
A Gamut of Games �Jonathan Shae�erDepartment of Computing SieneUniversity of AlbertaEdmonton, AlbertaCanada T6G 2H1jonathan�s.ualberta.aAugust 26, 2001AbstratIn 1950 Claude Shannon published his seminal work on how to pro-gram a omputer to play hess. Sine then, developing game-playingprograms that an ompete with (and even exeed) the human worldhampions has been a long-sought-after goal of the arti�ial intelligeneresearh ommunity. In Shannon's time, it would have seemed unlikelythat only a sant 50 years would be needed to develop programs that playworld-lass bakgammon, hekers, hess, Othello, and Srabble. Theseremarkable ahievements are the result of a better understanding of theproblems being solved, major algorithmi insights, and tremendous ad-vanes in hardware tehnology. Computer games researh is one of theimportant suess stories of arti�ial intelligene. This artile reviews thepast suesses, urrent projets, and future researh diretions for arti�ialintelligene using omputer games as a researh test-bed.1 IntrodutionGames are ideal domains for exploring the apabilities of omputational intel-ligene. The rules are �xed, the sope of the problem is onstrained, and theinterations of the players are well de�ned. Contrast this to the real world|thegame of life|where the rules often hange, the sope of the problem is almostlimitless, and the partiipants interat in an in�nite number of ways. Gamesan be a miroosm of the real world (e.g. the role of game theory in eonomis,soial interation, and animal behavior), and suessfully ahieving high om-puter performane in a nontrivial game an be a stepping stone towards solvingmore hallenging real-world problems.�Portions of this artile have been published in [53℄ and are reprodued with permissionand without further itation. 1



Historially, games have been a popular hoie for demonstrating new re-searh ideas in arti�ial intelligene (AI). Indeed, one of the early goals of AIwas to build a program apable of defeating the human world hess hampionin a math. This hallenge proved to be more diÆult than was antiipated; theAI literature is replete with optimisti preditions. It eventually took almost50 years to omplete the task|a remarkably short time when one onsidersthe software and hardware advanes needed to make this amazing feat possible.Often overlooked, however, is that this result was also a testament to humanabilities. Considering the formidable omputing power that Deep Blue used inits 1997 exhibition math against world hess hampion Garry Kasparov (ma-hine: 200,000,000 hess positions per seond; man: two per seond), one anonly admire the human hampions for withstanding the tehnologial onslaughtfor so long.Computer-games researh was started by some of the luminaries in omput-ing siene history. In 1950, Claude Shannon published his seminal paper thatlaid out the framework for building high-performane game-playing programs[55℄. In 1951, Alan Turing did a hand simulation of his omputer hess algo-rithm (a lak of resoures prevented him from atually programming it) [73℄; thealgorithm lost to a weak human player. Around this time, Arthur Samuel be-gan work on his famous hekers-playing program, the �rst program to ahievenotable suess against human opposition [49, 51℄. By 1958, Alan Newell andHerb Simon had begun their investigations into hess, whih led eventually ledto fundamental results for arti�ial intelligene and ognitive siene [43℄. Animpressive lineup to say the least!In the half entury years sine Shannon's paper, enormous progress has beenmade in onstruting high-performane game-playing programs. In Shannon'stime, it would have seemed unlikely that within a sant 50 years hekers (8� 8draughts), Othello1, and Srabble2 programs would exist that exeed the abil-ities of the best human players, while bakgammon and hess programs ouldplay at a level omparable to the human world hampion. These remarkableaomplishments are the result of a better understanding of the problems be-ing solved, major algorithmi insights, and tremendous advanes in hardwaretehnology. The work on omputer games has been one of the most suessfuland visible results of arti�ial intelligene researh. For some games, one ouldargue that the Turing test has been passed [37℄.This artile disusses the progress made in developing programs for the las-si board and ard games. For a number of games, a short history of the progressin building a world-lass program for that game is given, along with a brief de-sription of the strongest program. In eah ase we highlight a single featureof the program that is a major ontributor to the program's strength. The his-tories are neessarily brief. I apologize in advane to the many hard-workingresearhers and hobbyists whose work is not mentioned here.Setion 2 briey summarizes some of the major advanes in tehnology that1Othello is a registered trademark of Tsukuda Original, liensed by Anjar Co.2Srabble is a registered trademark of the Milton Bradley Company, a division of Hasbro,In. 2



failitated the onstrution of world-hampionship-aliber programs. Setion3 reports the past suesses where omputers have met or exeeded the besthuman players (bakgammon, hekers, hess, Othello, and Srabble). Setion4 highlights games of urrent aademi interest (bridge, go, and poker). Setion5 disusses some of the future hallenges of using games as a researh test-bedfor arti�ial intelligene.Although this artile emphasizes the arti�ial intelligene viewpoint, oneshould not underestimate the engineering e�ort required to build these pro-grams. One need only look at the reent suess of the Deep Blue hess mahineto appreiate the e�ort required. That projet spanned eight years (12 if oneinludes the pre-IBM time), and inluded several full-time people, extensiveomputing resoures, hip design, and grandmaster onsultation. Some of thease studies hint at the amount of work required to onstrut these systems.In all ases, the suesses reported in this artile are the result of onsistentprogress over many years.2 Enabling TehnologiesThe biggest advanes in omputer game-playing have ome as a result of workdone on the alpha-beta searh algorithm. This algorithm reeived the mostattention beause of the researh ommunity's preoupation with hess. Withthe Deep Blue vitory over world hess hampion Garry Kasparov, interest inmethods suitable for hess has waned and been replaed by ativity in othergames. One ould argue that the hess vitory removed a ball and shakle thatwas stiing the reativity of researhers who were building high-performanegame-playing systems.The alpha-beta researh led to a plethora of searh enhanements whih sig-ni�antly improved the eÆieny of the searh. Some of these enhanementsinlude iterative deepening, ahing previously seen sub-tree results (transpo-sition tables), suessor reordering, searh extensions/redutions, probabilistiuto�s, and parallel searh. The results are truly amazing. Even though thereis an exponential di�erene between the best-ase and the worst-ase for analpha-beta searh, most high-performane game-playing programs are searh-ing within a small onstant of the best ase [45℄.Sadly, the ommunity of researhers involved in this work have done a rel-atively poor job of selling the tehnology, resulting in many of the ideas beingreinvented for other domains. For example, many searh tehniques pioneeredwith alpha-beta have beome standard in other searh domains, with few real-izing the lineage of the ideas.At the heart of many game-playing programs is an evaluation funtion. Earlyon, game developers quikly enountered the knowledge aquisition bottlenek,and traded-o� quality of knowledge for speed of the program. Simple evaluationfuntions, linear ombinations of easily identi�able features, were the mainstayof omputer games programs for many deades. Alternative approahes, suh asmodeling human ognitive proesses, turned out to be muh harder to do than3



initially expeted, and generally resulted in poor performane. Games program-mers quikly learned that a little heuristi knowledge, when ombined with deepsearh, an produe amazing performane results. Indeed, one ould argue thatthe viability of brute-fore searh, one a term with negative onnotations in theAI ommunity, is one of the main researh results from games-related researh[22℄.In the last deade, new tehniques have moved to the forefront of gamesresearh. Two in partiular are mentioned here sine they are likely to play amore prominent role in the near future:1. Monte Carlo simulation has been suessfully applied to games with imper-fet or non-deterministi information. In these games it is too expensiveto searh all possible outomes. Instead only a representative sample ishosen to give a statistial pro�le of the outome. This tehnique has beensuessful in bridge, poker and Srabble.2. Temporal-di�erene learning is the diret desendent of Samuel's mahinelearning researh [64℄. Here a database of games (possibly generated byomputer self-play) an be used to bootstrap a program to �nd a goodombination of knowledge features. The algorithm has been suessfullyapplied to bakgammon, and has reently shown promise in hess.The most obvious hardware advane is simply speed. To read about Samuel'shekers-playing program running on a 1963 mahine that ould exeute 15 mil-lion additions per minute [44℄ starkly brings home the point that orders ofmagnitude more omputing power makes many things possible. Indeed, on-sidering the pauity of omputing power at Samuel's disposal, one an only be�lled with admiration at what he ahieved.Computer games researh pioneered ompetitions to assess the quality ofthe systems being developed. Sine 1970, there have been annual omputerhess tournaments. There is now an annual Computer Olympiad whih bringstogether many of the top programs and their developers in head-to-head ompe-tition (see www.msoworld.om). The ompetitive spirit has spread throughoutthe AI ommunity; ompetitions now exist for other appliations, inludingtheorem proving, planning and natural language.3 Suess in Computer GamesIn a number of games, omputers have enjoyed suess that puts them on paror better with the best humans in the world. In some sense, this is the past, inthat ative researh to develop high-performane programs for these games ison the wane (or is now non-existent). These inlude games where omputers arebetter than all humans (hekers, Othello, Srabble) and those where omputersare ompetitive with the human world hampion (bakgammon and hess).4



3.1 BakgammonThe �rst onerted e�ort at building a strong bakgammon program was un-dertaken by Hans Berliner of Carnegie Mellon University. In 1979 his program,BKG9.8, played an exhibition math against the the newly-rowned world ham-pion Luigi Villa [6, 7℄. The stakes were $5,000, winner take all. The �nal sorewas seven points to one in favor of the omputer, with BKG9.8 winning four ofthe �ve games played (the rest of the points ame from the doubling ube).Bakgammon is a game of both skill and luk. In a short math, the diean favor one player over another. Berliner writes that \In the short run, smallperentage di�erenes favoring one player are not too signi�ant. However, inthe long run a few perentage points are highly indiative of signi�ant skilldi�erenes" [7℄. Thus, assessing the results of a �ve-game math are diÆult.Afterwards Berliner analyzed the program's play and onluded that [6℄:There is no doubt that BKG9.8 played well, but down the line Villaplayed better. He made the tehnially orret plays almost all thetime, whereas the program did not make the best play in eight outof 73 non-fored situations.BKG9.8 was an important �rst step, but major work was still needed to bringthe level of play up to that of the world's best players.In the late 1980s, IBM researher Gerry Tesauro began work on a neural-net-based bakgammon program. The net used enoded bakgammon knowledgeand, training on data sets of games played by expert players, learned the weightsto assign to these piees of knowledge. The program, Neurogammon, was goodenough to win �rst plae in the 1989 Computer Olympiad [68℄.Tesauro's next program, TD-Gammon used a neural network that was trainedusing temporal di�erene learning. Instead of training the program with datasets of games played by humans, Tesauro was suessful in having the programlearn using the temporal di�erenes from self-play games. The evolution in TD-Gammon from version 0.0 to 3.0 saw an inrease in the knowledge used, a largerneural net, and the addition of small seletive searhes. The resulting programis aknowledged to be on par with the best players in the world, and possiblyeven better.In 1998, an exhibition math was played between world hampion MalolmDavis and TD-Gammon 3.0 (at the AAAI'98 onferene). To redue the lukfator, 100 games were played over three days. The �nal result was a narroweight-point win for Davis. Both Davis and Tesauro have done extensive analysisof the games, oming up with similar onlusions [66℄:While this analysis isn't de�nitive, it suggests that we may have wit-nessed a superhuman level of performane by TD-Gammon, marredonly by one horrible blunder redoubling to 8 in game 16, osting awhopping 0.9 points in equity and probably the math!A notable feature of TD-Gammon is its neural net evaluation funtion. Thenet takes as input the urrent board position and returns as output the sore5



for the position (roughly, the probability of winning) [69℄. The net has approxi-mately 300 input values [65, 67℄. The latest version, TD-Gammon 3.0, ontains160 hidden units. Eah unit takes a linear sum of the weighted values of itsinputs, and then onverts it to a value in the range -3 to 3 (a bakgammon isworth three points, a gammon two, and a win, one point). The onversion isdone with a sigmoid funtion, allowing the output to be a nonlinear funtionof the inputs. The resulting neural net has approximately 50,000 weights thatneed to be trained.The weights in the hidden units were trained using temporal di�erene learn-ing from self-play games. By playing the program against itself, there was anendless supply of data for the program to train itself against. In a given gameposition, the program uses the neural net to evaluate eah of the roughly 20di�erent ways it an play its die roll, and then hooses the move leading tothe maximum evaluation. Eah game is played to ompletion, and then tempo-ral di�erene learning is applied to the sequene of moves. Close to 1,500,000self-play games were used for training TD-Gammon 3.0.Tesauro's suess with temporal di�erene learning in his bakgammon pro-gram is a major milestone in arti�ial intelligene researh.3.2 ChekersArthur Samuel began thinking about a hekers program in 1948 but did notstart oding until a few years later. He was not the �rst to write a hekers-playing program; Christopher Strahey pre-dated him by a few months [63℄.Over the span of three deades, Samuel worked steadily on his program, withperformane taking a bak seat to his higher goal of reating a program thatlearned. Samuel's hekers player is best known for its single win against RobertNealey in a 1963 exhibition math. From this single game, many people erro-neously onluded that hekers was a \solved" game.In the late 1970's, a team of researhers at Duke University built a stronghekers-playing program that defeated Samuel's program in a short math [72℄.Early suess onvined the authors that their program was possibly one ofthe 10 best players in the world. World hampion Marion Tinsley e�etivelydebunked that, writing that: \The programs may indeed onsider a lot of movesand positions, but one thing is ertain. They do not see muh!" [71℄. E�ortsto arrange a math between the two went nowhere and the Duke program wasquietly retired.Interest in hekers was rekindled in 1989 with the advent of strong ommer-ial programs and a researh e�ort at the University of Alberta: Chinook. Chi-nook was authored prinipally by Jonathan Shae�er, Norman Treloar, RobertLake, Paul Lu, and Martin Bryant. In 1990, the program earned the right tohallenge for the human world hampionship. The hekers federations refusedto santion the math, leading to the reation of a new title: the world man-mahine hampionship. This title was ontested for the �rst time in 1992, withMarion Tinsley defeating Chinook in a 40-game math by a sore of 4 winsto 2. Chinook's wins were the �rst against a reigning world hampion in a6



non-exhibition event for any ompetitive game.There was a remath in 1994, but after six games (all draws), Tinsley re-signed the math and the title to Chinook, iting health onerns. The followingweek he was diagnosed with aner, and he died eight months later. Chinookhas subsequently defended its title twie, and has not lost a game sine 1994.The program was retired from human ompetitions in 1997 [52℄.The struture of Chinook is similar to that of a typial hess program: searh,knowledge, database of opening moves, and endgame databases [52, 54℄. Chi-nook uses alpha-beta searh with a myriad of enhanements inluding iterativedeepening, transposition table, move ordering, searh extensions, and searhredutions. Chinook was able to average a minimum of 19-ply searhes againstTinsley (using 1994 hardware) with searh extensions oasionally reahing 45ply into the tree. The median position evaluated was typially 25-ply deep intothe searh.A notable feature in Chinook is its use of endgame databases. The databasesontain all hekers positions with eight or fewer piees, 444 billion (4 � 1011)positions ompressed into six gigabytes for real-time deompression. Unlikehess programs whih are ompute-bound, Chinook beomes I/O-bound after afew moves in a game. The deep searhes mean that the database is oasionallybeing hit on the �rst move of a game. The databases introdue aurate values(win/loss/draw) into the searh (no error), reduing the program's dependenyon its heuristi evaluation funtion (small error). In many games, the programis able to bakup a draw sore to the root of a searh within 10 moves by eahside from the start of a game. This suggests that it may be possible to determinethe game-theoreti value of the starting position of the game (one de�nition of\solving" the game).Chinook is the �rst program to win a human world hampionship for anygame. At the time of Chinook's retirement, the gap between the program and thehighest-rated human was 200 rating points (using the hess rating sale) [52℄. Agap this large means that the program would sore 75% of the possible points ina math against the human world hampion. Sine then, faster proessor speedsmean that Chinook has beome stronger, further widening the gap between manand mahine.3.3 ChessThe progress of omputer hess was strongly inuened by an artile by KenThompson whih equated searh depth with hess-program performane [70℄.Basially, the paper presented a formula for suess: build faster hess searhengines. The milestones in hess program development beome a statement ofthe state-of-the-art in high-performane omputing:� 1978-1980: The pioneering programs from Northwestern University, mostnotably Chess 4.6 [60℄, ran on a top-of-the-line Control Data omputerand ahieved the �rst major tournament suesses.7



� 1980-1982: Belle, the �rst program to earn a U.S. master title, was amahine built to play hess. It onsisted of 10 large wire-wrapped boardsusing LSI hips [15℄.� 1983-1984: Cray Blitz used a multi-proessor Cray superomputer [30℄.� 1985-1986: The Hiteh hess mahine was based on 64 speial-purposeVLSI hips (one per board square) [8, 16℄.� 1985-1986: Wayool used a 256-proessor hyperube [17℄.� 1987-present: ChipTest (and its suessors Deep Thought and Deep Blue)took VLSI tehnology even further to ome up with a hess hip [27, 28,29℄.In 1987, ChipTest shoked the hess world by tieing for �rst plae in astrong tournament, �nishing ahead of a former world hampion and defeating agrandmaster. The unexpeted suess aroused the interest of world hampionGarry Kasparov, who played a two-game exhibition math against the programin 1989. Man easily defeated mahine in both games.The Deep Blue team worked for seven years on improving the program,inluding designing a single-hip hess searh engine and making signi�antstrides in the quality of their software. In 1996, the hess mahine played a six-game exhibition math against Kasparov. The world hampion was stunned bya defeat in the �rst game, but he reovered to win the math, soring three winsand two draws to o�set the single loss. The following year, another exhibitionmath was played. Deep Blue sored a brilliant win in game two, handingKasparov a psyhologial blow from whih he never reovered. In the �nal,deisive game of the math, Kasparov fell into a trap and the game endedquikly. This gave Deep Blue an unexpeted math vitory, soring two wins,three draws and a loss.It is important to keep this result in perspetive. First, it was an exhibitionmath; Deep Blue did not earn the right to play Kasparov.3 Seond, the mathwas too short to aurately determine the better player; world-hampionshipmathes have varied from 16 to 48 games in length. Although it is not learjust how good Deep Blue is, there is no doubt that the program is a stronggrandmaster.What does the researh ommunity think of the Deep Blue result? Manyare �lled with admiration at this feat of engineering. Some are autious aboutthe signi�ane. John MCarthy writes that [41℄:In 1965, the Russian mathematiian Alexander Kronrod said, \Chessis the Drosophila4 of arti�ial intelligene." However, omputerhess has developed muh as genetis might have if the genetiists3To be fair, it is unlikely that the international hess federation will ever allow omputersto ompete for the world hampionship.4The drosophila is the fruit y. The analogy is that the fruit y is to genetis researh asgames are to arti�ial intelligene researh. 8



had onentrated their e�orts starting in 1910 on breeding raingDrosophila. We would have some siene, but mainly we would havevery fast fruit ies.In retrospet, the hess \problem" turned out to be muh harder than wasexpeted by the omputing pioneers. The Deep Blue result is a tremendousahievement, and a milestone in the history of omputing siene.From the sienti� point of view, it is to be regretted that Deep Blue hasbeen retired, the hardware unused, and the programming team disbanded. Thesienti� ommunity has a single data point that suggests mahine might bebetter than man at hess. The data is insuÆient and the sample size is notstatistially signi�ant. Moreover, given the lak of interest in Deep Blue fromIBM, it is doubtful that this experiment will ever be repeated. Of what valueis a single, non-repeatable data point?Deep Blue and its predeessors represents a deade-long intensive e�ort bya team of people. The projet was funded by IBM, and the prinipal sientistswho developed the program were Feng-hsiung Hsu, Murray Campbell, and JoeHoane.The notable tehnologial feature of Deep Blue is its amazing speed, theresult of building speial-purpose hess hips. The hip inludes a searh engine,a move generator, and an evaluation funtion [27℄. The hip's searh algorithmis based on alpha-beta. The evaluation funtion is implemented as small tableson the hip; the values for these tables an be downloaded to the hip beforethe searh begins. These tables are indexed by board features and the resultssummed in parallel to provide the positional sore.A single hip is apable of analyzing over two million hess positions per se-ond (using 1997 tehnology). It is important to note that this speed understatesthe hip's apabilities. Some operations that are too expensive to implementin software an be done with little or no ost in hardware. For example, oneapability of the hip is to seletively generate subsets of legal moves, suh asall moves that an put the opponent in hek. These inreased apabilities giverise to new opportunities for the searh algorithm and the evaluation funtion.Hsu estimates that eah hess hip position evaluation roughly equates to 40,000instrutions on a general-purpose omputer. If so, then eah hip translates toa 100 billion instrution per seond hess superomputer [27℄.Aess to the hip is ontrolled by an alpha-beta searh algorithm that re-sides on the host omputer (an IBM SP-2). Eah of the 32 SP-2 proessors ouldaess 16 hips. The reported umulative performane, 200,000,000 positionsanalyzed per seond, falls short of the peak speed (over one billion positionsper seond) due to the inherent diÆulty of getting good parallel performaneout of the alpha-beta algorithm. That massive amount of omputing allowsthe program to searh deeper, signi�antly reduing the probability that it willmake an error (as Kasparov found out to his regret).The arti�ial intelligene ommunity gave a olletive sigh of relief whenDeep Blue defeated Kasparov. It was time to move on to new hallenges in the�eld. 9



3.4 OthelloThe �rst major Othello program was Paul Rosenbloom's Iago [48℄, ahievingimpressive results given its early-1980s hardware. It dominated play againstother Othello programs of the time, but played only two games against world-lass human players, losing both. The program's ability to predit 59% of themoves played by human experts was extrapolated to onlude that the program'splaying strength was of world-hampionship aliber.By the end of the deade, Iago had been elipsed. Kai-Fu Lee and San-joy Mahajan's program Bill represented a major improvement in the quality ofomputer Othello play [39℄. The program ombined deep searh with exten-sive knowledge (in the form of preomputed tables) in its evaluation funtion.Bayesian learning was used to ombine the evaluation funtion features in aweighted quadrati polynomial.Statistial analysis of the program's play indiated that it was a strongOthello player. Bill won a single game against Brian Rose, the highest ratedAmerian Othello player at the time. In test games against Iago, Bill won everygame. These results led Lee and Mahajan to onlude that \Bill is one of thebest, if not the best, Othello player in the world." As usual, there is danger inextrapolating onlusions based on limited evidene.With the advent of the Internet Othello Server (IOS), omputer Othello tour-naments beame frequent. In the 1990s they were dominated by Mihael Buro'sLogistello. The program partiipated in 25 tournaments, �nished �rst 18 times,seond six times, and fourth one. The program ombined deep searh withan extensive evaluation funtion that was automatially tuned. That ombinedwith an extensive database of opening moves and a perfet endgame player area winning reipe for Othello.Although it was suspeted that by the mid-1990s, omputers had surpassedhumans in their playing abilities at Othello, this was not properly demonstrateduntil 1997, when Logistello played an exhibition math against world hampionTakeshi Murakami. In preparation for the math, Buro writes that [13℄:Bill played a series of games against di�erent versions of Logistello.The results showed that Bill, when playing 5-minute games runningon a PentiumPro/200 PC, is about as strong as a 3-ply Logistello,even though Bill searhes 8 to 9 plies. Obviously, the additionalsearh is ompensated for by knowledge. However, the 3-ply Logis-tello an only be alled mediore by today's human standards.Two explanations for the overestimation of playing strength in thepast ome to mind: (1) during the last deade human players haveimproved their playing skills onsiderably, and (2) the playing strengthof the early programs was largely overestimated by using ... non-reliable sienti� methods.Logistello won all six games against Murakami by a total dis ount of 264 to120 [13℄. This on�rmed what everyone had expeted about the relative playing10



strengths of man and mahine. The gap between the best human players and thebest omputer programs is believed to be large and e�etively unsurmountable.Outwardly, Logistello looks like a typial alpha-beta-based searher. How-ever, the onstrution of the evaluation funtion is novel. The program treatsthe game as having 13 phases: 13{16 diss on the board, 17{20 diss, ..., and 61{64 diss.5 Eah phase has a di�erent set of weights in the evaluation funtion.The evaluation-funtion features are patterns of squares omprising ombina-tions of orners, diagonals, and rows. These patterns apture important Othelloonepts, suh as mobility, stability and parity. Logistello has 11 suh patterns,whih with rotations and reetions yields 46. Some of the patterns inlude a3� 3 and a 5� 2 on�guration of stones anhored in a orner, and all diagonalsof length greater than 3.The weights for eah entry in eah pattern (46) for eah phase of the game(11) are determined by linear regression. There are over 1.5 million table entriesthat need to be determined. The data was trained using 11 million soredpositions obtained from self-play games and pratie games against anotherprogram [12℄. The evaluation funtion is ompletely table-driven. Given aposition, all 46 patterns are mathed against the position, with a suessfulmath returning the assoiated weight. These weights are summed to get theoverall evaluation whih approximates the �nal dis di�erential.Mihael Buro omments on the reasons why Logistello easily won the Mu-rakami math[13℄:When looking at the games of the math the main reasons for thelear outome are as follows:1. Lookahead searh is very hard for humans in Othello. The disad-vantage beomes very lear in the endgame phase, where the boardhanges are more substantial than in the opening and middlegamestage. Computers are playing perfetly in the endgame while hu-mans often lose diss.2. Due to the automated tuning of the evaluation funtions anddeep seletive searhes, the best programs estimate their winninghane in the opening and middlegame phase very aurately. Thisleaves little room for human innovations in the opening, espeiallybeause the best Othello programs are extending their opening booksautomatially to explore new variations.3.5 SrabbleThe �rst doumented Srabble program appears to have been written by StuartShapiro and Howard Smith and was published in 1977 [56℄. In the 1980s anumber of Srabble programming e�orts emerged and by the end of the deade,it was apparent that these programs were strong players. With aess to the5Note that there is no need for a phase for less than 13 diss on the board, sine the searhfrom the �rst move easily reahes 13 or more diss.11



entire Srabble ditionary in memory (now over 100,000 words), the programsheld an important advantage in any games against humans.At the �rst Computer Olympiad in 1989 the Srabble winner was Crab writ-ten by Andrew Appel, Guy Jaobson, and Graeme Thomas [40℄. Seond wasTyler written by Alan Frank. Subsequent Olympiads saw the emergene of TSP(Jim Homan), whih edged out Tyler in the seond and third Olympiads. Allof these programs were very good, and quite possibly strong enough to be aserious test for the best players in the world.Part of their suess was due to the fast, ompat Srabble move gener-ator developed by Appel [4℄. Steven Gordon subsequently developed a movegenerator that was twie as fast, but used �ve times as muh storage [26℄.Brian Sheppard began working on a Srabble program in 1983, and starteddeveloping Maven in 1986. In a tournament in Deember 1986, Maven soredeight wins and two losses over an elite �eld, �nishing in seond plae on tie-break. Sheppard desribes the games against humans at this tournament [57℄:Maven reels o� JOUNCES, JAUNTIER, and OVERTOIL on sues-sive plays, eah for exatly 86 points, to ome from behind againstfuture national hampion Bob Felt. Maven rushed humans repeat-edly in o�hand games. The human rae begins to ontemplate thepotential of omputers.In the following years, Maven ontinued to demonstrate its dominating playagainst human opposition. Unfortunately, sine it did not ompete in the Com-puter Olympiads, it was diÆult to know how strong it was ompared to otherprograms at the time.In the 1990s, Sheppard developed a pre-endgame analyzer (for when therewere a few tiles left in the bag) and improved the program's ability to simulatelikely sequenes of moves. These represented important advanes in the pro-gram's ability. It was not until 1997, however, that the opportunity arose toproperly assess the program's abilities against world-lass players. In 1997, atwo-game math between Maven and Adam Logan, one of the best players inNorth Ameria, ended in two wins for the human. Unfortunately, the mathwas not long enough to get a sense of who was really the best player.In Marh 1998, the New York Times sponsored an exhibition math betweenMaven and a team onsisting of world hampion Joel Sherman and the runner-up Matt Graham. It is not lear whether the ollaboration helped or hinderedthe human side, but the omputer won onviningly by a sore of six wins tothree. The result was not an anomaly. In July of that year, Maven playedanother exhibition math against Adam Logan (at the AAAI'98 onferene),soring nine wins to �ve.Shortly after the Logan math, Brian Sheppard wrote:The evidene right now is that Maven is far stronger than humanplayers. ... I have outright laimed in ommuniation with the reamof humanity that Maven should be moved from the \hampionshipaliber" lass to the \abandon hope" lass, and hallenged anyone12



who disagrees with me to ome out and play. No takers so far, butmaybe one brave human will yet venture forth.No one has.Maven divides the game into three phases [59℄: early game, pre-endgame,and endgame. The early game starts at move one and ontinues until thereare nine or fewer tiles left in the bag (i:e:, with the opponent's seven tiles, thisimplies that there are 16 or fewer unknown tiles). In the pre-endgame andendgame phases, speialized searhes are performed taking advantage of thelimited amount of unknown information.In the early game phase, the program uses simulations to get a statistialanalysis of the likely onsequenes of making a move. Typially, 1,000 three-plysimulations are done when making a move deision. The move leading to thehighest average point di�erential is seleted. The issue with the simulations ismove generation. On average there are over 700 legal moves per position, andthe presene of two blanks in the rak an inrease this �gure to over 5,000!6Contrast this, for example, with hess where the average number of moves toonsider in a position is roughly 40. Thus, Maven needs to pare the list of pos-sible moves down to a small list of likely moves. Omitting an important movefrom this list will have serious onsequenes; it will never be played. Conse-quently, Maven employs multiple move generators, eah identifying moves thathave important features that merit onsideration. These move generators are:� Sore and Rak. This generator �nds moves that result in a high sore anda good rak (tiles remaining in your possession). Strong players evaluatetheir rak based on the likeliness of the letters being used to aid upomingwords. For example, playing a word that leaves a rak of QXI wouldbe less preferable than leaving QUI; the latter o�ers more potential forplaying the Q e�etively.� Bingo Bloking. Playing all seven letters in a single turn leads to a bonusof 50 points (a bingo). This move generator �nds moves that redue thehanes of the opponent soring a bingo on their next turn. Sometimes itis worth sari�ing points to redue the opponent's hanes of soring big.� Immediate Soring. This generates the moves with the maximum numberof points (this beomes more important as the end of the game nears).Eah routine provides up to 10 andidate moves. Merging these lists results intypially 20-30 unique andidate moves to onsider. In the early part of thegame only the Sore and Rak generator is used. In the pre-endgame there arefour: the three listed above plus a pre-endgame evaluator that \took years totune to the point where it didn't blunder nearly always" [58℄. In the endgame,all possible moves are onsidered.The move generation routines are highly e�etive at �ltering the hundredsor thousands of possible moves [58℄:6As a frequent Srabble player, I painfully admit that the number of words that I �nd areonsiderably smaller than this! 13



It is important to note that simply seleting the one move preferredby the Sore and Rak evaluator plays hampionship aliber Srab-ble. My pratie of ombining 10 moves from multiple generators isevidene of developing paranoia on my part. \Massive overkill" isthe enterpiee of Maven's design philosophy.Obviously, this move �ltering works very well, given the level of the pro-gram's play. The Srabble ommunity has extensively analysed Maven's playand found a few minor errors in the program's play. Postmortem analysis ofthe Logan math showed that Maven made mistakes that averaged nine pointsper game. Logan's average was 40 points per game. Maven missed seven �shingmoves|opportunities to exhange some tiles (69 points lost), some program-ming errors (48 points lost), and several smaller mistakes (6 points lost). Theprogramming errors have been orreted. If a future version of Maven inluded�shing, the error rate would drop to less than one point per game. Maven wouldbe playing nearly perfet Srabble.Of the points lost due to programming errors, Brian Sheppard writes:It just drives me razy that I an think up inventive ways to get om-puters to at intelligently, but I am not smart enough to implementthem orretly.And that is the soliloquy of every games programmer.<< INSERT SIDEBAR HERE >>3.6 Other GamesSuperhuman performane has probably been ahieved in several lesser-knowngames. For example, for both the anient Afrian game of awari (also alledmanala) and the reently invented lines of ation, there seems little doubt thatomputers are signi�antly stronger than all human players [74℄. This will notbe onlusively demonstrated until the human hampions aept the omputerhallenges for a serious math.For some games, omputers have been able to determine the result of per-fet play and a sequene of moves to ahieve this result.7 In these games theomputer an play perfetly, in the sense that the program will never make amove that fails to ahieve the best-possible result. Solved games inlude ninemen's morris [21℄, onnet-4 [1℄, qubi [2℄, go moku [2℄, and 8� 8 domineering[11℄.This artile has not addressed one-player games (or puzzles). Single-agentsearh (A*) has been suessfully used to optimally solve instanes of the 24-puzzle [36℄ and Rubik's Cube [35℄.7This is in ontrast to the game of Hex where it is easy to prove the game to be a �rstplayer win, but omputers are not yet able to demonstrate that win.
14



4 Current Researh E�ortsIn the past deade, a number of games have beome popular researh test-beds.These games are resistant to alpha-beta searh, either beause of the largebranhing fator in the searh tree, or the presene of unknown information. Inmany respets, the researh being done for these games has the potential to bemuh more widely appliable than the work done on the alpha-beta searh-basedprograms.4.1 BridgeWork on omputer bridge began in the early 1960s ([5℄, for example), but itwasn't until the 1980s that major e�orts were undertaken. The advent of thepersonal omputer spurred on numerous ommerial projets that resulted inprograms with relatively poor apabilities. Perennial world hampion Bob Ham-man one remarked that the ommerial programs \would have to improve to behopeless" [24℄. A similar opinion was shared by another frequent world ham-pion, Zia Mahmood. In 1990, he o�ered a prize of $1,000,000 to the person whodeveloped a program that ould defeat him at bridge. At the time, this seemedlike a safe bet for the foreseeable future.In the 1990s, several aademi e�orts began using bridge for researh inarti�ial intelligene [19, 23, 24, 61, 62℄. The ommerial Bridge Baron programteamed up with Dana Nau and Steve Smith from the University of Maryland.The result was a vitory in the 1997 world omputer bridge hampionship. Theprogram used a hierarhial task network for the play of the hand. Ratherthan building a searh tree where eah branh was the play of a ard, theywould de�ne eah branh to be a strategy, using human-de�ned onepts suhas �nesse and squeeze [61, 62℄. The result was an inremental improvement inthe program's ard play, but it was still far from being world-lass aliber.Beginning in 1998, Matthew Ginsberg's program GIB started dominatingthe omputer bridge ompetition, handily winning the world omputer bridgehampionship. The program started produing strong results in ompetitionsagainst humans, inluding an impressive result in an exhibition math againstworld hampions Zia Mahmood and Mihael Rosenberg (held at AAAI'98). Themath lasted two hours, allowing 14 boards to be played. The result was in doubtuntil the last hand, before the humans prevailed by 6.31 IMPs (InternationalMath Points). This was the �rst notable man-mahine suess for omputerbridge-playing programs. Zia Mahmood, impressed by the rapid progress madeby GIB, withdrew his million pound prize.GIB was invited to ompete in the Par Contest at the 1998 world bridgehampionships. This tournament tests the ontestant's skills at playing outbridge hands. In a selet �eld of 35 of the premier players in the world, theprogram �nished strongly in 12th plae. Mihael Rosenberg won the eventwith a sore of 16,850 out of 24,000; GIB sored 11,210. Of the points lost byGIB, 1,000 were due to time (there was a 10 point penalty per minute spentthinking), 6,000 were due to GIB not understanding the bidding, and 6,000 were15



due to GIB's inability to handle some hands where the orret strategy involvesombining di�erent possibilities [24℄.The name GIB originally stood for \Goren In a Box", a tribute to one of thepioneers of bridge. Another interpretation is \Ginsberg's Intelligent Bridge."The urrent version of GIB uses a fast searh to play out a hand. It simulatesroughly 50 di�erent senarios for the plaement of the opponent's ards, andhooses the play that maximizes the expeted sore [24℄. Ginsberg has developeda new version of the algorithm that will eliminate the simulations and replaeit with perfet information [25℄ 8. Regardless, GIB is very strong at the play ofthe hand.A hallenging omponent of the game is the bidding. Most previous attemptsat bridge bidding have been based on an expert-de�ned set of rules. This islargely unavoidable, sine bidding is an agreed-upon onvention for ommuni-ating ard information. GIB takes this one step further, building on the abilityto quikly simulate a hand [24℄. The program has aess to a large database ofbidding rules (7,400 rules from the ommerial program Meadowlark Bridge).At eah point in the bidding, GIB queries the database to �nd the set of plau-sible bids. For eah bid, the rest of the aution is projeted using the database,and then the play of the resulting ontrat is simulated. GIB hooses the bidthat leads to the average best result for the program.Although intuitively appealing, this approah does have some problems. No-tably the database of rules may have gaps and errors in it. Consider a rule wherethe response to the bid 4� is inorret in the database. GIB will diret its playtowards this bid beause it assumes the opponents will make the (likely bad)database response. As Ginsberg writes, \it is diÆult to distinguish a goodhoie that is suessful beause the opponent has no winning options from abad hoie that appears suessful beause the heuristi fails to identify suhoptions" [24℄.GIB uses three partial solutions to the problem of an erroneous or inompletebidding system. First, the bidding database an be examined by doing extensiveo�-line omputations to identify erroneous or missing bid information. Thisis e�etive, but an take a long time to omplete. Seond, during a game,simulation results an be used to identify when a database response to a bidleads to a poor result. This may be evidene of a database problem, but it ouldalso be the result of e�etive disruptive bidding by GIB. Finally, GIB an bebiased to make bids that are \lose" to the suggested database bids, allowingthe program the exibility to deviate from the database.To summarize, GIB is well on the way to beoming a world-lass bridgeplayer. The program's ard play is already at a world-lass level (as evidened bythe Par Contest result), and urrent e�orts will only enhane this. The biddingneeds improvement, and this is urrently being addressed. Had Zia Mahmoodnot withdrawn his o�er, he might have lost his money within a ouple of yearsfrom now.8At the time of this writing, these results have not yet been published.16



4.2 GoThe history of omputer go has not been dominated by hardware advanes, asseen in omputer hess. Computer go tournaments proliferated in the 1990s,and the organizers had the bene�t of the hess experiene. Two tournamentrules were instituted that had a signi�ant impat on how program develop-ment would our. The �rst required all ompetitors to run on a ommeriallyavailable single-proessor mahine. This had the advantage of putting all theprograms on a level playing �eld by fatoring out most hardware di�erenes.The seond rule required that an entire game had to ompleted in 30 minutesper player. Sine games ould be as long as 180 moves a side, programmerswere faed with ritial ost-bene�t deisions in their implementations. Therules had the advantages of making tournaments easy to organize (no expensivehardware setup or modem onnetions needed) and ensured that ompetitionsould be ompleted quikly with lots of games being played.The �rst go program was written by Al Zobrist in 1970 [76℄. Walter Reitmanand Brue Wilox began researhing go programs in 1972 [47℄, an e�ort thathas ontinued for Wilox to the urrent day. These early e�orts produed weakprograms; there was no obvious single algorithm to build a program around, asalpha-beta had done for hess. The diÆulty of writing a go program beameevident; a strong program would need lots of patterns and knowledge, with onlya limited dependene on searh.Computer go tournaments began in 1984 with a short-lived series of annualtournaments at the USENIX onferene. In 1987, the First International GoCongress was held, and there have been annual events ever sine. The mid-1990swere dominated by the program HandTalk, written by Zhixing Chen. HandTalkremained stagnant for a few years while it was being rewritten. During thatperiod, Mihael Reiss' Go4++ assumed front-runner status. Although the topprograms laim a performane level of up to 3 kyu on the go rating sale (amiddle amateur level), most experts believe that the programs are muh weakerthan that (around 8 kyu).The Ing Prize has been set up as an inentive to build strong go programs.The grand prize of roughly $1.5 million will be won by the developers of the�rst program to beat a strong human player on a 19� 19 board. To qualify toplay for the grand prize, a program must win a number of mathes of inreasingdiÆulty. Currently, the programs have to defeat three junior players (ages 11to 13). Don't let their age fool you; they are very strong players! The winnerof the annual International Go Congress gets the hane to play. To qualify forthis event, a program must �nish in the top three in one of the North Amerian,European, or Asian hampionships.Go has been resistant to the tehniques that have been suessfully appliedto the games disussed in this artile. For example, beause of the 19�19 boardand the resulting large branhing fator, alpha-beta searh alone has no hope ofproduing strong play. Instead, the programs perform small, loal searhes thatuse extensive appliation-dependent knowledge. David Fotland, the author ofthe Many Faes of Go program, identi�es over 50 major omponents needed by17



a strong go-playing program. The omponents are substantially di�erent fromeah other, few are easy to implement, and all are ritial to ahieving strongplay. In e�et, you have a linked hain, where the weakest link determines theoverall strength.Martin M�uller (author of Explorer) gives a stark assessment of the reality ofthe urrent situation in developing go programs [42℄:Given the omplexity of the task, the supporting infrastruture forwriting go programs should o�er more than is o�ered for other gamessuh as hess. However, the available material (publiations andsoure ode) is far inferior. The playing level of publily availablesoure ode ..., though improved reently, lags behind that of thestate-of-the-art programs. Quality publiations are sare and hardto trak down. Few of the top programmers have an interest in pub-lishing their methods. Whereas artiles on omputer hess or generalgame-tree searh methods regularly appear in mainstream AI jour-nals, tehnial publiations on omputer go remain on�ned to hardto �nd proeedings of speialized onferenes. The most interestingdevelopments an be learned only by diret ommuniation with theprogrammers and never get published.Although progress has been steady, it will take many deades of researh anddevelopment before world-hampionship-aliber go programs exist.4.3 PokerThere are many popular poker variants. Texas Hold'em is generally aknowl-edged to be the most strategially omplex variant of poker that is widely played.It is the premier event at the annual World Series of Poker.9 Until reently,poker has been largely ignored by the omputing aademi ommunity. Thereare two main approahes to poker researh [9℄. One approah is to use sim-pli�ed variants that are easier to analyze. However, one must be areful thatthe simpli�ation does not remove hallenging omponents of the problem. Forexample, Findler worked on and o� for 20 years on a poker-playing programfor 5-ard draw poker [18℄. His approah was to model human ognitive pro-esses and build a program that ould learn, ignoring many of the interestingomplexities of the game.The other approah is to pik a real variant, and investigate it using math-ematial analysis, simulation, and/or ad-ho expert experiene. Expert playerswith a penhant for mathematis are usually involved in this approah. Noneof this work has led to the development of strong poker-playing programs.There is one event in the meager history of omputer poker that stands out.In 1984 Mike Caro, a professional poker player, wrote a program that he alledOra (Caro spelled bakwards). It played one-on-one, no-limit Texas Hold'em.9The 2000 winner of this event was Chris Ferguson, whose researh areer began in arti�ialintelligene (he has published with Rihard Korf [46℄).18



Few tehnial details are known about Ora other than it was programmed onan Apple II omputer in Pasal. However, Caro arranged a few exhibitions ofthe program against strong players [14℄:It lost the TV math to asino owner Bob Stupak, but arguablyplayed the superior game. The mahine froze on one game of thetwo-out-of-three set when it had moved all-in and been alled withits three of a kind against Stupak's top two pair. Under the rules,the hand had to be replayed. In the [world series of poker℄ mathes,it won one (from twie world hampion Doyle Brunson | or at leastit had a two-to-one hip lead after an hour and a quarter when themath was anelled for a press onferene) and lost two (one eahto Brunson and then-reigning world hampion Tom MEvoy), but| again | was fairly unluky. In private, preparatory exhibitionmathes against top players, it won many more times than it lost.It had even beaten me most of the time.Unfortunately, Ora was never properly doumented and the results never re-produed. It is highly unlikely that Ora was as good as this small samplesuggests. No sienti� analysis was done to see whether the results were due toskill or luk. As further evidene, none of the present day ommerial e�ortsan laim to be anything but intermediate-level players.In the 1990s, the reation of an Internet Relay Chat poker server gave theopportunity for humans (and omputers) to play interative games over theInternet. A number of hobbyists developed programs to play on IRC. Foremostamong them is R00lbot, developed by Greg Wohletz. The program's strengthomes from using expert knowledge at the beginning of the game, and doingsimulations for subsequent betting deisions.The University of Alberta program Loki, authored by Darse Billings, AaronDavidson, Jonathan Shae�er and Duane Szafron, is the �rst serious aademie�ort to build a strong poker-playing program. Loki plays on the IRC pokerserver and, like R00lbot, is a onsistent big winner. Unfortunately, sine thesegames are played with �titious money, it is hard to extrapolate these resultsto asino poker.To play poker well, a program needs to be able to assess hand strength(hanes that you have the urrent best hand), assess hand potential (hanesthat additional ards will improve your hand), model the opponents (exploitingtendanies in their play), handle deeption (misleading informaiton given by theopponents), and blu� (deeive the opponents). In strategi games like hess, theperformane loss by ignoring opponent modeling is small, and hene it is usuallyignored. In ontrast, not only does opponent modeling have tremendous valuein poker, it an be the distinguishing feature between players at di�erent skilllevels. If a set of players all have a omparable knowledge of poker fundamentals,the ability to alter deisions based on an aurate model of the opponent mayhave a greater impat on suess than any other strategi priniple.1010The importane of opponent modelling an be seen in the First and Seond International19



To assess a hand, Loki ompares its ards against all possible opponentholdings. Naively, one ould treat all opponent hands as equally likely, howeverthis skews the hand evaluations ompared to more realisti assumptions. Manyweak hands are likely to have been folded early on in the game. Therefore,for eah possible opponent hand, a probability (or weight) is omputed thatindiates the likelihood that the opponent would have played that hand in theobserved manner.The simplest approah to determining these weights is to treat all opponentsthe same, alulating a single set of weights to reet reasonable behavior, anduse them for all opponents. An o�-line simulation was used to ompute theexpeted value for eah possible hand; these results losely approximate theranking of hands by strong players. This is alled Generi Opponent Modeling(GOM) [10℄. Although rather simplisti, this model is quite powerful in that itdoes a good job of skewing the hand evaluations to take into aount the mostlikely opponent holdings.Obviously, treating all opponents the same is learly wrong; eah player hasa di�erent style. Spei� Opponent Modeling (SOM) ustomizes the alula-tions to inlude opponent-spei� information. The probability of an opponentholding a partiular hand is adjusted by feeding into a neural net the bettingfrequeny statistis gathered on that opponent from previous hands. Thesestatistis usually provide enough information to di�erentiate, for example, ag-gressive playing styles from onservative ones.In ompetitive poker, opponent modeling is muh more omplex than por-trayed here. For example, players an at to mislead their opponents into on-struting an erroneous model. Early in a session a strong poker player may tryto reate the impression of being very onservative, only to exploit that imagelater in that session when the opponents are using an inorret opponent model.A strong player has to have a model of eah opponent that an quikly adaptto hanging playing styles.At best, Loki plays at the strong intermediate level. A onsiderable gapremains to be overome before omputers will be as good as the best humanplayers. Reent researh has foussed on trying to build \optimal" playingstrategies [34℄.4.4 Other GamesSeveral less well-known games are providing interesting hallenges. The follow-ing three examples all have one property in ommon: a large branhing fator.Shogi, often referred to as Japanese hess, is very popular in Japan, withmajor tournaments eah year ulminating in world hampionsip math. Fromthe searh point of view, Shogi is more hallenging than hess: 9�9 board (ver-sus 8 � 8 for hess), 40 piees (32 for hess), 8 piee types (6), 80-120 averagebranhing fator (40), and aptured piees an return to the board (removedfrom the board). Chekmating attaks are ritial in Shogi; the programs needRoShamBo (rok, paper sissors) ompetitions (www.s.ualberta.a/~games).20



speialized hekmate solvers. These solvers have had some spetaular su-esses. For example, programs are now apable of solving omposed problemswith a solution length of over 1,500 ply! Nevertheless, the best programs playat the master's level, while world-hampionship-level play is still a few deadesaway [31℄.Hex is an elegant game with a simple rule set: alternate plaing a stone ofyour olour on an empty square. One player tries to reate a hain of stonesonneting the top to the bottom of the board. The other player tries to onnetthe left side to the right side. It an be mathematially shown that the game is a�rst player win, and that draws are not possible. Queenbee was the �rst programto ahieve suess against strong programs [75℄. The program uses alpha-betasearh with a novel evaluation funtion. Hexy is urrently the strongest programin the world and is ompetitive with strong human players for smaller boardsizes. The program uses a speialized searh for virtual onnetions, using atheorem-prover-like tehnique for proving that two points not onneted an beonneted by a series of moves [3℄.A reently invented game that has beome popular for games researhers isAmazons. It is played on a 10� 10 board, with eah player having four queens.Piees move like a queen in hess, but after moving they shoot an arrow in anydiretion. The square on whih the arrow lands now beomes a wall and annotbe oupied by a queen. In e�et, eah move redues the playing area available.If you run out of moves, you lose. In the opening phase of the game, there anbe several thousand moves to hoose from. The best programs typially searh�ve ply ahead (deeper in the endgame). Beause of the territorial nature of thegame, Amazons is often touted as a researh stepping stone between the searh-intensive approahes used in hess and the knowledge-intensive approahes usedin go. AI researh into this game is only three years old. The best programsplay reasonably well, but are not yet ompetitive with strong human players[74℄.Interesting researh is also being done on puzzles. Reently, major advaneshave ourred in building programs that an solve rossword puzzles. Proverb(Mihael Littman, Greg Keim, et al.) sores remarkably well (over 95% of thewords orret) on the New York Times rossword puzzles without understandingthe lues [33℄!Another hallenging puzzle is Sokoban. Here the large branhing fator(ould be over 100) and deep solution lengths (some optimal solutions are over700 moves) make for a daunting searh. On a standard test set, the programRolling Stone an only solve 57 of 90 problems [32℄.5 The Future of Computer GamesIn the realm of board and ard games, go will ontinue to taunt AI researhersfor many deades to ome. As well, new games will ome along to provide inter-esting hallenges. For example, the game of Oti was invented to be resistantto omputer algorithms (www.oti.net). It is haraterized by having a large21



branhing fator, making deep searh impratial. However Oti has the addi-tional dimension that a move an hange the apabilities of a piee, making ithallenging to design an evaluation funtion.The researh into board and ard games is, in some sense, historially mo-tivated beause these were interesting hallenges at the dawn of the omputingage. However, with the advent of home omputers, new forms of omputergames and a $20 billion (and growing) industry has emerged: interative om-puter games. There are numerous produts on the market overing the gamutof ation games (e.g. shoot'em-up games like Quake), role-playing games (e.g.player goes on a quest, as in Baldur's Gate), adventure games (e.g. navigatingthrough a sripted story, as in King's Quest), strategy games (e.g. ontrollingarmies in a war, suh as Command and Conquer), \God" games (e.g. evolvinga simulated population, as in SimCity), and sports (e.g. ontrolling a playeror oahing a team, suh as FIFA'01) [38℄. Historially, these games have beenlong on graphis, and short on arti�ial intelligene.11John Laird has promoted interative omputer games as an opportunityfor the AI researh ommunity [38℄. Many interative omputer games requireomputer haraters that need to interat with the user in a realisti, believablemanner. Computer games are the ideal appliation for developing human-levelAI. There is already a need for it, sine human game players are generally dissat-is�ed with omputer haraters. The haraters are shallow, too easy to predit,and, all too often, exhibit arti�ial stupidity rather than arti�ial intelligene.This has led to the suess of on-line games (suh as Ultima Online), where play-ers ompete against other humans. The urrent state of the art in developingrealisti haraters an be desribed as being primitive, with simple rule-basedsystems and �nite-state mahines being the norm. The lak of sophistiationis due to the lak of researh e�ort (and, ause and e�et, researh dollars).This is hanging, as more games ompanies and researhers reognize that AIwill play an inreasingly important role in game design and development. Thequality of the omputer graphis may draw you to a produt, but the play ofthe game will keep you using the produt (and buying the sequel). Arti�ialintelligene is ritial to reating a satisfying gaming experiene.Finally, the last few years have seen researh on team games beome popular.The annual RoboCup ompetition enourages hardware builders and softwaredesigners to test their skills on the soer �eld (www.roboup.om).Although this artile has emphasized building games programs that anompete with humans, there are many other AI hallenges that an use gamesas an interesting experimental test bed. Some sample projets inlude:1. Data mining: There are large databases of endgame positions for hess,hekers and awari. It is dissatisfying that all a program an do is look upa spei� position in the database. If the exat positon is in the database,you get useful information, else nothing. Surely there must be some way ofmining this data to learn the prinipals of strong endgame play. As well,11For example, path �nding is a ritial omponent of many games, yet it took until 1996for the industry to \disover" A*. 22



there are large databases of hess opening moves. Can this be analyzed todisover new opening ideas? Can one haraterize opponent's strengthsand weaknesses? Can the data be extrapolated to similar positions?2. Learning: Using temporal-di�erene learning to tune an evaluation fun-tion is just the preursor to other exiting appliations of learning tehnol-ogy to games. For example, researh in applying learning algorithms anresult in more foussed and informed game-tree searhes, better opponentmodelling in poker, and adaptive haraters in ommerial games.3. Annotating games: Developing annotators that an provide an interestingand informative analysis of a game is a hallenging problem. There havebeen some attempts at automating the ommentary for hess games (theInternational Computer Chess Assoiation has an annual ompetition),but the results are mediore. It is hard to di�erentiate between the trivialand the interesting, the verbose and the informative, all the while antii-pating the questions humans would like answered in the ommentary. Aninteresting example is the work done on providing omputer ommentaryto RoboCup games [20℄.Games will ontinue to be an interesting domain for exploring new ideas inarti�ial intelligene.6 ConlusionsShannon, Turing, Samuel, Newell and Simon's early writings were pioneering,realizing that omputer games ould be a rih domain for exploring the bound-aries of omputer siene and arti�ial intelligene. Software and hardwareadvanes have led to signi�ant suess in building high-performane game-playing programs, resulting in milestones in the history of omputing. Withit has ome a hange in people's attitudes. Whereas in the 1950s and 1960s,understanding how to build strong game-playing program was at the forefrontof arti�ial-intelligene researh, today it has been demoted to lesser status. Inpart this is an aknowledgment of the suess ahieved in this �eld | no otherarea of arti�ial intelligene researh an laim suh an impressive trak reordof produing high-quality working systems. But it is also a reetion on thenature of arti�ial intelligene itself. It seems that as the solution to problemsbeome understood, the tehniques beome less \AIish".The work on omputer games has resulted in advanes in numerous areasof omputing. One ould argue that the series of omputer-hess tournamentsthat began in 1970 and ontinue to this day represents the longest running ex-periment in omputing siene history. Researh using games has demonstratedthe bene�ts of brute-fore searh, something that has beome a widely aeptedtool for a number of searh-based appliations. Many of the ideas that saw thelight of day in game-tree searh have been applied to other algorithms. Build-ing world-hampionship-aliber games programs has demonstrated the ost of23



onstruting high-performane arti�ial-intelligene systems. Games have beenused as experimental test beds for many areas of arti�ial intelligene. And soon.Arthur Samuel's onluding remarks from his 1960 paper are as relevanttoday as they were when he wrote the paper [50℄:Just as it was impossible to begin the disussion of game-playingmahines without referring to the hoaxes of the past, it is equallyunthinkable to lose the disussion without a prognosis. Program-ming omputers to play games is but one stage in the developmentof an understanding of the methods whih must be employed forthe mahine simulation of intelletual behavior. As we progress inthis understanding it seems reasonable to assume that these newertehniques will be applied to real-life situations with inreasing fre-queny, and the e�ort devoted to games ... will derease. Perhapswe have not yet reahed this turning point, and we may still havemuh to learn from the study of games.7 AknowledgmentsI would like to extend my deepest admiration to the brave human hampions whoaepted the hallenge of a omputer opponent. In most ases, the hampionhad little to gain, but everything to lose. Malolm Davis, Garry Kasparov,Adam Logan, Zia Mahmood, Marion Tinsley, Mihael Rosenberg, and TakeshiMurakami made it possible to sienti�ally measure the progress of game-playingprograms.The initial impetus for this artile ame almost two years ago when MarvinZelkowitz suggested I write an artile for Advanes in Computers 50 reetingbak on the the 40 years sine Arthur Samuel wrote an artile on omputergames in volume 1 of that series. This was eventually worked into a talk thatwas presented at AAAI'00. I want to thank David Leake for enouraging me towrite this artile.Finanial support was provided by the Natural Sienes and EngineeringResearh Counil of Canada (NSERC).Referenes[1℄ V. Allis. A Knowledge-Based Approah to Connet-Four. The Game isSolved: White Wins. M.S. thesis, Vrije Universiteit, The Netherlands,1988.[2℄ V. Allis. Searhing for Solutions in Games and Arti�ial Intelligene. PhDthesis, University of Limburg, The Netherlands, 1994.[3℄ V. Anshelevih. The game of hex: An automati theorem proving approahto game programming. In AAAI National Conferene, pages 189{194, 2000.24
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7. Maven(AHINRTU) plays HURT at 4a, 34 pts, Maven=110 Logan=183.8. Logan(DDEEMMN) plays EMENDED at 7, 26 pts, Maven=110 Lo-gan=209.9. Maven(ABEINNP) plays IAMB at 8a, 33 pts, Maven=143 Logan=209.10. Logan(AILMTTU) plays MATH at a1, 27 pts, Maven=143 Logan=236.Strong players also onsider UTA(3a,20,ILMT) whih sores fewer pointsbut gets rid of the annoying \U".11. Maven(EFGNNPS) plays FEIGN at e10, 18 pts,Maven=161 Logan=236.FENS(j9,24,GNP) sores more points, but FEIGN keeps better tiles.12. Logan(AILORTU) plays TUTORIAL at 15h, 77 pts, Maven=161 Lo-gan=313. Adam Logan's third bingo!

Figure 1: Maven plays BOS (j10) soring 26 points.13. Maven(?ABNOPS) plays BOS at j10, 26 pts, Maven=187 Logan=313.See Figure 1. Sheppard onsiders this to be a \fantasti move" and oneof the most diÆult moves in the game.14. Logan(IILPRSU) plays PILIS at 15a, 34 pts, Maven=187 Logan=347.PILIS, PULIS, PILUS, and PURIS are all good.15. Maven(?AKNPRS) plays SPANKER at k5, 105 pts, Maven=292 Lo-gan=347. The only bingo, reviving Maven's hanes despite the 160 pointde�it. 30



16. Logan(EEEORUS) plays OE at b1, 12 pts, Maven=292 Logan=359. Thebest move, dumping extra vowels.17. Maven(?HJTTWW) plays JAW at 7j, 13 pts, Maven=305 Logan=359.18. Logan(AEEGRSU) plays GREASE at m3, 31 pts,Maven=305 Logan=390.AGER(L9,24,ESU) also merits onsideration.19. Maven(?HRTTWX) plays AX at 6m, 25 pts, Maven=330 Logan=390.Maven's seond brilliant move, hoosing AX over GOX(13G,36) and sa-ri�ing 11 points.20. Logan(EIIILQU) plays LEI at o5, 13 pts, Maven=330 Logan=403.21. Maven(?AHRTTW) plays WE at 9b, 10 pts, Maven=340 Logan=390.22. Logan(AIIIOQU) plays QUAI at j2, 35 pts, Maven=340 Logan=438. A98 point lead and only a few moves are left in the game. Obviously, it'sall over...23. Maven(?AHRTTU) plays MOUTHPART at 1a, 92+8 pts, Maven=440Logan=438. See Figure 2. Wonderful! Maven sores exatly 100 points,edging Adam Logan by 2. Sheppard writes that \Maven steals the gameon the last move. Adam, of ourse, was stunned, as it seemed that therewere no plaes for bingos left on this board. If I hadn't felt so bad forAdam, who played magni�ently, I would have jumped and heered." Thisgame put Maven up by eight games to four, so winning the math was nolonger in doubt.How often do you sore 438 points in a game of Srabble... and lose?Just in ase some of the words used in this game are not part of your everydayvoabulary, here are a few useful de�nitions (taken from the ommerial versionof Maven):� Bos: a pal� Fens: marshes.� Foveal: a shallow anatomial depression.� Gox: gaseous oxygen.� Pilis: a Philippine tree.� Uta: a type of lizard.� Zoon: whole produt of one fertilized egg.31



Figure 2: Maven | Logan, �nal position
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