
Diminishing Returns for Additional Search in ChessAndreas Junghanns, Jonathan Schae�er,Mark Brockington, Yngvi Bjornsson and Tony MarslandUniversity of AlbertaDept. of Computing ScienceEdmonton, AlbertaCANADA T6G 2H1Email: fandreas,jonathan,brock,yngvi,tonyg@cs.ualberta.caAbstractAdvances in technology allow for increasingly deeper searches in competitive chessprograms. Several experiments with chess indicate a constant improvement in a pro-gram's performance for deeper searches; a program searching to depth d + 1 scoresroughly 80% of the possible points in a match with a program searching to depth d. Inother board games, such as Othello and checkers, additional plies of search translatedinto decreasing bene�ts, giving rise to diminishing returns for deeper searching. Thispaper demonstrates that there are diminishing returns in chess. However, the highpercentage of errors made by chess programs for search depths through 9 ply hides thee�ect.1 IntroductionIt is common knowledge that chess program performance is strongly correlated to the depthof the search tree explored by the program. Deeper searching can be achieved in several ways,including more e�cient search algorithms (smaller search trees), forward pruning (with thepossibility of introducing error into the search), search extensions (extending interestinglines) and by faster search engines. The latter point has had a tremendous impact on thehistory of computer chess. The drive for speed was the motivation for special-purpose chessmachines (such as Belle [CT83], Hitech [BE90] and Deep Blue [HCN90a]) and parallel pro-grams (such as Zugzwang [Fel93] and *Socrates [Kus94]). Every chess programmer intentingon high performance devotes considerable e�ort to tuning and optimizing their code formaximum speed.Ken Thompson's pioneering work with Belle dramatically illustrated the bene�ts of in-creasing the search depth [Tho82]. In his experiments, a program searching a �xed-depthtree to depth d + 1 would play a 20-game match against a program searching to depth d.1



1 INTRODUCTION 2Surprisingly, the deeper searching program scored 80% of the possible points in the match.Some researchers extrapolated this work to conclude that a program searching 12 ply wouldbe able to achieve a rating that was higher than that of the World Champion ([HCN90b],for example).Although it is enticing to think that every additional ply of search is worth the samenumber of rating points, simple logic suggests that diminishing returns for additional searchmust eventually appear. For example, can there possibly be a big di�erence between a 100-ply program and one doing 101 ply? Nevertheless, numerous self-play experiments in chesscon�rm that there seems to be a linear relationship between search depth and performance(for example, Belle [Tho82], Hitech [BE90] and Zugzwang [Mys94]). All of these results areremarkably consistent: a depth d + 1 program scores 80% � 10% of the points in a matchwith a depth d program. However, one experiment suggests the possibility of diminishingreturns. A later repeat of the Belle experiment [CT83] gives weak evidence that there mightbe a slow decline in the bene�ts of additional search.In other � � �-based game-playing programs, diminishing returns have been demon-strated. For example, in checkers diminishing returns are evident in the Chinook programeven at shallow search depths, eventually resulting in no/limited bene�ts for additionalsearch (around 19 ply) [SLSL93]. In Othello, experiments with Bill show diminishing re-turns [LM90].The results in other games raise a troubling question: Why doesn't chess show diminishingreturns? This paper attempts to address this problem.Our experiments con�rm that there are diminishing returns in chess. The reason thatthese results are not evident in previous work is twofold:1. Decision Quality: Our experiments show that chess programs have a high error rate intheir searches. Plotting probability of an error as a function of search depth con�rmsthat deeper searching reduces errors. Nevertheless, the error rates are still high enoughthat a deeper searching program has a signi�cant advantage over a shallower searchingprogram.2. Game Length: Othello games are restricted to 30 moves aside, fewer if you considerthe opening book moves and the endgame solvers. Checker games are usually decidedin fewer than 30 moves aside; it's rare when a game goes over 50 moves. Chess games,on the other hand, last an average of 40 moves, and 60 move games are not uncommon.Computer self-play games tent to last even longer (> 100). Since the deeper searchingprogram has a smaller probability of error on a single move, the longer the game, thegreater the chance of the shallow searching program making an error. Thus longergames increase the advantage of the deep searcher. These results are con�rmed byplaying matches where the game length (number of moves) is restricted.With an improvement in speed of a factor of two in a chess program, the question ariseshow best to spend these resources. Traditionally, increased computing resources are usedentirely for additional search. This has been an easy course to take since processor speed



2 PREVIOUS WORK 3seems to double every 18 months. However, if diminishing returns do exist, then therewill come a time when the performance gains for the additional search e�ort are small.Programmers will then have to resort to other means for improving performance, such asadditional evaluation function knowledge. The strong correlation between program speedand performance has, unfortunately, resulted in a concentration of research e�ort into search.With diminishing returns for search, chess programmers will have to invest more time ontheir knowledge if they want their program to improve in a signi�cant way.2 Previous WorkKen Thompson pioneered self-play chess program experiments, measuring the e�ect of anadditional ply of search [Tho82]. His original results, roughly 80% winning advantage forthe deeper-searching program, translate into a 200 Elo rating point advantage [Elo78]. Alater repeat of the experiment show a similar result, however the advantage of the deepersearching program seemed to decrease slightly with increasing depth.
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Figure 1: Chess: No Diminishing ReturnsFigure 1 shows the results of comparing a number of self-play experiments, includ-ing Thompson (Belle) [CT83, Tho82], Berliner et al. (Hitech) [BE90], and Mysliwietz(Zugzwang) [Mys94]. Note that the Zugzwang results were measured by doubling the pro-gram's time. The winning percentage shown is less than those of the other programs, sincethe advantage of a factor of two in time is less than that of searching an additional ply(roughly 4- to 8-fold time increase in practice). None of these results seem to indicate thatthere are diminishing bene�ts for additional search.
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Figure 2: Checkers: Diminishing ReturnsTo con�rm these results, we repeated the experiment in The Turk1. Figure 1 shows TheTurk's results, which are consistent with what every one else has reported: through 9 ply,the bene�ts for an additional ply of search are signi�cant.In contrast, results have been reported for other ��� search domains that show the ben-e�ts of additional search decrease with increased depth. For the checkers program Chinook,diminishing search returns were demonstrated even for shallow depths [SLSL93]. A re-runof this experiment with the latest version of Chinook is shown in Figure 2. Note that theseexperiments are the results of self-play between a d and d + 2-ply searcher, since Chinookonly searches an odd number of plies deep. These results suggest that Chinook is rapidlyapproaching the point where a faster machine should be used for other things, such as moreknowledge, rather than just increasing the number of plies searched2.A second observation obtained from the results is that the curves seem to be shifted fromthe 1993 to the 1995 results. The 1993 Chinook contained several bugs that were �xed in thelater version. The shifted curve suggests that the better knowledge (because of fewer bugs)delays the diminishing returns for additional search depth.In the game of Othello, diminishing returns were suggested by several experiments re-ported for the Bill program [LM90]. In Othello, there are two metrics one can use todemonstrate the bene�ts of additional search: the winning percentage (how often the deepersearcher defeats the shallow searcher), and disk di�erential (by how many disks a program1The Turk was developed at the University of Alberta by Andreas Junghanns and Yngvi Bjornsson.2The reader might notice the '93 19 vs 17 datapoint. In the original paper the authors argue that thisdata point has no statistical signi�cance.
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Figure 3: Othello: Diminishing Returns a) winning % b) disk di�erentialwins). Recent experiments withKeyano, one of the top programs in the world3, demonstratesdiminishing returns using both metrics (Figure 3).Chess has many similarities with Othello and checkers, including an � � � programstructure using all the same search enhancements. The most noticeable di�erence is thebranching factor, roughly 30-35 in chess, 10 in Othello and 3 in checkers (1.1 in capturepositions, 8 in non-capture positions) which translates into di�erent search depths in thesame amount of search time. Given similar solution methods, one must conclude the absenceof diminishing returns in chess may have something to do with an application-dependentproperty. If so, then what di�erences are responsible for this phenomenon?3 Decision QualitySearching to depth d + 1 pays o� against a d-ply searcher only if the deeper search revealsnew information that causes the program to switch its move choice. For each position, theremust be a search depth d0 for which additional search will not change the choice of bestmove. In some positions, this d0 depth is quite shallow as, for example, in the case of anobvious best move. In many positions, however, d0 is greater than the depths reached bychess programs under tournament time controls. If the combination of search and knowledgeallows us to zero in on the best move, then additional search e�ort is not needed: it onlycon�rms the choice of best move. This line of thought leads us to view the d-ply search asa predictor of the d + 1-ply search. The better this prediction is, the smaller the gain or3Keyano was developed at the University of Alberta by Mark Brockington.



3 DECISION QUALITY 6bene�t of searching an additional ply will be.We can design an experiment to measure the quality of a d-ply search as a predictor of ad + 1-ply search. This is easily done by recording how often the d+ 1-ply search leads to adi�erent move choice than a d-ply search. If the quality of the d-ply predictions improves withadditional search depth (deeper searches are better predictors), then the expected gain of adeeper search is necessarily less. Hence we will have demonstrated one form of diminishingreturns for deeper searches.To con�rm the hypothesis, the following experiment was performed. The Turk was usedto analyze roughly 1,000 positions from self-play games. Each position was searched to 9 plyusing iterative deepening. The program recorded whether consecutive search depths agreedwith the previous iteration's move choice or not. Figure 4 shows the frequency with whicha d+ 1-ply search changes the move choice of the d-ply search. The results show that thereare fewer move changes as the search depth increases. In other words, deeper searches arebetter move predictors and the expected bene�ts of search decrease with increased depth.Interestingly, a 9-ply search changes the best move of the 8-ply search an astonishing 27%of the time4.
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Figure 4: Self-Play Chess Move ChangesA move change may not be a signi�cant event. There may be several equally goodmoves, and which move happens to be \best" may be the result of a few random factors inthe evaluation function. We know that a 9-ply search changes the move of an 8-ply search4A similar experiment was performed using Phoenix yielding results that were almost identical. Thiswas surprising to us, since the two programs di�er in 1) evaluation function, 2) search engine, 3) quiescencesearch, and 4) search extensions.



3 DECISION QUALITY 727% of the time, but how often are these changes signi�cant? In general, this is hard toevaluate. Sometimes it is obvious to see that a move change is signi�cant because it resultsin the win of material. Other times, it can be more subtle: a move change results in a smallpositional gain that only manifests itself in the long term. Ideally, an oracle would tell usthe signi�cance of a move change.We can attempt to estimate the e�ect of a move change resulting from deeper search byconsidering the immediate e�ect that the move change has on the search value. The datafrom the previous experiment was �ltered to classify move changes based on the magnitudeof the search score di�erential. If a depth d search prefers movem and a d+1 search prefersmove n, then the score di�erential is the value of move n at depth d + 1 compared to mat d + 1. In other words, we want to quantify how much better the new move is over theprevious best move. Figures 5 and 6 show the results for several di�erentials, where e.g. 25means the value of a quarter pawn. The results are given for d versus d + 1 ply (Figure5, linear and logarithmic scales), and versus the 9-ply (oracle) results (Figure 6, linear andlogarithmic scales).
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Figure 5: Self-Play Chess, Move and Value Changes d vs d + 1 in Percentages a) Linear b)LogarithmicA 9-ply program playing an 8-ply program may change its best move 27% of the time,but only 2.8% of the time is there a move change that results in at least a 25 point (quarterpawn) change in the search score. In other words, in a 100 move game, an 8-ply programwill make an average of three moves that a 9-ply program views as being at least a quarterpawn mistake. Roughly 1.5% of the moves result in at least a 50 point advantage to thedeeper searcher, and 0.3% result in at least a 100 point advantage.These numbers might not seem to be high. However, they represent the minimum change
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Figure 6: Self-Play Chess, Move and Value Changes d vs 9 ply (Oracle) in Percentages a)Linear b) Logarithmicfor a certain percentage of moves (e.g. 25 points for 3%). If one calculates the expectederror for these percentages, the magnitude of these errors gets more apparent. Figure 7shows what the expected value change for a certain percentage of (the worst) moves is. Theexpected error for the 3 worst percent of the moves of an 8-ply program judged by a 9-plyprogram is now almost 37 points (25 before), 1% have 74 points expected change.Since mistakes in a already lost positions are not as signi�cant as mistakes in an approx-imatly even position, we �ltered the data further to exclude move changes in already lostpositions. Figure 8 shows the results. Now the worst 3% of the moves have an expectedchange 25 points, 1% have 40 points expected change.Note that these numbers must be properly interpreted. The score di�erential is based onthe score di�erence of the d-ply and d + 1-ply programs, as measured by a d+1-ply search.Consider, for example, an 8-ply program that chooses move m with a score of +10, and a9-ply program that chooses move n with a score of 150. The di�erential is measured bysubtracting the 9-ply score of move m from 150.Are these numbers high or low? One measure can be obtained from the game of checkers,where the Chinook program is the World Man-Machine Champion [SLLB96]. Since the pro-gram is better than all humans, one would expect its error rate to be lower than for chess.Figure 9 shows that the overall trend in the graphs is the same, however, the curves areshifted, because the error rates are much smaller than in the chess experiments. Althoughthe checker graphs go to greater search depths than for chess, it is important to realize thatbecause of the lower branching factor, searching 20 ply in checkers is comparable compu-tationally to searching 8 ply in chess. The data was obtained from almost 1,000 searches.
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Figure 7: Self-Play Chess, Move and Expected Value Changes a) Linear b) LogarithmicSurprisingly, the 25/50/75 point di�erential curves all eventually reach an error rate of 0(a checker is worth 100 points). The lower error rate may be due to properties of checkers,including the lower branching factor, a \better" program and endgame databases.The conclusion is that a chess (and checker) program makes fewer errors, as judged by adeeper searching program, as the depth of search increases. Hence, by this metric there arediminishing returns in chess. So, why does this (apparently) not manifest itself in a series ofself-play games?4 Game LengthGames of checkers rarely last longer than 50 moves each side. Othello games are restrictedto 30 moves for each side. If you deduct the moves played out of the opening book andthose that are solved in the endgame, far fewer moves have to be searched. In contrast, anaverage chess game lasts 40 moves, and it is not uncommon to see games over 60 moves. Incomputer self-play games, the games tend to last even longer (> 100).The decision quality experiment shows that the error rates in chess decrease with searchdepth. This indicates that the probability of a major error occurring in, for example, a 4-plyversus 3-ply game is much higher than a 9-ply versus 8-ply game. In other words, withadditional search depth the error rate reduces and the programs become stronger. Hence,one would expect that games between deeper searching programs would take longer to reacha conclusion than games between shallow searching programs.The Turk was used to play 80 self-play games for each depth pairing using 40 roughly
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Figure 8: Self-Play Chess, Move and Expected Value Changes for Critical Positions a) Linearb) Logarithmiceven opening positions, each side playing the black and white pieces. The experiments wererun up to 9-ply versus 8-ply. Games were adjudicated if one side had a signi�cant advantage(the equivalent of 3 pawns) or move 100 was reached5. The Turk was modi�ed to do �xed-depth searching (however, leaf node evaluation contained variable-depth capture/checkingmove quiescence search extensions).Figure 10 shows the average length of the games played. Games between the 3-ply versusthe 2-ply program lasted an average of 72 moves, while games between the 9-ply and 8-plyprograms lasted an average of 109 moves6. The better the programs, the smaller the chanceof an error and, thus, the longer the games will last. This �gure suggests diminishing returnssince, with deeper search depths, it gets more di�cult to win.The longer the game, the greater the chance that the shallower searching program willmake an error. Recall from Section 3 that an 8-ply program playing a 9-ply program makesan error of at least 100 points in 0.3% of the moves, an error of at least 50 points in 1.5% ofthe moves, and an error of at least 25 points in 2.8% of the moves. In a short game, chancesare that the 8-ply program will not make any mistakes, as judged by the 9-ply program. The5Exceptions to this rule were made if one side had a considerable advantage and was expected to winwithin the next few moves. The following exact parameters were used: If the advantage of the strongerside was less than 50 the game was adjudicated at move 100, otherwise continued. If the advantage of thestronger side was smaller than 100 at move 115, or less than 150 at move 130, or move 150 was reached, thegame was terminated.6The game length is unusually long by human standards. This is due, in part to the self-play nature ofthe experiments: both opponents have the exact same knowledge, allowing each to usually anticipate whatthe other will play.
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Figure 9: Self-Play Checkers, Move and Value Changeslonger the game lasts, the greater the likelihood that the shallower searching program willmake the decisive mistake.This suggests an interesting experiment: what if the length of the games were arti�ciallylimited? Figure 11 shows the results of the self-play matches as judged at various points inthe game (10 through 50 and the �nal result). To make the overall trend more visible, theright graph shows the results smoothed for the same data as in the left (raw data) graph.The results show that when the length of the game is limited, diminishing returns can beclearly seen. The shorter the game, the smaller the chance of a mistake occurring. If thegame length is unrestricted (200 moves in our case), the chances of a decisive mistake arealmost a certainty. Thus, in Figure 11, the 200 move data point shows no diminishing returns- the likelihood of an error is too great. With shorter games, the probability of an error isreduced, showing smaller gains for additional search depth.Throughout the discussion, it has been assumed that deeper searching is always bene�cial(ignoring search pathology which does not seem to occur in practice [Nau80]). In the self-playgames, we occasionally see the unusual result of the shallower searching program defeating adeeper searching program. Often this is the result of the deeper searching program makinga commital tactical move, the refutation of which is just beyond the search horizon. Clearlythis type of problem occurs more frequently the shallower the search, since deeper searchesincrease the likelihood of �nding the refutation before it is too late. Since our experimentscon�rm that errors for the deeper searching program are far less likely than for the shallowsearcher, we have not made any attempt to di�erentiate between them.
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depthFigure 10: Average Length of Games5 ConclusionContrary to what the literature portrays, chess does exhibit diminishing returns with addi-tional depth of search. Our results suggest that previous work has inadvertently hidden thediminishing returns due to two factors:� Search Quality: The probability of a program making a serious error is quite high. Ourresults show that even 8-ply chess programs make many errors, as measured by a 9-plyprogram. The frequency of these errors indicate that the deeper searching programhas a distinct advantage over the shallow searching program.� Game Length: Given the relatively high error rates, the longer the game the greaterthe advantage that accrues to the deeper searching program. In e�ect, every moveincreases the likelihood of a serious error by the shallow searching program. By limitingthe length of the game, diminishing returns can be seen in chess.In February, 1996, the Deep Blue chess machine played the human World Champion,Garry Kasparov. Deep Blue was searching roughly 250 million positions per second, at leasta factor of 25 in speed beyond any previous chess program. Conventional wisdom says that afactor of 25 translates into an additional two ply of search (perhaps less in Deep Blue's casebecause of parallel search ine�ciency). Previous estimates had the predecessor program,Deep Thought, playing somewhere near the 2500-2550 Elo level. Deep Blue's performancein the match with Kasparov translates into a roughly 2650 Elo performance rating for themachine. Given the additional computational power of the machine and the small increment
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