy to show that for
perfectly ordered even-depth trees the principal variation holds about ½(w +
1) /w of the total terminal nodes, while for similar odd-depth trees that factor is
only 2/(w + 1) [11]. It follows directly that the alternative variations of even
depth each hold about 1/2w of the terminal nodes. Also, for all widths, a
change in the principal variation costs more in even-depth trees, because more
than 50% of the terminal nodes are in the first subtree. Since changes in
principal variation are possible with directional searches, NS, PNS, INS, and
DUAL* are inevitably less efficient than sss* in searching even-depth trees.

196 T.A. M A R S L A N D E T AL.

Despite the c o m m o n basis for sss* and DUAL*, they exhibit different search
characteristics. Figures 5 and 6 show that the performance of DUAL* is
especially good in odd-ply searches, but parallels more closely that of the
minimal window search algorithms. Like NS, PNS and ZNS, DUAL* benefits from
a good successor ordering at the root level of the tree. If the minimax value is
found in the leftmost subtree, DUAL* searches about the same nodes as the
minimal window techniques. On the other hand, when the minimax value lies
in a right subtree, DUAL* is able to search more efficiently even than INS,
because re-searches do not arise. Figure 6 shows how the relative performance
of the methods changes for a typical odd-depth search, d = 5, as the tree width
increases from w = 5 to w = 20. Unlike a recent paper [8], which concentrated
on the search of extremely narrow trees of widths from 1 to 5 branches, we
have considered the full range from narrow (w ~< 10) to bushy (w t> 20) trees.

800

7 0 0 -

8
b.-
"-~ 6 0 0 -
E

0

500-

e¢

g 400-

Z

300-

<

2 0 0 -

100

~ A B - r a n d o m

~ '
" ' ' / / . . - - S S S *

'" ' NS

, . . . , " " "

. D U A L *

A B - o r d e r e d

SSS*

.7.7.7.7.77 " 2 " ~ ' ~ - ~ - ~ . ~ . ~ . ~ NS
r . r . r . 7 .7 .7 .7 .~NS

. INS
D U A L *

I I I
10 15 20

T r e e W i d t h

FIG. 6. D e p t h = 5, c o m p a r i s o n t o m i n i m a l t r e e .

25

L O W O V E R H E A D A L T E R N A T I V E S T O SSS* 197

Theoretical studies [15] and our own experience show that the relative
characteristics of the algorithms do not change as the width increases beyond
20 branches per node. Our results in Figs. 5 and 6 show that for odd-depth
trees of width greater than 5, sss* dominates only ctl3. As the tree width
increases, DUAL*, INS, PNS, and eventually even NS are superior on a terminal
node count basis. As well as requiring much more space, and an order of
magnitude more time, sss* also examines more terminal nodes than the simple
algorithms like NS on odd-depth trees.

sss*'s best performance occurs in trees of even depths, because sss* depends
on successor ordering at odd levels in the tree. Trees of both depth d (even)
and d - 1 have exactly the same levels where node ordering is important, and
so even-ply trees are relatively more efficient for sss*. Figure 7 shows typical
data for even depth d = 6 with increasing widths from 5 to 20 branches.

g
I . [-

E
._=

"U
e¢

g

O

Z

<

1500

1400-

1300-

1200-

1100-

1000-

900 -

800 -

700 -

6 0 0 -

500-

400 -

300-

200-

100
5

.AB-random NS

...... i i - i:iii
f . . / ,,'DUAL' i.i... 'j sss,

"'" (i ~ " ~ A B - o r d e r e d

.

~ ~ - " "-" ~' '-' :" '- - - -D U A L *
. ~'~- - ".T.: L'-' '- ' '-' '-'-'-'-':" :" ~" ~ _____---~ss*

J

I I I
10 15 20

Tree Width
FIG. 7. Depth = 6, comparison to minimal tree.

25

198 T.A. MARSLAND ET AL.

Here we observe that sss* is superior to the other methods. Even in the best
case of ordered bushy trees, DUAL* visits about 10% more nodes than sss*, and
NS about 25% more. Minimal window searches are particularly hurt each time
a new subtree proves to be superior, but even ~[3 and DUAL* are affected.

4.2. Execution time

The creation of new search algorithms is motivated by the need for reduced
search time. A more time-consuming algorithm, no matter how well informed,
is certainly less desirable than a faster one, all things being equal. Our
preliminary results show that the workspace management overhead in INs is
modest, making INS only slightly slower than Ns and other ct[3 implementations.
On the other hand, the overhead in managing the OPEN list is significant, thus
DUAL* and sss* are 5 and 10 times slower, respectively, than NS [12]. Execution
profiles of sss* show that 90% of its time is spent in adding to and deleting
from the OPEN list. DUAL* is also degraded by these operations but to a lesser
extent because it has a shorter OPEN list, since in effect only (d - 1)-ply trees
are searched.

5. Discussion

An important point, not brought out by our graphs, is that sss* outperformed
INS on even-ply searches because it was highly efficient on a few problems. In
terms of how often each method was preferable sss* was only marginally better
than INS. On odd-ply trees, in contrast, INs not only outperformed sss* in
absolute terms, but did so in about 80% of the trees being searched. Two
things work in favour of minimal window techniques. First an inferiority proof
on a variation is never more than by ~[3, and second the identification of a new
principal variation is cheap, since it is equivalent to a search on the low side of
the refutation wall. However, if a subtree is found superior, NS, PNS, and INS
must search it once more. DUAL*, in contrast, simply continues searching in a
best-first fashion until the new minimax value is found. Consequently, DUAL*
usually expands fewer nodes than INS, and both do better than sss* for odd
search depths. Perhaps the most important observation is sss*'s inability to
exploit its node information in an optimal way. The free-ranging best-first
search jumps from one subtree to another, trying to prove them superior. Since
there is only one superior root subtree, but w - 1 inferior ones, most of the
node information is never used.

ACKNOWLEDGMENT

Financial support from both the Natural Sciences and Engineering Research Council Grant A7902
and the Killam Exchange Scholarship Program made it possible to complete the experimental
work.

LOW OVERHEAD ALTERNATIVES TO SSS* 199

REFERENCES

1. Stockman, G.C., A minimax algorithm better than alpha-beta?, Artificial Intelligence 12(2)
(1979) 179-196.

2. Pearl, J., Asymptotic properties of minimax trees and game-seraching procedures, Artificial
Intelligence 14(2) (1980) 113-138.

3. Fishburn, J.P., Analysis of Speedup in Distributed Algorithms (UMI Research Press, Ann
Arbor, MI, 1984).

4. Marsland, T.A. and Campbell, M.S., Parallel search of strongly ordered game trees, ACM
Comput. Surv. 14(4) (1982) 533-552.

5. Marsland, T,A., Relative efficiency of alpha-beta implementations, in: Proceedings 1JCAI-83,
Karlsruhe, F.R.G. (1983) 763-766.

6. Campbell, M.S. and Marsland, T.A., A comparison of minimax tree search algorithms,
Artificial Intelligence 20(4) (1983) 347-367.

7. Reinefeld, A., An improvement of the Scout tree search algorithm, 1CCA J. 6(4) (1983) 4-14.
8. Musczycka, A. and Shinghal, R., An empirical comparison of pruning strategies in game trees,

IEEE Trans. Syst. Man Cybern. 15 (3) (1985) 389-399.
9. Reinefeld, A., Schaeffer, J. and Marsland, T.A., Information acquisition in minimal window

search, in: Proceedings 1JCAI-85, Los Angeles, CA (1985) 1040-1043.
10. Baudet, G.M., The design and analysis of algorithms for asynchronous multiprocessors, Ph.D.

Dissertation, Carnegie Mellon University, Pittsburgh, PA, 1978.
11. Schaeffer, J., Experiments in search and knowledge, Ph.D. Thesis, University of Waterloo,

Waterloo, Ont., 1986.
12. Reinefeld, A., Marsland, T.A. and Schaeffer, J., Is best first search best?, Tech. Rept.

TR85-16, Computing Science Department, University of Alberta, Edmonton, Alta., 1985.
13. Kumar, V. and Kanal, L.N., Parallel branch-and-bound formulations for AND/OR tree search,

IEEE Trans. Pattern Anal. Mach. Intell. 6(6) (1984) 768-778.
14. Slagle, J. and Dixon, J., Experiments with some programs that search game trees, J. ACM 2

(1969) 189-207.
15. Roizen, I. and Pearl, J., A minimax algorithm better than alpha-beta? Yes and no, Artificial

Intelligence 21(1,2) (1983) 199-220.
16. Knuth, D.E. and Moore, R.W., An analysis of alpha-beta pruning, Artificial Intelligence 6(4)

(1975) 293-326.

Rece ived D e c e m b e r 1985; revised version received A u g u s t 1986

