
 1 

Proceedings of DiGRA 2005 Conference: Changing Views – Worlds in Play. 
© 2005 Authors & Digital Games Research Association DiGRA. Personal and educational classroom 
use of this paper is allowed, commercial use requires specific permission from the author. 

Interactive Story Writing in the Classroom: 

Using Computer Games 
 

Mike Carbonaro 
Department of Education, University of Alberta 

Edmonton, Alberta, Canada T6G 2G5 
Mike.Carbonaro@ualberta.ca 

 
Maria Cutumisu, Matthew McNaughton, 

Curtis Onuczko, Thomas Roy, Jonathan Schaeffer, Duane Szafron 
Department of Computing Science, University of Alberta 

Edmonton, Alberta, Canada T6G 2E8 
{meric,mcnaught,onuczko,troy,jonathan,duane}@cs.ualberta.ca 

 
Stephanie Gillis 

Holy Trinity High School 
Edmonton, Alberta, Canada T6K 4A5 

sgillis@cs.ualberta.ca 
 

Sabrina Kratchmer 
Ardrossan Junior Senior High School 
Ardrossan, Alberta, Canada T8E 2M8 

 
ABSTRACT 
Interactive story writing is a new medium for creative expression. The story “writer” uses a 
computer game (such as BioWare’s Neverwinter Nights) to create an interactive story where the 
“reader” is an active participant. The state of the art is that the story (plot, character behaviors, 
character interactions, conversations, etc.) is specified by writing scripts. Unfortunately, scripting 
is too low level for non-programmers. ScriptEase is a tool for writing interactive stories in role-
playing games that frees the author from doing explicit computer programming. Stories are 
created by selecting and customizing familiar patterns. From this specification, ScriptEase 
automatically generates Neverwinter Nights scripting code. To test the usability of ScriptEase, 
the tool has been used as an aid to help with the short story unit of a Grade 10 Alberta high 
school English curriculum. This paper describes ScriptEase and reports on our experience in 
using it in the classroom. 
 
Keywords 
Interactive story writing, scripting, role-playing games, Neverwinter Nights. 
 
INTRODUCTION 
Computer games offer a new medium for creative writing – immersive stories where the “reader” 
is an active participant in the story. These stories are rich in visual and audio texture. Decisions 
made by the reader influence how the story unfolds and possibly even changes the outcome. 
Traditional pen-and-paper story writing has the author specify everything textually. In interactive 



 2 

stories, the “writer” uses computer tools to create visual representations of an imagined world. 
Vibrant colors and visual objects replace textual adjectives and vivid descriptions. 
 
The last five years have seen interactive story-writing technology mature to the point where it 
has become widely popular. Unfortunately this technology requires the writer to also write 
sophisticated computer programs to control the interactions between the game components. For 
example, when the “player” steps on a particular stone in a corridor, scripting code must be 
written to recognize that the stone has been stepped on and to trigger an appropriate trap. Writing 
scripts to control this level of detail in a story is very burdensome to the writer, and only able to 
be done after extensive training. The goal of our research is to create an environment that enables 
non-programmers to write interactive stories without the need to provide scripts to control this 
level of detail.  
 
Although game play can be used as an educational experience, we are more interested in game 
design than game play [3]. This is a relatively new endeavor [7]. The focus of the research 
described in this paper is to use interactive story writing as a new vehicle for creative expression. 
In a traditional story, the world is created with words, using descriptive prose, and the story is 
told with words, through narrative prose. In an interactive story, the world is “painted” with a 
computer-aided design tool and the story is told dynamically as the player character (PC) 
navigates through the world. There are potential benefits to using interactive story writing in the 
classroom. First, students can improve the skills necessary to effectively use an increasingly 
important communications medium. Second, they will learn important logical thinking skills, 
similar to computer programming, but in an environment that does not have the stigma of 
computer programming. Finally, this new communications medium provides an alternative 
mechanism for creative expression that may allow students to improve their expressive skills. 
 
To reduce the scale of the problem to a manageable level, we decided to focus on computer role 
playing games (CRPGs). In our project, interactive stories are “written” by creating game 
adventures for BioWare’s Neverwinter Nights (NWN) computer game system [1]. Neverwinter 
Nights was released in 2002 to critical acclaim, winning multiple awards (86 at last count). It 
was novel in that it provided a complete toolset for writing interactive stories in the NWN 
framework. The accompanying Aurora toolset has the capability to create story backdrops and 
scenery, and to populate the scenes with characters and supporting props. The scripting language 
NWScript can be used by the writer to specify plot components, character/prop behaviors, and 
their interactions. Scripting languages attempt to lessen the programming burden by presenting 
the user with a simplified specification language – but it is still too close to computer 
programming. Programming (writing) interactive games with such tools is slow, cumbersome, 
and fraught with error. Currently, no other game offers a better or more complete package for 
writing interactive stories. 
 
Neverwinter Nights is a community game with over two million registered users at the BioWare 
site. Thousands of people create NWN stories and post them on the web for others to play. For 
example, the Neverwinter Nights Vault site hosts more than 3,000 adventures [6]. The most 
popular community adventure has been downloaded more than 250,000 times and the tenth most 
popular one has been loaded almost 100,000 times (as of March, 2005). 
 
If the interactive story-writing community is to grow, the tools used to create these stories must 
be improved. They must cater to non-programmers. This paper discusses ScriptEase, a high-level 



 3 

tool for writing interactive stories that frees the author from doing explicit computer 
programming [8]. In ScriptEase, the user specifies the story components by selecting from a 
palette of familiar story patterns (e.g., stepping on a trap and having something happen), and then 
customizing them for their story (e.g., specifying which trap, and what is to happen when the trap 
is sprung). The goal of the ScriptEase project is to create a simple tool that enables a game 
designer (programmer or non-programmer) to generate a complex computer role-playing story 
with minimal effort. 
 
To validate claims that ScriptEase is easy to use for non-programmers, we describe the first time 
it has been used in the classroom (a Grade 10 English class). In this pilot, the students learned to 
use the Neverwinter Nights and ScriptEase toolsets to write interactive stories. These stories 
were graded and were included as part of the assessment for the English course. 
 
This paper starts off with a description of the current state-of-the-art in interactive story writing: 
manual scripting. Non-programmers often find manual scripting very difficult and get frustrated 
during the story design and develop process. The paper then discusses a new approach to 
interactive story writing developed by our research team called ScriptEase. We show how 
ScriptEase’s pattern-based approach can be used to quickly construct intricate stories without 
writing any scripting code. Following that, we discuss the differences between interactive story 
writing and traditional pen-and-paper story writing. The emphasis is on the pedagogical 
differences that might be seen in a classroom setting. We then describe our pilot classroom study 
and provide insights on what was learned. 
 
MANUAL SCRIPTING 
NWScript is the language used for scripting stories in Neverwinter Nights. The language 
strongly resembles the C programming language. It is event-based, which means that when an 
event happens to an object (e.g., a treasure chest would have an event occur when it is opened or 
closed or when an item is added or removed from it), the script associated with that event is 
executed. For example, consider the common occurrence of taking an item out of a chest or 
putting an item into a chest. The object under consideration is the treasure chest, and the event 
that happens to it is that a shield is put into it. Figure 1 illustrates the NWScript code that a user 
might write to handle this event. When a shield is placed in a chest, the shield is destroyed, a 
nearby door is opened, and the character gains so-called experience points. While this might be 
easily readable by programmers, it is very confusing for non-programmers. 
 
Essentially, the entire story has to be written using scripts similar to the one described above. 
This includes: 

• interesting encounters with objects (e.g., having something exciting happen when an item 
in a chest is removed), 

• non-player character (NPC) behaviors (e.g., having a character guarding a chest behave 
like one would expect a guard to behave), 

• conversations (the text said by individuals has to be specified, and any actions that 
happen when text is spoken must be specified—for example when a PC says “No I won’t 
give you my gold”, the NPC may be required by the story to attack the PC), and 

• the plot (you can only enter the room once you have discovered the secret password). 
 
Neverwinter Nights provides a set of commonly occurring canned scripts that the user can adapt 
during the story-writing process. Although these canned scripts can be helpful in speeding up the 



 4 

story-writing process, they can also have the negative affect of limiting the story-writer’s 
creative ability. Essentially, for most interactive story writers, this will constrain their capacity to 
express themselves to only those events that are easily accessible in the canned scripts. 
Overcoming such constraints is an important design consideration when developing a new 
scripting environment for story writers. 
 

Figure 1: Disturbing an item in a chest using NWScript. 
 
Computer role-playing games involve large virtual worlds with thousands of characters and 
objects, each of which has to be scripted to obtain the desired story. Each character or object may 
need multiple scripts (one for each event that it responds to). Writing the scripts can be a tedious 
and error-prone process. Testing scripts is difficult because of the non-linear nature of interactive 
stories. In fact, the only really effective way to test scripts is to play through the portion of the 
game relevant to that script. Unfortunately, this is labor intensive and, hence, expensive. 
 
Most Neverwinter Nights story writers are not programmers. There are few choices available to 
the writers for creating their story. They either use NWScript (and, hence, learn to program) or 
use a tool that reduces the programming burden. The Lilac Soul tool is widely used, but it 
provides only a mechanism for writing script fragments that then must be manually pasted into 
the appropriate event handlers [4]. In addition, although high-level menu commands such as 
“Give items(s)/XP/gold” generate scripting code such as “RewardPartyGP(21, oPC, 
FALSE)”, there is no way to easily remove generated code from a script without trying to figure 
out what script code is generated by what menu commands. In practice, users choose one of 
these two options, and then turn to the community for help by posting to one of the NWN 
scripting forums. There have been almost 150,000 scripting-related postings to the BioWare 
forums (as of March 2005). 
 
For non-programmers, scripting remains a mystery. Program code, like NWScript, is confusing 
and non-intuitive. Users tend to think in familiar high-level terms (like open a chest), not at the 
low-level programming details (such as calling GetNearestObjectByTag()). Figure 2 
shows a sample request for help posted to a scripting forum (the name has been removed). The 
request is simply expressed in non-programming terms and the (possible) solution comes back in 

void main()
{
   object oItem = GetInventoryDisturbItem();
   int nItemBase = GetBaseItemType(oItem);
   if(GetLocalInt(OBJECT_SELF,"NW_L_M1S1Opened") == FALSE
             && GetTag(oItem) == "M1S1Shield" )
   {
      DestroyObject(oItem);
      object oDoor =
             GetNearestObjectByTag("M1Q5F03_M1Q5J1");
      AssignCommand(oDoor,ActionOpenDoor(oDoor));
      SetLocked(oDoor,FALSE);
      SetLocalInt(OBJECT_SELF,"NW_L_M1S1Opened",TRUE);
      RewardXP("m1q1_Never",50,GetPCSpeaker());
   }
}



 5 

programming terms—a communications disconnect. The response to the request is helpful, to a 
point. As a non-programmer, one has to trust the validity of the code given. However comments 
of the form “something like this” leave the non-programmer confused, especially when 
the code as given does not work. In this example, the documentation is in error—it should be 
“OnOpen”, not “OnOpened”. 

Figure 2: Sample user query (1). 
 
Figure 3 further illustrates the communications disconnect. Again, comments like “I think” 
(implying uncertainty) and “rip the scripts” (imprecise specification) cast doubt on the 
veracity of the proposed solution. The second response in Figure 3 is relatively rare—a precise 
specification of the changes needed. Unfortunately, almost all such postings come with the 
caveat “Code presented in this past has not been compiled or 
tested!”. 
 
The problems do not end there. The non-programmer needs to know where to put the script (or 
fragment of script). Code fragments often must be composed or assembled and the scripter often 
does not understand how the parts go together. Invariably, these scripts must be customized. A 
fragment has placeholder values requiring customization (replacing the object(s) in the script 
with the object(s) needed by the user). These, and many other problems, make it challenging for 
a non-programmer to script an interactive game story. 
 
SCRIPTEASE  
By computer game standards, NWScript is a state-of-the-art scripting language. However, the 
scripting language is difficult for non-programmers to learn (see Figure 1). It closely resembles 
the C programming language, requiring the user to understand concepts such as functions, types, 
and variables, as well as a large library of necessary routines. This is a serious impediment to 
making the story creation capabilities accessible to a non-technical audience. 

Query
Author: #####
Subject: Skeleton Spawn when chest opened

Is there a way to make some skeletons spawn when
you open a treasure chest?

Response
Author: #####
Subject: Re: Skeleton Spawn when chest opened

Put something like this into the OnOpened Script
of the chest.
void main() {
  CreateObject(OBJECT_TYPE_CREATURE,
               "MY_RESREF",
               GetLocation(OBJECT_SELF));
}
where MY_RESREF is the BluePrintResRef of the
creature you want to spawn.



 6 

 
ScriptEase is a scripting tool developed at the University of Alberta [8, 5] that generates 
NWScript for Neverwinter Nights. The program provides a menu-driven, natural language 
interface that is used to specify the story. From the user specifications, the tool automatically 
generates the appropriate NWScript code to perform the desired actions. 

Figure 3: Sample user query (2). 
 
Writing stories in ScriptEase is accomplished using patterns. The user specifies a pattern and 
then customizes it to suit their needs. For example, a frequently occurring pattern in fantasy 
games is to open a chest and have something happen. The user selects this pattern and then is 
presented with a window identifying the parameters to be set. The parameters identify the 
participants in the pattern (e.g., which chest does the pattern apply to), the pattern-related actions 
that are appropriate to the plot (a magical spell that is cast on the PC, a statue that animates, 

Query
Author: #####
Subject: Help me newb

I need a script for pulling a lever to make a door open.

Response 1
Author: #####
Subject: Re: Help me newb

Use the Lever to assign ActionOpenDoor (I think) to the
door - or signal a user defined event to the door, and
then have the door open itself - Alternatively load up
the prison floors from Chapter 1 of the official campaign
and rip the scripts from there.

Response 2
Author: #####
Subject: Re: Help me newb

1. Setup the door to have the tag "my_door" (or whatever)
2. Place the lever near the door
3. Edit the levers OnUsed script to read

   object oDoor = GetNearestObjectByTag("my_door");
   int nLocked = GetLocked(oDoor);
   // if the door is locked, unlock it, and vice versa
   SetLocked(oDoor, !nLocked);
   if (nLocked) { // if it was locked it is now unlocked
      AssignCommand(oDoor,ActionOpenDoor(oDoor));
   } else { // else close and lock
      AssignCommand(oDoor,ActionCloseDoor(oDoor));
      AssignCommand(oDoor,
      ActionDoCommand(SetLocked(oDoor,TRUE)));
   }



 7 

teleporting the player’s character to another location, etc.), and special effects (e.g., a visual 
effect that occurs when the chest is opened). 
 
A story is written by adapting existing patterns to specify the plot, character and prop 
interactions, character behaviors, and conversations. We now present an example to show the 
step-by-step process of writing a scene from an interactive story using ScriptEase. 
 
The Container Disturb (specific item) toggle door pattern is a popular pattern for controlling the 
plot of a story. Some writers used it to deny access to a room by locking the door and not 
providing a key to that door anywhere in the story. Instead, they may place a chest in another 
room and put a specific item (such as a particular book) into that chest. The writer can then apply 
the pattern so that removing the book from the chest automatically causes the locked door to 
unlock and open. To insert this pattern into a story, a writer begins by using the Aurora toolset to 
lock the door of interest. Figure 4 shows the story (in a file labeled CastleExample.mod) opened 
in the Aurora toolset. To lock the door (labeled bedroom2) for a specific key, the writer selects 
the door, opens the Door Properties dialog box and selects both the Locked and Key required to 
unlock or lock checkboxes. 
 
The Aurora toolset is then used to create a chest (labeled BookChest) and place it into a nearby 
room. The writer then opens the Inventory of the chest and drags a particular book (labeled The 
Origin of Magic) into the chest. Figure 5 shows the chest, its properties dialog box, its inventory 
and the book that has been dragged into the inventory. 
 
So far, the story writer has used the Aurora toolset to populate the story with appropriate props to 
tell this part of the story. This is equivalent to using descriptive prose in a traditional story to 
describe the scene and set the stage for the action. At this point, the story writer will use a 
ScriptEase pattern instead of writing narrative prose that describes how the story’s protagonist 
removes the magic book from the chest to unlock and open the door. The story writer opens the 
story (labeled CastleExample.mod) in ScriptEase and creates a New Specific Encounter called 
the Container Disturb (specific item) toggle door pattern as shown in Figure 6. 
 
Each pattern has some roles associated with it that must be played by particular objects in the 
scene of the story being written. For this story, the writer selects each of the three roles 
associated with this pattern: The Container, The Specific Item and The Door and selects the 
objects that will play these roles: BookChest, The Origin of Magic and bedroom2, respectively. 
For example, Figure 7 shows how the user selects the tab for The Container role, clicks on the 
Pick… button and then selects the BookChest as the container of interest from a dialog box that is 
very similar to the (by now) familiar Aurora toolset dialogs. Note that we have overlaid a type 
system on the NWN objects to reduce errors. For example, only the creature and placeable icons 
at the top of the Pick a blueprint dialog are not grayed out, since a “container” is an object that 
has an inventory and therefore must either be a creature or a placeable, as opposed to a door, or 
an item, etc. that have no inventories. Our type system (even though the writers do not know it is 
a type system) helps to reduce errors by only allowing the appropriate type of object to be picked 
for any particular pattern role. 
 



 8 

 
Figure 4: Example story opened in the Aurora toolset. 

 

 
Figure 5: The chest and its properties in the Aurora toolset. 



 9 

 
Figure 6: Creating an encounter pattern. 

 

 
Figure 7: Parameters for a pattern. 

 
After picking the objects that will play the roles, the writer could simply save and compile the 
story and exit ScriptEase. However, it would be a better story if the reader (player) had some hint 
that removing the book in one room unlocked and opened the door in the other. Therefore, we 
show how the writer can adapt this pattern to this particular story by causing a visual effect to 
appear on the appropriate door. This visual effect will draw the attention of the reader to the door 
that was affected. Figure 8 shows how the writer adapts the pattern by first opening the E 
(Encounter pattern) and the S (Situation it contains) to reveal the V (eVents), D (Definitions), C 
(Conditions), and A (Actions) that comprise it. The writer then adds a new action to fire an 
impact visual effect (labeled Unsummon), by selecting this action from a menu, similar to the 
one used to add the encounter in Figure 6. This particular visual effect was chosen since it can be 
seen from far away. The only action the story writer has added is this last action. The other 
components of this pattern (Situation, Definitions, Condition and Actions) were revealed when 
the pattern was opened – indeed these other components (along with the roles) define the pattern. 



 10 

 
After saving and compiling the story, the writer can “test-drive” the story by opening it in NWN. 
Figure 9 shows what happens when the PC (Serenity) removes the book from the chest. The 
basic graphics show the screen just before the book is removed and the insets show the parts of 
the screen that change, just as the book is dragged from the chest’s inventory to the PC’s 
inventory. The changes are shown as arrows from the two parts of the scene to the insets that 
show the change. The visual effect can be seen as white lines in the still picture, but this picture 
does not do justice to the actual game where the visual effect is a startling animation of billowing 
white light, accompanied by sound effects that draw attention to the door of interest. 
 

 
Figure 8: Customizing a pattern. 

 
 
 
 
 
 



 11 

 
Figure 9: Playing the story. 

 
The chest example shows the ease of using ScriptEase to create an interactive story. ScriptEase 
provides many benefits for simplifying the creation of interactive stories: 

1. It provides a simple menu-driven interface. 
2. All specifications are done using familiar story-element patterns. 
3. The user need not know anything about NWScript. 
4. ScriptEase organizes the (potentially) thousands of scripts. 
5. Many common programming errors cannot happen. The patterns have been tested and 

debugged by the pattern designer, not the pattern user. 
6. By enabling game designers to generate their own interactive stories, this eliminates the 

middleman (programmer) during story telling. 
7. Creating interactive stories appeals to a wider audience of story writers, making it a 

useful tool for the classroom. 
 
Claims of being “easy to use” are often made in the computing literature, rarely backed up with 
supporting evidence. For ScriptEase, we want to validate our claim that ScriptEase is easy to use 
by non-programmers. 
 
INTERACTIVE STORY WRITING 
Interactive story writing is a relatively new medium for creative expression. Compared to 
traditional pen-and-paper (word processor) stories, interactive stories are fundamentally different 
in their requirements and in the skill set needed.  



 12 

 
It is often difficult for students to start writing a traditional short story and many students 
complain: “I don't know where to start”. In our experience, students have no difficulty starting an 
interactive story. Why? This fundamental difference is critical to understanding the pedagogical 
potential (and limitations) of interactive story writing. 
 
To start a traditional story, it is necessary to set the scene of the story by writing a considerable 
amount of descriptive prose, before getting to the “good” part of telling the story. Thus students 
often limit their description of their setting, leaving the reader guessing and often confused. With 
an interactive story, the scene can be quickly “painted” using the Aurora Toolset to add scene 
components. We hypothesize three main consequences of this difference that we believe make it 
easier to start an interactive story (and therefore make it more fun). 
 

1. Writing descriptive text can require more technical skill than selecting and placing scene 
objects. In an interactive story, the user can experience their imagination, both visually 
and aurally. They can create a mental image, and then select scenery, objects and sound 
to realize it. Pen-and-paper approaches require the user to translate images into words. 
The quality of the result depends on extensive education—in vocabulary, grammar and 
creative writing. 

 
2. Feedback is slow and often difficult to evaluate in the traditional approach. It can take a 

long time to write the descriptive text and when the author reads what he/she has written, 
it is often hard to know if the text adequately describes the scene, or whether the author's 
mental vision is compensating for what is missing from the text. Often the text must be 
read several times to discover what is missing or is inconsistent with the mental vision. 
With an interactive story, the author can set the scene quickly and view it immediately. 
This results both in a higher chance of alignment with the mental vision and less doubt as 
to whether the scene can stand alone without relying on information from the mental 
vision known only to the author. From a Computing Science perspective, this is visual 
debugging at its finest. 

 
3. Early positive feedback from correctly setting part of the scene increases self-confidence 

in technical skills. Steady obvious incremental improvement of the story results in an 
increase in motivation since the author is (usually) getting closer to the goal, rather than 
making progress at an irregular rate due to false starts. 

 
Creating an interactive story is, in many ways, more similar to writing a play than writing a short 
story. In a play, the author concentrates on the plot, theme and character dialogue; other issues 
such as detailed scene descriptions, internal character subtleties, and flowing prose to tie it all 
together are not needed. An interactive story is similar. All the effort goes into creating the plot 
and composing the interactions between the characters. Scene descriptions are simply expressed 
as pictures, without the need for elegant prose. Character subtleties, if not expressed as text such 
as in conversations, are currently beyond the capabilities of games such as Neverwinter Nights.  
 
One major difference between interactive stories and plays is in the background characters 
populating a scene. For example, if the hero of the story goes into a store to buy something, the 
play author just assumes that there are other people in the store and that there is a cashier. Little 
time has to be spent on the details, since the author (and the readers) can infer the rest. In an 



 13 

interactive story, however, the details of the store must be specified. All background characters 
(such as the cashier, and other NPCs) must be programmed. This extra level of detail may put a 
significant onus on the story creator, depending on the needs of their story. However, this is 
precisely where a tool such as ScriptEase can be a big win. Character behaviors can also be 
patterns. There could be, for example, a “cashier” behavior. The story writer could create a 
character in the story and assign the cashier pattern to it. This would allow the writer to add more 
realism to their story by easily populating a scene with additional characters exhibiting realistic 
behavior. Behavior patterns are the subject of current research in ScriptEase. In our pilot study, 
the students did not have access to any behavior patterns.  
 
CLASSROOM PILOT 
Working collaboratively with a high school English teacher and a high school student, a series of 
tutorials were created (for the tools Neverwinter Nights, Aurora, and ScriptEase) [9]. The high 
school teacher developed, and the high school student tested, an interactive story-writing 
assignment targeted for High School English students. This process took several months and 
several iterations of the documentation. 
 
The interactive writing assignment was used as part of the curriculum in a Grade 10 English 
class, and administered over a two-week period in November 2004. It consisted of two 
components: 
 

1. The students were taken on a field trip to the University of Alberta for the tutorials 
(because of the availability of the computing equipment). Over two days, they went 
through the Neverwinter Nights, Aurora and ScriptEase tutorials. Their high school 
teacher supervised the trip, and helped answer student questions. Two graduate students 
were on hand at all times to provide additional technical support. At the end of the trip, 
students were ready to create their stories. 

 
2. Three eighty-minute English classes were completed in the high school computer lab, 

allowing the students to work on their stories. Extra computer hours were made available 
for those who wanted it. 

 
Twenty-one students completed the assignment.  
 
We found that the students were generally highly motivated to work on their stories. This 
became obvious early on when the students requested that additional computer lab time be made 
available for them to work on their stories. Part of the motivation likely came from the novelty of 
the classroom experience. Beyond that, however, there was a sense of excitement as the student’s 
interactive story-writing capabilities increased.  
 
In a regular English classroom, it is common for the teacher to have students “peer evaluate” 
each other’s work. Students often interpret this as added work and are not very interested in what 
their peers have written since the stories are not professionally published. Therefore, the 
feedback is often minimal and little benefit to either student. During the field trip and upon 
return to the school we noticed a strong sense of collaboration. Students were neither encouraged 
nor discouraged from helping each other, exchanging story ideas, and providing feedback on 
other student’s stories. In fact, we did not even think about interpersonal collaboration in 
designing the activity. What we discovered was that students began collaborating on their stories 



 14 

from the beginning of the tutorial exercises without encouragement from their English teacher. 
One student would spontaneously say to the next student, “look what I tried” and the other 
student would immediately get involved by adapting the idea to his/her own story or by 
suggesting related things to try. Groups of students began gathering at one workstation or 
another observing particular students' activities. This encouraged all the students to produce 
better stories, knowing that their work was being seen and appreciated by their fellow students. 
Constructive collaboration within a community of learners provided students with an opportunity 
to improve their critiquing skills. We believe that it also resulted in better understanding of 
concepts since students would often try to explain things (that they had figured out by 
themselves or that were clarified by the teacher) to their peers. In some cases, the interaction 
went beyond merely giving instructions; it became interactive collaborative story development. 
From the Computing Science perspective, it appeared that some students had discovered the 
advantages of pair programming. 
 
We were only able to observe the collaboration during the two-day trip to the University of 
Alberta. However, the collaborations continued throughout the assignment. The teacher 
contrasted this high level of interpersonal collaboration in interactive story writing with the 
collaboration in traditional learning activities: 
 

“ScriptEase created interaction among my students which was not typical of an 
individual activity such as story writing. This way of story writing encouraged 
collaboration before, during and after their stories were complete.” 

 
The teacher gave us additional insights into the student’s experience. Of particular interest is the 
observation that some students with lower academic achievements became immersed in the 
assignment. A possible explanation is that the creative mechanism of interactive stories was 
easier for them or better suited to their capabilities. If so, this has exciting implications for the 
pedagogical development of the creative “writing” courses. Gardner's work on different modes 
of intelligence and their connection to expressive modes (music, dance, etc.) seems to apply here, 
since our interactive stories contain visual and sound aspects [2]. 
 
The teacher reported that the students had a high level of curiosity about the capabilities of the 
interactive story-writing tools. Many students asked questions about tool features beyond what 
was introduced for their assignment, and some students took this one step forward by exploring 
these features even though no documentation was provided. 
 
In general, everything went well with the pilot study. There were a few glitches, such as some 
computer hardware problems and some (small) issues with the tutorials. None of these detracted 
from the student’s enjoyment of the experience in any significant way. 
 
The one big mistake that we made in the pilot study was underestimating the time it would take 
the teacher to mark the assignments. The teacher developed a rubric to mark the story. However, 
each component of the grading required the teacher to play-test the student submission. The 
result was that each story required several hours of grading time. Not knowing the details of a 
student’s story, the teacher had to explore the student’s game world to uncover all the subtleties 
of the story (for example, traps, hidden doors, and dead end passageways). For subsequent 
classroom use, we will ask the students to create storyboards for their interactive story. By 
having the students map out the major components of the story, the teacher can avoid most of the 



 15 

trial and error exploration aspects of the game. This is often done traditionally in the classroom 
through a written outline of the story provided by the student. 
 
This pilot has been tremendously valuable for giving feedback on the use of interactive 
storytelling in general, the computer tools in particular, and ways to improve the tutorials, 
grading scheme, student-computing environment, and scope of the assignment. The initial 
experience was very positive for all parties. In particular, the teacher conducted a student survey 
after the assignment was completed and reported a very high level of satisfaction from the 
respondents. Most students gave a strong preference to doing another interactive story-writing 
assignment over a traditional story-writing assignment. 
 
FUTURE WORK 
An experimental study using ScriptEase will happen in May 2005 using another English class as 
the target population. We will gather data on the students and their performance. Data will be 
used to identify any correlations between student abilities (e.g. problem solving skills) and 
background (e.g. computer experience), and how well they do on the assignment. Further, we 
hypothesize that some students who have difficulty expressing their creativity in words using 
traditional technologies may have no such limitations using interactive story-writing technology. 
On the other hand, there may be other students who excel at traditional writing, but that do not 
have sufficiently developed logical thinking skills to design and create an interactive non-linear 
story. 
 
The development of interactive story-writing technology is still in its early stages. ScriptEase has 
been two years in the making, and there is still much to do. Our current work is building 
behavior patterns, allowing the user to rapidly create scenes populated with a rich set of NPCs. 
Future work will include conversation patterns. Currently, creating conversations is cumbersome 
and time consuming, yet many types of conversations are really just frequently occurring 
patterns (e.g., a greeting, or a request for a service). Enhancing ScriptEase to include 
conversation patterns is a natural extension of our current work. 
 
Our research goal is to make interactive story-writing technology available to non-programmers, 
demonstrate its pedagogical value in the classroom, and work towards popularizing this medium 
as a new form of creative literature. 
 
ACKNOWLEDGEMENTS 
This research was supported by the Natural Sciences and Engineering Research Council of 
Canada (NSERC), the Institute for Robotics and Intelligent Systems (IRIS), and Alberta’s 
Informatics Circle of Research Excellence (iCORE). 
 
REFERENCES  
1. BioWare. http://www.bioware.com. 
2. Gardner, H. Multiple Intelligences: The Theory in Practice. Basic Books, New York, 1993. 
3. McFarlane, A., Sparrowhawk, A., and Heald Y. “Report on the Educational Use of Games,” in Teachers 

Evaluating Educational Multimedia Report, 2002. http://www.teem.org.uk/publications/teem_gamesined_full.pdf. 
4. Lilac Soul. http://lilacsoul.revility.com. 
5. McNaughton, M., Cutumisu, M., Szafron, D., Schaeffer, J., Redford, J., and Parker, D. “ScriptEase: Generative 

Design Patterns for Computer Role-Playing Games,” in 19th International Conference on Automated Software 
Engineering, pp. 88-99, 2004. 

6. Neverwinter Nights Vault. http://nwvault.ign.com. 
7. Robertson, J. and Good, J. “Story Creation in Virtual Game Worlds,” in Communications of the ACM, vol. 48, no. 



 16 

1, pp. 61-65, 2005. 
8. ScriptEase project. http://www.cs.ualberta.ca/~script. 
9. Tutorials and assignment available at http://www.cs.ualberta.ca/~script/scripteasenwn.html. 
 


