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ABSTRACT 
Of  the many minimax algorithms, sss* is noteworthy because it usually searches the smallest game 
trees. Its success can be attributed to the accumulation and use o f  information acquired while 
traversing the tree. The main disadvantages o f  sss* are its high storage needs and management costs. 
This paper describes a class o f  methods, based on the popular alpha-beta algorithm, that acquire and 
use information to guide a tree search. They retain a given search direction and yet are as good as 
sss*, even while searching random trees. Further, although some of  these new algorithms also 
require substantial storage, they are more flexible and can be programmed to use only the space 
available, at the cost o f  some degradation in performance. 

1. Introduction 

After more than a decade of use, the efficiency of the widely used alpha-beta 
(0~[3) algorithm for searching game trees was questioned by Stockman's intro- 
duction of the State Space Search (sss*) [1]. By saving information during the 
search, sss* tries to expand subtrees in a bes t - f i r s t  manner. Since the informa- 
tion maintenance entails significant overheads, sss*'s application is restricted to 
the search of small trees. More recently, m i n i m a l  w i n d o w  search techniques 
[2-4[ have also been found superior to cx[3 for applications [5] as well a s  for 
artificially constructed trees [6-8]. Minimal window search is more efficient 
than e~13 whenever the current subtree is inferior to the best subtree visited so 
far. If the current subtree is superior, it must be searched a second time to 
compute its correct value. Like et[3, minimal window search normally expands 
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more nodes than sss*. However,  unlike odD, minimal window search occasion- 
ally obtains the correct minimax value while traversing smaller trees than sss*. 

In this paper, new information acquisition methods to improve minimax 
search arelPresented.  Minimal window search, modeled here by the NEGA- 
SCOUT (NS) variant [7], is enhanced so that the initial search of a subtree 
gathers information for use if a second search is needed. The resultant 
algorithm will be referred to as INFORMED NEGASCOUT (INS). It is compared to 
PARTIALLY INFORMED NEGASCOUT (PNS) [9] ,  a compromise algorithm that uses 
less storage. 

A study of sss*'s traversal of nonrandom trees shows that many nodes are 
stored, but subsequently are not expanded. This disadvantage is reduced by 
another algorithm, here called DUAL*, which uses the dual of sss* and hence 
incorporates some directional properties by doing a left to right search at the 
root. Thus, most subtrees are searched with a better bound than sss* would 
use. Our experiments show that DUAL* often traverses smaller trees than sss*, 
even in the random case. The performance of these algorithms is compared on 
both random and strongly ordered [4] trees of uniform width w and constant 
depth d. Experiments show that for odd-ply trees the new algorithms are 
comparable to sss* in terms of nodes visited, and yet have significantly lower 
overheads. 

2. Minimal Window Search 

Minimal window search relies on being able to prove a subtree inferior, rather 
than on finding its true value. Aspiration or narrow window search [10] also 
employs this notion by seeking a value for a tree within tight limits. If these 
limits take on adjacent values, then one has a zero-width or minimal window. 
The minimax value, v, of a tree may be determined by invoking the NEGASCOUT 
function as follows: 

v = NS(p, ~, /3, d);  

where p represents the root position, ( a , / 3 )  the search window, and d the 
remaining search depth. After the expansion of the first successor with an 
appropriate window (a , /3) ,  the others are traversed with the minimal window 
(a, a + 1), where a represents the best available merit (score) not less than a. 
Clearly, every minimal window search fails. If it fails low (v ~< a), then the 
subtree is inferior and can be ignored. If the search fails high (v > a), it may be 
necessary to re-search the subtree with the opened window (v , /3)  to determine 
its exact value. No re-search is needed if v >//3, since the cut-off value has 
already been achieved, nor if d ~< 2 [7]. If the minimax value, v, of a tree were 

1 NEGASCOUI is based on ideas from scour  [2] and Palphabeta (PAB) [3, 6]. It is equivalent to 
Principal Variation Search (vvs) [4, 5], but has some practical implementat ion advantages. On 
narrow trees all these algorithms have similar average performance [8]. 
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known, the most efficient aspiration etl3 search would use the narrow window 
(v - 1, v + 1). All but one of the subtrees would then be refuted cheaply by 
using such a window. This raises the possibility of developing algorithms that 
scan the range of plausible values for the tree, successively moving a narrow 
window to eliminate subtrees until only one remains. 

2.1. Refutation wall 

It is well known that the narrower the range of the search window, the 
smaller the tree that is traversed. What is not so well known is how the tree 
size varies with the location of the window relative to the minimax value, v, of 
the tree. For a window of (s, s + 1), the node count partly, depends on the 
difference i = s - v, which will be referred to as the distance to the minimal 
window. An experiment was conducted to explore this point, using twenty 
different random uniform trees of constant width w and depth d. Each tree had 
a known minimax value, v, and was searched fifty times using the following 
distinct windows 

( v + i , v + i + l )  for i =  - 2 5 ,  - 2 4 ,  - 2 3  . . . . .  23, 24,  

which covered all distances from - 2 5  to +24. For each distance, the node 
count was averaged over the twenty trees. Figure 1 shows two sample plots of 
average nodes visited (normalized to the largest value) versus distance. One 
graph is for a set of random uniform trees and the other for a set of strongly 
ordered trees. 2 

As the distance of the window from the minimax value decreases, the node 
count increases slightly until a window of ( v -  1, v) is reached. When the 
window moves to (v, v + 1) the node count rises abruptly! Figure 1 shows that 
the better the tree order, the larger the increase. Thus it is easier to show that 
a tree has a value greater than the window bound, than to prove that it does 
not. In the latter case all immediate descendants of the root must be examined, 
while in the former case the search stops as soon as a value greater than s is 
found. The steep rise in the node count when the window reaches v will be 
referred to as the refutation wall. The step function shape of the wall is less 
pronounced in typical applications, but the consequences are just as important 
[11]. 

2.2. Ignore-left and prove-best cut-offs 

Other than the current window, NEGASCOUT does not retain information. If a 
re-search occurs, all nodes of the initial search are revisited plus some 
additional ones. In an initial search, one piece of information that is inexpen- 

2 Redefined here so that the left-most descendant has a 60% chance of being best, otherwise the 
best is found with equal probability from the other w - 1 siblings. 
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sive to maintain is the subvariation (path) to the leftmost terminal node that 
caused the failure. At  even depths from the start of  the re-search, all branches 
previously lying to the left of  the subvariation can be ignored. These branches 
have already been examined and shown to be inferior. Such an ignore-left 
cut-off is illustrated with the first successor of node D in Fig. 2(a). Node  F 
cannot possibly return a better value, because it did not stop the initial search 
and therefore is ignored in Fig. 2(b). 

Another  piece of information that can be kept is the merit for each successor 
of nodes an odd depth away from the root of  the re-search. At  these nodes,  
such as node B in Fig. 2(a), a /3 cut-off has not occurred and the merits 
represent upper bounds on the exact values of  the subtrees. This information 
can be used in three ways. First, the bounds can be used to re-order the 
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successors, hence improving the probabili ty that the best subtree will be seen 
sooner. For  example,  in Fig. 2(b), subtree D is re-expanded first and then E 
and C. Secondly, D will be proved superior to both E and C if a re-search of 
subtree D returns a value ~>20, since it is already known from the initial search 
that the value of E is ~<20 and of C is ~<10. Figure 2(b) shows that this 
prove-best cut-off eliminates nodes E and C. If  both D and E return values 
between 10 and 20, a prove-best  cut-off discards node C. Finally, assuming a 
prove-best  cut-off does not occur, the upper  bounds can be used to narrow the 
window for a re-search. Node D can be searched with the narrow window 
( - 3 5 ,  ~), perhaps returning the value v 1 > - 1 0 .  Since v I is the search window 
it is a lower bound on the true merit ,  and so node E can be searched with the 
narrower window ( - 2 0 ,  v~). If  this search returns the value v2, then node C 
can use the window ( - 1 0 ,  max{v 1, v2) ). Each time, the true value is guaran- 
teed to lie inside the window and no further re-searches occur within a 
re-search. 

2 . 3 .  INFORMED NEGASCOUT (INS) 

The basis for INFORMED NEGASCOUT is the recursive saving of prove-best  and 
ignore-left information at the nodes visited during the initial minimal window 
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search, and using that information to guide the re-search. A description of the 
entire subtree generated by the initial search is saved in case a re-search is 
necessary. The w subtree values are retained for every odd subtree level where 
a prove-best cut-off might occur. Analogously, ignore-left information is saved 
for all intermediate (even) levels. This accounts, in a symmetrical way, for all 
possible ignore-left and prove-best cut-offs in all regions of the re-search tree. 

An examination of the INS algorithm, presented in a C language pseudo code 
in Fig. 3, reveals that only/3 and prove-best cut-offs are recognized, illustrating 
that ignore-left cut-offs can also be treated as a special case of prove-best. One 
way of transforming an ignore-left cut-off into a prove-best one is to initialize 
to - ~  the merit of each inferior successor Pl . . . . .  Pi i, with the remaining 
nodes retaining a value of +~.  After the sorting operation, the successor list 
becomes pi . . . .  , Pw,  Pl  . . . . .  P~ 1, and a simple prove-best cut-off trims the 
inferior nodes. In terms of storage requirements, however, a distinction should 
be made. In the initial search, at ignore-left nodes only the number i of the 
best successor need be saved, while at prove-best nodes the merits returned by 
all w successors are retained. These storage management issues have been 
hidden by the SaveInfo and Get lnfo  routines, which access and maintain the 
data structure used to gather information from the initial search. 

Unlike sss*, INS'S ignore-left and prove-best cut-off information is such that 
it can be maintained in a hash table (similar to the transposition tables used in 
chess programs [4]). Thus INS'S storage requirements can be tailored to the 
memory size of the system on which it is running. To obtain maximum cut-offs, 
all information must be retained and not lost through hash conflicts. For results 
presented here, a tree-like linked data structure was used instead of a hash 
table, ensuring that all information was retained and maximum cut-offs were 
achieved. In addition, an integer array of size w is used at each level to hold 
the upper bounds of the prove-best cut-offs that are returned during the initial 
search. As a compromise, PNS only retains these upper bounds at the first level. 
Note also the essential differences between the memory scheme used by iNS 
and the simple use of transposition tables in chess programs [4]. First the INS 
method is general-purpose and applicationqndependent,  and second transposi- 
tion tables are used only to guide the re-search down the principal variation. 
Although modifying transposition tables to provide ignore-left and prove-best 
cut-offs is a possibility, this would not be space-efficient and is not at present 
being done. 

3. The DUAL* Algorithm 

sss* is a powerful algorithm for searching random trees, even though it often 
does not use all the information it stores, especially in applications where trees 
are well ordered. Simple examples can be constructed where the directional 
algorithm NS is better  than sss* [12]. Because directional searches have 
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i n t  INS ( p, a ,  3,  d e p t h ,  r e s e a r c h  ) 
p o s i t i o n  p;  i n t  d e p t h ,  a ,  3,  r e s e a r c h ;  
{ 

i n t  i ,  v,  a,  b,  k ind ,  r e s f t a g ;  
i n t  m e r i t [ w ] ,  s u c c [ w ] ;  

i f  ( dep th  == 0 ) 
r e t u r n  ( E v a l u a t e ( p )  ) ;  

s u c c [ ]  = Gene ra t e  ( p ) ;  
r e s f t a g  = r e s e a r c h ;  
if ( research == TRUE ) { 

kind = Getlnfo ( p, merit[] ); 
Sort ( succ[], merit[] ); 

} 
else 

kind = PROVEBEST; 

/ *  Assume w s u c c e s s o r s  * /  

/* returns move list with w>O sons */ 
/* save re-search flag */ 

/* get merits of successors */ 
/* and sort them */ 

a = m+ ; 

b = ~; /* use open window for first successor */ 
for ( i=1; i~<w; i++ ) 
{ 

v = -INS ( succ[i], -b, -Max( a, a ), depth-l, resflag ); 
if ( v > a ) 

if ( i == 1 II v _< a II v >~ ~ I I depth ~< 2 ) 
a = v; 

else if ( research == TRUE && kind == PROVEBEST ) 
a = v; /* searched with a narrow window */ 

e l s e  /* re-search */ 
a = -INS ( succ[i], -3, -v, depth-l, TRUE ); 

if ( a ~ 3 ) { 
kind = IGNORELEFT; 
goto done; 

} 

if ( resftag == TRUE ) 
if ( Max( a, a ) ~ merit[i+1] ) { 

a = Max( a, merit[i+1] ); 
kind = IGNORELEFT; 
goto done; 

} 
else 

b : m e r i t [ i + 1 ] ;  
e l s e  

b = Max(  a ,  ~ ) + 1; 

i f  ( k i n d  == IGNORELEFT ) 
r e s f t a g  = FALSE; 

I* 3 cut-off *I 

/* omit case i == w too */ 

/* prove-best cut-off */ 

/* narrow window */ 

/* minimal window */ 

/*  h a v e n ' t  seen  r i g h t - m o s t  sons  of  node * /  
} 

done:  
i f  ( r e s e a r c h  == FALSE ) 

S a v e I n f o  ( p, k ind ,  m e r i t [ ]  ) ;  
r e t u r n  ( a ) ;  

} 

~G. 3. INFORMED NEGASCOUT (INS). 

/ *  s a v e  i n f o  f o r  l a t e r  r e - s e a r c h  * /  

benefits, we present in Fig. 4 DUAL*, a small variation on sss* that does a left 
to right search at the root node of subtrees that are each fully expanded by the 
dual of sss*. The dual of sss* is formed from sss* by exchanging the tests for 
MIN and MAX nodes, by doing a maximization instead of a minimization, and by 
changing the insert operation to maintain the  OPEN list (stack) in increasing 
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int DUAL ( root, bound ) 
{ 

push ( root, LIVE, bound ); 
while ( true ) 
{ 

) 
) 

pop ( node, status, h ); 
if ( status == LIVE ) 
{ 

/* bound is initially -oo */ 

/* save root node */ 

/* restore node description */ 

if ( node is a LEAFNODE ) 
insert (node, SOLVED, Max (Evaluate(node), h)); 

if ( node is a MAXNODE ) 
push (node.l, LIVE, h); 

if ( node is a MINNODE ) 
for (j=w; j>O; j--) 

push (node.j, LIVE, h); 
} 
else 
{ 

/* Phase 1 */ 

]* save first successor *[ 

/* save all successors */ 

/* node status == SOLVED */ 
/* Phase 2 */ 

if ( node == root ) 
return( h ); /* problem solved */ 

if ( node is a MAXNODE ) 
{ 

purge (parent(node) ); /* remove parent's successors */ 
push (parent(node), SOLVED, h); /* save updated parent */ 

} 
if ( node is a MINNODE ) 

if ( node has an unexamined brother ) 
push (brother(node), LIVE, h ); /* save next sibling */ 

else 
push (parent(node), SOLVED, h ); 

FIG. 4. The DUAL* algorithm. 

order. A similar routine was used by Kumar  and Kanal in their proposed 
parallel algorithm for game tree search [13]. In their simulation w processes 
were used at the root node, each searching a game subtree with an algorithm 
called dual-ss*. Unfortunately they did not report  on the effectiveness of their 
method for the one process case. Our results for DUAL* may be those missing 
data. 

Although DUAL* would be the normal function to search a game tree rooted 
at a MIN node, we have taken here the unusual step of using it to search a MAX 
rooted tree. So, in contrast to sss*, DUAL* does a strict left to right search at 
the root,  ensuring that the right successors profit f rom bounds already estab- 
lished. This usage stems from our interest in forming new hybrid algorithms 
which capitalize on the even/oddness  of the remaining search depth. Clearly, 
sss* and DUAL* share the same node descriptor, which consists of a node 
identifier (node), the node status (status which is either LIVE or SOLVED) and the 
merit (h). Similarly, the OPEN list actions of pop(p, s, h) and push(p, s, h) in 
Fig. 4 are clear. Finally, the function insert(p, s, h) puts the node descriptor 
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behind all nodes of equal merit and purge(p) deletes from OPEN all node 
descriptors which are successors of p. 

4. Performance Comparison 

There are several ways of comparing algorithms. For tree searching, the usual 
measure is bot tom positions visited [14]. However,  for practical purposes, this 
measure is often inadequate because it fails to take into account the time and 
space overheads. We detail those overheads in our report  [12], and show that 
although sss*, DUAL* and INS have decreasing space needs, their requirements 
are still exponential with depth. INS is the fastest and its simple node descriptor 
fits into less space. PNS and Ns, on the other  hand, are faster still and require 
negligible storage. 

4.1. Terminal node visits 

In practice, trees rarely have a random distribution of values at terminal nodes. 
More usually application-dependent knowledge is available that allows the 
searching program to examine siblings of interior nodes in order from most to 
least promising. The stronger the ordering, the smaller the trees that are built. 
Many papers on tree searching consider only the case of random trees. 
Although these give an adequate indication of the relative performance of the 
methods, they do not measure the true efficiency in typical applications. To 
assess tree-searching algorithms, it is necessary to consider their performance 
under differing conditions. These include varying the degree of ordering, as 
well as the tree width (w) and depth (d). 

4.1.1. Generating trees 

Several approaches for generating trees have appeared in the literature [6, 8]. 
These methods usually suffer from inflexibility (for example, are restricted to 
the random tree case) or require excessive storage (the trees must be pre- 
computed).  For our experiments a different method was developed [11], one 
which is both flexible with respect to ordering and uses only O(wd) storage. It 
works on the principle of deriving the value of a subtree from information 
available at its parent node. Thus, the entire tree need not be generated to 
know its minimax value. Rather,  a minimax value is chosen and used with the 
specified ordering criteria to build a tree from the root down, and by this 
means ensure that consistent values are assigned throughout the tree. 

Initially, the user specifies w weights reflecting the probability that each of 
the w siblings at any node will be the root of the subtree having the minimax 
value. These weights determine the degree of ordering for the tree,  and 
obviously must total 100. For a random tree each sibling has equal weight. 
Assigning a weight of 100 to the first sibling and zero to the remainder 
produces an optimal tree, since the left-most descendant is always best. In a 
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more typical case, with exactly w = 20 branches per node, the twenty weights 
(70, 5, 5, 5, 5, 2 . . . . .  ~) yield strongly ordered trees as they were originally 
defined [4]. 

Based on the pre-selected weights, at any node, r, a random number  is used 
to select which of the w descendants will have the known high value, v. Initially 
this minimax value of the tree is computed randomly from the range -oc, oc. If 
descendant i is selected as best, the values of all siblings to the left of i are 
chosen randomly from the range - ~ ,  v - 1, and those to the right from -~c, v. 
These w values are stored on a stack in an array V(k). Thus at any interior 
node, r~, the value for that subtree is known from the stack as V(k). The best 
successor j of r k is again randomly chosen according to the weights, and is 
assigned the negative of its parent ' s  minimax value, i.e., - V ( k ) .  This approach 
is applied recursively, generating a tree whose leaf values are everywhere 
consistent with the computed minimax value of the tree. 

To be deterministic but varied, a unique seed is associated with each tree 
searched. This seed is multiplied by a function of the width and depth, so that 
d-ply trees are not t reated as a proper  subset of (d + 1)-ply trees of the same 
uniform width. Hence,  given the same w, d, weights, and seed, the same tree 
will always be generated. The merit of such simulations has been questioned 
because formulae exist to measure the performance of ctl3 and sss* on random 
trees [15]. The ot[3 formula seems to show that simulations can sometimes be in 
error by as much as 30%. Such discrepancies illustrate the wide variation in 
random trees, so that even searches of a hundred independent trees may not 
yield precise average results. Nevertheless our technique has many compensa- 
tions, including providing results where no formula exists (e.g., new variations 
of algorithms, or searches of nonrandom trees), and making possible a 
comparison of all algorithms on exactly the same basis. 

4.1.2. Average bottom positions seen 

Figure 5 presents some representative experimental  data for the case of 
uniform trees of width five. The graph plots search depth versus terminal nodes 
visited (expressed as a percentage of the minimal game-tree  size [16]). All data 
points were averaged over the same twenty sample trees, generated in the 
random fashion described earlier. Two types of characteristic trees are repre- 
sented: random trees, and strongly ordered trees (as redefined in Section 2.1). 
Comparable  data was also gathered for the cases w = 10, 15, and 20 and depths 
up to the computat ional  limits of our resources. 

Perhaps the most interesting result is the poor  performance of sss* on 
odd-ply trees. If the first successor proves to be best, sss* usually expands 
more nodes than either DUAL* or INS. It  seems that sss*'s  best-first search is 
often misled into jumping from one node to another  in subtrees that are later 
cut off. On the other hand, sss* can be a great advantage,  sometimes visiting 
only one quarter  of the nodes traversed by any other algorithm. This erratic 
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behavior leads to a standard deviation of about 30% in our sss* results, which 
could not be reduced by averaging the data over more runs. 

Another question is, why are the even-ply results so poor for directional 
searches like NS? Here the answer is more clear. It is easy to show that for 
perfectly ordered even-depth trees the principal variation holds about ½(w + 
1) /w of the total terminal nodes,  while for similar odd-depth trees that factor is 
only 2/(w + 1) [11]. It follows directly that the alternative variations of even 
depth each hold about 1/2w of the terminal nodes. Also,  for all widths, a 
change in the principal variation costs more in even-depth trees, because more 
than 50% of the terminal nodes are in the first subtree. Since changes in 
principal variation are possible with directional searches, NS, PNS, INS, and 
DUAL* are inevitably less efficient than sss* in searching even-depth trees. 
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Despite the c o m m o n  basis for sss* and DUAL*, they exhibit different search 
characteristics. Figures 5 and 6 show that the performance of  DUAL* is 
especially good in odd-ply searches, but parallels more closely that of  the 
minimal window search algorithms. Like NS, PNS and ZNS, DUAL* benefits from 
a good successor ordering at the root level of  the tree. If the minimax value is 
found in the leftmost subtree, DUAL* searches about the same nodes as the 
minimal window techniques. On the other hand, when the minimax value lies 
in a right subtree, DUAL* is able to search more efficiently even than INS, 
because re-searches do not arise. Figure 6 shows how the relative performance 
of  the methods changes for a typical odd-depth search, d = 5, as the tree width 
increases from w = 5 to w = 20. Unlike a recent paper [8], which concentrated 
on the search of  extremely narrow trees of  widths from 1 to 5 branches, we 
have considered the full range from narrow (w ~< 10) to bushy (w t> 20) trees. 
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Theoretical  studies [15] and our own experience show that the relative 
characteristics of  the algorithms do not change as the width increases beyond 
20 branches per node.  Our results in Figs. 5 and 6 show that for odd-depth 
trees of  width greater than 5, sss* dominates  only ctl3. As  the tree width 
increases, DUAL*, INS, PNS, and eventually even NS are superior on a terminal 
node count basis. As  well as requiring much more space, and an order of  
magnitude more time, sss* also examines  more  terminal nodes  than the simple 
algorithms like NS on odd-depth trees. 

sss*'s best performance occurs in trees of  even depths, because sss* depends 
on successor ordering at odd levels in the tree. Trees of  both depth d (even) 
and d -  1 have exactly the same levels where node ordering is important,  and 
so even-ply trees are relatively more  efficient for sss*. Figure 7 shows typical 
data for even depth d = 6 with increasing widths from 5 to 20 branches. 
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Here we observe that sss* is superior to the other methods. Even in the best 
case of ordered bushy trees, DUAL* visits about 10% more nodes than sss*, and 
NS about 25% more. Minimal window searches are particularly hurt each time 
a new subtree proves to be superior, but even ~[3 and DUAL* are affected. 

4.2. Execution time 

The creation of new search algorithms is motivated by the need for reduced 
search time. A more time-consuming algorithm, no matter how well informed, 
is certainly less desirable than a faster one, all things being equal. Our 
preliminary results show that the workspace management overhead in INs is 
modest, making INS only slightly slower than Ns and other ct[3 implementations. 
On the other hand, the overhead in managing the OPEN list is significant, thus 
DUAL* and sss* are 5 and 10 times slower, respectively, than NS [12]. Execution 
profiles of sss* show that 90% of its time is spent in adding to and deleting 
from the OPEN list. DUAL* is also degraded by these operations but to a lesser 
extent because it has a shorter OPEN list, since in effect only ( d -  1)-ply trees 
are searched. 

5. Discussion 

An important point, not brought out by our graphs, is that sss* outperformed 
INS on even-ply searches because it was highly efficient on a few problems. In 
terms of how often each method was preferable sss* was only marginally better 
than INS. On odd-ply trees, in contrast, INs not only outperformed sss* in 
absolute terms, but did so in about 80% of the trees being searched. Two 
things work in favour of minimal window techniques. First an inferiority proof 
on a variation is never more than by ~[3, and second the identification of a new 
principal variation is cheap, since it is equivalent to a search on the low side of 
the refutation wall. However,  if a subtree is found superior, NS, PNS, and INS 
must search it once more. DUAL*, in contrast, simply continues searching in a 
best-first fashion until the new minimax value is found. Consequently, DUAL* 
usually expands fewer nodes than INS, and both do better than sss* for odd 
search depths. Perhaps the most important observation is sss*'s inability to 
exploit its node information in an optimal way. The free-ranging best-first 
search jumps from one subtree to another,  trying to prove them superior. Since 
there is only one superior root subtree, but w - 1 inferior ones, most of the 
node information is never used. 
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