
Evaluating Pattern Catalogs - The Computer Games 
Experience 

M. Cutumisu1, C. Onuczko1, D. Szafron1, J. Schaeffer1, M. McNaughton1, T. Roy1, J. Siegel1, 
M. Carbonaro2 

1Department of Computing Science, University of Alberta 
2Department of Educational Psychology, University of Alberta 

{meric, onuczko, duane, jonathan, mcnaught, troy, siegel}@cs.ualberta.ca 
mike.carbonaro@ualberta.ca

   
ABSTRACT 
Patterns and pattern catalogs (pattern languages) have been 
proposed as a mechanism for re-use. Traditionally, patterns have 
been used to foster design re-use, and generative design patterns 
have been used to achieve both design and code re-use. In theory, 
a pattern catalog could be created and used to provide re-usable 
patterns within a project and across a group of related projects. 
This idea raises a natural question. How can we measure the 
effectiveness of a pattern catalog or compare the effectiveness of 
different pattern catalogs? In this paper, we define four metrics 
that can be used to measure the effectiveness of pattern catalogs. 
We illustrate these metrics by applying them to a case study that 
uses a pattern catalog of generative design patterns to generate 
scripting code for computer games. The metrics are general 
enough to assess any pattern catalog, independent of application 
domain or whether the patterns are generative or descriptive.  

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Techniques – 
Computer-aided software engineering (CASE), Software libraries; 
D.2.6 [Software Engineering]: Programming Environments – 
Integrated environments, Interactive environments; D.2.8 
[Software Engineering]: Metrics – Performance measures, 
Process metrics. 

General Terms 
Performance, Design, Reliability, Experimentation, Languages. 

Keywords 
Pattern catalog, pattern language, generative design pattern, 
scripting language, code generation, computer game, metric. 

1. INTRODUCTION 
Our work is inspired by design patterns used to describe object 
collaborations in graphical user interfaces and other software 
systems [7]. A design pattern specifies the solution to a general 
software design problem at a higher level of abstraction than the 

program code that implements the design. Traditional software 
design patterns are descriptive. Each pattern provides a design 
lexicon, a set of solution structures and the reasoning behind the 
solutions. Since each pattern provides a family of solutions, it 
must be adapted to a specific context during program construction 
and then manually translated to code. Experienced programmers 
who have implemented the same design pattern in other contexts 
can usually perform adaptation and coding more quickly than 
novices, where unfamiliar or ambiguous natural language pattern 
documentation can lead to slow progress and coding errors. 
Generative design patterns (GDPs) have been used [4][5][12] to 
speedup code production and reduce coding errors for novice and 
experienced programmers alike. Recently, we were the first group 
to use GDPs to generate scripting code for computer games 
[14][15]. The author selects a series of patterns, adapts them to the 
story being written, and our GDP tool automatically generates 
scripting code for the adapted patterns. A generative design 
pattern generates code that implements the pattern. The actual 
code generated depends on the target programming language and 
API. The same GDP can generate code for different languages 
and APIs and it is often adapted before code generation. 
Therefore, the GDP is a design-time artifact (design pattern) 
rather than a code-time artifact (code pattern). 
The current state-of-the-art in computer games is to manually 
script individual game objects to provide desired interactions for 
each game story. For example, BioWare Corp.’s [2] popular 
Neverwinter Nights (NWN) [16] campaign story contains 54,300 
game objects of which 29,510 are scripted, including 8,992 
objects with custom scripts, while the others share a set of pre-
defined scripts. The scripts consist of 141,267 lines of code in 
7,857 script files. Our research has shown that a small set of 
parameterized patterns (familiar commonly occurring scenarios) 
can characterize most of the object interactions used in game 
stories. These patterns can be used to specify and generate the 
necessary scripts [13]. We have identified four kinds of patterns 
that are necessary to generate all of the scripts found in computer 
role-playing game (CRPG) stories: plot, behavior, dialog and 
encounter. In this context, a pattern is a commonly occurring 
scenario or idiom in a story of the appropriate genre. Plot patterns 
guide the player character (PC) through the story. Behavior 
patterns are used to specify the actions of non-player characters 
(NPC). Dialogue patterns control conversations between 
characters. Encounter patterns are used to script interactions 
between the PC and inanimate objects (props) in the game. 

For example, a story may require that a shield be placed into a 
chest to unlock the door to a passage. The story may also require 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ICSE’06, May 20–28, 2006, Shanghai, China. 
Copyright 2006 ACM 1-59593-085-X/06/0005…$5.00. 

1

Duane Szafron
Text Box
This is a pre-print of a paper that will appear in the Proceedings of 28th International Conference on Software Engineering, held May 2006 and it will be published by ACM.



another script that locks a crypt room door and spawns a mummy 
whenever a character removes an “eye gem” from a statue. In fact, 
we can abstract both of these scenarios into a single encounter 
pattern, which we call Container disturb (specific item) toggle 
door. The author can select two different instances of this 
encounter pattern and adapt them to create the desired scenarios. 
This pattern applies when a PC disturbs a container by adding or 
removing a specific item. When this occurs, a nearby door is 
toggled (unlocked and opened if it is locked, or closed and locked 
if it is unlocked). This pattern has three options, the container, the 
specific item, and the door. To adapt the pattern to the first 
scenario requires only that the options be set: the container as the 
chest, the specific item as the shield, and the door as the passage 
door. To adapt the pattern to the second scenario requires two 
steps. First the options must be set: the container as the statue, the 
specific item as an “eye gem”, and the door as the crypt room 
door. Second, this pattern must be further adapted by adding an 
additional action to the pattern to spawn a mummy. Adaptation is 
described more fully in Section 3. There are several other kinds of 
pattern adaptations besides setting options and adding actions. All 
adaptation occurs before scripting code is generated. Recognizing 
that patterns must be adapted is essential to building effective 
metrics for evaluating pattern catalogs (pattern languages). 
Our GDP approach has two major advantages for scripting 
computer game stories. First, a story can be created at a higher 
level of abstraction. The same patterns can be used to generate 
scripting code for different game engines on the same platform or 
for variants of the same game engine on multiple platforms (i.e., 
game console or computer). Second, the cost of creating a pattern 
can be amortized over all of the times the pattern is used. This re-
use occurs at two levels of scope: 1) patterns created while writing 
the beginning part of a story can be re-used many times 
throughout the story, and 2) patterns created for a story can be re-
used in other stories. Consequently, both advantages significantly 
reduce the effort required to script, test, and find errors in a story. 

Our goal was to eliminate the need for manual scripting by putting 
GDPs in the hands of authors. We provided authors with a pattern 
catalog and a tool called ScriptEase [20] that generates scripts for 
each pattern. Since most of the uses of general software design 
patterns involve relatively few patterns that occur relatively few 
times, it was not clear whether we could obtain the coverage 
necessary to generate all of the scripting code in a computer game. 
In addition, a pattern catalog is not a static entity, it is meant to 
evolve by expanding (and contracting) to satisfy the needs of 
authors. We realized that if our pattern catalog must evolve, we 
would need a mechanism to measure its current effectiveness and 
its potential effectiveness after patterns are added or removed. 
More generally, we needed a way to compare several different 
pattern catalogs to decide which one was most effective. To our 
knowledge, there has not been a documented attempt to evaluate 
the quality of pattern catalogs, although there has been research 
aimed at measuring the quality of software produced by design 
patterns [8][9][22]. In this paper, we present our solution – using 
metrics to evaluate pattern catalogs. We propose four metrics. We 
illustrate how to use these metrics by applying them to a pattern 
catalog that generates scripting code for computer role-playing 
games. However, the metrics we propose can be applied to any 
pattern catalog for any application domain, regardless of whether 
the catalog contains descriptive or generative patterns.  

In Section 2, we provide an introduction to BioWare Corp.’s 
popular Neverwinter Nights game system that our pattern catalog 

was built to support. In Section 3, we provide high-level 
descriptions of some of the patterns, using two other CRPGs in 
addition to NWN. We also discuss pattern adaptation, since it is 
an essential factor in measuring the effectiveness of pattern 
catalogs. In Section 4, we define our four metrics for evaluating 
pattern catalogs and provide some rationale about why these 
metrics are desirable. In Section 5, we illustrate how these metrics 
are used, by applying them to a pattern catalog for NWN stories. 

Rather than creating several artificial pattern catalogs for a series 
of small applications, we decided to test our idea of using metrics 
to measure pattern catalog effectiveness on a large pattern catalog 
for a sizable application. This decision has the disadvantage of 
providing only weak evidence for the generality of our idea – the 
case for generality rests with the intuition of the reader. However, 
the advantage of our decision is a demonstration that pattern 
catalog metrics can be used effectively to guide the development 
of a real pattern catalog for a real commercial application. 

2. NEVERWINTER NIGHTS 
Neverwinter Nights [16] is a critically-acclaimed award-winning 
(86 awards) multi-player CRPG published by BioWare Corp. 
NWN consists of a general-purpose game engine that renders 
graphics for game objects and characters, plays sounds, interprets 
user input, and runs scripts in response to game events. Authors 
create modules containing chapters of their story and the game 
engine interprets the modules. The game engine can play game 
modules in any setting imaginable. The storywriter has only to 
provide the appropriate backgrounds, props, and NPCs. The NWN 
game has an official campaign story and two expansion-pack 
stories set in a fantasy world. The campaign contains more than 
13 separate modules that can be played alone or online with 
friends. NWN has an active player community with thousands of 
players who contribute modules of their own creation that can be 
freely downloaded from the NWN Vault web site [18]. The most 
popular of the 4,100 modules at this site has been downloaded 
over 259,000 times as of February 2006, and the tenth-most, 
95,000 times. The NWN game includes the Aurora Toolset, the 
same CAD tool for building story modules which BioWare 
authors themselves used to build the official campaign modules. 
The toolset allows an author to create the physical landscape of a 
module and populate it with game objects. The author can also 
write scripts in BioWare's NWScript language and attach them to 
game objects, to specify how they will react to game events. The 
NWN game engine operates on eleven types of game objects: 
modules, areas, creatures, doors, placeables, triggers, monster 
encounters, merchants, items, sounds, and waypoints. The first 
eight object types may have scripts attached to them. Our pattern 
catalog contains encounter patterns that generate scripts for 
placeables, triggers and doors. A placeable is an inanimate object 
that can be placed anywhere in the story world. Examples include 
chests, statues, chairs, tables, levers, and piles of rubble. A 
placeable is considered a container if it can hold items. A door 
can only be placed at the entrance to a structure or between two 
rooms in a structure. A trigger is a region of space that generates 
an event when a character enters or exits its perimeter. The trigger 
object type supports the following scriptable events: OnClick, 
OnEnter, OnExit, OnHeartbeat and OnUserDefined. Our behavior 
patterns generate scripts that are attached to creatures. Scripts 
attached to one object may refer to other objects by a string 
identifier ("tag") set by the writer.  

2



 
Figure 1. The main window of the Aurora Toolset. 

 

 
Figure 2. The Aurora Toolset Script Editor.

Figure 1 shows part of an area in the Chapter One module of the 
campaign story as it appears in the Aurora Toolset. A trigger 
object is selected in the main pane and its perimeter is highlighted. 
The Trigger Properties dialog box for the selected trigger object 
is opened and the Scripts tab selected to show that there is a script 
named m1q4muggerplot10 that will execute if the PC enters the 
trigger area (event OnEnter). Figure 2 shows the Script Editor that 
can be used to enter scripts manually and the complete NWScript 

script that is attached to the OnEnter event of the trigger object 
selected in Figure 1. This script iterates over all objects in the area 
with tag M1Q04Mugger02 and signals an EventUserDefined to 
each of these muggers so that they will attack the PC. NWScript is 
a C-like language, which requires the user to understand variables, 
objects, loops, conditionals, function calls and a (large) API 
library. The library functions that include “Event” and the 
prototype (signature) of the highlighted SignalEvent function are 

3



shown in Figure 2. The script for the EventUserDefined (401) call 
that causes an individual mugger to attack the PC is not shown. 

Scripting is very difficult for the many authors who lack 
programming experience. BioWare's scripting forums [17] are full 
of questions from eager authors who are trying to learn both the 
scripting language and general programming concepts. Frequent 
queries ask for help identifying which function calls are needed to 
achieve certain effects in the game. Another set of popular 
questions ask for help identifying which event slot of an object a 
script should be attached to, so that it will run at the desired time. 
General programming questions like "what is a local variable?" 
are also seen from some novice authors. Publicly available tools 
such as ScriptEase [20] and Lilac Soul Script Generator [10] have 
been created to reduce or eliminate the need for manual scripting. 

3. USING PATTERNS 
The pattern catalog described in this paper contains encounter 
patterns for triggers, placeables and doors. An example of a 
trigger pattern is Trigger enter – creatures attack. This pattern can 
be used to automatically generate a script with the same 
functionality as the manually-written script shown in Figure 2. 
The ScriptEase version of this pattern is shown in Figure 3. An E 
icon represents the encounter pattern. To use this pattern, a story 
designer selects the pattern name from a menu to create an 
instance of the pattern and then adapts the pattern instance by 
setting the two options shown as tabs in the bottom pane: The 
Trigger and Creature From Faction. 

 
Figure 3. A simple instance of the Trigger enter – creatures 

attack encounter pattern. 
The dialog in Figure 3 sets the Mugger creature as the second 
option. A similar dialog sets the first option to the Generic 
Trigger shown in Figure 1. The pattern in Figure 3 shows its 
component parts. Each encounter pattern contains one or more 
event-driven scenarios called situations (S icon). Each situation 
contains the event (V) that activates it and a set of definitions (D), 
conditions (C) and actions (A). Figure 3 shows no conditions, but 
Figure 4 does. Although ScriptEase supports generative patterns, 
this encounter pattern would have the same components if it were 
used in a descriptive pattern catalog. However, in that case, the 
components would serve as a specification of what a programmer 
should implement rather than generating the appropriate scripting 
code automatically, as is done in ScriptEase. This pattern can be 
used to replace 6 scripts in the NWN campaign story. 

An example of a placeable encounter pattern is Placeable use – 
toggle door. When a creature uses the placeable, the status of a 
door is toggled from opened and unlocked to closed and locked, 

or vice versa. In the NWN campaign story, this pattern is often 
applied to a lever to allow it to control a door. This pattern can be 
used to generate 8 scripts for the NWN campaign story. 

An example of a simple door encounter pattern is Door open 
failed – show monologue. This pattern can be used to 
automatically generate a script that displays a line of text when 
the PC tries to open a door that is locked. This simple pattern can 
be used to replace 5 scripts in the NWN campaign story. 

3.1 Encounter Patterns in Other CRPGs 
All CRPGs have similar patterns to those described in this 
Section. In this paper, we use two other CRPGs to illustrate the 
generality of the encounter patterns contained in our pattern 
catalog. The Elder Scrolls III: Morrowind by Bethesda Softworks 
[1] and Fable by Lionhead Studios [11] both contain scripts that 
could be generated by encounter patterns, including the example 
patterns described in this Section. 
In Morrowind, there are many levers that open doors so the 
Placeable use – toggle door pattern could be used extensively to 
generate these scripts. Often we find situations where an author 
will re-use an existing script to save work, rather than writing a 
more appropriate script from scratch. A pattern catalog with many 
patterns solves this problem. For example, in Fable there is a 
situation where the PC encounters four rocks and a door. The 
scripts are set up so that the PC must attack the rocks in the 
correct order to open the door. However, the pattern Placeable use 
– toggle door could be used to generate improved scripts to 
control this situation in a more appropriate way, by having the PC 
simply use (touch) the rocks rather than attacking them.  
The pattern Door open failed – show monologue could be used in 
several situations in Fable where the PC encounters doors called 
Demon Doors. These are doors that require the player to solve 
some sort of riddle in order for them to open. When a PC tries 
open a locked door, the door speaks a riddle to the PC. This 
pattern could also be used in Morrowind. For example, at the 
beginning of Morrowind, the player is given many hints. When a 
PC tries to enter a door, the door reminds the PC to obtain a ring 
from a nearby barrel. 

Either of the patterns, Trigger enter – spawn creature near object 
or Trigger enter – creatures attack, could be used to generate 
scripting code for ambushes in Fable. At one point in the Fable 
story, the PC is asked to escort a person to a nearby farm. When 
the person being escorted enters a trigger, an enemy is spawned 
nearby to attack the person. This pattern can be used for many 
purposes other than ambushes. For example, in Morrowind, there 
is a situation where a manually-written script spawns a creature 
high above the PC and the creature falls. This situation is used to 
illustrate what happens when a jumping potion is misused. A 
script that provides the intended semantics could be generated 
from the Trigger enter – spawn creature near object pattern. 

3.2 Pattern Adaptation 
Whenever a pattern is used, it must be adapted to meet the context 
of the story being designed. The simplest form of adaptation is 
setting the options of the pattern. For example, in Figure 3, there 
are two options: The Trigger and Creature From Faction. Other 
forms of adaptation include adding or removing components. As 
an example, there is a scene in Chapter 2 of the NWN campaign 
story where a creature attacks the PC if the PC gets too close and 
has not yet answered a riddle correctly. Instead of a script for this 

4



scene, an author could generate the script from an instance of the 
Trigger enter – creatures attack pattern. This would require the 
author to add a definition that determines whether the player has 
the plot token (indicating that the riddle has been answered 
correctly) and to add a condition that tests the plot token. The 
adapted pattern is shown in Figure 4. The author can add this 
definition and condition by selecting them from menus and setting 
options. The author can also add the Show caption above object 
action highlighted in Figure 4, and set its options, such as the 
Caption option shown. 

 

Figure 4. A more adapted instance of the Trigger enter - 
creatures attack pattern. 

Table 1. Cognitive levels of pattern adaptation.  

Cognitive 
Level Adaptation Number of 

Adaptations  
1 Set pattern options 154 

2 Delete a situation 123 

3 Delete an action/definition 2 (*) 

4 Delete a condition 0 (*) 

5 Replace an action/definition 
placeholder 91 

6 Add an action/definition 81 

7 Replace condition placeholder 14 

8 Add a condition 19 

9 Add a situation 6 (*) 
 
We identified and added ScriptEase support for the nine pattern 
adaptation levels of Table 1, in increasing order of cognitive 
difficulty. These load levels constitute a ranking, but not a scale. 
We showed that each adaptation technique is simple enough for 
non-programmers in a case study (Section 5.4) where students 
from a high school English course used these adaptation 
techniques to write an interactive short story with ScriptEase [20]. 
The third column in Table 1 shows the number of adaptations that 
were done of each kind during the case study. Asterisks denote 
adaptations that are rarely used, independent of their difficulty. 
The reasons for rareness of adaptation use are beyond the scope of 
this paper and will be discussed in a future paper. Determining a 
relative scale of difficulty for each kind of adaptation will require 
another study. 

4. METRICS FOR PATTERN CATALOGS 
We define four metrics for pattern catalogs, with respect to a 
particular application, usage, coverage, utility, and precision. A 
good pattern catalog (catalog) is one that has high usage, coverage 
utility and precision across a broad range of applications. The 
usage and coverage metrics are based on counting patterns in the 
catalog and the application, while the utility and precision are 
based on instances of patterns and adaptations of instances. 
Formal definitions are given in Figure 5. 

  

! 

PCat =
def

patterns in pattern catalog{ }

IApp =
def

adapted instances of patterns used in the application{ }

i p =
def

an unadapted instance of pattern p

ip =
def

an adapted instance of pattern p"

# adaptations a1Lan $ i p = an La1i p

PApp =
def

patterns used in the application{ } =
def

p $ i p % IApp{ }

IAppCat =
def

i p % IApp $ p% PCat{ }

usage(catalog, application) =
def PCat&PApp

PCat

coverage(catalog, application) =
def PCat&PApp

PApp

utility(catalog, application) =
def IAppCat

PCat&PApp

precision(catalog, application) =
def PCat&PApp

n $ i p = an La1i p
ip %IAppCat

'

  
Figure 5. Formal definitions of the four effectiveness metrics. 

The usage is the ratio of patterns used in the application that come 
from the catalog to the total number of patterns in the catalog. For 
example if there are 24 patterns in the catalog and only 8 of these 
are used in an application, the usage is 8/24 = 0.33. The usage is 
always in the range 0.0 to 1.0 and a higher usage is better. Usage 
is important since the cognitive load of using a catalog increases if 
there are many patterns in the catalog that are not used in an 
application. The existence of many non-applicable patterns in the 
catalog may make it hard to find the few applicable patterns. 

The coverage is the ratio of catalog patterns used in the 
application to the total number of patterns used in the application. 
For example, if the application requires 10 different patterns and 
only 8 are found in the catalog, the coverage would be 8/10 = 0.8. 
The coverage is always in the range 0.0 to 1.0 and higher 
coverage is better. Coverage is important since using a catalog 
without all the necessary patterns means that the application 
designer will either have to design new patterns or write the 
necessary application code by hand. The time/cost required to 
create a new pattern (or code by hand) is usually much greater 
than the time/cost to instantiate and adapt an existing pattern. 

The utility is the ratio of pattern instances in the application whose 
patterns are in the catalog to the total number of patterns used in 
the application that come from the catalog. Alternately, the utility 
is the average number of times each catalog pattern that appears in 

5



the application is actually used. For example, if 40 instances of 
patterns are used in the application that come from 8 different 
patterns that are in the catalog, the utility would be 5. This 
indicates that on average, for each pattern in the application taken 
from the catalog, there are 5 instances used in the application. The 
utility is important since there is a cognitive load for learning to 
use a particular pattern from the catalog, which is amortized over 
the number of times a pattern is used in an application. Higher 
utility is better. Using 5 instances of 8 different patterns is easier 
for the application designer than using 1 instance each of 40 
different patterns, since it takes time to learn about the patterns. 
Utility ranges from 0.0 to any positive value, with higher utility 
better. The utility of a pattern catalog is not affected by patterns 
used in the application that do not come from the catalog. 
The precision is the ratio of the total number of patterns used in 
the application that come from the catalog to the number of 
adaptations required for these pattern instances. Alternately, it is 
the reciprocal of the average number of adaptations that must be 
performed on the pattern instances in the application that come 
from the catalog. If an application requires a total of 100 
adaptations distributed over 40 pattern instances from the catalog 
that are used in the application, then the precision would be 
40/100 = 0.4. Since at least one adaptation is needed per pattern 
(to set the options), precision can be any number between 0.0 and 
1.0, with higher precision being better. 
In the case of CRPG authoring, the possible adaptations are given 
in Table 1. If an author sets the pattern options, adds two actions 
and deletes a condition, the number of adaptations is 4. Each 
pattern needs at least one adaptation since setting the options 
counts as one adaptation. For other kinds of generative design 
patterns, adaptation steps could include setting function or method 
parameters, adding code to methods or functions, adding methods 
to classes or call-back functions to the application, and adding 
sub-classes. For descriptive design patterns, adaptation involves 
making design decisions, such as using safe or transparent sub-
classes in a Composite design pattern [7], as well as the design of 
interfaces and sub-classes. Some adaptation is always necessary, 
since patterns are general solutions to design problems and they 
must be customized for the applications that use them. 

Precision is important since any pattern can be turned into any 
other pattern by removing all components from the old pattern and 
replacing them by new components. However, the fewer 
adaptations that must be done when using a pattern catalog, the 
easier it is to design the application. An alternate definition of 
precision replaces the number of adaptations with a cost metric 
that differentiates between the cognitive levels of adaptations or 
the time required to make different adaptations. For CRPG 
patterns, a ranking of adaptation costs is given in Table 1. Here is 
the more general formal definition of precision: 

  

! 

precision(catalog, application ) =

def
PCat " PApp

cost(ak ) # i p = an L a1i p
k=1,n

$

i p % IAppCat

$
 

In this paper, we use a simple cost metric that assigns an equal 
cost of 1 to each kind of adaptation listed in Table 1. Hence, this 
formula reduces to the Figure 5 precision formula.  
The precision of a pattern catalog does not measure the 
simplicity/complexity of the code produced from the pattern 
instances, nor the simplicity/complexity or entertainment value of 
the story in our CRPG case study. Precision measures the required 

amount of manual adaptation of the patterns available in a pattern 
catalog to adapt them to the specific pattern instances that the 
application programmer (author) wishes to use. 

There is a tension between usage and coverage. In general, adding 
many patterns increases the coverage of a catalog, but reduces the 
usage. There is also a tension between utility and precision. 
Generalizing the patterns in a catalog improves utility since more 
instances of the same pattern can be used. Unfortunately, 
generalizing patterns also decreases precision, since a more 
general pattern requires more adaptation to use. For example, in 
the CRPG domain, assume we have a pattern catalog that contains 
the two patterns Container disturb – (specific item) toggle door 
and Container disturb – (specific item) spawn creature. The first 
pattern has been described previously. The second pattern simply 
spawns a creature instead of toggling a door, when a specific item 
is placed in (or removed from) a container. Assume we have a 
story that contains both patterns. If we replace these two patterns 
by a more general pattern such as Container disturb – (specific 
item), then the utility of the pattern catalog for this story increases 
since the denominator (the number of patterns from the catalog 
used in the story) is reduced by one and the numerator (the 
number of pattern instances used in the story) remains the same. 
However, the precision decreases since the story designer will 
have to adapt the more general pattern, Container disturb – 
(specific item) by manually adding actions to each pattern 
instance, to toggle the door and to spawn a creature, respectively. 
There are two challenges for a pattern catalog designer. 

• Deciding on whether to include a pattern in the catalog or not by 
trying to give high coverage across a wide range of applications 
without reducing usage by including too many patterns that are 
only used in a few applications. 

• Deciding on the level of generality or specificity of a pattern by 
balancing the high utility (re-use) provided by many instances 
of a general pattern against the low precision of many instances 
of a general pattern that will require too many adaptations. 

These metrics cannot be used to build a pattern catalog 
independent of the applications that will be written using the 
catalog. The process is an iterative one. As an application is built, 
a set of patterns is created and a preliminary decision is made 
about how general/specific each pattern should be. As the 
application matures or new applications are created, the metrics 
can be used to adjust which patterns are added or removed from 
the catalog and the generality/specificity of each pattern in the 
catalog. This involves computing the metrics for alternate designs 
and comparing them to make the best overall decision that 
balances generality against required numbers of adaptation. 

5. CASE STUDIES 
We developed a pattern catalog for CRPG authors containing 60 
patterns [19], implemented these patterns in ScriptEase and made 
the catalog available online [20]. Many NWN authors are using 
ScriptEase and its associated pattern catalog. As of February 
2006, there have been more than 12,000 downloads. To show that 
this pattern catalog and tool are industrial strength, we are using 
them to replace all of the manually-written scripts that are used in 
BioWare’s Neverwinter Nights official campaign stories. We 
illustrate our metrics by applying them to this pattern catalog and 
the stories in the NWN official campaign. We also apply our 
metrics to a set of 23 short stories that were designed by a class of 
grade 10 high school English students. 

6



5.1 The Full Pattern Catalog 
In a previous paper [13], we described how we used a set of 24 
encounter patterns to generate all scripting code attached to 
placeable objects in the NWN official campaign story. In that 
experiment, we replaced 497 calls to 182 different scripts 
comprising 1,925 non-comment lines of hand-written code by 
pattern-generated code using 431 instances of the 24 patterns. In 
that paper, we focused on showing how patterns could be used to 
foster re-use and reduce errors, rather than focusing on the pattern 
catalog and how it could be evaluated. However, we can use the 
data gathered in that experiment to help compute the usage, 
coverage, utility and precision of our expanded pattern catalog. 
Our new pattern catalog consists of 60 patterns, including the 23 
placeable encounter patterns and 1 dialog pattern used in [13], as 
well as 5 additional placeable encounter patterns, 15 door 
encounter patterns, 13 trigger encounter patterns, and 3 behavior 
patterns (attached to creatures). To compute the usage, coverage, 
utility and precision of our pattern catalog with respect to the 
NWN campaign story, we augmented the data gathered from the 
previous experiment with new data obtained by using ScriptEase. 
We eliminated all of the hand-written scripts for doors and 
triggers in the NWN campaign story using the door and trigger 
encounter patterns from this catalog. The reason for including the 
three behavior patterns is that they are used to replace scripts that 
were attached to triggers in the NWN campaign stories. In each of 
these cases, a behavior pattern rather than a trigger simplified the 
implementation considerably. Our pattern catalog includes 11 
patterns that are not used in the campaign story. These patterns 
were created to write our own stories before any case studies on 
the campaign story were done. We did not remove any patterns in 
our catalog prior our case studies, since they have been useful in 
other stories and we feel that they will be useful in future stories. 

In addition to the broader goal of introducing metrics to evaluate 
pattern catalogs, the new study involves twice as many patterns 
and twice as many lines of replaced manual scripting code. Table 
2 shows the difference in scope of the two studies. 

Table 2. Pattern usage and code replaced in two studies. 

Study Previous Study New Study 
Patterns used 24 49 

Pattern instances 431 796 
Script calls replaced 497 884 

Scripts replaced 182 516 
Lines of code replaced 1,925 4,694 

 
In the previous study, we did not compute the number of 
adaptations made to each pattern instance. However, in this study 
we needed the adaptation data to apply our precision metric to the 
pattern catalog. Therefore, in addition to computing adaptations 
for the new patterns, we computed them for the patterns used in 
the previous study as well. 

In the previous paper [13], we reported the extent of re-use of 
placeable patterns created for a particular chapter in subsequent 
chapters. The official campaign story consists of seven chapters: 
The Prelude, Chapter One, Chapter One Finale, Chapter Two, 
Luskan and Host Tower, Chapter Three and Chapter Four. These 
chapters comprise five sub-stories (each with its own sub-plot and 
all the other components of a short story), where The Prelude, 
Chapter One and Chapter One Finale form the first story, which 

we call One*. We concluded that as more stories are written, the 
high degree of pattern re-use across stories reduces the number of 
new patterns that would need to be created for later stories. Since 
we included trigger patterns (13) and door patterns (15) in our 
pattern catalog metric study, we also recomputed our previous re-
use statistics to see if our previous conclusion was still valid 
across a wider set of patterns. Figure 6 shows that our conclusion 
is still valid. The bars show which story a pattern was created for 
and where it was re-used. For example, first we replaced the 
manually-written scripts in story One* by pattern generated 
scripts. Story One* uses 24 new patterns created for it and 9 
original patterns created before any of the stories were written. 
Story Two was converted next and it uses 12 original patterns, 11 
patterns written for story One* and only three new patterns. Story 
Luskan has only four new patterns, story Three has five new 
patterns and story Four has no new patterns. Once a pattern 
catalog is established, it grows very slowly. 

 
Figure 6. Pattern re-use across a sequence of stories. 

5.2 Evaluating the Full Pattern Catalog 
We used our four metrics to evaluate our full pattern catalog on 
six different stories, each of these five short stories considered as 
a separate story (One*, Two, Luskan, Three and Four) and the 
complete story (Composite). The results are shown in Table 3. 
The coverage is 1.00 for all of the stories since the pattern catalog 
was designed to include all patterns needed for these stories (plus 
some others). The usage for each story is consistent with the 
number of patterns used – which is consistent with the relative 
sizes of the stories. The usage for the composite story is 0.82, 
which indicates that 82% of the 60 patterns in the pattern catalog 
(49 patterns) are used in at least one of the sub-stories. The utility 
of the pattern catalog varies from 4.33 for Luskan to 7.52 for 
One*. This indicates good pattern re-use in each story, since on 
average, the patterns were re-used 4 to 8 times. In the composite 
story, the 49 patterns were re-used an average of 16.24 times. The 
precision ranges from 0.29 for One* to 0.17 for Luskan. This 
indicates that a consistent effort was needed to adapt the patterns 
in the catalog, regardless of the story in which they were used. 

7



Sometimes it is useful to decompose a pattern catalog into sub-
catalogs and evaluate some metrics on the sub-catalogs to see 
which kind of patterns contribute to the differences. Our pattern 
catalog naturally decomposes into three sub-catalogs, based on the 
type of object that the pattern is attached to: 1) placeable 
(including 1 dialog pattern), 2) door and 3) trigger (including 3 
behavior patterns). Table 4 shows the precision for the three sub-
catalogs and the full catalog for each of the stories. The table 
shows the effort required to adapt each of these kinds of patterns. 

Table 3. Usage (Use), coverage (Cov), utility (Util) and 
precision (Prec) for the full pattern catalog (60 patterns), 

where PI is the number of pattern instances used in the story. 

Story PI Use Cov Util Prec 

One* 248 0.55 1.00 7.52 0.29 

Two 184 0.43 1.00 7.08 0.22 

Luskan 91 0.35 1.00 4.33 0.17 

Three 196 0.52 1.00 6.32 0.20 

Four 77 0.23 1.00 5.50 0.28 

Composite 796 0.82 1.00 16.24 0.23 
 

Table 4. Precision for three sub-catalogs. 

Story Placeables Doors Triggers Full 

One* 0.38 0.25 0.24 0.29 

Two 0.33 0.13 0.16 0.22 

Luskan 0.20 0.12 0.16 0.17 

Three 0.21 0.28 0.17 0.20 

Four 0.40 0.25 0.17 0.28 

Composite 0.28 0.20 0.18 0.23 
 
Table 4 reveals that there are wider variations in the number of 
adaptations required across two of the sub-catalogs (placeables 
and doors) than across the full catalog. The low precision in the 
door sub-catalog for stories Two (0.13) and Luskan (0.12) is due 
to two different reasons (that are not apparent in the table). In 
Two, there are 6 doors out of 14 doors whose scripts are unique 
and moderately complex, each requiring 12 to 16 adaptations. In 
Luskan, there are 2 doors out of 12 doors whose scripts are unique 
and very complex, one requiring 35 adaptations and the other 
requiring 40 adaptations. Table 4 shows that the stories Luskan 
and Three have placeable sub-catalog precision (0.20 and 0.21) 
that require almost twice as many adaptations as the other stories. 
Once again, this phenomenon is due to a small number of 
complex pattern instances that require a large number of 
adaptations. For example, the Luskan has four placeable pattern 
instances out of 51 with 24 – 63 adaptations and Three has five 
instances out of 124 that require 24 – 86 adaptations. 

As indicated in Section 4, a pattern catalog designer must make 
trade-offs between the generality and specificity of patterns put in 
a catalog to obtain the best overall scores for the four metrics. The 
precision scores for our pattern catalog shown in Table 3 allow us 
to highlight an example of such a trade-off. We consider the set of 
patterns from the catalog that are based on the Container disturb 
event. The names, number of uses and number of adaptation steps 
required for the composite campaign story are listed in Table 5. 

There are several alternatives to including these three patterns in 
the catalog. One alternative (Catalog 1) would be to use a single 
pattern, Container disturb, and use an instance of this general 
pattern in the story wherever an instance of any of these three 
patterns is currently used. A second alternative (Catalog 2) would 
be to keep the first two patterns and adapt instances of the second 
pattern for all instances where the third pattern is currently used. 
Table 6 shows how the metrics would change (Δ) for each of the 
alternative pattern catalogs compared to the current full pattern 
catalog. Coverage does not change. 

Table 5. Usage statistics for the Container disturb patterns. 

Pattern Uses Adaptations 

Container disturb - spawn creature 1 1 

Container disturb (specific item) 13 140 
Container disturb - (specific item) 

toggle door 3 7 
 

Table 6. Changes in metrics for alternative pattern catalogs 
from the full catalog for the composite story. 

Catalog Δ  Usage  Δ  Cov ΔUtil ΔPrec 

1 -0.01 0.0 +0.70 -0.009 

2 -0.01 0.0 +0.34 -0.004 
 
Catalog 1 reduces the number of patterns in the story and the 
catalog by two (three removed and one added). Therefore, pattern 
catalog usage is reduced by a negligible amount (bad) from 49/60 
to 47/58. However, the utility of the catalog is increased (good) 
since it does not change the number of pattern instances and it 
reduces the number of patterns by two. This translates to an 
overall increase of 0.70 in the utility of patterns in Catalog 1. In 
the original catalog, each pattern was used an average of 16.24 
times in the story. In Catalog 1, each pattern is used an average of 
16.94 times. This may translate to a decrease in the time a story 
designer may need to understand the patterns, since one general 
pattern is being used instead of three specific patterns.  

Although increasing the utility by 0.70 is advantageous, the 
penalty is a decrease in precision (bad). With Catalog 1, there are 
147 more adaptations, spread over the 17 pattern instances. This 
increase in the number of adaptations required makes Catalog 1 
inferior to the original catalog. If a more specific pattern is used 
frequently enough, it should be included in the pattern catalog, 
along with the more general version. This strategy will avoid the 
loss in productivity that results when a designer is forced to make 
manual adaptations when they have already been abstracted into 
the more specific pattern. 

Catalog 2 is a compromise between the original catalog and 
Catalog 1. It reduces the number of patterns by one, which yields 
an increase (good) in utility of 0.34. This is half the increase for 
Catalog 1, but with a precision decrease of only 0.004 instead of 
0.009. With Catalog 2, there are only 63 more adaptations, spread 
over 3 pattern instances. This is a fair trade-off for this story, but 
we know that the removed pattern is useful for other stories (not 
discussed here), so we have not removed it from the catalog. 

5.3 Evaluating a Reduced Pattern Catalog 
To determine how well a more limited pattern catalog would 
perform, we evaluated a reduced pattern catalog across the same 
six stories. The reduced catalog consists of only those patterns 

8



needed to replace scripts in One* (33 patterns). Therefore, the 
usage and coverage of this reduced catalog are both 1.00 for 
One*. Table 7 contains the values of the metrics for this catalog, 
where ΔPI is the number of instances of patterns used in the story 
that were not in the reduced catalog and ΔPat is the number of 
patterns used in the story that were not in the reduced catalog.  
Table 7. Metrics for the reduced pattern catalog (33 patterns). 

Story ΔPI ΔPat Use Cov Util Prec 

One* 0 0 1.00 1.00 7.52 0.29 

Two -22 -7 0.58 0.73 8.53 0.23 

Luskan -22 -7 0.42 0.67 4.93 0.25 

Three -63 -10 0.64 0.68 6.33 0.25 

Four -44 -3 0.33 0.79 3.00 0.20 

Composite -151 -11 1.00 0.67 19.55 0.25 
 
Overall, in switching from the full catalog to the reduced catalog, 
the coverage for the composite story decreased by 33% (bad), the 
usage increased by 18% (good), the utility increased by 20% 
(good) and the precision increased by 10% (good). This sounds 
like a good trade-off, but it is not! The coverage reduction means 
that the application designer must create 11 patterns to 
compensate for the reduced catalog. In exchange for this effort, 
the 18% reduced size of the catalog, makes it easier to find the 
other 33 patterns used in the story. While having fewer patterns in 
the catalog reduces the effort needed to find the desired patterns, 
this does not compensate for the extra effort required to create 11 
new patterns out of a total of 44 that must be used. 

Changes in utility and precision only apply to the patterns that are 
used from the catalog and do not take into account any new 
patterns that must be added. If these 11 new patterns are added 
and their utility and precision are included in the calculations, the 
utility and precision return to the values reported in Table 3. 
These two metrics are very useful in deciding whether to include a 
general or specialized version of a pattern in a catalog, as 
described earlier in this Section. They should not be used to 
determine whether a pattern should be included in a catalog or not 
– coverage and usage should be used to decide that. In general, a 
large gain in usage must be made to justify a small loss of 
coverage, due to the effort required to create a missing pattern. 
Nevertheless, there are some patterns that could be removed from 
the full catalog that would not decrease the coverage for the 
composite story at all, and therefore increase the usage. The 
patterns that could be removed are the 18% of patterns (11 
patterns) in the full catalog that are not even used in the composite 
story. Removing them would have no effect on coverage, while 
increasing the usage from 0.82 to 1.00. The reason that they are in 
our full catalog is that we have other stories where they are useful. 

The lesson is that a pattern catalog should be evaluated on many 
different applications (stories in our case). A pattern should be 
removed from the catalog only if: 1) it is not used often in any of 
these applications (stories), and 2) generalization or specialization 
will not allow it to be used more often. On the other hand, no 
pattern should be added to a catalog unless 1) it has been used 
several times in one or more stories that have been written using 
the catalog or 2) generalizing or specializing the pattern can allow 
it to be used several times. 

To reduce application designer effort, high coverage is much more 
important than high usage, and high precision is much more 
important than high utility. This strategy can result in higher costs 
for pattern construction and maintenance. However, these costs 
can be amortized over many uses of the pattern catalog throughout 
its lifetime. Our “original” CRPG pattern catalog has been tuned 
over the past twelve months using the metrics presented in this 
paper. As new patterns are proposed, we re-evaluate coverage and 
usage to determine whether the pattern should be added to the 
catalog. If it should be added, we re-evaluate utility and precision 
to determine how general/specific the version of the added pattern 
should be. 

5.4 An Extended Catalog and Story-Set 
A class of 23 grade 10 high school English students wrote NWN 
stories using our ScriptEase encounter patterns. Each student 
spent 6 hours total, learning NWN, the Aurora Toolset and 
ScriptEase. Then each student spent 6 hours designing a story. 
Since these stories are short, we have combined all 23 stories 
together into a single story-set and applied the metrics to the 
combined story-set. The students used a pattern catalog that 
consisted of the 60 patterns described early in this Section, 
augmented by 4 additional patterns for a total of 64 patterns. One 
new pattern applies when the PC enters an area (region of the 
world that has its own map), one applies when the PC enters the 
module (story) and two apply when the PC acquires an item. The 
story-set consisted of 152 instances of 22 patterns that required 
357 adaptations. The usage was 0.33. Most of the stories 
contained instances of patterns that were used in the tutorial 
material that they used to learn ScriptEase, so it is not surprising 
that only 33% of the patterns in the catalog were used. The 
coverage was 95%, since one student used ScriptEase to create 
one new pattern (Creature combat ends) out of the 22 patterns 
used. The utility was 7.19 since on average each student used 
about 7 instances of each pattern that they used. The precision was 
0.43, indicating that on average each pattern instance required 
2.32 adaptations (setting the options plus an average of 1.32 other 
adaptations). This precision is significantly larger than the 
precision (0.23) of the official NWN campaign story. This is a 
reflection that the student stories were considerably simpler than 
the professionally produced official campaign story. This study 
was originally designed to support our conjecture that complex 
tasks, such as creating a game story, currently the prerogative of 
professional game designers who can program, can be made 
accessible to non-programmers by using generative design 
patterns [6][21]. However, the stories constructed from this study 
provide another good data point for evaluating our pattern catalog, 
using our four metrics. These 23 student authors used 154 pattern 
instances to generate 16,051 lines of non-comment code during 
the 6 hours spent. That is an average of 698 lines of code per 
student. Professional programmers rarely write 698 lines of code 
in 6 hours so the effort required to apply this pattern catalog is 
much lower than manual implementation. One can argue about 
how many manual lines of code that a professional programmer 
can write in a day, but even if we allow for 100 lines per (6 hour) 
day, this is still 7 times as efficient (by non-programmers). 

6. CONCLUSION 
We defined four metrics for evaluating the effectiveness of pattern 
catalogs for designing applications. Although we illustrated these 
metrics in the context of a public pattern catalog for CRPGs that is 

9



being used to design NWN stories, the metrics are general enough 
to be applied to any pattern catalog (generative or descriptive) in 
any application domain. We have learned that to minimize design 
effort, high coverage should be favored over high usage and high 
precision should be favored over high utility. This should be true 
whenever a pattern catalog will be used many times. If this is not 
the case, it is not clear whether it is worth building a pattern 
catalog in the first place. We have not touched upon the difficult 
issue of evaluating the metrics themselves, to select the best 
metrics from a series of proposals. This is a complex problem that 
will require user studies and is the subject of future work. At this 
point it is necessary to gain experience with a reasonable set of 
metrics (four of which have been proposed here). However, our 
application is well suited to studying alternate metrics since there 
is a rich set of patterns that can be used to evaluate them. 

Pattern catalog metrics are most important for applications in 
which a large portion of the code is generated or manually written 
based on design patterns. However, as the use of design patterns 
becomes more widespread, this set of applications will grow. 
Since a design pattern captures considerable application-specific 
expertise and practice, they codify standard techniques, reduce 
errors and improve efficiency. These are hallmark characteristics 
of what is required of modern software. The emergence of 
domain-specific pattern catalogs (often called pattern languages) 
[23][3] demands the creation of metrics to evaluate their 
effectiveness. This is especially true as non-programmers are 
empowered to generate applications themselves. 

Although this paper describes the four metrics in the context of 
pattern catalogs, the same four metrics could be applied to 
components and software libraries. The adaptation of patterns is 
analogous to the configuration of components in component-
based software. For example, patterns that are too general/specific 
are analogous to components that are too general/specific. 

7. ACKNOWLEDGMENTS 
This research was supported by by the (Canadian) Institute for 
Robotics and Intelligent Systems (IRIS), the Natural Sciences and 
Engineering Research Council of Canada (NSERC), Alberta's 
Informatics Circle of Research Excellence (iCORE), BioWare 
Corp. and Electronic Arts (Canada) Ltd. Thanks to former 
ScriptEase team members James Redford (M.Sc.) (now at 
BioWare Corp.), and Dominique Parker (M.Sc.) (now at 
Electronic Arts Canada Ltd.) for their efforts on ScriptEase We 
thank our many friends at BioWare for their feedback, support 
and encouragement, with special thanks to Mark Brockington. 

8. REFERENCES 
[1] Bethesda Softworks, Morrowind. 

http://www.morrowind.com.  
[2] BioWare Corp. http://www.bioware.com. 

[3] Braga, R. T. V., Germano, F. S. R., Masiero, P. C. A Pattern 
Language for Business Resource Management. In 
Proceedings of PLoP 7 (Monticello, USA, 1999). 1-33. 

[4] Budinsky, F., Finnie, M., Vlissides, J., and Yu, P. Automatic 
code generation from design patterns. IBM Systems Journal, 
35, 2 (1996). 151-171. 

[5] Florijn, G., Meijers, M., and van Winsen, P. Tool Support for 
Object-oriented Patterns. ECOOP, 1241 (1997). 472-495. 

[6] Carbonaro, M., Cutumisu, M., McNaughton, M., Onuczko, 
C., Roy, T., Schaeffer, J., Szafron, D., Gillis, S., and 
Kratchmer, S. Interactive Story Writing in the Classroom: 
Using Computer Games. In Proceedings of DiGRA 
(Vancouver, Canada, June 2005). 323-338. 

[7] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design 
Patterns: Elements of Reusable Object-Oriented Software. 
Addison-Wesley, Reading, MA, 1994. 

[8] ISO/IEC 9126-1. Institute of Electrical and Electronics 
Engineers, Part 1: Quality model, 2001. http://www.iso.ch. 

[9] Khosravi, K. and Guéhéneuc, Y.-G. Open Issues with 
Software Quality Models. ECOOP Workshop on 
Quantitative Approaches to Object-Oriented Software 
Engineering (Glasgow, UK, July 2005). 

[10] Lilac Soul's NWN Script Generator V2.0. 
http://nwvault.ign.com/View.php?view=Other.Detail&id=625. 

[11] Lionhead Studios, Fable. http://www.fablegame.com. 

[12] MacDonald, S., Szafron, D., Schaeffer, J., Anvik, J., 
Bromling, S., and Tan, K. Generative Design Patterns. In 
Proceedings of Automated Software Engineering (ASE ’02) 
(Edinburgh, UK, September 2002). 23-34. 

[13] McNaughton, M., Cutumisu, M., Szafron, D., Schaeffer, J., 
Redford, J., and Parker, D. ScriptEase: Generative Design 
Patterns for Computer Role-Playing Games. In Proceedings 
of Automated Software Engineering (ASE ’04) (Linz, 
Austria, September 2004). 88-99. 

[14] McNaughton, M., Redford, J., Schaeffer, J., and Szafron, D. 
Pattern-based AI Scripting using ScriptEase. In Proceedings 
of AI 2003 (Halifax, Canada, June 2003). 35-49. 

[15] McNaughton, M., Schaeffer, J., Szafron, D., Parker, D., and 
Redford, J. Code Generation for AI Scripting in Computer 
Role-Playing Games. Challenges in Game AI Workshop at 
AAAI-04 (San Jose, USA, July 2004). 129-133. 

[16] Neverwinter Nights. http://nwn.bioware.com. 

[17] Neverwinter Nights Scripting Forum. http://nwn.bioware 
.com/forums/viewforum.html?forum=47. 

[18] Neverwinter Nights Vault. http://nwvault.ign.com. 
[19] Onuczko, C., Cutumisu, M., Szafron, D., Schaeffer, J., 

McNaughton, M., Roy, T., Waugh, K., Carbonaro, M., and 
Siegel, J. A Pattern Catalog For Computer Role Playing 
Games. In Proceedings of GameOn North America 
(Montreal, Canada, August 2005). 30-38. 

[20] ScriptEase for Neverwinter Nights. 
http://www.cs.ualberta.ca/~script/scripteasenwn.html. 

[21] Szafron, D., Carbonaro, M., Cutumisu, M., Gillis, S., 
McNaughton, M., Onuczko, C., Roy T., and Schaeffer, J. 
Writing Interactive Stories in the Classroom, IMEJ 7, 1 (May 
2005). 

[22] Tahvildari, L. Assessing the Impact of Using Design-
Patterns-Based Systems. Master's Thesis, University of 
Waterloo, Canada, 1999. 

[23] Zhao, L., Foster, T. A Pattern Language of Transport 
Systems (Point and Route). Pattern Languages of Program 
Design 3, Addison-Wesley, 1998, 409-430. 

10




