
Best-First and Depth-First Minimax Search in Practice

Aske Plaat, Erasmus University, plaat@cs.few.eur.nl

Jonathan Schaeffer, University of Alberta, jonathan@cs.ualberta.ca

Wim Pijls, Erasmus University, whlmp@cs.few.eur.nl

Arie de Bruin, Erasmus University, arie@cs.few.eur.nl

Erasmus University, University of Alberta,
Department of Computer Science, Department of Computing Science,

Room H4-31, P.O. Box 1738, 615 General Services Building,
3000 DR Rotterdam, Edmonton, Alberta,

The Netherlands Canada T6G 2H1

Abstract

Most practitioners use a variant of the Alpha-Beta algorithm, a simple depth-first pro-
cedure, for searching minimax trees. SSS*, with its best-first search strategy, reportedly
offers the potential for more efficient search. However, the complex formulation of the al-
gorithm and its alleged excessive memory requirements preclude its use in practice. For two
decades, the search efficiency of “smart” best-first SSS* has cast doubt on the effectiveness
of “dumb” depth-first Alpha-Beta.

This paper presents a simple framework for calling Alpha-Beta that allows us to create
a variety of algorithms, including SSS* and DUAL*. In effect, we formulate a best-first
algorithm using depth-first search. Expressed in this framework SSS* is just a special
case of Alpha-Beta, solving all of the perceived drawbacks of the algorithm. In practice,
Alpha-Beta variants typically evaluate less nodes than SSS*. A new instance of this
framework, MTD(ƒ), out-performs SSS* and NegaScout, the Alpha-Beta variant of choice
by practitioners.

1 Introduction

Game playing is one of the classic problems of artificial intelligence. Searching for the best
move in a zero-sum game is known as minimax search. The study of minimax search algorithms
has created ideas that have proved useful in many search domains. For example, this research
extends to single-agent search, such as iterative deepening (IDA*) [11], real-time search (RTA*)
[12] and bidirectional search [14]. Although two-agent search has many more application areas,
the best-known is undoubtedly game playing, the application that we shall be using in this paper.

Over the last thirty years, most practitioners used depth-first search algorithms based on
Alpha-Beta [10] for their game-playing programs. There is an exponential gap in the size of
trees built by best-case and worst-case Alpha-Beta. This led to numerous enhancements to
the basic algorithm, including iterative deepening, transposition tables, the history heuristic
and narrow search windows (see for example [31] for an assessment). Although best-first
approaches have been successful in other search domains, minimax search in practice has been
almost exclusively based on depth-first strategies. Best-first approaches were more complex and



reportedly required more memory, both being serious impediments to their general acceptance.
SSS*, a best-first algorithm, will provably never build larger trees than Alpha-Beta and generally
builds significantly smaller trees [4, 9, 16, 26, 33]. Despite the potential, the algorithm remains
largely ignored in practice.

This paper presents the surprising result that best-first SSS* can be reformulated as a
special case of depth-first Alpha-Beta. Consequently, SSS* is now easily implemented in
existing Alpha-Beta-based game-playing programs, solving all of the perceived drawbacks of
the algorithm. Experiments conducted with three tournament-quality game-playing programs
show that in practice SSS* requires as much memory as Alpha-Beta. When given identical
memory resources, SSS* does not evaluate significantly less nodes than Alpha-Beta. It is
typically out-performed by NegaScout [8, 28, 26], the current depth-first Alpha-Beta variant of
choice. In effect the reasons for ignoring SSS* have been eliminated, but the reasons for using
it are gone too!

The ideas at the basis of the SSS* reformulation are generalized to create a framework for
best-first fixed-depth minimax search that is based on depth-first null-window Alpha-Beta calls.
A number of other algorithms in the literature, including DUAL* and C*, are just special cases
of this framework. A new instance of this framework, MTD(ƒ), out-performs all other minimax
search algorithms.

In the new framework, SSS* is equivalent to a special case of Alpha-Beta and it is out-
performed by other Alpha-Beta variants (both best-first and depth-first). In light of this, we
believe that SSS* should now become a footnote in the history of game-tree search.

2 Null-Window Search and Memory

In the Alpha-Beta procedure, a node is searched with a search window. It is well-known that
the narrower the search window, the more nodes can be cutoff [16]. The narrowest window
possible is the null window, where α = β � 1 (assuming integer-valued leaves). Many people
have noted that null-window search has a great potential for creating efficient search algorithms
[1, 5, 6, 8, 19, 30]. The widely used NegaScout algorithm derives its superiority over Alpha-
Beta from null-window search [8, 20, 26]. A number of algorithms have been proposed that are
solely based on null-window search, such as C* [6, 34] and Alpha Bounding [30].

Knuth and Moore have shown that the return value g of an Alpha-Beta search with windowhα , βi can be one of three things [10]:

1. α < g < β . g is equal to the minimax value ƒ of the game tree G.

2. g ≤ α (failing low). g is an upper bound on the minimax value ƒ of G, or ƒ ≤ g.

3. g ≥ β (failing high). g is a lower bound on the minimax value ƒ of G, or ƒ ≥ g.

Knuth and Moore have shown that the essential part of the search tree that proves the minimax
value is the minimal tree [10]. For a minimax tree of uniform width w and depth d, it has
wbd/2c + wdd/2e � 1 leaves, or, its size is O(wdd/2e). If Alpha-Beta returns an upper bound, then its
value is defined by a max solution tree, in a sense one half of a minimal tree, of size O(wdd/2e).
If Alpha-Beta returns a lower bound, then its value is defined by a min solution tree, the other
half of a minimal tree, of size O(wbd/2c). The theoretical background for these statements can be
found in [7, 13, 25, 33].

A single null-window search will never return the true minimax value ƒ, but only a bound on
it (which may happen to coincide with ƒ, but this cannot be inferred from the result of the null-
window call). A fail low results in an upper bound, denoted by ƒ+. A fail high returns a lower



bound, denoted by ƒ�. Algorithms like C* and Alpha Bounding use multiple null-window calls
to generate bounds to home in on the minimax value. A potential problem with these repetitive
calls is that they re-expand previously searched nodes. For NegaScout it appears that the gains
of the tighter bounds out-weigh the costs of re-expansions, compared to a single wide-window
Alpha-Beta call [21].

An idea to prevent the re-expansion of previously searched nodes is to store them in memory.
It is often said that since minimax trees are of exponential size, this approach is infeasible since
it needs exponentially growing amounts of memory [9, 18, 29]. For game-playing programs an
obvious choice is to use a transposition table for storage [31]. Originally the transposition table
was introduced to prevent the search of transpositions in the search space. A transposition is
a node with more than one parent, a position that can be reached via several move sequences.
Today, transposition tables are often used in combination with iterative deepening [16]. The
main benefit of this combination is to improve the quality of move ordering [15].

Storing information from previous searches is another use of the transposition table. The
only difference with preventing the search of transpositions is that now the table entries are
nodes from a previous search pass; there is no difference as far as the table itself is concerned.
The basic idea is that it is possible to store the search tree in the transposition table. Some
background explaining in greater detail why the transposition table is a suitable structure for
storing search or solution trees, and why it gives correct results in algorithms doing repetitive
null-window searches, can be found in [7, 25].

Since recursive null-window Alpha-Beta calls return only bounds, storing the previous
search results comes down to storing a max or a min solution tree. We have shown in [25]
that although the search information that must be stored is indeed of exponential size, it is
much less than what is often assumed. For the search depths typically reached by tournament-
quality game-playing programs, the search information fits comfortably in today’s memories.
Projections of tomorrow’s search depths and memory sizes show that this situation will persist
in the foreseeable future.

3 A Framework for Best-First Search

The concept of null-window Alpha-Beta search was introduced by Pearl with his proof-procedure
Test [20]. Since we use memory to store intermediate search information, we have named our
framework Memory-enhanced Test, or MT. As proof procedure we use a standard null-window
Alpha-Beta procedure for use with transposition tables. The code can be found in figure 1.

So far, we have discussed the following two mechanisms to be used in building efficient
algorithms: (1) null-window searches cutoff more nodes than wide search windows, and (2)
transposition tables can be used to glue multiple Alpha-Beta passes together. We can use these
building blocks to construct a number of different algorithms. An option is to construct drivers
that repeatedly call Alpha-Beta at the root of the game tree. Three of these drivers are shown in
the figures 2 and 3. The drivers differ in the way the null window is chosen (denoted by γ in the
figures).

3.1 SSS*

The driver to the left in figure 2 constructs an algorithm that starts with an upper bound of +∞.
From Alpha-Beta’s postcondition we see that this call will fail low, yielding an upper bound.
By feeding this upper bound ƒ+ again to a null-window Alpha-Beta call, we will get a sequence
of fail lows. In the end, if g = γ , we will have a fail high with g = ƒ� = γ = ƒ+, which means the



/* Transposition table (TT) enhanced Alpha-Beta */
function Alpha-Beta(n, α, β) → g;

/* Check if position is in TT and has been searched to sufficient depth */
if retrieve(n) = found then

if n.ƒ+ ≤ α or n.ƒ+ = n.ƒ� then return n.ƒ+;
if n.ƒ� ≥ β then return n.ƒ�;

/* Reached the maximum search depth */
if n = leaf then

n.ƒ� := n.ƒ+ := g := eval(n);
else

g := �∞;
c := firstchild(n);
/* Search until a cutoff occurs or all children have been considered */
while g < β and c 6= ? do

g := max(g,�Alpha-Beta(c,�β ,�α));
α := max(α, g);
c := nextbrother(c);

/* Save in transposition table */
if g ≤ α then n.ƒ+ := g;
if α < g < β then n.ƒ+ := n.ƒ� := g;
if g ≥ β then n.ƒ� := g;

store(n);
return g;

Figure 1: Alpha-Beta for Use with Transposition Tables

minimax value ƒ has been found. This driver expands the same leaf nodes in the same order as
Stockman’s SSS* [33]. (A full proof of this claim can be found in [22] and an outline of the proof
in [25].) In this sense, we have constructed an equivalent formulation of SSS*, constructing
a best-first algorithm using depth-first, memory-enhanced, search. The reformulation is called
AB-SSS*.

Many researchers have conjectured that best-first algorithms such as SSS* would need
too much memory to be practical alternatives for depth-first algorithms like Alpha-Beta. The
literature cites three main drawbacks of SSS*: it is hard to understand, it performs operations
on a sorted list that are slow, and it uses too much memory to be practical [9, 17, 18, 26, 29, 33].
The new formulation has a number of practical advantages over the old Stockman formulation.
The biggest advantage is that this formulation is readily implementable in a regular Alpha-Beta-
based game-playing program. This enables us to easily test the performance of SSS* These
tests confirm that SSS* does not need too much memory [25].

We think that our reformulation as a sequence of null-window Alpha-Beta calls is easy to
understand. SSS*’s slow OPEN list operations are traded in for hash table lookups that are as
fast as for Alpha-Beta [16], and the experiments show that AB-SSS* does not need too much
memory. We conclude that the drawbacks of SSS* are solved in the new formulation.



function AB-SSS*(n) → ƒ; function AB-DUAL*(n) → ƒ;
g := +∞; g := �∞;
repeat repeat

γ := g; γ := g;
g := Alpha-Beta(n, γ � 1, γ ); g := Alpha-Beta(n, γ , γ + 1);

until g = γ ; until g = γ ;
return g; return g;

Figure 2: SSS* and DUAL* as a Sequence of Memory-enhanced Alpha-Beta Searches

function MTD(n, ƒ) → ƒ;
g := ƒ;
ƒ+ := +∞; ƒ� := �∞;
repeat

if g = ƒ� then γ := g + 1 else γ := g;
g := Alpha-Beta(n, γ � 1, γ );
if g < γ then ƒ+ := g else ƒ� := g;

until ƒ� = ƒ+;
return g;

Figure 3: MTD(ƒ), a Better Sequence of Alpha-Beta Searches

3.2 DUAL*

A dual version of SSS*, aptly named DUAL*, can be created by inverting SSS*’s operations:
use an ascendingly sorted list instead of descending, swap max and min operations, and start at�∞ instead of +∞ [17, 26]. The power of the framework is demonstrated by the reformulation
called AB-DUAL* in figure 2. The only difference with AB-SSS* is the initialization of the
bound to�∞, and a change in the way Alpha-Beta is called. This reformulation focuses attention
on one item only: the bound starts at the bottom of the scale, implying that the only fundamental
difference between SSS* and DUAL* is that upper bounds are replaced by lower bounds (which
implies that the max solution tree that is refined by AB-SSS* has become a min solution tree
in AB-DUAL*). All other differences are apparently insubstantial, since nothing else has to be
changed.

3.3 Other Options for the choice of Start Value

AB-SSS* starts the sequence of Alpha-Beta searches at +∞, the high end of the scale. AB-
DUAL* starts at �∞, the low end of the scale. An intuitively appealing option is to choose
another start value, closer to the expected outcome. One option is to keep bisecting the interval
between the upper and lower bound, to reduce the number of Alpha-Beta calls. This idea is
used in C* [6, 23, 34]. Another idea is to use a heuristic guess as the start value. In an iterative
deepening framework it is natural to use the score from the previous iteration for this purpose,
since it is expected to be a close approximation of the score for the current depth. We have
called this driver MTD(ƒ) and its pseudo code is shown in figure 3. The first call acts to decide
which way the search will go. If it is a fail high, MTD(ƒ) will behave like AB-DUAL*, and
keep increasing the lower bound returned by Alpha-Beta. If the first call fails low, MTD(ƒ) will,



like AB-SSS*, decrease the upper bound until the minimax value is reached. AB-SSS* starts
off optimistic, AB-DUAL* starts off pessimistic, and MTD(ƒ) starts off in the middle, possibly
realistic.

One of the drawbacks of AB-SSS* and AB-DUAL* is the potentially high number of calls
to Alpha-Beta needed until the search converges to the minimax value. Most of the Alpha-
Beta calls make small improvements to the bound. By starting closer to the minimax value,
many intermediate Alpha-Beta calls are skipped. MTD(ƒ) takes one big leap to come close to
the minimax value, dramatically reducing the number of intermediate Alpha-Beta calls. The
lower number of calls has the advantage that MTD(ƒ) performs relatively better in constrained
memory than SSS*, since there are fewer re-expansions. Measurements confirm that Alpha-
Beta typically gets called 3 to 6 times in MTD(ƒ). In contrast, the AB-SSS* and AB-DUAL*
results are poor compared to NegaScout when all nodes in the search tree are considered. Each
of these algorithms performs dozens and often even hundreds of Alpha-Beta searches. The
wider the range of leaf values, the smaller the steps with which they converge, and the more
re-searches they need.

4 Performance

To assess the performance of the proposed algorithms in practice, a series of experiments
was conducted. We present data for the comparison of Alpha-Beta, NegaScout, AB-SSS*,
AB-DUAL*, and MTD(ƒ).

4.1 Experiment Design

We will assess the performance of the algorithms by counting leaf nodes and total nodes. For
two algorithms we also provide data for execution time. This metric may vary considerably for
different programs. It is nevertheless included, to give evidence of the potential of MTD(ƒ).

We have tried to come as close to real-life applications of our algorithms as possible by
conducting the experiments with three tournament-quality game-playing programs, Phoenix
[30] for chess, Keyano [3] for Othello and Chinook [32] for checkers. Chess has a branching
factor of about 35, Othello of about 10 and checkers of about 3. Thus we cover the range from a
wide to a narrow branching factor. This paper presents results for chess; the results for the other
games (which are similar and confirm the chess results) can be found in [25]. All algorithms
used iterative deepening. They are repeatedly called with successively deeper search depths. All
three algorithms use a standard transposition table with a maximum of 221 entries; tests showing
that the solution trees could comfortably fit in tables of this size, without any risk of noise due to
collisions [25]. For our experiments we used the original program author’s transposition table
data structures and code without modification. At an interior node, the move suggested by the
transposition table is always searched first (if known), and the remaining moves are ordered
before being searched. Phoenix uses dynamic ordering based on the history heuristic [31].

Conventional test sets in the literature proved to be inadequate to model real-life conditions.
Positions in test sets are usually selected to test a particular characteristic or property of the
game (such as tactical combinations in chess) and are not necessarily indicative of typical
game conditions. For our experiments, the algorithms were tested using a set of 20 positions
that corresponded to move sequences from tournament games. By selecting move sequences
rather than isolated positions, we are attempting to create a test set that is representative of real
game search properties (including positions with obvious moves, hard moves, positional moves,
tactical moves, different game phases, etc.). A number of test runs was performed on a bigger
test set and to a higher search depth to check that the 20 positions did not contain anomalies.



85

90

95

100

105

110

115

2 3 4 5 6 7 8 9
Depth

Chess - Leaves Relative to Aspiration NegaScout (%)

AspNS
AB

MTD(f)
Dual*
SSS*

Figure 4: Comparing Leaf Node Count

Many papers in the literature use Alpha-Beta as the base-line for comparing the performance
of other algorithms (for example, [5, 15]). The implication is that this is the standard data point
which everyone is trying to beat. However, game-playing programs have evolved beyond simple
Alpha-Beta algorithms. Most use Alpha-Beta enhanced with null-window search (NegaScout),
iterative deepening, transposition tables, move ordering and an initial aspiration window. Since
this is the typical search algorithm used in high-performance programs (such as Phoenix),
it seems more reasonable to use this as our base-line. The worse the base-line comparison
algorithm chosen, the better other algorithms appear to be. By choosing NegaScout enhanced
with aspiration searching [2] (Aspiration NegaScout) as our performance metric, and giving it a
transposition table big enough to contain all re-search information, we are emphasizing that it is
possible to do better than the “best” methods currently practiced and that, contrary to published
simulation results, some methods—notably SSS*—will turn out to be inferior.

Since we implemented the algorithms (like AB-SSS* and AB-DUAL*) using Alpha-Beta
we were able to compare a number of algorithms that were previously seen as very different. By
using Alpha-Beta as a common procedure, every algorithm benefited from the same enhance-
ments concerning iterative deepening, transposition tables and move ordering code. To our
knowledge this is the first comparison of depth-first and best-first minimax search algorithms
where all the algorithms are given identical resources.

4.2 Results

Figure 4 shows the performance of Phoenix using the number of leaf evaluations (NBP or
Number of Bottom Positions) as the performance metric. Figure 5 shows the performance of
the algorithms using the number of nodes in the search tree (interior and leaf, including nodes
that caused transposition cutoffs) as the metric. The graphs show the cumulative number of
nodes over all previous iterations for a certain depth (which is realistic since iterative deepening
is used) relative to Aspiration NegaScout. Note the different vertical scales.

4.2.1 Aspiration NegaScout and MTD(ƒ)

The results show that Aspiration NegaScout is better than Alpha-Beta. This result is consistent
with [31] which showed Aspiration NegaScout to be a small improvement over Alpha-Beta
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when transposition tables and iterative deepening were used.
MTD(ƒ) is a best-first algorithm that consists solely of null-window searches. In each pass,

the previous one is used to guide the search towards selecting the best node. The majority of
the searches in NegaScout is also performed with a null window. An important difference is
with which value this null-window search is performed. NegaScout derives it from the tree
itself, whereas MTD(ƒ) relies for the first guess on information from outside the tree. (In our
experiments the minimax value from a previous iterative deepening iteration was used for this
purpose.)

The best results are from MTD(ƒ), although the current algorithm of choice by the game
programming community, Aspiration NegaScout, performs very well too. The averaged MTD(ƒ)
leaf node counts are consistently better than for Aspiration NegaScout, averaging around a 10%
improvement for Phoenix. More surprisingly is that MTD(ƒ) outperforms Aspiration NegaScout
on the total node measure as well. Since each iteration requires repeated calls to Alpha-Beta (at
least two and possibly many more), one might expect MTD(ƒ) to perform badly by this measure



because of the repeated traversals of the tree. This suggests that MTD(ƒ), on average, is calling
Alpha-Beta close to the minimum number of times. A deeper analysis of MTD(ƒ) can be found
in [25].

4.2.2 SSS* and DUAL*

Contrary to many simulations [4, 9, 17, 18, 26, 27, 29, 33], our results show that the difference in
the number of leaves expanded by SSS* and Alpha-Beta is relatively small. Since game-playing
programs use many search enhancements, the benefits of a best-first search are greatly reduced.
We conclude that in practice, AB-SSS* is a small improvement on Alpha-Beta for leaf nodes
only (depending on the branching factor). Claims that SSS* and DUAL* evaluate significantly
fewer leaf nodes than Alpha-Beta are based on simplifying assumptions that have little relation
with what is used in practice. Aspiration NegaScout regularly out-performs SSS* on leaf count
and greatly out-performs it on total nodes.

4.3 Execution time

The bottom line for practitioners is execution time. We only show execution time graphs for
iterative deepening (ID) MTD(ƒ) and ID Aspiration NegaScout (figure 6). Comparing results
for the same machines we found that MTD(ƒ) is consistently the fastest algorithm. The run
shown is a typical example run on a Sun SPARC. We did experience different timings when
running on different machines. It may well be that cache size plays an important role, and that
tuning of the program can have a considerable impact.

In our experiments we found that for Phoenix MTD(ƒ) was about 9–13% faster in execution
time than Aspiration NegaScout. For other programs and other machines these results will
obviously differ, depending in part on the quality of the score of the previous iteration, and on
the test positions used. Also, since the tested algorithms perform quite close together, the relative
differences are quite sensitive to variations in input parameters. In generalizing these results,
one should keep this sensitivity in mind. Using these numbers as absolute predictors for other
situations would not do justice to the complexities of real life game trees. The experimental data
is better suited to provide insight on, or guide and verify hypotheses about these complexities.

4.4 Artificial versus Real Trees

Previously, performance assessments of SSS* and Alpha-Beta have mainly been based on
simulations [4, 9, 17, 18, 26, 27, 29, 33]. They typically found SSS* to out-perform Alpha-Beta
significantly. Our experiments were performed with practical programs, that enhance the basic
minimax algorithms with techniques like iterative deepening and transposition tables. The result
is that in practice SSS* does not out-perform Alpha-Beta significantly. It is often out-performed
by depth-first Alpha-Beta variants such as NegaScout.

Simulations are usually performed when it is too difficult or too expensive to construct the
proper experimental environment. For game-tree searching, the case for simulations is weak.
There is no need to do simulations when there are quality game-playing programs available for
obtaining actual data. Further, simulation parameters can be incorrect, resulting in large errors
in the results that lead to misleading conclusions.

5 Conclusions

Null-window search, enhanced with storage, can be used to construct best-first minimax al-
gorithms. For storage a conventional transposition table can be used. The null-window calls



generate a sequence of bounds on the minimax value. The storage contains the part of the search
tree that establishes these bounds, to be refined in subsequent passes.

A framework has been presented for algorithms that generate sequences of bounds in different
ways. Interestingly, certain instances of this framework expand the same leaf nodes in the same
order as SSS* and DUAL*. These algorithms, called AB-SSS* and AB-DUAL*, solve the
perceived problems of SSS* and DUAL*. They are much simpler and practical, consisting of a
single loop of Alpha-Beta calls.

We used tournament game-playing programs for our tests. Using the Alpha-Beta-based
framework, both depth-first and best-first algorithms are given the same storage, in contrast
to previous comparisons. The results confirm that AB-SSS* and AB-DUAL* are practical
algorithms, contradicting previous publications [9, 17, 29].

We tested instances of the framework against the depth-first algorithm implemented in our
programs, Aspiration NegaScout, representing the current choice of the game programming
community. One instance, MTD(ƒ), out-performs NegaScout on leaf node count, total node
count and execution time, by a wider margin than NegaScout’s gain over Alpha-Beta. The
results reported in this paper are for chess, a game with a relatively high branching factor. We
have conducted experiments for two other games as well. The results for checkers and Othello,
games with a narrow and medium branching factor, confirm these results [25].

Interestingly, all the tested algorithms perform relatively close together, much closer than
previous simulation results have indicated. We conclude that, a) artificially-generated game
trees often do not capture all the essential aspects of real trees, and b) often more gains are
obtained from the so-called Alpha-Beta enhancements, than from the underlying algorithms.

In the past, much research effort has been devoted to understanding how SSS* works, and
finding out what the pros and cons of SSS*’s best-first approach are for minimax search. In the
new framework, SSS* is equivalent to a special case of Alpha-Beta and it is out-performed by
other Alpha-Beta variants (both best-first and depth-first). In light of this, we believe that SSS*
should now become a footnote in the history of game-tree search.

Having seen these results for minimax search, it is an interesting question to find out whether
formulating best-first search using depth-first procedures is possible in single-agent search as
well.
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