
Domain-Dependent Single-Agent Search EnhancementsAndreas Junghanns and Jonathan Schae�erDepartment of Computing ScienceUniversity of AlbertaEdmonton, AlbertaCANADA T6G 2H1Email: fandreas, jonathang@cs.ualberta.caAbstractAI research has developed an extensive collec-tion of methods to solve state-space problems.Using the challenging domain of Sokoban, thispaper studies the e�ect of search enhancementson program performance. We show that thecurrent state of the art in AI generally re-quires a large programming and research e�ortinto domain-dependent methods to solve evenmoderately complex problems in such di�cultdomains. The application of domain-speci�cknowledge to exploit properties of the searchspace can result in large reductions in the sizeof the search tree, often several orders of magni-tude per search enhancement. Understandingthe e�ect of these enhancements on the searchleads to a new taxonomy of search enhance-ments, and a new framework for developingsingle-agent search applications. This is usedto illustrate the large gap between what is por-trayed in the literature versus what is neededin practice.Keywords: single-agent search, IDA*, Sokoban1 IntroductionThe AI research community has developed an impres-sive suite of techniques for solving state-space problems.These techniques range from general-purpose domain-independent methods such as A*, to domain-speci�c en-hancements. There is a strong movement toward devel-oping domain-independent methods to solve problems.While these approaches require minimal e�ort to spec-ify a problem to be solved, the performance of thesesolvers is often limited, exceeding available resources oneven simple problem instances. This requires the devel-opment of domain-dependent methods that exploit addi-tional knowledge about the search space. These methodscan greatly improve the e�ciency of a search-based pro-gram, as measured in the size of the search tree neededto solve a problem instance.This paper presents a study on solving challengingsingle-agent search problems for the domain of Sokoban.

Sokoban is a one-player game and is of general interestas an instance of a robot motion planning problem [Dorand Zwick, 1995]. Sokoban is analogous to the problemof having a robot in a warehouse move speci�ed goodsfrom their current location to their �nal destination, sub-ject to the topology of the warehouse and any obstaclesin the way. Sokoban has been shown to be NP-hard[Culberson, 1997; Dor and Zwick, 1995].Previously we reported on our attempts to solveSokoban problems using the standard single-agent searchtechniques available in the literature [Junghanns andSchae�er, 1998c]. When these proved inadequate, solv-ing only 10 of a 90-problem test suite, new algorithmshad to be developed to improve search e�ciency [Jung-hanns and Schae�er, 1998b; 1998a]. This allowed 47problems to be optimally solved, or nearly so. Addi-tional e�orts have since increased this number to 52.The results here show the large gains achieved by addingapplication-dependent knowledge to our programRollingStone. With each enhancement, reductions of the searchtree size by several orders of magnitude are possible.Analyzing all the additions made to the Sokobansolver reveals that the most valuable search enhance-ments are based on search (both on-line and o�-line)by improving the lower bound. We classify the searchenhancements along several dimensions including theirgenerality, computational model, completeness and ad-missibility. Not surprisingly, the more speci�c an en-hancement is, the greater its impact on search perfor-mance.When presented in the literature, single-agent search(usually IDA*) consists of a few lines of code. Most text-books do not discuss search enhancements, other thancycle detection. In reality, non-trivial single-agent searchproblems require more extensive programming (and pos-sibly research) e�ort. For example, achieving high per-formance at solving sliding tile puzzles requires enhance-ments such as cycle detection, pattern databases, moveordering and enhanced lower bound calculations [Culber-son and Schae�er, 1996]. In this paper, we outline a newframework for developing high-performance single-agentsearch programs.This paper contains the following contributions:1. A case study showing the evolution of a Sokoban

Figure 1: Problem #1 of the Test Setsolver's performance, beginning with a domain-independent solver and ending with a highly-tuned,application-dependent program.2. A taxonomy of single-agent search enhancements.3. A new framework for single-agent search, includingsearch enhancements and their control functions.2 SokobanFigure 1 shows a sample problem of Sokoban. The goal issimple: use the man to push all the stones in the maze tothe shaded goal squares. Only one stone can be pushedat a time. These rather simple rules bely the di�culty ofSokoban problems, especially with respect to computersolutions. We identi�ed several reasons why Sokoban isso di�cult [Junghanns and Schae�er, 1998c]:� The graph underlying Sokoban problems is directed;some moves are not reversible. Consequently, thereare deadlock states from which no solution is reach-able. Deadlocks represent a challenge for anytimealgorithms: when committing to a move, how canwe make sure that no deadlock is introduced?� The combination of long solution lengths (up to 674stone pushes in the test set) and potentially largebranching factors make Sokoban di�cult for conven-tional search algorithms to solve. 20�20 Sokobano�ers the challenge of a large search space (� 1098).� Sokoban solutions are inherently sequential; onlylimited parts of a solution are interchangeable. Sub-goals are often interrelated and thus cannot besolved independently.� A \simple", e�ective lower bound on the solutionlength of a Sokoban problem remains elusive. Thebest lower bound estimator is expensive to calculate,and is often ine�ective.None of the above obstacles are found in the \stan-dard" single-agent test domains, such as N�N -puzzlesand Rubik's Cube.3 Application-Independent TechniquesIdeally, applications should be speci�ed with minimal ef-fort and a \generic" solver would be used to compute thesolutions. In small domains this is attainable (e.g., if it iseasily enumerable). For more challenging domains, therehave recently been a number of interesting attempts at

Figure 2: Two Simple Sokoban Problemsdomain-independent solvers (e.g., blackbox [Kautz andSelman, 1996]). Before investing a lot of e�ort in de-veloping a Sokoban-speci�c program, it is important tounderstand the capabilities of current AI tools. Hence,we include this information to illustrate the disparity be-tween what application-independent problem solvers canachieve, compared to application-dependent techniques.The Sokoban problems in Figure 2 [McDermott, 1998]were given to the program blackbox to solve. Blackboxwas the winner of the AIPS'98 fastest planner competi-tion. The �rst problem was solved within a few secondsand the second problem was solved in over an hour.Clearly, domain-independent planners, like blackbox,have a long way to go if they are to solve the even sim-plest problem in the test suite (Figure 1). Hence, for thisapplication domain we have no choice but to pursue anapplication-dependent implementation.4 Application-Dependent TechniquesAs reported in [Junghanns and Schae�er, 1998c], weimplemented IDA* for Sokoban. We gave the algo-rithm a �xed node limit of 1 billion nodes for all ex-periments (varying from 1 to 3 hours of CPU time on asingle 195 MHz processor of an SGI Origin 2000). Afteradding an enhancement, Rolling Stone was run on 90 testproblems (http://xsokoban.lcs.mit.edu/xsokoban.html)to �nd out how many could be solved and how muchsearch e�ort was required to do so.Figure 3 presents the experimental results for di�er-ent versions of Rolling Stone. Version R0 is the programusing only IDA* with the lower bound; RA contains allthe search enhancements. The logarithmic vertical axisshows the number of search nodes needed to solve a prob-lem. The horizontal axis shows how many problems canbe solved (out of 90), ordering the problems by searchtree size. The performance lines in the �gure are sortedfrom left to right with an increasing number of searchenhancements.Lower Bound (0 solved): To obtain an admissi-ble estimate of the distance of a position to a goal, aminimum-cost, perfect bipartite matching algorithm isused. The matching assigns each stone to a goal and re-turns the total (minimum) distance of all stones to theirgoals. The algorithm is O(N3) in the number of stonesN . IDA* with this lower bound cannot solve any of thetest problems within one billion search nodes.

1

10

100

1000

10000

1e+05

1e+06

1e+07

1e+08

1e+09

0 10 20 30 40 50 60 70

no
de

s
to

 s
ol

ve

problems solved ordered by effort

R1 = R0 + transposition tables
R2 = R1 + move ordering
R3 = R2 + deadlock tables
R4 = R3 + tunnel macros
R5 = R4 + goal macros
R6 = R5 + goal cuts
R7 = R6 + pattern searches
R8 = R7 + relevance cuts
RA = R8 + overestimationFigure 3: Program PerformanceTransposition Table (6 solved): The search spaceof Sokoban is a graph, rather than a tree, so repeatedpositions and cycles are possible. A transposition tablewas implemented to avoid duplicate search e�ort. Posi-tions that have the same stone locations and equivalentman locations (taking man reachability into account) aretreated as the same position. Transposition tables re-duces the search tree size by several orders of magnitude,allowing Rolling Stone to solve 6 problems.Move Ordering (6 solved): Children of a node areordered based on their likelihood of leading to a solution.Move ordering only helps in the last iteration. Eventhough move ordering results in no additional problemsbeing solved, less search e�ort is used to solve each prob-lem.Deadlock Table (8 solved): The pattern databaseis a recent idea that has been successfully used in theN�N -puzzles [Culberson and Schae�er, 1996] and Ru-bik's Cube [Korf, 1997]. An o�-line search enumeratedall possible stone/wall placements in a 4�5 region andsearched them to determine if deadlock was present.These results are stored in deadlock tables. During anIDA* search, the table is queried to see if the currentmove leads to a local deadlock. Thus, deadlock tablescontain search results of partial problem con�gurationsand are general with respect to all Sokoban problems.TunnelMacros (10 solved): A Sokoban maze oftencontains \tunnels" (such as the squares Kh, Lh, Mh andNh in Figure 1). Once a stone is pushed into a tunnel, itmust eventually be pushed all the way through. Ratherthan do this through search, this sequence of moves canbe collapsed into a single macro move. By collapsingseveral moves into one, the height of the search tree isreduced. Tunnel macros are identi�ed by pre-processing.Goal Macros (23 solved): Prior to starting thesearch, a preliminary search is used to �nd an appropri-ate order in which to �ll in the goal squares. In manycases this is a non-trivial computation, especially when

the goal area(s) has several entrances. A specializedsearch is used to avoid �ll sequences that lead to a dead-lock. The knowledge about the goal area is then usedto create goal macros, where stones are pushed directlyfrom the goal area entrance(s) to the �nal goal squareavoiding deadlocks. For example, in Figure 1, squareGh is de�ned as the entrance to the goal area; once astone reaches it, a single macro move is used to push itto the next pre-determined goal square. These macromoves signi�cantly reduce the search depth required tosolve problems and can dramatically reduce the searchtree size. Whenever a goal macro move is possible, itis the only move considered; all alternatives are forwardpruned.Goal Cuts (26 solved): Goal cuts e�ectively pushthe goal macros further up the search tree. Whenever astone can be pushed to a goal entrance square, none ofthe alternative moves are considered. The idea behindthese cuts is that if one is con�dent about using macromoves, one might as well prune alternatives to pushingthat stone further up in the search tree.Pattern Search (46 solved): Pattern searches[Junghanns and Schae�er, 1998b] are an e�ective wayto detect lower bound ine�ciencies. Small, localizedconict-driven searches uncover patterns of stones thatinteract in such a way that the lower bound estimatoris o� by an arbitrary amount (even in�nite, in the caseof a deadlock). These patterns are used throughout thesearch to improve the lower bound. Patterns are speci�cto a particular problem instance and are discovered onthe y using specialized searches. Patterns represent theknowledge about dynamic stone interactions that lead topoor static lower bounds, and the associated penaltiesare the corrective measures.Pattern searches lead to dramatic improvements of thesearch: many orders of magnitude vanish from the searchtree size and 20 more problems can be solved. Note thattree sizes reported include the pattern search nodes.Relevance Cuts (47 solved): Relevance cuts [Jung-hanns and Schae�er, 1998a] are an attempt to cut downthe branching factor using forward pruning. If movesare \inconsistent" to the previous move history, they arepruned. This heuristic is unsafe, since it has the poten-tial to prune solution paths. However, it does decreasesearch tree sizes, and can be a bene�cial trade-o�.Overestimation (52 solved): Given the di�cultyof solving Sokoban problems, any solution, even a non-optimal one, is welcome. The patterns that RollingStone discovers indicate when potentially \di�cult" sit-uations arise. To ensure admissibility, some patternsthat match are not always used to increase the lowerbound. Overestimation allows every pattern to add tothe lower bound. In principle, this can be interpretedas the program \avoiding" di�cult situations. We pre-fer to describe it as a knowledge-driven postponement ofsearch: the additional penalty only postpones when thesearch will explore a certain part of the tree, it will notcut branches inde�nitely. In this respect, this methodpreserves completeness, but not solution optimality.

0

10

20

30

40

50

60

70

80

90

Sep ’96 Mar ’97 Sep ’97 Mar ’98 Sep ’98

pr
ob

le
m

s
so

lv
ed

timeFigure 4: Number of Problems Solved Over TimeThe performance gap between the �rst and last ver-sions of Rolling Stone in Figure 3 is astounding. For ex-ample, consider extrapolating the performance of RollingStone with transposition tables so that it can solve thesame number of problems as the complete program (52).1050 (not a typo!) seems to be a reasonable lower boundon the di�erence in search tree sizes.The preceding discussion closely corresponds to theorder in which enhancements were initially added toRolling Stone (although most enhancements have beencontinually re�ned). Figure 4 shows how these resultswere achieved over the 2-year development time. Thedevelopment e�ort equates to a full-time PhD, a parttime professor, a full-time summer student, and feed-back from many people. Additionally, a large number ofmachine cycles were used for tuning and debugging. It isinteresting to note the occasional decrease in the numberof problems solved, the result of (favorable) bugs being�xed. The long, slow, steady increase is indicative of thereality of building a large system. Progress is incremen-tal and often painfully slow.The results in Figure 3 may misrepresent the impor-tance of each feature. Figure 5 shows the results of tak-ing the full version of Rolling Stone and disabling sin-gle search enhancements. In the absence of a particularmethod, other search enhancements can compensate toallow a solution to be found. Most notably, while thelower bound function alone cannot solve a single prob-lem, neither can the complete system solve a single prob-lem without the lower bound function.Figure 5 shows that turning o� goal macros reducesthe number of problems solved by 35, more than 66%!Turning o� transposition tables loses 23 problems. Turn-ing o� pattern searches reduces the number of solvedproblems by 16. Other than the lower bound function,these three methods are the most important for RollingStone; losing any one of them dramatically reduces theperformance. While other enhancements don't have asdramatic an e�ect, turning any one of them o� loses atleast one problem.

1

10

100

1000

10000

1e+05

1e+06

1e+07

1e+08

0 10 20 30 40 50 60 70

no
de

s
to

 s
ol

ve

problems solved ordered by effort

RA - goal macros
RA - transposition table
RA - pattern searches
RA - move ordering
RA - goal cuts
RA - overestimation
RA - relevance cuts
RA - tunnel macros
RA - deadlock tables
RAFigure 5: E�ort Graphs For Methods Turned O�5 Knowledge TaxonomyIn looking at the domain-speci�c knowledge used to solveSokoban problems, we can identify several di�erent waysof classifying the knowledge:Generality. Classify based on how general the knowl-edge is: domain (e.g., Sokoban), instance (a par-ticular Sokoban problem), and subtree (within aSokoban search).Computation. Di�erentiate how the knowledge wasobtained: static (such as advice from a human ex-pert) and dynamic (gleaned from a search).Admissibility/Completeness. Knowledge can be:admissible (preserve optimality in a solution) ornon-admissible. Non-admissible knowledge can ei-ther preserve completeness of the algorithm or ren-der it incomplete. Admissible knowledge is neces-sarily complete.Figure 6 summarizes the search enhancements used inRolling Stone. Other enhancements from the literaturecould easily be added into spaces that are still blank, e.g.perimeter databases [Manzini, 1995] (dynamic, admissi-ble, instance). Note that some of the enhancement clas-si�cations are �xed by the type of the enhancement. Forexample, any type of forward pruning is incomplete byde�nition, and move ordering always preserves admissi-bility. For some enhancements, the properties depend onthe implementation. For example, overestimation tech-niques can be static or dynamic; goal macros can beadmissible or non-admissible; pattern databases can bedomain-based or instance-based.It is interesting to note that, apart from the lowerbound function itself, the three most important programenhancements in terms of program performance (Figure5) are all dynamic (search-based) and instance/subtreespeci�c. The static enhancements, while of value, turnout to be of less importance. Static knowledge is usuallyrigid and does not include the myriad of exceptions thatsearch-based methods can uncover and react to.

Classi�cation Domain Instance SubtreeStatic admissible lower tunnel movebound macros orderingcompleteincomplete relevance goalcuts cutsDynamic admissible deadlock patterntables searchestransposi-tion tablecomplete overesti-mationincomplete goalmacrosFigure 6: Taxonomyof Search Enhancements in Sokoban6 Control FunctionsThere is another type of application-dependent knowl-edge that is critical to performance, but receives scantattention in the literature. Control functions are intrin-sic parts of e�cient search programs, controlling whento use or not use a search enhancement. In RollingStone numerous control functions are used to improvethe search e�ciency. Some examples include:Transposition Table: Control knowledge is needed todecide when new information is worth replacingolder information in the table. Also, when read-ing from the table, control information can decidewhether the bene�ts of the lookup justify the cost.Goal Macros: If a goal area has too few goal squares,then goal macros are disabled. With a small numberof goals or too many entrances, the search will likelynot need macro moves, and the potential savings arenot worth the risk of eliminating possible solutions.Pattern Searches: Pattern searches are executed onlywhen a non-trivial heuristic function indicates thelikelihood of a penalty being present. Executing apattern search is expensive, so this overhead shouldbe introduced only when it is likely to be cost ef-fective. Control functions are also used to stop apattern search when success appears unlikely.Implementing a search enhancement is often only onepart of the programming e�ort. Implementing and tun-ing its control function(s) can be signi�cantly more timeconsuming and more critical to performance. We esti-mate that whereas the search enhancements take about90% of the coding e�ort and the control functions only10%, the reverse distribution applies to the amount oftuning e�ort needed and machine cycles consumed.A clear separation between the search enhancementsand their respective control functions can help the tuninge�ort. For example, while the goal macro creation onlyconsiders which order the stones should be placed intothe goal area, the control function can determine if goalmacros should be created at all. Both tuning e�ortshave very di�erent objectives: one is search e�ciency,

IDA*() f/** Compute the best possible lower bound **/lb = ComputeLowerBound();lb += UsePatterns(); /** Match Patterns **/lb += UseDeadlockTable();lb += UseOverestimate(CntrlOverestimate());if(cutoff) return;/** Preprocess **/lb += ReadTransTable();if(cuto�) return;PatternSearch(CntrlPatternSearch());lb += UsePatterns();if(cuto�) return;/** Generate searchable moves **/movelist = GenerateMoves();RemoveDeadMoves(movelist);IdentifyMacros(movelist);OrderMoves(movelist);for(each move) fif(Irrelevant(move, CntrlIrrelevent())) next;solution = IDA*();if(solution) return;if(GoalCut()) break;UpdateLowerBound(); /** Use New Patterns **/if(cuto�) return;g/** Post-process **/SaveTransTable(CntrlTransTable());return;g Figure 7: Enhanced IDA*the other risk minimization. Separating the two seemsnatural and convenient.7 Single-Agent Search FrameworkAs presented in the literature, single-agent search con-sists of a few lines of code (usually IDA*). Most text-books do not discuss search enhancements, other thancycle detection. In reality, non-trivial single-agent searchproblems require a more extensive programming (andpossibly research) e�ort.Figure 7 illustrates the basic IDA* routine, with ourenhancements included (in italics). This routine is spe-ci�c to Rolling Stone, but could be written in more gen-eral terms. It does not include a number of well-knownsingle-agent search enhancements available in the litera-ture. Control functions are indicated by parameters tosearch enhancement routines. In practice, some of thesefunctions are implemented as simple if statements con-trolling access to the enhancement code.Examining the code in Figure 7, one realizes that thereare really only three types of search enhancements:1. Modifying the lower bound (as indicated by the up-dates to lb). This can take two forms: optimallyincreasing the bound (e.g. using patterns) which re-duces the distance to search, or non-optimally (us-ing overestimation) which redistributes where thesearch e�ort is concentrated.2. Removing branches unlikely to add additional infor-

for(each domain) f/** Preprocess **/BuildDeadlockTable(CntrlDeadlockTable());for(each instance) f/** Preprocess **/FindTunnelMacros();FindGoalMacros(CntrlGoalMacros());while(not solved) fSetSearchParamaters();IDA*();g/** Postprocess **/SavePatterns(CntrlSavingPatterns());gg Figure 8: Preprocessing Hierarchymation to the search (the next and break statementsin the for loop). This forward pruning can result inlarge reductions in the search tree, at the expenseof possibly a�ecting the completeness.3. Collapsing the tree height by replacing a sequenceof moves with one move (for example, macros).Some of the search enhancements involve computa-tions outside of the search. Figure 8 shows where thepre-search processing occurs at the domain and instancelevels. O�-line computation of pattern databases orpre-processing of problem instances are powerful tech-niques that receive scant attention in the literature(chess endgame databases are a notable exception). Yetthese techniques are an important step towards the au-tomation of knowledge discovery and machine learning.Preprocessing is involved in many of the most valuableenhancements that are used in Rolling Stone.Similar issues occur with other search algorithms. Forexample, although it takes only a few lines to spec-ify the alpha-beta algorithm, the Deep Blue chess pro-gram's search procedure includes numerous enhance-ments (many similar in spirit to those used in RollingStone) that cumulatively reduce the search tree size byseveral orders of magnitude. If nothing else, the DeepBlue result demonstrated the degree of engineering re-quired to build high-performance search-based systems.8 ConclusionsThis paper described our experiences working with achallenging single-agent search domain. In contrast tothe simplicity of the basic IDA* formulation, buildinga high-performance single-agent searcher can be a com-plex task that combines both research and engineering.Application-dependent knowledge, speci�cally that ob-tained using search, can result in an orders-of-magnitudeimprovement in search e�ciency. This can be achievedthrough a judicious combination of several search en-hancements. Control functions are overlooked in the lit-erature, yet are critical to performance. They representa signi�cant portion of the program development timeand most of the program experimentation resources.

Domain-independent tools o�er a quick programmingsolution when compared to the e�ort required to de-velop domain-dependent applications. However, withcurrent AI tools, performance is commensurate with ef-fort. Domain-dependent solutions can be vastly superiorin performance. The trade-o� between programming ef-fort and performance is the critical design decision thatneeds to be made.9 AcknowledgementsThis research was supported by a grant from the NaturalSciences and Engineering Research Council of Canada.Computational resources were provided by MACI. Thispaper bene�ted from interactions with Yngvi Bj�ornsson,Afzal Upal and Rob Holte.References[Culberson and Schae�er, 1996] J. Culberson andJ. Schae�er. Searching with pattern databases. InG. McCalla, editor, Advances in Arti�cial Intelligence,pages 402{416. Springer-Verlag, 1996.[Culberson, 1997] J. Culberson. Sokoban is PSPACE-complete. Technical Report TR97{02, Dept. ofComputing Science, University of Alberta, 1997.ftp.cs.ualberta.ca/pub/TechReports/1997/TR97{02.[Dor and Zwick, 1995] D. Dor and U. Zwick.SOKOBAN and other motion planning problems,1995. At: http://www.math.tau.ac.il/~ddorit.[Junghanns and Schae�er, 1998a] A. Junghanns andJ. Schae�er. Relevance cuts: Localizing the search.In The First International Conference on Computersand Games, pages 1{13, 1998. To appear in: LectureNotes in Computing Science, Springer Verlag.[Junghanns and Schae�er, 1998b] A. Junghanns andJ. Schae�er. Single-agent search in the presence ofdeadlock. In AAAI, pages 419{424, 1998.[Junghanns and Schae�er, 1998c] A. Junghanns andJ. Schae�er. Sokoban: Evaluating standard single-agent search techniques in the presence of deadlock.In R. Mercer and E. Neufeld, editors, Advances in Ar-ti�cial Intelligence, pages 1{15. Springer Verlag, 1998.[Kautz and Selman, 1996] H. Kautz and B. Selman.Pushing the envelope: planning, propositional logicand stochastic search. In AAAI, pages 1194{1201,1996.[Korf, 1997] R.E. Korf. Finding optimal solutions toRubik's Cube using pattern databases. In AAAI,pages 700{705, 1997.[Manzini, 1995] G. Manzini. BIDA*: An improvedperimeter search algorithm. Arti�cial Intelligence,75:347{360, 1995.[McDermott, 1998] Drew McDermott. Using regression-match graphs to control search in planning, 1998. Un-published manuscript.

