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Abstract

A pattern database (PDB) is a heuristic function stored
as a lookup table. Symmetries of a state space are of-
ten used to enable multiple values to be looked up in a
PDB for a given state. This paper introduces an addi-
tional PDB lookup, called the dual PDB lookup. A dual
PDB lookup is always admissible but can return inconsis-
tent values. The paper also presents an extension of the
well-known pathmax method so that inconsistencies in
heuristic values are propagated in both directions (child-
to-parent, and parent-to-child) in the search tree. Exper-
iments show that the addition of dual lookups and bidi-
rectional pathmax propagation can reduce the number of
nodes generated by IDA* by over one order of magnitude
in the TopSpin puzzle and Rubik’s Cube, and by about a
factor of two for the sliding tile puzzles.

1 Introduction
Heuristic search algorithms such as A* and IDA* are guided
by the cost functionf(n) = g(n) + h(n), whereg(n) is the
actual distance from the initial state to staten andh(n) is a
heuristic function estimating the cost fromn to a goal state.
If h(s) is “admissible” (i.e. is always a lower bound) these
algorithms are guaranteed to find optimal paths.

Pattern databases are heuristics in the form of lookup ta-
bles. They have proven very useful for defining heuristics
for combinatorial puzzles and other problems[Culberson and
Schaeffer, 1994; Edelkamp, 2001; Korf and Felner, 2002].

The domainof a search space is the set of constants used
in representing states. Asubproblemis an abstraction of the
original problem defined by replacing some of these constants
by a “don’t care” symbol. Apatternis a state of the subprob-
lem. Thepattern spacefor a given subproblem is a state space
containing all the different patterns connected to one another
using the same operators that connect states in the original
problem. Apattern database(PDB) stores the distance of
each pattern to the goal pattern. Typically, a PDB is built by
searching backwards, breadth-first, from the goal pattern un-
til the whole pattern space is spanned. Given a stateS in the
original space, a heuristic value for S,h(S), is computed us-
ing a PDB in two steps. First,S is mapped to a pattern. Then,
this pattern is looked up in the PDB and the corresponding
distance is returned as the value forh(S).

Figure 1: Example of regular and dual lookups

This paper is concerned with the first step, the mapping of
a stateS to a pattern that can be looked up in a given PDB.
The standard mapping, called the regular PDB lookup in this
paper, is illustrated in Figure 1(a) and (b) for the 15-puzzle.
Patterns are created by ignoring all the tiles except for 2, 3,
6 and 7. Each pattern contains tiles 2, 3, 6 and 7 in a unique
combination of positions. The resulting{2-3-6-7}-PDB con-
tains a unique entry for each pattern with the distance from
that pattern to the goal pattern (shown in the lower part of
Figure 1(b)). Figure 1(b) depicts the regular lookup in this
PDB for estimating a distance from a given state S to the goal
(Figure 1(a)). State S is mapped to a 2-3-6-7 pattern by ig-
noring all the tiles other than 2, 3, 6 and 7. Then this pat-
tern’s distance to the goal pattern is looked up in the PDB.
To be specific, if the PDB is represented as a 4-dimensional
array, PDB, with the array indexes being the locations of
tiles 2, 3, 6, and 7 respectively, the regular lookup for state S
is PDB[8][12][13][14], because tile 2 is in location 8, tile 3
is in location 12, etc. The value retrieved by a regular PDB
lookup for stateS is a lower bound (and thus serves as an ad-
missible heuristic) for the distance fromS to the goal state in
the original space.

It is common practice to exploit special properties of a
state space to enable additional lookups to be done in a
PDB. [Cullberson and Schaeffer, 1998] describe several al-
ternative lookups that can be made in the same PDB based
on the physical symmetries of the 15-puzzle. For exam-
ple, because of the symmetry about the main diagonal, the



PDB built for the goal pattern in Figure 1(b) can also be
used to estimate the number of moves required to get tiles
8, 12, 9 and 13 from their current positions in stateS to
their goal locations. We simply reflect the tiles and their
positions about the main diagonal and use the{2-3-6-7}-
PDB for retrieving the symmetric values. The idea of re-
flecting the domain about the main diagonal for having an-
other set of PDBs was also used by[Korf and Felner, 2002;
Felneret al., 2004] when solving the 15 and 24 tile puzzles
with additive PDBs (see Figure 4 below).

Because all valid, alternative PDB lookups provide lower
bounds on the distance from stateS to goal, their maximum
can be taken as the value forh(S). Of course, there is a trade-
off for doing this—each PDB lookup increases the time it
takes to computeh(S). Because additional lookups provide
diminishing returns in terms of the reduction in the number
of nodes generated, it is not always best to use all possible
PDB lookups[Cullberson and Schaeffer, 1998]. A number of
methods exist for reducing the time needed to computeh(S)
by making inferences about some of the values without actu-
ally looking them up in a PDB[Holteet al., 2004].

The main contribution of this paper is a new, alternative
PDB lookup that is based on properties other than physical
symmetries. We call it the dual PDB lookup. The dual lookup
is always admissible but, unlike previously considered PDB
lookups, it can return values in the search that are inconsis-
tent. Our second contribution is a simple but useful extension
of the well-known pathmax method so that inconsistencies
in heuristic values are propagated in both directions (child-
to-parent, and parent-to-child) in the search tree. Our final
contribution is that dual lookups, with bidirectional pathmax
propagation, produce state-of-the-art performance for three
standard test applications.

2 Dual Lookups in Pattern Databases
The states of many problems, such as the sliding tile puzzles,
Rubik’s cube, Towers of Hanoi, etc., are defined by assigning
objects (e.g. tiles, cubies, disks) to locations.

To explain the dual PDB lookup, consider again the{2-3-
6-7}-PDB for the 15-puzzle defined above. The regular PDB
lookup asks the question of what is the cost of getting tiles 2,
3, 6 and 7 from their current locations to their goal locations?
In general, the regular lookup focuses on a fixed set of objects
(the ones that define the patterns), and bases its lookup on
their current locations, which vary from state to state.

In the dual PDB lookup the roles of locations and objects
are switched. The dual PDB lookup focuses on a fixed set
of locations – the goal locations of the objects in the pattern
– and bases its lookup on the objects that occupy those posi-
tions, which vary from state to state. In particular, the dual
PDB lookup of Figure 1 asks this question: what is the cost
of moving the tiles that are currently in the goal location of
tiles 2, 3, 6 and 7 to their home locations? For the stateS
in Figure 1(a), for example, the dual PDB lookup asks, what
is the cost of getting tiles 9, 5, 15 and 12 from their current
locations (the goal locations of tiles 2, 3, 6 and 7) to their goal
locations? See Figure 1(c).

The dual question cannot be answered directly because a

PDB based on tiles 5, 9, 12 and 15 is not available. However,
because costs in the 15-puzzle are symmetric and indepen-
dent of the exact tiles involved, the dual question can be an-
swered using the{2-3-6-7}-PDB. As shown in Figure 1(d), if
we replaces the names of tiles 5, 9, 12 and 15 with the name
of the tile whose goal location they each currently occupy,
the 5-9-12-15 goal pattern at the bottom of Figure 1(c) turns
into a 2-3-6-7 pattern that can be looked up in the 2-3-6-7
PDB. In particular, the dual lookup would retrieve the value
PDB[9][5][15][12], because in stateS tile 9 is in tile 2’s goal
location, tile 5 is in tile 3’s goal location, etc.

Another example for dual looukups is the (N ,K)-TopSpin
puzzle which hasN tokens arranged in a ring. Any set of
K consecutive tokens can be reversed (rotated 180 degrees in
the physical puzzle). Our encoding of this puzzle hasN op-
erators for each possible reversal/rotation. Figure 2(a) shows
the goal state of the (9,4)-TopSpin puzzle. Figure 2(b) shows
the result of reversing the tokens at locations 6-9, and Figure
2(c) shows the result of reversing the tokens in locations 4-7
of Figure 2(b).

(c) locations 4−7 of (b)  reversed

1    2    3    *    *    *    *    4    5    

(f) The dual lookup for state (c)

(e) The regular lookup for state (c)(b) locations 6−9 of (a) reversed

(a) The goal state of Top Spin (d) The goal pattern 

1   2    3    4    5     *    *     *    *1   2    3    4    5    6    7    8    9

1    2    3    4    5    9    8    7    6 1   2    3    *     *    5    4     *    *

1    2    3    8    9    5    4    7    6

Figure 2: (9,4)-TopSpin states

Suppose patterns for TopSpin are defined by ignoring to-
kens 6-9. The resulting PDB provides distances to the goal
pattern (shown in Figure 2(d)) from all reachable patterns.
Consider Figure 2(c). The regular PDB lookup for this state
is based on the pattern in Figure 2(e), obtained from(c) by
mapping tokens 6-9 to “*”. Since tokens 1-5 are in locations
1, 2, 3, 7 and 6, respectively, the regular lookup would be
PDB[1][2][3][7][6]. For the dual lookup, we note that the
goal locations of tiles 1-5 (as in state(c)) are occupied by to-
kens 1, 2, 3, 8, 9. The dual lookup,PDB[1][2][3][8][9], gives
the cost of moving these tiles to their goal locations. This
lookup corresponds to the pattern shown in Figure 2(f).

Dual PDB lookups are possible where there is symmetry
between objects and locations of the domain in the sense that
each object is located in one location and each location occu-
pies only one object. Example domains where this is true are
the TopSpin puzzle (Section 4) and Rubik’s cube (Section 5).
A counter example is the towers of Hanoi where there is no
symmetry between locations and objects. The 15 puzzle do-
main is more difficult because the blank has to be handled
differently from the other tiles. Nevertheless, even in this
seemingly asymmetric domain, the PDBs can be constructed
in such a way as to enable the dual symmetry (see Section 6).

3 Bidirectional Pathmax (bpmx)
Regular PDB lookups produce consistent heuristic values
during search[Holte et al., 1996]. Dual lookups are admissi-



ble, but not necessarily consistent. For our TopSpin example,
let hd be the result of a dual lookup on this PDB. In Fig-
ure 2(b), tokens 1-5 are in their goal locations and therefore
hd(b) = 0. Figure 2(c) is obtained from(b) by a single move.
However, the dual lookup for this state uses the pattern in
Figure 2(f), which is two moves away from the goal pattern.
Therefore,hd(c) = 2, which is inconsistent withhd(b) = 0
since(c) is only one move from(b).

[Mero, 1984] described two methods of propagating
heuristic values between a state and its children to take advan-
tage of inconsistencies. LetP be any state,{Ci} the children
of P , anddist(P, Ci) the cost of reachingCi from P . Mero’s
first propagation method, now known as pathmax, propagates
heuristic values fromP to its children:h(P )−dist(P,Ci) is
a lower bound ondist(Ci, Goal) and therefore can be used
instead ofh(Ci) if it is larger. Mero’s second method prop-
agates heuristic values upwards, from the children ofP to
P . The path fromP to the goal must pass through a child of
P 1. Thus,min(h(Ci) + dist(P,Ci)) is a lower bound on
dist(P, Goal) and can be used instead ofh(P ) if it is larger.

Previous work failed to notice that when operators are in-
vertible (and costs symmetric), pathmax allows values to be
propagated in both directions and is also applicable in undi-
rected graphs. This might produce a more useful children-to-
parent propagation than Mero’s second method.

3

2

15 5

4

Figure 3: Propagation of values with inconsistent heuristics

The bidirectional pathmax method (bpmx) is illustrated in
Figure 3. The left side of the figure shows the (inconsistent)
heuristic values for a node and its two children. When the
left child is generated, its heuristic (h = 5) can propagate
up to the parent and then down again to the right child. To
preserve admissibility, each propagation reducesh by the cost
of traversing that path (1 in this example). This results in
h = 4 for the root andh = 3 for the right child. When
using IDA*, this bidirectional propagation can cause many
nodes to be pruned that would otherwise be expanded. For
example, suppose the current IDA* threshold is 2. Without
the propagation ofh from the left child, both the root node
(f = g + h = 0 + 2 = 2) and the right child (f = g + h =
1 + 1 = 2) would be expanded. Using the propagation just
described, the left child will improve the parent’sh value to
4, resulting in a cutoff without even generating the right child.

4 TopSpin
We have implemented the above ideas on the (17,4)-TopSpin
puzzle. This domain has17! = 3.55 × 1014 states. We gen-
erated a PDB of the leftmost 9 tokens, a pattern space of
17 × 16 . . . × 9 = 8.82 × 109. Since this puzzle is cyclic,
we can assume that token number 1 is always in the leftmost

1This is only true in a directed graph. In an undirected graph the
shortest path fromP to the goal might pass through the parent ofP .

Heuristic Nodes Time bpmx

1r+0d 40,019,429 / 1.0 67.76 / 1.0 0
0r+1d 7,618,805 / 5.3 15.72 / 4.3 0
0r+1d+c 1,397,614 / 28.6 2.93 / 23.1 194,135
2r+0d 6,981,027 / 1.0 21.90 / 1.0 0
1r+1d+c 492,686 / 14.2 1.47 / 14.9 34,725
0r+2d+c 372,414 / 18.7 1.46 / 15.0 29,302
4r+0d 651,080 / 1.0 4.05 / 1.0 0
0r+4d+c 143,177 / 4.6 1.09 / 3.7 4,638
8r+0d 116,208 / 1.0 1.48 / 1.0 0
4r+4d+c 82,606 / 1.4 0.94 / 1.6 1,155
0r+8d+c 74,610 / 1.6 1.12 / 1.3 915
17r+17d+c 27,575 1.34 29

Table 1: Solutions to the (17,4) TopSpin puzzle

position. Thus, for implementation, both numbers above can
be divided by 17. Since all the values in the PDB were smaller
than 16, each entry needs 4 bits and the PDB needs 259MB.

A PDB of 9 tokens has actually 17 different ways of choos-
ing which tokens are included. A PDB of tokens[1 . . . 9] can
also be used as a PDB of[2 . . . 10], [3 . . . 11], etc, with the
appropriate mapping of tokens. Thus, a single PDB gives us
17 regular heuristics and 17 dual heuristics. The search was
done using IDA*. Many duplicate states can be avoided by
forcing two unrelated operators to be applied successively in
only one order. For example, the operator that reverses lo-
cations(1, 2, 3, 4) is not related to the operator that reverses
locations(11, 12, 13, 14). This operator ordering decreased
the number of generated nodes by an order of magnitude.

Table 1 presents data for different heuristics and combi-
nations. Each value in the table is an average over a set of
1,000 random permutations. The average solution length for
this test set is 14.8. All the experiments reported in this paper
were run on a 1.7GHz Pentium 4 PC with 1GB of memory.

The table columns give the number of regular (‘r’) and
dual (‘d’) lookups used, the presence ofbpmx cutoff (‘c’),
the number of generated nodes (nodes and ratio to the same
number of lookups with only-r result), the time (seconds and
ratio), and the number of times that thebpmx cutoff occurred.

The results show that a single dual lookup outperforms a
regular lookup by a factor of 5.3 in generated nodes (4.3 in
running time). This is because the dual lookup frequently
“jumps” to different areas of the PDB and has a larger diver-
sity of different heuristic values as will be further explained in
Section 7. Thebpmx cutoff further improves this to a factor
of 28.6 in nodes (23.1 in time). Thebpmx cutoff was appli-
cable 194,135 times, pruning 6,221,191 nodes, and averaging
32 nodes per instance of cutoff. These performance gains are
achieved using no additional storage, just by looking at one
PDB in different ways.

The table also shows the results of using two lookups
and taking their maximum. Compared to two regular PDB
lookups, two dual lookups (withbpmx) give an 18.7-fold re-
duction in nodes. This result is better than combining one
regular and one dual lookup. When four lookups are used,
again the dual-only lookup solution is better than the regular-
only lookup solution. We see diminishing returns when more



Heuristic Nodes Time
1r+0d 90,930,662 / 1.0 28.18 / 1.0
0r+1d 19,653,386 / 4.6 7.38 / 3.8
0r+1d+c 8,315,116 / 10.9 3.24 / 8.7
2r+0d 12,649,720 / 1.0 4.68 / 1.0
1r+1d+c 2,997,539 / 4.2 1.34 / 3.5
0r+2d+c 5,290,272 / 2.4 2.32 / 2.0
4r+0d 1,053,522 / 1.0 0.64 / 1.0
2r+2d+c 1,667,320 / 0.6 0.90 / 0.7
0r+4d+c 1,053,759 / 1.0 0.67 / 0.9
4r+4d+c 615, 563 0.51
24r+24d+c 362,927 0.90

Table 2: Solutions to Rubik’s cube from one 7-edges PDB

and more lookups are done. Many lookups provide a diver-
sity of heuristic values anyway. Therefore, the improvement
factor of any additional lookup (dual or regular) decreases.

Note that our fastest implementation uses 4 regular and 4
dual lookups took 0.94 seconds – 72 times faster than a sin-
gle regular lookup. Using 17 regular and 17 dual lookups
produces the smallest search tree of only 27,575 generated
nodes – a factor of 1,451 over a single regular lookup.

We used our fastest implementation (4r+4d+c) to solve
larger versions of TopSpin. TopSpin(19, 4) is 18× 17 times
larger than the(17, 4) variant. We solved 20 instances for
TopSpin(19, 4). The average solution length is 17.3, 73 mil-
lion nodes are generated and the search takes 172 seconds.
For TopSpin (20, 4) (19 times larger), we tested on five prob-
lems with an average solution length of 20. These problems
averaged 2.9 billion nodes and took 7,716 seconds.

5 Rubik’s Cube
[Korf, 1997] solved the3 × 3 × 3 Rubik’s cube, contain-
ing roughly 4 × 1019 different reachable states. There are
20 movable sub-cubes, orcubies. They can be divided into
eight corner cubies, with three faces each, and twelveedge
cubies, with two faces each. As a first experiment, we built a
7-edge-cubies PDB, the largest that can be stored in 1GB of
memory. There are 510,935,040 possible permutations of the
7 edge cubies. At 4 bits per entry, 255MB are needed for this
PDB. As with TopSpin, symmetries in the domain mean that
there are multiple possible regular and dual lookups.

Table 2 presents results for a number of possible combina-
tions of this setting (the table headings have the same mean-
ing as in Table 1). The start states used were “easy”—100
different states obtained by 14 random moves from the goal
configuration (average solution length of 10.66).

The results are similar to the TopSpin experience, albeit
slightly lower. Again, the dual lookup andbpmx cutoffs re-
sult in large reductions in the search effort. However, for this
puzzle by the time you hit four lookups, diminishing returns
has taken over and the advantage of the dual has dissipated.
Our best implementations reduced the number of nodes gen-
erated (24r+24d+c) by a factor of 250, and the time (4r+4d+c)
by a factor of 55. All this was possible with just one 7-edge-
cubies PDB stored in memory.

[Korf, 1997]’s original 1997 Rubik’s cube experiments
were repeated, this time with dual PDB lookups. Korf used
three PDBs for this domain: one PDB for the 8 corner cubies
and two PDBs for two sets of 6 edge cubies. Since a legal
move in this domain moves 8 cubies, the only way to com-
bine these 3 PDBs is by taking their maximum. Note that
there are 8 corner cubies and all 8 are used by the 8-corner
PDB. Thus, performing a dual lookup for this particular PDB
is irrelevant. Here, the entire space of corner cubies is in the
database and both lookups give the same result.

Results for the same set of 10 random instances used in
[Korf, 1997] were obtained. The results for Korf’s set of8 +
6+6 PDBs were improved by a modest amount by adding the
dual lookups for both 6-edge PDBs (from 353 billion nodes to
253 billion). Increasing the edges PDB from 6 to 7 cubies and
using a8+7r+7r+7d+7d setting reduced the search to 54
billion nodes – an improvement of a factor of 6.4 over Korf’s
initial setting. The improvements of adding dual lookups for
the 6- and 7-edges PDBs are modest since most of the time
the 8-corner PDB has the maximum value; this PDB is larger
and contains more cubies than the 6- and 7-edge PDBs. We
measured these rates over 10 million random instances. For
the 8 + 6r + 6r + 6d + 6d setting, the 8-corner PDB had
the maximum value in 73.5% of these cases while one of the
lookups in the 6-edges cubies was the maximum in only 7.3%
of the cases (the rest of the cases are a tie). These numbers
were changed to 40.8% and 21.3% respectively for the8 +
7r + 7r + 7d + 7d setting.

6 Sliding-tile Puzzles

6

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

66

667

8
7 8

6 6

6

Figure 4: Partitionings and reflections of the tile puzzles

We have also implemented the new ideas for the sliding-tile
puzzles. For the 15-puzzle, we used the same7− 8 partition-
ing from[Korf and Felner, 2002] (Figure 4). These PDBs are
constructed so that their heuristic values can beadded [Felner
et al., 2004] together and preserve admissibility. The PDBs
can be reflected across the diagonal, obtaining another set of
7− 8 heuristics (also shown in Figure 4).

Dual lookups for this domain are not obvious. While there
are 16 similar locations, the 16 tiles are not similar as there are
15 real tiles and one blank. Given the location of the blank,
then a horizontal line (or a symmetric vertical line) across the
middle of the puzzle divides it into two regions of 8 locations.
One region (call itA) has 8 locations which are occupied by
8 real tiles, and another region of 8 locations (B) which are
occupied by 7 real tiles and the blank. Performing a dual
lookup for regionA in the 8-tile PDB is identical to what was
done in TopSpin and Rubik’s cube.

A dual lookup inB is complicated by the blank. Figure 5
shows four possible blank locations inB for a horizontal par-
titioning. Other locations of the blank (as well as a vertical
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Figure 5: Four different (dual) 7-tile pattern databases

partitioning into two regions) can be easily transformed into
one of these 4 configurations (e.g., by reflection). Consider
the regular 7-tile PDB of tiles(1 . . . 7) (which corresponds
to the 7 real tiles of regionB of Figure 5(a)). This PDB an-
swers the question of how to move these real tiles from any
possible configuration to their goal configuration. The dual
lookup should answer the question of how many moves it
takes to distribute the tiles that are currently located in lo-
cations(1 . . . 7) to their goal configuration. If these tiles are
all real tiles (and the blank is in the corner) then getting this
data from the regular PDB is as before. However, when the
blank is not in the corner, (the other cases of Figure 5) one of
the tiles occupying locations(1 . . . 7) is the blank. Therefore,
the answer from a dual lookup of the regular 7-tile PDB will
also count moves of the blank while the real tile in the corner
will be ignored. This might lose admissibility.

There are two possible ways to solve this problem. The
first is to artificially move the blank tile to the nearest corner.
In effect, this means reducing the PDB value by one or two (to
account for the extra blank moves) to preserve admissibility.
Now we can use the regular 7-tile PDB for a dual lookup, at
the cost of a weaker heuristic (and, hence, additional search).

A better idea is to add three more 7-tile PDBs for a to-
tal of four—one for each of the cases in Figure 5. For each
blank scenario we build a regular 7-tile PDB assuming that
the blank is located in the relevant location. For example,
for region B of Figure 5(b) we build a PDB for the tiles
{0, 2, 3, 4, 5, 6, 7} and assume that tile1 is the blank tile. This
PDB cannot be consulted as a regular PDB since we assume
that tile1 is the blank. However, for any partitioning where
region B corresponds to this case, we can perform a dual
lookup in this PDB and retrieve the correct value for the tiles
that are currently located in locations{0, 2, 3, 4, 5, 6, 7} (or
their reflections). Similarly for the other blank locations.

The frame on the left of Figure 5 indicates the relevant PDB
for the dual lookup of each possible blank location. In those
locations where two PDBs are given, then the right label in-
dicates the PDB to use for a horizontal partition while the left
corresponds to a vertical partition. The amount of memory
needed is 519KB for the 8-tile PDB and 57.5KB for a 7-tile
PDB. Thus the total memory needs (the 8-tile and 4 7-tile
PDBs) is 749KB. The three extra PDBs needed to handle all
the dual cases correctly represent a small increase of memory.

Table 3 presents results of the different heuristics averaged
over the same 1000 instances used in[Korf and Felner, 2002].

Heuristic Av. H Nodes Time
1r 44.75 136,289 / 1.0 0.081 / 1.0
1r+1r* 45.63 36,710 / 3.7 0.034 / 2.4
1d 44.39 278,820 / 0.5 0.157 / 0.5
1d+c 44.39 247,299 / 0.6 0.139 / 0.6
1d+1d*+c 44.40 65,349 / 2.1 0.076 / 1.1
1r+r*+1d+1d*+c 46.12 18,601 / 7.3 0.022 / 3.7

Table 3: Results for the 15 puzzle

PDBs Nodes Time Memory
1r+1r* 16,413,254,279 32,826 244,140
1r+1r*+1d+1d*+c 6,877,105,604 22,955 976,562

Table 4: 24 puzzle results

The average solution for these instances is 52.55. The first
column indicates the heuristic used, with ‘r*’ and ‘d*’ repre-
senting the reflected regular and dual PDB lookups. The first
row presents the results when only the regular PDB is used,
while the second row took the maximum of the regular and
reflected PDBs. Note that these two rows are the same re-
sults obtained by[Korf and Felner, 2002] but on our current
machine. The next three rows present results for different ver-
sions of the dual lookup. Note that for this domain thebpmx
cutoff yielded a reduction in nodes of only 10% for a single
dual lookup. Finally, the last row presents the maximum over
the four PDB combinations. Using dual lookups reduces the
number of generated nodes by more than a factor of 2 and
eliminated one third of the execution time compared to the
best results of[Korf and Felner, 2002] (line 2 of Table 3). To
our knowledge using the four regular/dual normal/reflected
PDB lookups gives the best existing heuristic for this puzzle.
Of historical note is that the number of generated nodes is
now nearly 30,000 times smaller than when IDA* first solved
the 15-puzzle using only Manhattan distance[Korf, 1985].

Similar experiments were performed using the 24-puzzle.
The original 6-6-6-6 partitioning from[Korf and Felner,
2002] (Figure 4) needed storage for only two 6-tile PDBs
since all the3 × 2 rectangles are symmetric. As before, we
need additional PDBs to handle the blank. We use 8 6-tile
PDBs: one for all the3 × 2 rectangles and their duals, but
we need 7 6-tile PDBs for the irregular shape in the top left
corner (see Figure 4). Each 6-tile PDB needs 122MB and our
new system needs 8 times as much memory.

In [Korf and Felner, 2002] 50 random instances of the 24-
puzzle were solved. Table 4 presents the average results over
the 25 easiest problems of that set (the 25 with the fewest
nodes generated). The average solution length for this set is
96.2 moves. Using both regular and dual lookups and their
reflections reduces the number of generated nodes by a factor
of 2.38 and the time by a factor of 1.43 when compared to the
results of[Korf and Felner, 2002] (first line of Table 4).

7 Discussion
Dual PDB lookups double the number of possible PDB
lookups. They are effective for all the domains studied but



perform differently on the various domains. There are two
phenomena that need explantion. First, thebpmx cutoff was
much better in TopSpin and Rubik’s cube (a factor of up to
5) than in the tile puzzles (only 10%). Second, in TopSpin
and Rubik’s cube a single dual PDB lookup (even without the
bpmx cutoff) was better than a single regular PDB by a factor
of up to 5.3, while in the tile puzzles it was worse.

To explain this we define theinconsistency rateof a heuris-
tic as the average difference between the heuristics of an ar-
bitrary pair of neighboring states. For a consistent heuristic,
this rate must not exceed 1 (assuming a uniform edge cost of
1). We measured this rate for 10 million pairs of states for
each domain. For the dual lookups the rates were 2.01 for
TopSpin, 1.74 for Rubik’s cube (7-edge PDB) and only 1.16
for the 15-puzzle.

Values in PDBs are locally correlated. However, in Top-
Spin 4 tokens change their locations at each move (8 cu-
bies for Rubik’s cube). The identity of the tokens queried by
the dual lookup can dramatically change between consecutive
steps. This is a dramatic “jump” to different place in the PDB.
There is no locality of values with such a jump, meaning there
is higher chance of getting a radically different heuristic value
(better or worse). This causes IDA* to generate less nodes as
mistakes of heuristics (such as low estimations) are being cor-
rected fast. This also increases the rate of inconsistency and
thus thebpmx cutoff is performed frequently.

In the 15-puzzle however, every operator only moves one
tile. This means that in two consecutive PDB lookups (regu-
lar or dual) most of the indices stay the same – and you get
similar values. Furthermore, in most cases of the 15-puzzle,
the blank and the tile that exchange their locations belong to
the same set of 8 locations indicated by regionB above. Thus
the identity of the 7 and 8 tiles for the dual lookups remain
the same in consecutive steps. Only when the blank crosses
the partition line (such as moving from position 4 to position
8 in Figure 5c) then the 7-tile set and the 8-tile sets for the
dual lookups are changed and there is some chance for a dra-
matic jump and for inconsistency. However, even in this case
the inconsistency rate is low because weaddheuristics of two
different subproblems which together report values for all the
15 tiles. Thus, the identity of the tiles being reported is not
changed. Therefore, the diversity and inconsistency rate is
low and thebpmx cutoff is not performed frequently.

We can conclude that dual heuristics andbpmx cutoff are
more effective in domains where each operator changes larger
parts of the state and the identity of objects being reported in
consecutive steps is different.

Another interesting phenomenon is the fact that unlike the
other domains, in the 15 puzzle the pure dual PDB lookup
was worse than the pure regular lookup and generated almost
twice as many nodes. The reason for this is again the loca-
tion of the blank. Note that while the regular PDB lookup
always consults the 8-tile PDB and the 7-tile PDB labeleda
in Figure 5, the dual PDB might also consult the other 7-tile
PDBs (labeledb, c andd). This is because the regular lookup
always aims for a regionB configuration such that the blank
is located in a corner (the goal state) while the dual lookup
needs to consider other possibilities for regionB. It turns out
that getting the blank to the corner is a harder task and needs

more moves. While the average value over all the entries of
the PDB labeleda in Figure 5 is20.91, the average values
of the PDBs labeledb, c andd are20.81, 20.31 and20.53
respectively. Thus, we expect that the values obtained by the
dual lookups will be smaller than those obtained by the regu-
lar PDB. Historically, the goal location of the blank is in the
corner. However, if we set a goal state such that the blank is
in location 4 (as in figure 5.c) then the regular heuristic will
always look in the weakest PDB while the dual heuristic will
consult the other PDBs as well. We have made such experi-
ments and indeed, the pure dual PDB lookup generated nearly
40% less nodes than the pure regular PDB.

It is important to note that the dual lookups for the tile puz-
zles are of great importance. TopSpin and Rubik’s cube have
many symmetries and thus enable many possible regular PDB
lookups. In the tile puzzles, however, there is only one sym-
metry available for the state-of-the-art additive heuristic—the
reflection about the main diagonal. Thus, the dual idea dou-
bles the number of possible lookups and achieved a speedup
of a factor of 2 over the previous benchmarks.

8 Summary and Conclusions
We presented a new way of using pattern databases. We show
that the dual lookup heuristic values are inconsistent, which
allows additional opportunities for achieving cut-offs in the
search. Results on TopSpin, Rubik’s cube, and the sliding
tile puzzles confirm the advantages of this new heuristic. To
the best of our knowledge we have the best published optimal
solvers for all three domains.

Inconsistent heuristics have a negative reputation; some-
thing to be avoided. We showed that there is nothing to fear
with inconsistent heuristics and there can be real benefits.
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