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ABSTRACT

Research in computer chess has been active for over three decades. Over that period,
computer chess has fallen from the position of being a prominent research application
in artificial intelligence to a peripheral area. In this paper, we take a retrospective look
at what has been accomplished, in order to understand where the field is today and
where it is headed tomorrow. Whereas the past has often been clouded by engineering
passing as science, misspent effort for short-term gains, and research results with little
applicability to other domains, there is evidence that computer chess is emerging from
the shadow of its past and may now be recapturing some of its lost stature in the
research world.

1. Introduction
Research in computer chess has progressed over that past three decades to the point where

programs will soon be grandmaster strength. Superficially this accomplishment seems impres-
sive. However, the building of a chess program that is better than all humans is a scientific pur-
suit, and it is relevant to ask what the lasting scientific contributions of achieving this result are.
Perhaps the ends justify the means, but what are the means by which the computer chess com-
munity strives for this lofty goal? Rather than evaluating the accomplishments of computer chess
research, in this paper we consider the methods by which the results have been obtained.

For the fledgling area of machine intelligence research (artificial intelligence or AI) chess
was viewed as an important test application. Some researchers regarded computer chess as the
drosophila of AI . However, three decades of progress has relegated the problem of building
chess programs to only a peripheral relationship with AI. AI has moved on to other applications,
even though the chess problem is still far from being solved. Instead, computer chess seems to
have become a separate research area, with only historical ties to AI. To many researchers, it is
regarded as mere "game playing". Why has computer chess fallen from grace from the main-
stream research community?

These questions cannot be completely addressed here; there are many points of view and
different sides to be argued. This paper examines computer chess from the research perspective
with a view to better understanding computer chess as a science. A retrospective look at what has
been accomplished is presented with a view to understanding where the field is today and where it
is headed tomorrow. Whereas the past has often been clouded by engineering passing as science,
misspent effort for short-term gains, and research results with little applicability to other domains,
there is evidence that computer chess is emerging from the shadow of its past and may be recap-
turing some lost stature in the research world.
________________
Chess is to artificial intelligence as the fruit fly is to genetics.
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Section 2 puts some of the issues into historical perspective. Section 3 critiques the scien-
tific aspects of computer chess, to gain a better understanding of why the area has fallen from
grace. Many will argue that computer chess is now more engineering than science, and these
issues are addressed in section 4. Section 5 concludes the paper.

2. Historical Trends
The development of computer chess programs can be divided into three distinct eras. The

first, or pioneering era, spanned the 1950s to the mid 1970s. It was characterized by the exten-
sive use of chess knowledge to both guide the search and assess chess positions. By today’s stan-
dards, many of these programs used ad hoc techniques.

The second phase, or technology era, began in the mid 1970s and was marked by the exploi-
tation of brute-force alpha-beta (αβ) search. The observation that there was a strong correlation
between machine speed and program performance meant that one had only to use faster comput-
ers in order to improve performance. The advent of fast sequential processors, followed by
parallel systems, and finally special purpose machines, resulted in a dependence on advancing
technology to solve the chess problem. To some extent, this era is not yet over but it is clear that
with massively parallel VLSI chess programs (for example, Hitech [10] and Deep Thought [14])
there is not much further one can go in this area, although there are still interesting problems to be
solved (such as how to use parallel processors effectively).

Recently, a new era of computer chess work has been begun. With current technology
being pushed to its limits, it was time to go back and, in some sense, re-discover the ideas and
motivations of the pioneering era. This algorithm era is resulting in a variety of innovative ways
of searching (for example, [3, 4, 17, 22, 27]) and uses of knowledge (for example, [7]).

One way distinguishing between the eras is by the search methods that dominated each era.
Programs of the pioneering era used selective search methods exclusively. Their search algo-
rithms were unstable, required extensive application-dependent knowledge, were difficult to
debug, and it was hard to predict their performance. The technology era preferred the simplicity
of brute-force αβ. αβ was easy to implement, reliable, and had predictable performance. The
new era is still dominated by αβ, but the ideas of selective deepening have complicated the search
procedure (for example, [3]). This era represents a compromise in search strategy over the
extreme positions of its predecessors.

Perhaps the preceding discussion best illustrates why computer chess fell from grace. With
brute-force αβ searching, chess became an uninteresting problem to AI. The solution to improve
performance was to just build faster machines. However, some of the fundamental problems of
playing good chess (as for example those outlined in [5]) are beyond the reach of hardware tech-
nology alone. After a decade of chasing the faster machine mirage, it now appears necessary to
return to the basics, finding better search algorithms and better ways of using chess knowledge to
solve the problem. In some sense, research in computer chess has come full circle.

3. Scientific Credibility
This section outlines some of the obstacles to computer chess achieving credibility in the

scientific community. The topics mentioned do not pretend to be exhaustive, but illustrate some
of the major obstacles.

3.1. Beyond Alpha-Beta.
In the technology era, work on finding new search algorithms almost ceased. The emphasis

was placed on finding ways of improving αβ search. Then several researchers discovered that
chess programs were building trees which were within a factor of two of the minimal tree [8, 24].
Where was there to go, if perfect search efficiency was only a factor of two away?

Happily, the past few years have seen a resurgence of interesting new approaches to game-
tree search. Null moves, actually an old idea [2] but with new applications [4, 11, 25], and singu-
lar extensions [3] have enhanced the productivity of αβ search by concentrating effort where it is
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most likely to succeed. Entirely new approaches to minimax search include conspiracy numbers
[17, 26], min/max approximation [22], and Solution Tree and Costs search [27]. Perhaps it is also
time to revive some of the (relatively) older search ideas such as B* [6, 19], the method of analo-
gies [1], and the notion of influence [2]. All of these ideas merit serious consideration.

For many years, the strength of the αβ cutoff caused us to ignore alternate search algo-
rithms. The idea was simple and yields an exponential savings in tree size. It is unfortunate that
computer chess was given such a powerful idea so early in its formative stages. Conspiracy
numbers has provided the insight that there is important information to be gained at nodes where
we normally cut-off. The singular extensions algorithm is the first algorithm that uses this infor-
mation to find its way into practice.

To the average researcher in AI, yet another way to search minimax trees is of little interest.
It is an algorithmic problem, not an AI problem. Until we develop algorithms where the search is
guided by knowledge, this area will be of little interest outside the small community of computer
chess aficionados.

3.2. A Little Knowledge Can Go a Long Way, and a Lot of Knowledge...?
It is amazing how far computer chess programs have progressed using minimal chess

knowledge. In fact, it is not uncommon to observe better performance in a program with less
knowledge. Unfortunately, this apparent paradox is often used as a rationalization for avoiding
the issues of knowledge representation and usage in chess programs.

Computer chess programs have been stymied by the knowledge acquisition bottleneck.
Chess grandmasters have a large store of knowledge at their disposal. It is difficult to extract that
knowledge in machine usable terms. Humans often describe chess positions in abstract terms that
are hard to quantify. Further, the influence of intangibles on a grandmaster’s play, such as intui-
tion, are not to be under-estimated. These problems are not dissimilar from those encountered by
expert system designer, this being a fundamental problem for all of AI.

There are at least three major problems problems here. First, there is the quantity of
knowledge required. It has been estimated that a chess grandmaster has 50,000 patterns or chunks
of knowledge at his disposal [9]. Second, there is the quality of the knowledge. Some pieces of
knowledge are adequate for improving the play of non-masters, but as the strength of the
opponents increase, the quality and complexity of the knowledge required increases. Third is the
way the knowledge is represented. Many common chess notions are easily understood by
humans but are hard to capture in machine usable form (e.g. initiative). Often one resorts to
approximations that capture some of the effect without understanding the implications of the loss
of accuracy.

Perhaps the difficulty in using chess knowledge is best summed up as follows. One grand-
master stated that he spent the first half of his career learning the basic principles of chess, and the
second half trying to unlearn them! The problem encountered when using chess knowledge (or
any non-factual knowledge for that matter) is that for every heuristic, there is an exception. For
some heuristics, the exceptions are so infrequent that most chess programs ignore them. Yet, it is
precisely under these conditions that human players excel. In this area, so closely akin to other
problems in AI, computer chess researchers have made little progress. It is probably fair to say
that most ignore the problem.

Given the enormity of the task of acquiring, representing, and using knowledge, why
haven’t more computer chess researchers tackled the problem? Some recent attempts are basi-
cally simplistic and somewhat naive while avoiding the real (harder) problems [12, 13, 16, 23].
Some progress has been made recently in this area [7] but this can only be viewed as a construc-
tive start.
________________
For example, deeper searches compensating for less detailed knowledge [7].
Kevin Spraggett, Canadian Grandmaster, private communication.



- 4 -

One can view AI as having to tackle three main problems: representing knowledge, search-
ing for solutions, and the interactions between search and knowledge. For effective search, some
knowledge must be applied. On the other hand, to use applicable knowledge in large problem
domains one needs good search methods. The two are not separable. The majority of computer
chess research is on search algorithms, with the issues of knowledge and the search-knowledge
interaction largely being neglected.

Will brute-force search be sufficient to achieve world championship level play? If so, then
such a program would tell us little that could be of use in the wider field of AI. If not, then
perhaps chess programmers should be addressing the fundamental problems of acquiring and
using knowledge now!

3.3. A Conflict of Interest?
Unlike most other fields of computer science (and indeed, unlike most other sciences), com-

puter chess publicly exhibits its progress. Since 1970, there have been annual tournaments that
measure the rate of program improvement. The consequences are both good and bad.

The desire to have one’s chess program perform as well as possible in the public spotlight is
strong motivation for many to work ardently on their programs. The potential returns for success
in these tournaments is large, whether the benefits are monetary, publicity, or prestige. There is
no doubt that these tournaments have been a tremendous boost to computer chess.

However, there is a serious disadvantage to this continuous public attention. As a scientist,
one searches for the solution to difficult problems, even if success may take many years. How
does one resolve this with annual spectacles where one has an obligation to have an improved
program each year? This encourages small, short-term projects whose results will have a direct
bearing on program performance. Long-term research projects, work on the really difficult prob-
lems that we must still solve, get neglected as being long shots that are unlikely to help program
performance. It really is a matter of perceived return for time invested. Many chess programmers
choose short-term gains at the expense of long-term success. Perhaps the best computer chess
researchers are the ones with no interest in writing their own competitive programs.

Since the benefits of winning are high, there is little incentive for quickly disseminating
new research results. Many chess programmers hold back on new ideas to ensure that their pro-
grams maintain a competitive edge. Consequently, each team of chess programmers may have to
discover ideas that are well known to other teams. This can only slow down progress in computer
chess.

3.4. Experimental Computer Science
One notable aspect of computer chess work, not typical of most research in computer sci-

ence, is the large experimental component. For example, demonstrating the effectiveness of a
new search idea may require the searching of hundreds or thousands of trees to acquire enough
data to be able to pass judgment on the idea. The probabilistic nature of search trees means that
experimentation will always be a large part of the study of search algorithms.

While the importance of experimentation in developing chess programs is not to be under-
estimated, some programmers rely too heavily on the experimental results without necessarily
understanding the underlying theory. One has only to look at an experimental domain such as
physics to realize that experiments are usually only conducted in order to test the strength of a
theory. In computer chess, it is often the other way around; one does experiments and only then
tries to understand what is happening.

A major problem is the lack of a theory of computer chess. Yes, there is lots of theory on
search algorithms (αβ in particular), although only a small portion is relevant for a practitioner.
However, there is no theory of chess knowledge and its interactions with the search. Chess
________________
Monty Newborn asserts that this is the longest ongoing public scientific experiment
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programmers alter their program and have no means for understanding what the potential conse-
quences of the change are. Instead, then usually conduct experiments to see if the change is bene-
ficial. Without fully understanding the subtleties of the problem we are trying to solve, it is no
wonder that much work is wasted on blind experimentation.

3.5. Coping with Error
Chess programs must cope with at least three types of error. First, there is error in terminal

node evaluations, implying incorrect or inadequate chess knowledge. Minimax search has the
insidious property of hiding such errors. Second, there are errors in decisions as to where to
search in the tree. Fixed depth αβ does not have this type of problem (which is one of the reasons
why it is so popular), but selective search does. Third, there are search efficiency errors (such as
move ordering) that affect the rate of search, but usually not its outcome.

Of the three types of search errors, the first two are the most serious since they can influence
the quality of the move chosen by the program. Do we have any measures of how serious these
problems are? It has been said that chess programs are the world’s most sophisticated random
number generators. How can we argue with that statement when we have no idea what the signi-
ficance of the results produced are? A numerical analyst could not judge the quality of a numeri-
cal computation without knowing some bound on the error. Why should chess programs be
exempt? How often have chess programs made the right move (our sole measure of "correct-
ness") for the wrong reason? How often has a chess program correctly solved a problem, only to
have a bug fix result in the program being unable to solve the problem?

Work in error analysis has been sadly lacking. Error estimates for chess programs are based
solely on empirical observations. There are no techniques for measuring or compensating for
errors. Many numerical analysts make their livelihood from precise mathematical analysis of
error properties. The result is faster, more stable numerical algorithms. Is the same not possible
for computer chess?

How much error are we willing to live with in a chess program? One cannot answer that
question without knowing how much error we are currently dealing with. Human chess players
live with error; the less error, the better the player. Even the human World Champion is not
immune from trivial mistakes. Error is not to be feared; only to be kept under control. Chess
programs should not necessarily be striving for perfection.

3.6. But Is It Useful?
Is computer chess, as currently practiced, AI? Maybe. It really depends on your definition

of AI; there are some people who think that what most AI researchers do is not AI [20]. Many AI
researchers may be guilty of the same errors as computer chess people are: building large systems
that are capable of performing well on one problem but whose generality is questionable. Unfor-
tunately, most people working in computer chess have done a poor job of selling their ideas to a
community other than their own. There are more important research problems in the world than
making computers play chess. Chess researchers cannot live in an ivory tower and solve a prob-
lem without concern over the generality of the ideas. A lot of good work has been done in com-
puter chess and does have applicability in other areas. Regrettably, most of this work remains
hidden from view and not generalizable.

Theorem proving is a problem that has a lot in common with computer chess. Both can
build large trees to solve problems, but theorem proving is without as powerful a tool as alpha-
beta cut-offs. Monty Newborn has successfully applied his experience with searching chess trees
to theorem proving [18]. Many of the algorithmic ideas first developed in computer chess are
relevant to other tree search based problems, and it is surprising that no one made the connection
earlier. Why is theorem proving an acceptable research problem and computer chess is not? One
reason is that people can see where to use theorem provers, whereas they can only see computer
chess as game playing. Theorem provers are used as tools to solve what are perceived as more
important problems.
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The stigma of mere "game playing" must be overcome. Part of the problem lies with the
commercial side of computer chess; some equate research in computer chess with sales of chess
machines. Computer chess was once seen as, and still is, a restricted domain ideal for artificial
intelligence research. However, the emphasis on performance, best epitomized by the annual
tournaments and the competition for commercial sales, has clouded the view of many.

4. Engineering Credibility
There is no doubt that chess programs can be large, complex programs. Most chess pro-

grammers are proud of their accomplishment and the programming skills that made it possible.
Many will argue that building a chess program is more an engineering feat than one of scientific
interest. So how does the work on computer chess measure up to engineering standards?

4.1. Building Without Tools
David Slate and Larry Atkin, writing on the difficulties of developing their chess program,

state that:

Our problem is that the programming tools we are presently using are not adequate to
the task... This lack of programming tools has plagued the whole field of computer
chess. With the proper tool one might accomplish in a day a job that had been put off
for years. Although serious efforts are underway to overcome this deficiency, the
number of people working on this is surprisingly small, and their research is still in its
infancy. ([28], page 116)

In the intervening 14 years since that was written, little, if anything, has been done to improve the
number and quality of tools used to build, debug, and test chess programs.

Why is there so much effort spent on building chess programs and not much on tools to
build chess programs? One answer, again, is the performance demands. Programmers are always
striving for immediate gains, lacking long-term insight. Another, more subtle, performance
aspect is what the tools produce. A tool that allows one to succinctly describe chess knowledge
may be capable of expressing all sorts of wonderful things in a human readable form. Unfor-
tunately, these tools will produce code that is not going to be as fast as hand-written code. The
poorer the code, the slower the program runs, and (painfully) the worse the program performance.
Can one afford the performance cost? The dilemma is akin to that encountered by ardent assem-
bler programmers who argued that compilers would never succeed since the quality of code pro-
duced by them was inefficient. History has proven them wrong. With the increasing speed of
today’s processors, the "overhead" of using tools is small compared to the cost of programmer
time.

It is a shame better tools are not available. As a result, a lot of talented people spend a great
deal of time wrestling with basic chess program problems that might be more easily solved with
the right tool.

4.2. If It Works Once, It Works
One of the most serious problems faced by chess programmers is testing. Since there are

roughly 1040 positions, it is not possible to exhaustively test everything. Given that adequately
testing a chess program is a difficult task, many chess programmers take the easy way out and
disregard the problem. Too many programs are developed by testing things once, or perhaps
(extravagantly) a few times, and concluding that it works. Alternatively, there is the so-called
"tournament experience"; the more games the program plays, the better the programmer feels
about his program. This does not engender a high degree of confidence!

The writers of production quality compilers are faced with a similar problem but, in their
case, the number of possible test programs is not finite. The compiler writing industry has solved
this problem by establishing large collections of test programs for each language. Although such
a test suite can never certify that the compiler is bug free, a program that successfully handles the
test suite must be reasonably reliable.
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There are few test suites available for chess programs and there are only two in common
use. The 300 positions from Reinfeld’s Win At Chess book are exclusively tactical problems
[21], while the Bratko-Kopec set consists of 24 positions that test a program’s ability at tactics
and at finding pawn levers [15]. A test suite of only 324 positions is inadequate to properly cover
a problem space of 1040 positions. Moreover, both problem sets have serious deficiencies. The
Win At Chess set is such that most programs easily solve better than 80% of the problems. Of
what significance is a program that solves 2% more problems than another? At least the Bratko-
Kopec set is valuable because of the 12 positional problems. However, since this is an oft-used
benchmark, many programs have been tuned to perform well on this set.

Why has the computer chess community not started an effort at assimilating test data used
by individual programmers and constructing a useful test suite? Perhaps 10,000 problems?
Maybe that is too small. Without such a test suite or better software testing methods, many chess
programmer’s time is needlessly wasted.

4.3. Where Should One Place One’s Efforts?
The discovery of a correlation between speed and performance may have set computer chess

research back a decade. The metrics of computer speed and nodes per second have been regularly
used as an approximate measure of the strength of a program. As a result, programmers often
devote enormous amounts of time and resources towards optimizing their programs: finding
tricks to make routines run slightly faster, or hand optimizing assembler code. The net gains,
usually only a small percentage speedup, cannot have a significant impact on the program’s chess
ability.

This effort is largely wasted. Not only is there a high likelihood of introducing a bug (and
consequently wasting additional effort trying to find it), but it is not clear that the effort is well
spent. If an equivalent amount of effort were spent on finding better search algorithms or better
ways to use knowledge, the potential gains would be significant. For example, better search algo-
rithms offer a chess program orders of magnitude more in gains than trivial optimizations. After
all, if computer chess is a research project then time is best spent on research, not hacking.

5. Conclusions
It is perhaps unfortunate that alpha-beta came along so early in computer chess history. It

has a lot of nice properties that would make it an ideal search algorithm for computer chess, but
for the exponential growth in the search tree. Too much effort has been concentrated on this algo-
rithm, as though it were the chess programmer’s panacea. Now, more so than ever before, com-
puter chess must break out of the fixed-depth, alpha-beta search frame of mind and consider alter-
natives. Brute force alpha-beta may have done as much damage to the progress and credibility of
computer chess research as it has given chess programs high ratings.

Should an artificial intelligence system solve a problem using methods similar to the human
approach (the cognitive view) or should it just solve the problem using any approach (the
engineering view) [20]? The prevailing attitude is that it is not AI unless the former approach is
used. Computer chess is an important problem worth solving, regardless of the methods used.
Making computers play chess is both engineering and science, and one should draw on all
resources for solving the problem. Perhaps this is the path that AI will eventually also have to
follow.

In retrospect, it is not surprising that computer chess has fallen from grace. Since the
research work has strayed from the main stream and has neglected many of the mandatory scien-
tific aspects of our research, it is only natural that computer chess should be shunned by our col-
leagues. Of course, there is still time to make amends!
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