
IEEE Intelligent Systems /November 1999 / T&C / 1 of 5 /12/2/99 12:35 PM

Th e role of games in und erst an di n g com pu t ati on al
i n tel l igen ce

Jonathan Schaeffer, University of Alberta
The AI research community has made one of the most profound

contributions of the 20th century to mankind’s knowledge. This research
has led to the realization that intelligence is not uniquely human. Using
computers, it is possible to achieve human-like behavior in nonhumans.
In other words, it is possible to create the illusion of human intelligence
in a computer.

This idea has been vividly illustrated throughout the history of
computer games research. Unlike most of the early work in AI, game
researchers were interested in developing high-performance, real-time
solutions to challenging problems. This led to an ends-justify-the-means
attitude: the result—a strong chess program, for example—was all that
mattered, not the means by which it was achieved. In contrast, much of
the mainstream AI work used simplified domains, while eschewing real-
time performance objectives. This research typically used human
intelligence as a model: all one had to do was emulate the human
example to achieve intelligent behavior. The battle (and philosophical)
lines were drawn.

The difference in philosophy can be easily illustrated. The human
brain and the computer are different machines, each with its own sets of
strengths and weaknesses. Humans are good at, for example, learning,
reasoning by analogy, and image processing. Computers are good at
numeric calculations, repetitious computations, and memorizing large
sets of data. These machine architectures are largely complimentary: the
human’s processing strengths are the computer’s weaknesses and the
computer’s strengths are human weaknesses. Given a problem to be
solved and a specified architecture (human brain or silicon computer), a
good solution should cater to the strengths of the machine being used,
not the weaknesses. When viewed in this light, it is not surprising that
the unhuman-like approaches have won out.

Building high-performance game-playing programs has been one of
AI’s major triumphs. This is due, in part, to the success achieved in
games such as backgammon, chess, checkers, Othello, and Scrabble,
where computers are playing as well as or better than the best human
players. However, it is also due to the examples it set to the research
community. These include tackling challenging problems (rather than
trivial subsets, as is still often seen in AI research) and the emphasis on
the results of the system without regard for the methods used to achieve
those results (the ends justify the means).

This essay illustrates a number of techniques used by game-playing
programs to achieve the illusion of human-like intelligence.

Brute-force search
Humans are poor searchers. They cannot search quickly, and usually

not optimally. In contrast, computers are very good at search.
Considering millions of possibilities per second, looking for a solution in
a maze (or tree) of possibilities is easy to do in a computer. However,
humans are very good at discovering, generalizing, and using
knowledge; computers are primitive in comparison. Even after 50 years
of research, no one understands how to represent and manipulate
knowledge effectively. Hence, many computer-based solutions for games
programs trade off knowledge for search. They use large, deep searches
to compensate for inadequate knowledge (so-called brute-force search,

IEEE Intelligent Systems /November 1999 / T&C / 2 of 5 /12/2/99 12:35 PM

sometimes used in a derogatory context). Search itself is dynamic
knowledge.

This idea culminated in the Deep Blue victory in an exhibition match
with world chess champion Garry Kasparov in 1997. Deep Blue used a
32-processor IBM SP-2 computer, with each processor connected to 16
specially designed chess chips.1 Each chip was capable of quickly
searching large chess trees. The result was a chess machine whose search
considered all possible moves at least 12 ply (one ply is one move by one
side) into the future, while selectively extending the search considerably
deeper for interesting moves.

Deep Blue searched 200 million chess positions per second.1

Kasparov considered two. Given those numbers, to some observers it
was not a surprise that the computer won the match. The real surprise
was how long humans have been able to withstand the technological
onslaught. The next generation of Deep Blue chess chips will be 10 times
faster than those used in the Kasparov match. Improved computer
technology improves the perceived “intelligence” of compute-bound AI
applications.

Brute-force search is now an accepted tool in the AI researchers’
toolbox, and has been used to achieve many notable successes (with
games and in other domains).

Large memory
Computer memory is cheap. The price per byte of disk storage is

plummeting. This trend will continue for the foreseeable future.
Human memories are notoriously fallible, have a fixed capacity, and

degenerate with time. Storing large amounts of data is impractical.
Humans compensate for this by distilling large amounts of knowledge
into a manageable number of rules (or heuristics) that are effective at
reconstructing the data. Computer memory, on the other hand, can be
made infallible, can be expanded to fit the needs, and can be preserved
forever. Hence, a brute-force approach to storage can be used: save
everything.

The Chinook checkers program (8 × 8 draughts) uses this idea.2 The
game theoretic result (win, loss, or draw) for all positions with eight or
fewer pieces on the board were computed: roughly 444 billion positions
(4.44 × 1011). This knowledge lets the program play perfectly when it
reaches a position in the database (the program will always win a won
position and never lose a drawn position). It also significantly affects the
search, in that it introduces perfect knowledge. It is not uncommon to see
a position with 20 pieces on the board being searched deeply enough to
back up a database score to the root of the search. Typically, Chinook
can announce the final result of the game (assuming that the human
opponent does not make a mistake) within 15 moves of the start.

The database was compressed into six gigabytes for real-time
decompression. While the early versions of the program were I/O bound,
continually accessing the database on disk to look up position values
during a search, the current version preloads the entire database into
random-access memory. The resulting speed benefits only serve to widen
the gap between Chinook’s capabilities and what the best humans can
achieve.

Unexplainable knowledge
How does one acquire knowledge for use in a game-playing program?

The traditional approach is to consult human domain experts and attempt
to distill rules for strong play from them. This is a difficult task,
especially given the difficulty humans have in expressing their

IEEE Intelligent Systems /November 1999 / T&C / 3 of 5 /12/2/99 12:35 PM

subconscious decision-making processes. For a computer solution, one
ideally wants to eliminate the weak link—the human expert. The
computer should be able to discover and refine all the knowledge it
needs. While this goal remains elusive in general, there have been some
notable successes in the games domain.

The Othello program Logistello plays Othello better than all humans.3

The program evaluates positions using 11 patterns that, with reflections
and rotations, comes to 46. Assigning a score to each possible value for
each pattern results in roughly 1.2 million evaluation scores that need to
be determined. Using self-play (Logistello playing games against itself)
and linear regression, the program can incrementally learn the value of
these parameters. With relatively little effort (roughly a month of
computation), the program achieves world-class ability. In effect, this is
a brute-force approach to integrating knowledge. Program designers can
include as much (or as little) knowledge as they like, and let the
parameter-learning process decide what is used and how important it is.
The TD-Gammon backgammon program pioneered similar techniques
where self-play and temporal difference learning of a neural net resulted
in play that is comparable to that of the human world champion.4

There is little in the way of useful information that humans can
extract from the large number of seemingly random numbers with which
Logistello uses to evaluate positions. Just as computer program designers
have difficulty understanding human knowledge, so too do humans have
difficulty understanding computer “knowledge.”

Simulations
The early research into games was restricted to two-player, perfect-

information games. With the decline of interest in chess research in the
1990s, efforts switched to other games, including those with multiple
players and having imperfect information. Imperfect information
provides an interesting challenge. In these types of games, humans
observe their opponent’s actions and make inferences as to the missing
information. Human intuition and experience can be amazingly accurate.
Computers have difficulty approximating experience and intuition, but
are capable of precise probability calculations. The computer’s solution
is simulation: instantiate the missing information many times, each time
calculating the likely outcome. In this way, a statistical profile can be
obtained that indicates the computer’s best course of action.

Bridge5, poker6, and Scrabble7 programs—all games of imperfect
information—use similar techniques to achieve their success: they
simulate hundreds or thousands of scenarios. For example, the bridge
program GIB decides on what card to play by simulating the play of the
hand.5The program internally deals out cards that are consistent with the
bidding to the opponents. It then plays out the hand to the end to see
which card play leads to the best result (most tricks won). It repeats this
process roughly 100 times, each time with different cards for the
opponent. After enough simulations, it becomes clear which card play,
on average, leads to the best result. The program does not understand
well-known bridge concepts such as finesse or squeeze; everything is
done using uninformed search.

Comprehension without understanding
Documents contain human-understandable information. Because this

information was designed to be easily understood by a human (such as
text, sounds, images), it is often difficult for a computer to figure it out.
This communications gap between man and machine is an imposing
obstacle to technology. No one wants to re-express human knowledge in

IEEE Intelligent Systems /November 1999 / T&C / 4 of 5 /12/2/99 12:35 PM

computer-understandable terms unless absolutely necessary. We need to
make computers understand documents. The computer solution is to
create the illusion of understanding, without actually doing any
comprehension.

The Proverb program solves crossword puzzles.8 Human crossword
solvers use the semantics of the clues to deduce the answers needed for
the puzzle. The clues are intended for a human audience, and include a
combination of factual information, common knowledge, missing words,
and word plays. Writing a computer program to understand the semantics
is a challenging problem. Proverb’s solution is to not understand the
clues. It includes a variety of solvers (or agents) that examine the words
in the clues to identify likely answers. For example, Proverb uses a
database of clues and answers from previous puzzles to find an answer to
a clue 34% of the time. Specialized agents can go out on the Internet and
query, for example, dictionary, history, geography, and movie databases.
Each agent returns a set of answers. Proverb combs through the plausible
answers, trying to fit them into the puzzle grid and satisfy all the
constraints. Proverb scores 95% letters correct on the New York Times
crossword puzzles, without understanding the meaning of any of the
clues.

Comprehension without understanding is a powerful technique.
Similar ideas are being applied to, for example, classifying Web pages.
Given an arbitrary Web page, is it possible to classify its type (its
personal page, company, course, and so forth)? Statistical techniques can
do an effective job. For example, counting the frequency of words
appearing on the page can be a powerful indicator of the type of the
page. No human would ever explicitly compute word frequencies to do
this.

Computer games research is a microcosm for AI research. By liberating
the computer from blindly following the human example, amazing feats
of intelligence are possible with relatively little computer programming
effort. Our notion of intelligence will never be the same.

References
1. F-h. Hsu, “IBM's Deep Blue Chess Grandmaster Chips,” IEEE Micro, March-April,

1999, pp. 70-81.
2. J. Schaeffer, One Jump Ahead, Springer-Verlag, 1997.
3 . M. Buro, “Logistello—A Strong Learning Othello Program,” 1997,

www.neci.nj.nec.com/homepages/mic/ps/log-overview.ps.gz .
4. G. Tesauro, “Temporal Difference Learning and TD-Gammon”, Communications of

the ACM, Vol. 38, No. 3, 1995, pp. 58-68.
5 . M. Ginsberg, “GIB: Steps Toward an Expert-Level Bridge-Playing Program,”

International Joint Conference on Artificial Intelligence, 1999, pp. 584-589.
6. D. Billings, L. Peña, J. Schaeffer and D. Szafron, “Using Probabilistic Knowledge

and Simulation to Play Poker,” AAAI National Conference, 1999, pp. 697-703.
7. B. Sheppard, private communication, October, 1998.
8. G. Keim, N. Shazeer, M. Littman, S. Agarwal, C. Cheves, J. Fitzgerald, J. Grosland,

F. Jiang, S. Pollard and K. Weinmeister, “Proverb: The Probabilistic Cruciverbalist,”
AAAI National Conference, 1999, pp. 710-717.

Jonathan Schaeffer is a professor in the Department of Computing Science at the
University of Alberta. His research interests include heuristic search and parallel-
computing environments. He received a BSc from the University of Toronto and an
M.Math and a PhD from the University of Waterloo. He is the author of the checkers
program Chinook, the first program to win a human world championship in any game. He

IEEE Intelligent Systems /November 1999 / T&C / 5 of 5 /12/2/99 12:35 PM

has developed world-class programs for chess and poker, as well as worked on Sokoban.
He is a member of the IEEE, ACM, AAAI, and ICCA. Contact him at the Dept. of
Computing Science, Univ. of Alberta, Edmonton, Alberta, Canada T6G 2H1;
jonathan@cs.ualberta.ca; www.cs.ualberta.ca/~jonathan.

