
Best-First Fixed-Depth Game-Tree Search in PracticeAske Plaat,1 Jonathan Schae�er,2 Wim Pijls,1 Arie de Bruin1plaat@theory.lcs.mit.edu, jonathan@cs.ualberta.ca, whlmp@cs.few.eur.nl, arie@cs.few.eur.nlThis paper has been published in IJCAI'95, Montreal1 Erasmus University, 2 University of Alberta,Dept. of Computer Science, Dept. of Computing Science,Room H4-31, P.O. Box 1738, 615 General Services Building,3000 DR Rotterdam, The Netherlands Edmonton, AB, Canada T6G 2H1AbstractWe present a new paradigm for minimax searchalgorithms: MT, a memory-enhanced version ofPearl's Test procedure. By changing the wayMT is called, a number of practical best-�rstsearch algorithms can be simply constructed.Reformulating SSS* as an instance of MT elim-inates all its perceived implementation draw-backs. Most assessments of minimax searchperformance are based on simulations that donot address two key ingredients of high perfor-mance game-playing programs: iterative deep-ening and memory usage. Instead, we useexperimental data gathered from tournamentcheckers, Othello and chess programs. The useof iterative deepening and memory makes ourresults di�er signi�cantly from the literature.One new instance of our framework, MTD(f),out-performs our best Alpha-Beta searcher onleaf nodes, total nodes and execution time. Toour knowledge, these are the �rst reported re-sults that compare both depth-�rst and best-�rst algorithms given the same amount of mem-ory.1 IntroductionFor over 30 years, Alpha-Beta has been the algorithm ofchoice for searching game trees. Using a simple left-to-right depth-�rst traversal, it is able to e�ciently searchtrees [Knuth and Moore, 1975; Pearl, 1982]. Several im-portant enhancements were added to the basic Alpha-Beta framework, including iterative deepening, transpo-sition tables, the history heuristic, and minimal searchwindows [Schae�er, 1989]. The resulting algorithm isso e�cient that other promising �xed-depth algorithmswere largely ignored. In particular, although best-�rstsearch strategies seemed promising both analytically andin simulations, they are not used in practice.This paper presents a number of contributions toour understanding of depth-�rst and best-�rst minimaxsearch:� MT, a memory enhanced version of Pearl's Test pro-cedure, is introduced. MT yields a binary-valueddecision. We present a simple framework of MT

drivers (MTD) that make repeated calls to MT tohome in on the minimax value. Surprisingly, MTDcan be used to construct a variety of best-�rst searchalgorithms (such as SSS* [Stockman, 1979]) usingdepth-�rst search.� SSS* (and its dual DUAL* [Marsland et al., 1987])has not been used in practice because of several per-ceived drawbacks [Campbell and Marsland, 1983;Kaindl et al., 1991; Marsland et al., 1987; Roizenand Pearl, 1983]. When expressed in the MTDframework, these problems disappear. Furthermore,SSS* becomes easy to implement and integrate intoa conventional Alpha-Beta game-playing program.� Simulations of minimax search algorithms in theliterature are misleading because they make sim-plifying assumptions (such as assuming no depen-dencies between leaf values, or excluding iterativedeepening and transposition tables). Our approachwas to gather experimental data from three realgame-playing programs (chess, Othello and check-ers), covering the range from high to low branch-ing factors. Our results contradict published sim-ulation results on the relative merit of a varietyof minimax search algorithms [Kaindl et al., 1991;Marsland et al., 1987; Reinefeld and Ridinger, 1994].� In previous work, depth-�rst and best-�rst mini-max search algorithms were compared using di�er-ent amounts of memory. These are the �rst exper-iments that compare them using identical storagerequirements.� With dynamic move reordering, SSS* is no longerguaranteed to expand fewer leaf nodes than Alpha-Beta (Stockman's proof [Stockman, 1979] does nothold in practice). In our experiments, SSS* per-forms as fast as any of our Alpha-Beta implemen-tations, but visits too many interior nodes to bepractical.� A new instance of our framework, MTD(f), out per-forms our best Alpha-Beta searcher on leaf nodes,total nodes and execution time.2 Memory-enhanced TestPearl introduced the concept of a proof procedure forgame trees in his Scout algorithm [Pearl, 1982] (also

known as Null-Window Search). Scout called Test, aproof procedure that takes a search assertion (for ex-ample, the minimax value of the tree is � !) and re-turns a binary value (assertion is true or false). It turnsout that Scout-based algorithms will never consider moreunique leaf nodes than would Alpha-Beta. For the spe-cial case of a perfectly ordered tree both Alpha-Beta andthe Scout-variants search the so-called minimal searchtree [Knuth and Moore, 1975]. Simulations have shownthat, on average, Scout-variants (such as NegaScout) sig-ni�cantly out-perform Alpha-Beta [Kaindl et al., 1991;Marsland et al., 1987]. However, when used in prac-tice with iterative deepening, aspiration searching andtransposition tables, the performance of all algorithmsgreatly increases. As a result, the relative advantage ofNegaScout signi�cantly decreases [Schae�er, 1989].Test does an optimal job of answering a binary-valuedquestion by maximizing the number of cuto�s. However,game-tree searches are usually over a range of values.We would like to use the e�ciency of Test to �nd theminimax value of a search tree. Repeated calls to Testwill be ine�cient, unless Test is modi�ed to reuse theresults of previous searches. Enhancing Test with mem-ory yields a new algorithm which we call MT (short forMemory-enhanced Test). The storage can be organizedas a familiar transposition table [Campbell and Mars-land, 1983]. Before a node is expanded in a search, acheck is made to see if the value of the node is availablein memory, the result of a previous search. Later onwe will see that adding storage has some other bene�tsthat are crucial for the algorithm's e�ciency: it makes itpossible to have the algorithm select nodes in a best-�rstorder.We would like our formulation of Test to be as clearand concise as possible. In �gure 1 MT is shown as aprocedure that takes a node n and a single value totest on. For MT to function correctly, must be un-equal to any possible leaf value, since we have deletedthe \=" part of the cuto� test [Plaat et al., 1994a]. Wecan set = ! + ", where " is a value smaller than thedi�erence between any two leaf node evaluations. Analternative would be to formulate MT as a null-windowAlpha-Beta search (� = bc; � = de) with a transpo-sition table. We prefer our one-bound version becauseit focuses attention on the value to be tested, althoughthe null window search version may be better suited forimplementation in existing game playing programs.There are three di�erences between MT and Test. Oneis that MT is called with ! � " instead of !, so thatthere is no need for the \=" part in the cuto� test, ob-viating extra tests in the code of MT. The second isthat MT returns a bound on the minimax value, andnot just a Boolean result. The third (and more fun-damental) di�erence is that MT uses storage to passon search results from one pass to the next, makinge�cient multi-pass searches possible. [Ibaraki, 1986;De Bruin et al., 1994] provide a theoretical background.Figure 1 shows the pseudo-code for MT using Nega-max. The routine assumes an evaluate routine that as-signs a value to a node. Determining when to call evalu-ate is application-dependent and is hidden in the de�ni-

function MT(n;)! g;f precondition: 6= any leaf-evaluation; MT must becalled with = ! � " to prove g < ! or g � ! gif retrieve(n) = found thenif n:f� > then return n:f�;if n:f+ < then return n:f+;if n = leaf thenn:f+ := n:f� := g := evaluate(n);elseg := �1;c := �rstchild(n);while g < and c 6= ? dog := max(g;�MT(c;�));c := nextbrother(c);if g < then n:f+ := g else n:f� := g;store(n);return g; Figure 1: MTfunction MTD(+1) ! f ;g := +1;n := root;repeatbound := g;g := MT(n; bound� ");until g = bound;return g; Figure 2: MTD(+1)tion of the condition n = leaf. For a depth d �xed-depthsearch, a leaf is any node that is d moves from the rootof the tree. The search returns an upper or lower boundon the search value at each node, denoted by f+ andf� respectively. Before searching a node, the transpo-sition table information is retrieved and, if it has beenpreviously searched deep enough, the search is cuto�.At the completion of a node, the bound on the value isstored in the table. The bounds stored with each nodeare denoted using Pascal's dot notation.In answering the binary-valued question, MT returnsa bound on the minimax value. If MT's return-valueg > then it is a lower bound, while if g < , it is anupper bound. Usually we want to know more than just abound. Using repeated calls to MT, the search can homein on the minimax value f . To achieve this, MT must becalled from a driver routine. One idea for such a driverwould be to start at an upper bound for the search value,f+ = +1. Subsequent calls to MT can lower this bounduntil the minimax value is reached. Figure 2 shows thepseudo-code for such a driver, called MTD(+1). Thevariable g is at all times an upper bound f+ on theminimax value of the root of the game tree [Plaat etal., 1994c]. Surprisingly, MTD(+1) expands the sameleaf nodes in the same order as SSS*, provided that thetransposition table is big enough and no information islost through table collisions (see section 3).Storage is critical to the performance of a multi-passMT algorithm. Without it, the program would revisitinterior nodes without the bene�t of information gainedfrom the previous search and expand them. Instead, MTcan retrieve an upper and/or lower bound for a node,using a relatively cheap table lookup. The storage table

provides two bene�ts: (1) preventing unnecessary nodere-expansion, and (2) facilitating best-�rst node selec-tion (see sections 3 and 4). Both are necessary for thee�ciency of the algorithm.One could ask the question whether a simple one-passAlpha-Beta search with a wide search window wouldnot be as e�cient. Various papers point out that atighter Alpha-Beta window causes more cuto�s than awider window, all other things being equal (for example,[Campbell and Marsland, 1983; Marsland et al., 1987;Plaat et al., 1994c]). Since MT does not re-expandnodes from a previous pass, it cannot have fewer cuto�sthan wide-windowed Alpha-Beta for new nodes. (Nodesexpanded in a previous pass are not re-expanded butlooked-up in memory.) This implies that any sequenceof MT calls will be more e�cient (it will never evaluatemore leaf nodes and usually signi�cantly less) than a callto Alpha-Beta with window (�1;+1), for non-iterativedeepening searches.3 Four Misconceptions concerning SSS*MTD(+1) causes MT to expand the same leaf nodes inthe same order as SSS* (see [Plaat et al., 1994c] for asubstantiation of this claim). The surprising result thata depth-�rst search procedure can be used to examinenodes in a best-�rst manner can be explained as follows.The value of g� " (where g = f+) causes MT to exploreonly nodes that can lower the upper bound at the root;this is the best-�rst expansion order of SSS*. Only chil-dren that can inuence the value of a node are traversed:the highest-valued child of a max node, and the lowest ofa min node. Expanding brothers of these so-called criti-cal children gives a best-�rst expansion. It is instructiveto mentally execute the MTD(+1) algorithm of �gure 1on an example tree such as the one in [Stockman, 1979],as is done in [Plaat et al., 1994b].An important issue concerning the e�ciency of MT-based algorithms is memory usage. SSS* can be regardedas manipulating one max solution tree in place. A maxsolution tree has only one successor at each min nodeand all successors at max nodes, while the converse istrue for min solution trees [Pijls and De Bruin, 1990;Stockman, 1979]. Whenever the upper bound is lowered,a new (better) subtree has been expanded. MTD(+1)has to keep only this best max solution tree in memory.Given a branching factor of w and a tree of depth d, thespace complexity of a driver causing MT to constructand re�ne one max solution tree is therefore of the orderO(wdd=2e), and a driver manipulating one min solutiontree is of order O(wbd=2c) (as required for DUAL*). Asimple calculation and empirical evidence show this tobe realistic storage requirements. (Due to lack of spacewe refer to [Plaat et al., 1994c] for an in-depth treatmentof these issues.)A transposition table provides a exible way of stor-ing solution trees. While at any time entries from old(inferior) solution trees may be resident, they will beoverwritten by newer entries when their space is needed.There is no need for a time-consuming SSS* purge op-eration. As long as the table is big enough to store themin and/or max solution trees that are essential for the

e�cient operation of the algorithm, it provides for fastaccess and e�cient storage.The literature cites four issues concerning SSS*[Kaindl et al., 1991; Roizen and Pearl, 1983]. The �rstis the complicated algorithm. Comparing the code forAlpha-Beta [Knuth and Moore, 1975] and SSS* [Stock-man, 1979], one cannot help getting the feeling of beingoverwhelmed by its complexity. Looking at the code in�gure 2 we think this is solved. The second is SSS*'sexponential storage demands. A counter-argument isthat Alpha-Beta in game-playing programs also has ex-ponential storage needs to achieve good performance; thetransposition table must be large enough to store themove ordering information of the previous iteration. Inother words, both Alpha-Beta and SSS* perform bestwith a minimum of storage of the order of the size ofmin/max solution tree(s). The third is that SSS* usesexpensive operations on the sorted OPEN list. In ourMT reformulation, no such operations are used. Thereis no explicit OPEN list, only an implicit search treestored in a transposition table. The store and retrieveoperations are just as fast for Alpha-Beta as for SSS*.In summary, the arguments against SSS* are eliminatedusing an MT representation. SSS* is no longer an im-practical algorithm [Plaat et al., 1994c].The fourth issue in the literature is that SSS* willprovably never expand more leaf nodes than Alpha-Beta[Stockman, 1979]. However, our experiments used itera-tive deepening and move reordering, which violates theimplied preconditions of the proof. In expanding morenodes than SSS* in a previous iteration, Alpha-Beta re-orders more nodes. Consequently, in a subsequent itera-tion SSS* may have to consider a node for which it hasno move ordering information whereas Alpha-Beta does.Thus, Alpha-Beta's ine�ciency in a previous iterationcan actually bene�t it later in the search. With iterativedeepening, it is now possible for Alpha-Beta to expandfewer leaf nodes than SSS* (a short example proving thiscan be found in [Plaat et al., 1994c]).MTD(+1) shows up poorly if all nodes visited in thesearch is used as the performance metric. MTD(+1) re-traverses internal nodes to �nd the best node to expandnext, whereas Alpha-Beta does not.We conclude that our reformulation together with theresults of section 5 contradict the literature on all fourpoints.4 Drivers for MTHaving seen one driver for MT, the ideas can be en-compassed in a generalized driver routine. The drivercan be regarded as providing a series of calls to MT tosuccessively re�ne bounds on the minimax value. Byparameterizing the driver code, a variety of algorithmscan be constructed. The parameter needed is the �rststarting bound for MT. Using this parameter, an algo-rithm using our MT driver, MTD, can be expressed asMTD(�rst) (see �gure 3). (In [Plaat et al., 1994b] a moregeneral version of MTD is presented, facilitating the con-struction of more algorithms.) A number of interestingalgorithms can easily be constructed using MTD. Someinteresting MTD formulations include:

function MTD(�rst) ! f ;f+ := +1; f� := �1;g := �rst;n := root;repeatif g = f+ then := g � " else := g + ";g := MT(n;);if g < then f+ := g else f� := g;until f� = f+;return g;Figure 3: A framework for MT driversSSS*. SSS* can be described as MTD(+1).DUAL*. In the dual version of SSS* minimizationis replaced by maximization, the OPEN list is kept inreverse order, and the starting value is �1. This algo-rithm becomes MTD(�1). The advantage of DUAL*over SSS* lies in the search of odd-depth search trees[Marsland et al., 1987].MTD(f). Rather than using +1 or �1 as a �rstbound, we can start at a value which might be closer tof . Given that iterative deepening is used in many appli-cation domains, the obvious approximation for the mini-max value is the result of the previous iteration. In MTDterms this algorithm becomes MTD(heuristic-guess). Ifthe initial guess is below the minimax value, MTD(f)can be viewed as a version of DUAL* that started closerto f , otherwise it becomes a version of SSS* that startedcloser to f .Other MTD variations possible are: bisecting the in-terval [f+; f�] in each pass, using larger step sizes, andsearching for the best move (not the best value) [Plaatet al., 1994b].Formulating a seemingly diverse collection of algo-rithms into one unifying framework focuses attention onthe fundamental di�erences. For example, the frame-work allows the reader to see just how similar SSS* andDUAL* really are, and that these are just special casesof calling Pearl's Test (or rather MT). The drivers con-cisely capture the algorithm di�erences. MTD o�ers us ahigh-level paradigm that facilitates the reasoning aboutimportant issues like algorithm e�ciency and memoryusage, without the need for low-level details.By using MT, all MTD algorithms bene�t from themaximum number of cuto�s a single bound can gener-ate. Each MTD makes a di�erent choice for this bound,which inuences the number of cuto�s. Tests show thaton average, there is a relationship between the startingbound and the size of the search trees generated: a se-quence of MT searches to �nd the game value bene�tsfrom a start value close to the game value. Startingbounds such as +1 or �1 are in a sense the worstpossible choices.Figure 4 validates the choice of a starting bound closeto the game value. The �gure shows the percentage ofunique leaf evaluations of MTD(f), for Othello; similarresults were obtained using chess and checkers. The datapoints are given as a percentage of the size of the searchtree built by our best Alpha-Beta searcher (AspirationNegaScout). (Since iterative deepening algorithms areused, the cumulative leaf count over all previous depths

94

96

98

100

102

104

106

108

110

-30 -20 -10 0 10 20 30

C
um

ul
at

iv
e

L
ea

ve
s

R
el

at
iv

e
to

 A
sp

 N
S

(%
)

Difference of first guess from f

Othello, Average over 20 Trees

depth 8
depth 9

Figure 4: Tree size relative to the �rst guess fis shown for depth 8 and 9.) Given an initial guess of hand the minimax value of f , the graph plots the searche�ort expended for di�erent values of h � f . For eachdepth the �rst guess is distorted by the same amount.To the left of the graph, MTD(f) is closer to DUAL*,to the right it is closer to SSS*. A �rst guess close tof makes MTD(f) perform better than the 100% Aspi-ration NegaScout baseline. The guess must be close tof for the e�ect to become signi�cant (between �15 and+10 of f for Othello, given that values lie in the range[�64;+64]). Thus, if MTD(f) is to be e�ective, the fobtained from the previous iteration must be a good in-dicator of the next iteration's value.5 ExperimentsThere are three ways to evaluate a new algorithm: anal-ysis, simulation or empirical testing. The emphasis inthe literature has been on analysis and simulation. Thisis surprising given the large number of game-playing pro-grams in existence.The mathematical analyses of minimax search algo-rithms do a good job of increasing our understandingof the algorithms, but fail to give reliable predictions oftheir performance. The problem is that the game treesare analyzed using simplifying assumptions; the trees dif-fer from those generated by real game-playing programs.To overcome this de�ciency, a number of authors haveconducted simulations (for example, [Kaindl et al., 1991;Marsland et al., 1987; Muszycka and Shinghal, 1985]).In our opinion, the simulations did not capture the be-havior of realistic search algorithms as they are used ingame-playing programs. Instead, we decided to conductexperiments in a setting that was to be as realistic aspossible. Our experiments attempt to address the con-cerns we have with the parameters chosen in many ofthe simulations:� High degree of ordering: most simulations have thequality of their move ordering below what is seen inreal game-playing programs.� Dynamic move re-ordering: simulations use �xed-depth searching. Game-playing programs use itera-tive deepening to seed memory (transposition table)

with best moves to improve the move ordering. Thisadds overhead to the search, which is more than o�-set by the improved move ordering. Also, transposi-tions and the history heuristic dynamically re-orderthe game tree during the search. Proofs that SSS*does not expand more leaf nodes than Alpha-Betado not hold for the iterative deepened versions ofthese algorithms.� Memory: simulations assume either no storage ofpreviously computed results, or unfairly bias theirexperiments by not giving all the algorithms thesame storage. For iterative deepening to be e�ec-tive, best move information from previous iterationsmust be saved in memory. In game-playing pro-grams a transposition table is used. Simulationsoften use an inconsistent standard for counting leafnodes. In conventional simulations (for example,[Marsland et al., 1987]) each visit to a leaf node iscounted for depth-�rst algorithms like NegaScout,whereas the leaf is counted only once for best-�rstalgorithms like SSS* (because it was stored in mem-ory, no re-expansion occurs).� Value dependence: some simulations generate thevalue of a child independent of the value of the par-ent. However, there is usually a high correlationbetween the values of these two nodes in real games.The net result is that iterative deepening and mem-ory improve the move ordering beyond what has beenused in most simulations. Besides move ordering theother three di�erences between arti�cial and real treescan cause problems in simulations. Just increasing themove ordering to 98% is not su�cient to yield realis-tic simulations. As well, simulations are concerned withtree size, but practitioners are concerned with executiontime. Simulation results do not necessarily correlate wellwith execution time. For example, there are many pa-pers showing SSS* expands fewer leaf nodes than Alpha-Beta. However, SSS* implementations using Stockman'soriginal formulation have too much execution overheadto be competitive with Alpha-Beta [Roizen and Pearl,1983].5.1 Experiment DesignTo assess the feasibility of the proposed algorithms,a series of experiments was performed to compareAlpha-Beta, NegaScout, SSS* (MTD(+1)), DUAL*(MTD(�1)), MTD(f) (and other variants, see [Plaatet al., 1994b]).Rather than use simulations, our data has beengathered from three game-playing programs: Chinook(checkers), Keyano (Othello), and Phoenix (chess). Allthree programs are well-known in their respective do-main. For our experiments, we used the program au-thor's search algorithm which, presumably, has beenhighly tuned to the application. The only change wemade was to disable search extensions and forward prun-ing. All programs used iterative deepening. The MTDalgorithms would be repeatedly called with successivelydeeper search depths. All three programs used a stan-dard transposition table with 221 entries. For our exper-

iments we used the program author's original transposi-tion table data structures and table manipulation code.Conventional test sets in the literature proved to bepoor predictors of performance. Test set positions areselected, usually, to test a particular characteristic orproperty of the game and are not indicative of typicalgame conditions. By using a sequences of moves fromreal games as the test positions, we are attempting tocreate a test set that is representative of real game searchproperties.All three programs were run on 20 balanced test posi-tions, searching to a depth so that all searched roughlythe same amount of time. (A number of test runs wasperformed on a bigger test set and to a higher searchdepth to check that the 20 positions did not causeanomalies.) In checkers, the average branching factoris approximately 3 (1.2 moves in a capture position; 8 ina non-capture position), in Othello it is 10 and in chessit is 36. The branching factor determined the maximumsearch depth for our experiments: 17 ply for Chinook,10 ply for Keyano, and 8 ply for Phoenix.Many papers in the literature use Alpha-Beta as thebase line for comparing the performance of other algo-rithms (for example, [Campbell and Marsland, 1983]).The implication is that this is the standard data pointwhich everyone is trying to beat. However, game-playingprograms have evolved beyond simple Alpha-Beta algo-rithms. Therefore, we have chosen to use the current al-gorithm of choice as our base line: aspiration window en-hanced NegaScout [Campbell and Marsland, 1983]. Thegraphs in �gure 4 show the cumulative number of nodesover all previous iterations for a certain depth (whichis realistic since iterative deepening is used), relative toAspiration NegaScout.To our knowledge this is the �rst comparison of algo-rithms like Alpha-Beta, NegaScout, SSS* and DUAL*where all algorithms are given the exact same resources.5.2 Experiment ResultsFigure 5 shows the performance of Phoenix for (unique)leaf evaluations (NBP or number of bottom positions),and Figure 6 shows the total node count (leaf, interior,and transposition nodes). The total node count includesall revisits to previously searched nodes. Although mostsimulations only report NBP, we �nd that the total nodecount has a higher correlation with execution time forsome algorithms. Detailed results for all the games canbe found in [Plaat et al., 1994b].Over all three games, the best results are fromMTD(f). Its leaf node counts are consistently betterthan Aspiration NegaScout, averaging at least a 5%improvement. More surprisingly is that MTD(f) out-performs Aspiration NegaScout on the total node mea-sure as well. Since each iteration requires repeated callsto MT (at least two and possibly many more), one mightexpect MTD(f) to perform badly by this measure be-cause of the repeated traversals of the tree. This sug-gests that MTD(f), on average, is calling MT close tothe minimum number of times. For all three programs,MT gets called between 3 and 4 times on average. In con-trast, the SSS* and DUAL* results are poor compared

85

90

95

100

105

110

115

2 3 4 5 6 7 8 9
Depth

Chess - Leaves Relative to Aspiration NegaScout (%)

AspNS
AB

MTD(f)
Dual*
SSS*

Figure 5: Cumulative leaf node count

90

100

110

120

130

140

150

160

2 3 4 5 6 7 8 9
Depth

Chess - All nodes Relative to Aspiration NegaScout (%)

AspNS
AB

MTD(f)
Dual*
SSS*

Figure 6: Cumulative total node countto NegaScout when all nodes in the search tree are con-sidered. Each of these algorithms performs dozens andsometimes even hundreds of MT searches, depending onhow wide the range of leaf values is.Implementing SSS* as an instance of MTD yields re-sults that run counter to the literature. SSS* is nowas easy to implement as Aspiration NegaScout, uses asmuch storage and has no additional execution overhead,but performs generally worse when viewed in the contextof iterative deepening and transposition tables. DUAL*is more e�cient than SSS* but still comes out poorly inall the graphs measuring total node count. SometimesSSS* expands more leaf nodes than Alpha-Beta (as dis-cussed in section 3), contradicting both the analytic andsimulation results for �xed-depth SSS* and Alpha-Beta.An interesting observation is that the e�ectiveness ofSSS* appears to be a function of the branching factor;the larger the branching factor, the better it performs.Given these results, some of the algorithmic di�erencescan be explained. If we know the value of the searchtree is f , then two searches are required: MT(f � "),which fails high establishing a lower bound on f , andMT(f + "), which fails low and establishes an upperbound on f . The closer the approximation to f , theless the work that has to be done (according to �gure 4).As that �gure indicated, the performance of MTD(f) is

85

90

95

100

105

110

3 4 5 6 7 8
Depth

Chess - CPU time MTD(f) Relative to AspNS (%)

AspNS time/leaves
MTD(f) time

MTD(f) leaves

Figure 7: Execution time for Chessdependent on the quality of the score that is used as the�rst-guess. For programs with a pronounced odd/evenoscillation in their score, results are better if not thescore of the previous iterative deepening pass is used,but the one from 2 passes ago. Considering this, it isnot a surprise that both DUAL* and SSS* come outpoorly. Their initial bounds for the minimax value arepoor, meaning that the many calls to MT result in sig-ni�cantly more interior as well as leaf nodes. NegaScoutused a wide window for the principal variation (PV) andall re-searches. The wide-window search of the PV givesa good �rst approximation to the minimax value. Thatapproximation is then used to search the rest of thetree with minimal window searches|which are equiv-alent to MT calls. If these refutation searches are suc-cessful (no re-search is needed), then NegaScout deviatesfrom MTD(f) only in the way it searches the PV for avalue, the wider window causing less cuto�s. MTD(f)uses MT for searching all nodes, including the PV.The bottom line for practitioners is execution time.Since we did not have the resources to run all our ex-periments on identical and otherwise idle machines, weonly show execution time graphs for MTD(f) in �g-ure 7. Comparing results for the same machines we foundthat MTD(f) is on average consistently the fastest algo-rithm. In our experiments we found that for Chinookand Keyano MTD(f) was about 5% faster in executiontime than Aspiration NegaScout, for Phoenix we foundMTD(f) 9{13% faster. For other programs and othermachines these results will obviously di�er, depending inpart on the quality of the score of the previous iteration,and on the test positions used. Also, since the testedalgorithms perform relatively close together, the relativedi�erences are quite sensitive to variations in input pa-rameters. In generalizing these results, one should keepthis sensitivity in mind. Using these numbers as absolutepredictors for other situations would not do justice to thecomplexities of real-life game trees. We refer to [Plaatet al., 1994b] for the remainder of our experimental dataand explanations.Basing one's conclusions only on simulations can behazardous. For example, the general view is that SSS*is (1) di�cult to understand, (2) has unreasonable mem-ory requirements, (3) is slow, (4) provably dominatesAlpha-Beta in expanded leaves, and (5) that it expands

signi�cantly fewer leaf nodes than Alpha-Beta. A re-cent paper used simulations to show that point 2 and3 could be wrong [Reinefeld and Ridinger, 1994], paint-ing an altogether favorable picture for SSS*. Using realprograms, we showed that all �ve points are wrong, mak-ing it clear that, although SSS* is practical, in realisticprograms it has no substantial advantage over Alpha-Beta-variants like Aspiration NegaScout. We think thatonly real programs provide a valid basis for conclusions.6 ConclusionsOver thirty years of research have been devoted to im-proving the e�ciency of Alpha-Beta searching. The MTfamily of algorithms are comparatively new, without thebene�t of intense investigations. Yet, MTD(f) is alreadyout-performing our best Alpha-Beta based implementa-tions in real game-playing programs. MT is a simple andelegant paradigm for high performance game-tree searchalgorithms. It eliminates all the perceived drawbacks ofSSS* in practice.The purpose of a simulation is to reliably model analgorithm to gain insight into its performance. Simu-lations are usually performed when it is too di�cult ortoo expensive to construct the proper experimental en-vironment. For game-tree searching, the case for simu-lations is weak. There is no need to do simulations whenthere are quality game-playing programs available for ob-taining actual data. Further, as this paper has demon-strated, simulation parameters can be incorrect, result-ing in large errors in the results that lead to misleadingconclusions. In particular, the failure to include iterativedeepening, transposition tables, and almost perfectly or-dered trees in many simulations are serious omissions.Although a 10% improvement for Chess may not seemmuch, it comes at no extra algorithmic complexity: justa standard Alpha-Beta-based Chess program plus onewhile loop. Binary-valued searches enhanced with it-erative deepening, transposition tables and the historyheuristic is an e�cient search method that uses no ex-plicit knowledge of the application domain. It is remark-able that one can search almost perfectly without explic-itly using application-dependent knowledge other thanthe evaluation function.AcknowledgementsThis work has bene�ted from discussions with MarkBrockington (author of Keyano), Yngvi Bjornsson andAndreas Junghanns. The �nancial support of the DutchOrganization for Scienti�c Research (NWO), the NaturalSciences and Engineering Research Council of Canada(grant OGP-5183) and the University of Alberta Cen-tral Research Fund are gratefully acknowledged.References[De Bruin et al., 1994] A. de Bruin, W. Pijls, andA. Plaat. Solution trees as a basis for game-treesearch. ICCA Journal, 17(4):207{219, December 1994.[Campbell and Marsland, 1983] M. Campbell and T.A.Marsland. A comparison of minimax tree search algo-rithms. Arti�cial Intelligence, 20:347{367, 1983.

[Ibaraki, 1986] T. Ibaraki. Generalization of alpha-betaand SSS* search procedures. Arti�cial Intelligence,29:73{117, 1986.[Kaindl et al., 1991] H. Kaindl, R. Shams, and H. Ho-racek. Minimax search algorithms with and withoutaspiration windows. IEEE PAMI, 13(12):1225{1235,1991.[Knuth and Moore, 1975] D.E. Knuth and R.W. Moore.An analysis of alpha-beta pruning. Arti�cial Intelli-gence, 6(4):293{326, 1975.[Marsland et al., 1987] T.A. Marsland, A. Reinefeld,and J. Schae�er. Low overhead alternatives to SSS*.Arti�cial Intelligence, 31:185{199, 1987.[Muszycka and Shinghal, 1985] A. Muszycka and R.Shinghal. An empirical comparison of pruning strate-gies in game trees. IEEE SMC, 15(3):389{399, 1985.[Pearl, 1982] J. Pearl. The solution for the branchingfactor of the alpha-beta pruning algorithm and its op-timality. CACM, 25(8):559{564, 1982.[Pijls and De Bruin, 1990] W. Pijls and A. de Bruin.Another view on the SSS* algorithm. In T. Asano,editor, Algorithms, SIGAL '90, Tokyo, volume 450 ofLNCS, pages 211{220. Springer-Verlag, August 1990.[Plaat et al., 1994a] A. Plaat, J. Schae�er, W. Pijls, andA. de Bruin. Nearly optimal minimax tree search?Technical Report CS-94-19, Dept. of Computing Sci-ence, Univ. of Alberta, 1994.[Plaat et al., 1994b] A. Plaat, J. Schae�er, W. Pijls, andA. de Bruin. A new paradigm for minimax search.Technical Report CS-94-18, Dept. of Computing Sci-ence, Univ. of Alberta, 1994.[Plaat et al., 1994c] A. Plaat, J. Schae�er, W. Pijls, andA. de Bruin. SSS* = �� + TT. Technical Report CS-94-17, Dept. of Computing Science, Univ. of Alberta,1994.[Reinefeld and Ridinger, 1994] A. Reinefeld andP. Ridinger. Time-e�cient state space search. Ar-ti�cial Intelligence, 71(2):397{408, 1994.[Roizen and Pearl, 1983] I. Roizen and J. Pearl. A min-imax algorithm better than alpha-beta? Yes and no.Arti�cial Intelligence, 21:199{230, 1983.[Schae�er, 1989] J. Schae�er. The history heuristic andalpha-beta search enhancements in practice. IEEEPAMI, 11(1):1203{1212, 1989.[Stockman, 1979] G.C. Stockman. A minimax algo-rithm better than alpha-beta? Arti�cial Intelligence,12(2):179{196, 1979.

