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tIn 1950 Claude Shannon published his seminal work on how to pro-gram a 
omputer to play 
hess. Sin
e then, developing game-playingprograms that 
an 
ompete with (and even ex
eed) the human world
hampions has been a long-sought-after goal of the arti�
ial intelligen
eresear
h 
ommunity. In Shannon's time, it would have seemed unlikelythat only a s
ant 50 years would be needed to develop programs that playworld-
lass ba
kgammon, 
he
kers, 
hess, Othello, and S
rabble. Theseremarkable a
hievements are the result of a better understanding of theproblems being solved, major algorithmi
 insights, and tremendous ad-van
es in hardware te
hnology. Computer games resear
h is one of theimportant su

ess stories of arti�
ial intelligen
e. This arti
le reviews thepast su

esses, 
urrent proje
ts, and future resear
h dire
tions for arti�
ialintelligen
e using 
omputer games as a resear
h test-bed.1 Introdu
tionGames are ideal domains for exploring the 
apabilities of 
omputational intel-ligen
e. The rules are �xed, the s
ope of the problem is 
onstrained, and theintera
tions of the players are well de�ned. Contrast this to the real world|thegame of life|where the rules often 
hange, the s
ope of the problem is almostlimitless, and the parti
ipants intera
t in an in�nite number of ways. Games
an be a mi
ro
osm of the real world (e.g. the role of game theory in e
onomi
s,so
ial intera
tion, and animal behavior), and su

essfully a
hieving high 
om-puter performan
e in a nontrivial game 
an be a stepping stone towards solvingmore 
hallenging real-world problems.�Portions of this arti
le have been published in [53℄ and are reprodu
ed with permissionand without further 
itation. 1



Histori
ally, games have been a popular 
hoi
e for demonstrating new re-sear
h ideas in arti�
ial intelligen
e (AI). Indeed, one of the early goals of AIwas to build a program 
apable of defeating the human world 
hess 
hampionin a mat
h. This 
hallenge proved to be more diÆ
ult than was anti
ipated; theAI literature is replete with optimisti
 predi
tions. It eventually took almost50 years to 
omplete the task|a remarkably short time when one 
onsidersthe software and hardware advan
es needed to make this amazing feat possible.Often overlooked, however, is that this result was also a testament to humanabilities. Considering the formidable 
omputing power that Deep Blue used inits 1997 exhibition mat
h against world 
hess 
hampion Garry Kasparov (ma-
hine: 200,000,000 
hess positions per se
ond; man: two per se
ond), one 
anonly admire the human 
hampions for withstanding the te
hnologi
al onslaughtfor so long.Computer-games resear
h was started by some of the luminaries in 
omput-ing s
ien
e history. In 1950, Claude Shannon published his seminal paper thatlaid out the framework for building high-performan
e game-playing programs[55℄. In 1951, Alan Turing did a hand simulation of his 
omputer 
hess algo-rithm (a la
k of resour
es prevented him from a
tually programming it) [73℄; thealgorithm lost to a weak human player. Around this time, Arthur Samuel be-gan work on his famous 
he
kers-playing program, the �rst program to a
hievenotable su

ess against human opposition [49, 51℄. By 1958, Alan Newell andHerb Simon had begun their investigations into 
hess, whi
h led eventually ledto fundamental results for arti�
ial intelligen
e and 
ognitive s
ien
e [43℄. Animpressive lineup to say the least!In the half 
entury years sin
e Shannon's paper, enormous progress has beenmade in 
onstru
ting high-performan
e game-playing programs. In Shannon'stime, it would have seemed unlikely that within a s
ant 50 years 
he
kers (8� 8draughts), Othello1, and S
rabble2 programs would exist that ex
eed the abil-ities of the best human players, while ba
kgammon and 
hess programs 
ouldplay at a level 
omparable to the human world 
hampion. These remarkablea

omplishments are the result of a better understanding of the problems be-ing solved, major algorithmi
 insights, and tremendous advan
es in hardwarete
hnology. The work on 
omputer games has been one of the most su

essfuland visible results of arti�
ial intelligen
e resear
h. For some games, one 
ouldargue that the Turing test has been passed [37℄.This arti
le dis
usses the progress made in developing programs for the 
las-si
 board and 
ard games. For a number of games, a short history of the progressin building a world-
lass program for that game is given, along with a brief de-s
ription of the strongest program. In ea
h 
ase we highlight a single featureof the program that is a major 
ontributor to the program's strength. The his-tories are ne
essarily brief. I apologize in advan
e to the many hard-workingresear
hers and hobbyists whose work is not mentioned here.Se
tion 2 brie
y summarizes some of the major advan
es in te
hnology that1Othello is a registered trademark of Tsukuda Original, li
ensed by Anjar Co.2S
rabble is a registered trademark of the Milton Bradley Company, a division of Hasbro,In
. 2



fa
ilitated the 
onstru
tion of world-
hampionship-
aliber programs. Se
tion3 reports the past su

esses where 
omputers have met or ex
eeded the besthuman players (ba
kgammon, 
he
kers, 
hess, Othello, and S
rabble). Se
tion4 highlights games of 
urrent a
ademi
 interest (bridge, go, and poker). Se
tion5 dis
usses some of the future 
hallenges of using games as a resear
h test-bedfor arti�
ial intelligen
e.Although this arti
le emphasizes the arti�
ial intelligen
e viewpoint, oneshould not underestimate the engineering e�ort required to build these pro-grams. One need only look at the re
ent su

ess of the Deep Blue 
hess ma
hineto appre
iate the e�ort required. That proje
t spanned eight years (12 if onein
ludes the pre-IBM time), and in
luded several full-time people, extensive
omputing resour
es, 
hip design, and grandmaster 
onsultation. Some of the
ase studies hint at the amount of work required to 
onstru
t these systems.In all 
ases, the su

esses reported in this arti
le are the result of 
onsistentprogress over many years.2 Enabling Te
hnologiesThe biggest advan
es in 
omputer game-playing have 
ome as a result of workdone on the alpha-beta sear
h algorithm. This algorithm re
eived the mostattention be
ause of the resear
h 
ommunity's preo

upation with 
hess. Withthe Deep Blue vi
tory over world 
hess 
hampion Garry Kasparov, interest inmethods suitable for 
hess has waned and been repla
ed by a
tivity in othergames. One 
ould argue that the 
hess vi
tory removed a ball and sha
kle thatwas sti
ing the 
reativity of resear
hers who were building high-performan
egame-playing systems.The alpha-beta resear
h led to a plethora of sear
h enhan
ements whi
h sig-ni�
antly improved the eÆ
ien
y of the sear
h. Some of these enhan
ementsin
lude iterative deepening, 
a
hing previously seen sub-tree results (transpo-sition tables), su

essor reordering, sear
h extensions/redu
tions, probabilisti

uto�s, and parallel sear
h. The results are truly amazing. Even though thereis an exponential di�eren
e between the best-
ase and the worst-
ase for analpha-beta sear
h, most high-performan
e game-playing programs are sear
h-ing within a small 
onstant of the best 
ase [45℄.Sadly, the 
ommunity of resear
hers involved in this work have done a rel-atively poor job of selling the te
hnology, resulting in many of the ideas beingreinvented for other domains. For example, many sear
h te
hniques pioneeredwith alpha-beta have be
ome standard in other sear
h domains, with few real-izing the lineage of the ideas.At the heart of many game-playing programs is an evaluation fun
tion. Earlyon, game developers qui
kly en
ountered the knowledge a
quisition bottlene
k,and traded-o� quality of knowledge for speed of the program. Simple evaluationfun
tions, linear 
ombinations of easily identi�able features, were the mainstayof 
omputer games programs for many de
ades. Alternative approa
hes, su
h asmodeling human 
ognitive pro
esses, turned out to be mu
h harder to do than3



initially expe
ted, and generally resulted in poor performan
e. Games program-mers qui
kly learned that a little heuristi
 knowledge, when 
ombined with deepsear
h, 
an produ
e amazing performan
e results. Indeed, one 
ould argue thatthe viability of brute-for
e sear
h, on
e a term with negative 
onnotations in theAI 
ommunity, is one of the main resear
h results from games-related resear
h[22℄.In the last de
ade, new te
hniques have moved to the forefront of gamesresear
h. Two in parti
ular are mentioned here sin
e they are likely to play amore prominent role in the near future:1. Monte Carlo simulation has been su

essfully applied to games with imper-fe
t or non-deterministi
 information. In these games it is too expensiveto sear
h all possible out
omes. Instead only a representative sample is
hosen to give a statisti
al pro�le of the out
ome. This te
hnique has beensu

essful in bridge, poker and S
rabble.2. Temporal-di�eren
e learning is the dire
t des
endent of Samuel's ma
hinelearning resear
h [64℄. Here a database of games (possibly generated by
omputer self-play) 
an be used to bootstrap a program to �nd a good
ombination of knowledge features. The algorithm has been su

essfullyapplied to ba
kgammon, and has re
ently shown promise in 
hess.The most obvious hardware advan
e is simply speed. To read about Samuel's
he
kers-playing program running on a 1963 ma
hine that 
ould exe
ute 15 mil-lion additions per minute [44℄ starkly brings home the point that orders ofmagnitude more 
omputing power makes many things possible. Indeed, 
on-sidering the pau
ity of 
omputing power at Samuel's disposal, one 
an only be�lled with admiration at what he a
hieved.Computer games resear
h pioneered 
ompetitions to assess the quality ofthe systems being developed. Sin
e 1970, there have been annual 
omputer
hess tournaments. There is now an annual Computer Olympiad whi
h bringstogether many of the top programs and their developers in head-to-head 
ompe-tition (see www.msoworld.
om). The 
ompetitive spirit has spread throughoutthe AI 
ommunity; 
ompetitions now exist for other appli
ations, in
ludingtheorem proving, planning and natural language.3 Su

ess in Computer GamesIn a number of games, 
omputers have enjoyed su

ess that puts them on paror better with the best humans in the world. In some sense, this is the past, inthat a
tive resear
h to develop high-performan
e programs for these games ison the wane (or is now non-existent). These in
lude games where 
omputers arebetter than all humans (
he
kers, Othello, S
rabble) and those where 
omputersare 
ompetitive with the human world 
hampion (ba
kgammon and 
hess).4



3.1 Ba
kgammonThe �rst 
on
erted e�ort at building a strong ba
kgammon program was un-dertaken by Hans Berliner of Carnegie Mellon University. In 1979 his program,BKG9.8, played an exhibition mat
h against the the newly-
rowned world 
ham-pion Luigi Villa [6, 7℄. The stakes were $5,000, winner take all. The �nal s
orewas seven points to one in favor of the 
omputer, with BKG9.8 winning four ofthe �ve games played (the rest of the points 
ame from the doubling 
ube).Ba
kgammon is a game of both skill and lu
k. In a short mat
h, the di
e
an favor one player over another. Berliner writes that \In the short run, smallper
entage di�eren
es favoring one player are not too signi�
ant. However, inthe long run a few per
entage points are highly indi
ative of signi�
ant skilldi�eren
es" [7℄. Thus, assessing the results of a �ve-game mat
h are diÆ
ult.Afterwards Berliner analyzed the program's play and 
on
luded that [6℄:There is no doubt that BKG9.8 played well, but down the line Villaplayed better. He made the te
hni
ally 
orre
t plays almost all thetime, whereas the program did not make the best play in eight outof 73 non-for
ed situations.BKG9.8 was an important �rst step, but major work was still needed to bringthe level of play up to that of the world's best players.In the late 1980s, IBM resear
her Gerry Tesauro began work on a neural-net-based ba
kgammon program. The net used en
oded ba
kgammon knowledgeand, training on data sets of games played by expert players, learned the weightsto assign to these pie
es of knowledge. The program, Neurogammon, was goodenough to win �rst pla
e in the 1989 Computer Olympiad [68℄.Tesauro's next program, TD-Gammon used a neural network that was trainedusing temporal di�eren
e learning. Instead of training the program with datasets of games played by humans, Tesauro was su

essful in having the programlearn using the temporal di�eren
es from self-play games. The evolution in TD-Gammon from version 0.0 to 3.0 saw an in
rease in the knowledge used, a largerneural net, and the addition of small sele
tive sear
hes. The resulting programis a
knowledged to be on par with the best players in the world, and possiblyeven better.In 1998, an exhibition mat
h was played between world 
hampion Mal
olmDavis and TD-Gammon 3.0 (at the AAAI'98 
onferen
e). To redu
e the lu
kfa
tor, 100 games were played over three days. The �nal result was a narroweight-point win for Davis. Both Davis and Tesauro have done extensive analysisof the games, 
oming up with similar 
on
lusions [66℄:While this analysis isn't de�nitive, it suggests that we may have wit-nessed a superhuman level of performan
e by TD-Gammon, marredonly by one horrible blunder redoubling to 8 in game 16, 
osting awhopping 0.9 points in equity and probably the mat
h!A notable feature of TD-Gammon is its neural net evaluation fun
tion. Thenet takes as input the 
urrent board position and returns as output the s
ore5



for the position (roughly, the probability of winning) [69℄. The net has approxi-mately 300 input values [65, 67℄. The latest version, TD-Gammon 3.0, 
ontains160 hidden units. Ea
h unit takes a linear sum of the weighted values of itsinputs, and then 
onverts it to a value in the range -3 to 3 (a ba
kgammon isworth three points, a gammon two, and a win, one point). The 
onversion isdone with a sigmoid fun
tion, allowing the output to be a nonlinear fun
tionof the inputs. The resulting neural net has approximately 50,000 weights thatneed to be trained.The weights in the hidden units were trained using temporal di�eren
e learn-ing from self-play games. By playing the program against itself, there was anendless supply of data for the program to train itself against. In a given gameposition, the program uses the neural net to evaluate ea
h of the roughly 20di�erent ways it 
an play its di
e roll, and then 
hooses the move leading tothe maximum evaluation. Ea
h game is played to 
ompletion, and then tempo-ral di�eren
e learning is applied to the sequen
e of moves. Close to 1,500,000self-play games were used for training TD-Gammon 3.0.Tesauro's su

ess with temporal di�eren
e learning in his ba
kgammon pro-gram is a major milestone in arti�
ial intelligen
e resear
h.3.2 Che
kersArthur Samuel began thinking about a 
he
kers program in 1948 but did notstart 
oding until a few years later. He was not the �rst to write a 
he
kers-playing program; Christopher Stra
hey pre-dated him by a few months [63℄.Over the span of three de
ades, Samuel worked steadily on his program, withperforman
e taking a ba
k seat to his higher goal of 
reating a program thatlearned. Samuel's 
he
kers player is best known for its single win against RobertNealey in a 1963 exhibition mat
h. From this single game, many people erro-neously 
on
luded that 
he
kers was a \solved" game.In the late 1970's, a team of resear
hers at Duke University built a strong
he
kers-playing program that defeated Samuel's program in a short mat
h [72℄.Early su

ess 
onvin
ed the authors that their program was possibly one ofthe 10 best players in the world. World 
hampion Marion Tinsley e�e
tivelydebunked that, writing that: \The programs may indeed 
onsider a lot of movesand positions, but one thing is 
ertain. They do not see mu
h!" [71℄. E�ortsto arrange a mat
h between the two went nowhere and the Duke program wasquietly retired.Interest in 
he
kers was rekindled in 1989 with the advent of strong 
ommer-
ial programs and a resear
h e�ort at the University of Alberta: Chinook. Chi-nook was authored prin
ipally by Jonathan S
hae�er, Norman Treloar, RobertLake, Paul Lu, and Martin Bryant. In 1990, the program earned the right to
hallenge for the human world 
hampionship. The 
he
kers federations refusedto san
tion the mat
h, leading to the 
reation of a new title: the world man-ma
hine 
hampionship. This title was 
ontested for the �rst time in 1992, withMarion Tinsley defeating Chinook in a 40-game mat
h by a s
ore of 4 winsto 2. Chinook's wins were the �rst against a reigning world 
hampion in a6



non-exhibition event for any 
ompetitive game.There was a remat
h in 1994, but after six games (all draws), Tinsley re-signed the mat
h and the title to Chinook, 
iting health 
on
erns. The followingweek he was diagnosed with 
an
er, and he died eight months later. Chinookhas subsequently defended its title twi
e, and has not lost a game sin
e 1994.The program was retired from human 
ompetitions in 1997 [52℄.The stru
ture of Chinook is similar to that of a typi
al 
hess program: sear
h,knowledge, database of opening moves, and endgame databases [52, 54℄. Chi-nook uses alpha-beta sear
h with a myriad of enhan
ements in
luding iterativedeepening, transposition table, move ordering, sear
h extensions, and sear
hredu
tions. Chinook was able to average a minimum of 19-ply sear
hes againstTinsley (using 1994 hardware) with sear
h extensions o

asionally rea
hing 45ply into the tree. The median position evaluated was typi
ally 25-ply deep intothe sear
h.A notable feature in Chinook is its use of endgame databases. The databases
ontain all 
he
kers positions with eight or fewer pie
es, 444 billion (4 � 1011)positions 
ompressed into six gigabytes for real-time de
ompression. Unlike
hess programs whi
h are 
ompute-bound, Chinook be
omes I/O-bound after afew moves in a game. The deep sear
hes mean that the database is o

asionallybeing hit on the �rst move of a game. The databases introdu
e a

urate values(win/loss/draw) into the sear
h (no error), redu
ing the program's dependen
yon its heuristi
 evaluation fun
tion (small error). In many games, the programis able to ba
kup a draw s
ore to the root of a sear
h within 10 moves by ea
hside from the start of a game. This suggests that it may be possible to determinethe game-theoreti
 value of the starting position of the game (one de�nition of\solving" the game).Chinook is the �rst program to win a human world 
hampionship for anygame. At the time of Chinook's retirement, the gap between the program and thehighest-rated human was 200 rating points (using the 
hess rating s
ale) [52℄. Agap this large means that the program would s
ore 75% of the possible points ina mat
h against the human world 
hampion. Sin
e then, faster pro
essor speedsmean that Chinook has be
ome stronger, further widening the gap between manand ma
hine.3.3 ChessThe progress of 
omputer 
hess was strongly in
uen
ed by an arti
le by KenThompson whi
h equated sear
h depth with 
hess-program performan
e [70℄.Basi
ally, the paper presented a formula for su

ess: build faster 
hess sear
hengines. The milestones in 
hess program development be
ome a statement ofthe state-of-the-art in high-performan
e 
omputing:� 1978-1980: The pioneering programs from Northwestern University, mostnotably Chess 4.6 [60℄, ran on a top-of-the-line Control Data 
omputerand a
hieved the �rst major tournament su

esses.7



� 1980-1982: Belle, the �rst program to earn a U.S. master title, was ama
hine built to play 
hess. It 
onsisted of 10 large wire-wrapped boardsusing LSI 
hips [15℄.� 1983-1984: Cray Blitz used a multi-pro
essor Cray super
omputer [30℄.� 1985-1986: The Hite
h 
hess ma
hine was based on 64 spe
ial-purposeVLSI 
hips (one per board square) [8, 16℄.� 1985-1986: Way
ool used a 256-pro
essor hyper
ube [17℄.� 1987-present: ChipTest (and its su

essors Deep Thought and Deep Blue)took VLSI te
hnology even further to 
ome up with a 
hess 
hip [27, 28,29℄.In 1987, ChipTest sho
ked the 
hess world by tieing for �rst pla
e in astrong tournament, �nishing ahead of a former world 
hampion and defeating agrandmaster. The unexpe
ted su

ess aroused the interest of world 
hampionGarry Kasparov, who played a two-game exhibition mat
h against the programin 1989. Man easily defeated ma
hine in both games.The Deep Blue team worked for seven years on improving the program,in
luding designing a single-
hip 
hess sear
h engine and making signi�
antstrides in the quality of their software. In 1996, the 
hess ma
hine played a six-game exhibition mat
h against Kasparov. The world 
hampion was stunned bya defeat in the �rst game, but he re
overed to win the mat
h, s
oring three winsand two draws to o�set the single loss. The following year, another exhibitionmat
h was played. Deep Blue s
ored a brilliant win in game two, handingKasparov a psy
hologi
al blow from whi
h he never re
overed. In the �nal,de
isive game of the mat
h, Kasparov fell into a trap and the game endedqui
kly. This gave Deep Blue an unexpe
ted mat
h vi
tory, s
oring two wins,three draws and a loss.It is important to keep this result in perspe
tive. First, it was an exhibitionmat
h; Deep Blue did not earn the right to play Kasparov.3 Se
ond, the mat
hwas too short to a

urately determine the better player; world-
hampionshipmat
hes have varied from 16 to 48 games in length. Although it is not 
learjust how good Deep Blue is, there is no doubt that the program is a stronggrandmaster.What does the resear
h 
ommunity think of the Deep Blue result? Manyare �lled with admiration at this feat of engineering. Some are 
autious aboutthe signi�
an
e. John M
Carthy writes that [41℄:In 1965, the Russian mathemati
ian Alexander Kronrod said, \Chessis the Drosophila4 of arti�
ial intelligen
e." However, 
omputer
hess has developed mu
h as geneti
s might have if the geneti
ists3To be fair, it is unlikely that the international 
hess federation will ever allow 
omputersto 
ompete for the world 
hampionship.4The drosophila is the fruit 
y. The analogy is that the fruit 
y is to geneti
s resear
h asgames are to arti�
ial intelligen
e resear
h. 8



had 
on
entrated their e�orts starting in 1910 on breeding ra
ingDrosophila. We would have some s
ien
e, but mainly we would havevery fast fruit 
ies.In retrospe
t, the 
hess \problem" turned out to be mu
h harder than wasexpe
ted by the 
omputing pioneers. The Deep Blue result is a tremendousa
hievement, and a milestone in the history of 
omputing s
ien
e.From the s
ienti�
 point of view, it is to be regretted that Deep Blue hasbeen retired, the hardware unused, and the programming team disbanded. Thes
ienti�
 
ommunity has a single data point that suggests ma
hine might bebetter than man at 
hess. The data is insuÆ
ient and the sample size is notstatisti
ally signi�
ant. Moreover, given the la
k of interest in Deep Blue fromIBM, it is doubtful that this experiment will ever be repeated. Of what valueis a single, non-repeatable data point?Deep Blue and its prede
essors represents a de
ade-long intensive e�ort bya team of people. The proje
t was funded by IBM, and the prin
ipal s
ientistswho developed the program were Feng-hsiung Hsu, Murray Campbell, and JoeHoane.The notable te
hnologi
al feature of Deep Blue is its amazing speed, theresult of building spe
ial-purpose 
hess 
hips. The 
hip in
ludes a sear
h engine,a move generator, and an evaluation fun
tion [27℄. The 
hip's sear
h algorithmis based on alpha-beta. The evaluation fun
tion is implemented as small tableson the 
hip; the values for these tables 
an be downloaded to the 
hip beforethe sear
h begins. These tables are indexed by board features and the resultssummed in parallel to provide the positional s
ore.A single 
hip is 
apable of analyzing over two million 
hess positions per se
-ond (using 1997 te
hnology). It is important to note that this speed understatesthe 
hip's 
apabilities. Some operations that are too expensive to implementin software 
an be done with little or no 
ost in hardware. For example, one
apability of the 
hip is to sele
tively generate subsets of legal moves, su
h asall moves that 
an put the opponent in 
he
k. These in
reased 
apabilities giverise to new opportunities for the sear
h algorithm and the evaluation fun
tion.Hsu estimates that ea
h 
hess 
hip position evaluation roughly equates to 40,000instru
tions on a general-purpose 
omputer. If so, then ea
h 
hip translates toa 100 billion instru
tion per se
ond 
hess super
omputer [27℄.A

ess to the 
hip is 
ontrolled by an alpha-beta sear
h algorithm that re-sides on the host 
omputer (an IBM SP-2). Ea
h of the 32 SP-2 pro
essors 
oulda

ess 16 
hips. The reported 
umulative performan
e, 200,000,000 positionsanalyzed per se
ond, falls short of the peak speed (over one billion positionsper se
ond) due to the inherent diÆ
ulty of getting good parallel performan
eout of the alpha-beta algorithm. That massive amount of 
omputing allowsthe program to sear
h deeper, signi�
antly redu
ing the probability that it willmake an error (as Kasparov found out to his regret).The arti�
ial intelligen
e 
ommunity gave a 
olle
tive sigh of relief whenDeep Blue defeated Kasparov. It was time to move on to new 
hallenges in the�eld. 9



3.4 OthelloThe �rst major Othello program was Paul Rosenbloom's Iago [48℄, a
hievingimpressive results given its early-1980s hardware. It dominated play againstother Othello programs of the time, but played only two games against world-
lass human players, losing both. The program's ability to predi
t 59% of themoves played by human experts was extrapolated to 
on
lude that the program'splaying strength was of world-
hampionship 
aliber.By the end of the de
ade, Iago had been e
lipsed. Kai-Fu Lee and San-joy Mahajan's program Bill represented a major improvement in the quality of
omputer Othello play [39℄. The program 
ombined deep sear
h with exten-sive knowledge (in the form of pre
omputed tables) in its evaluation fun
tion.Bayesian learning was used to 
ombine the evaluation fun
tion features in aweighted quadrati
 polynomial.Statisti
al analysis of the program's play indi
ated that it was a strongOthello player. Bill won a single game against Brian Rose, the highest ratedAmeri
an Othello player at the time. In test games against Iago, Bill won everygame. These results led Lee and Mahajan to 
on
lude that \Bill is one of thebest, if not the best, Othello player in the world." As usual, there is danger inextrapolating 
on
lusions based on limited eviden
e.With the advent of the Internet Othello Server (IOS), 
omputer Othello tour-naments be
ame frequent. In the 1990s they were dominated by Mi
hael Buro'sLogistello. The program parti
ipated in 25 tournaments, �nished �rst 18 times,se
ond six times, and fourth on
e. The program 
ombined deep sear
h withan extensive evaluation fun
tion that was automati
ally tuned. That 
ombinedwith an extensive database of opening moves and a perfe
t endgame player area winning re
ipe for Othello.Although it was suspe
ted that by the mid-1990s, 
omputers had surpassedhumans in their playing abilities at Othello, this was not properly demonstrateduntil 1997, when Logistello played an exhibition mat
h against world 
hampionTakeshi Murakami. In preparation for the mat
h, Buro writes that [13℄:Bill played a series of games against di�erent versions of Logistello.The results showed that Bill, when playing 5-minute games runningon a PentiumPro/200 PC, is about as strong as a 3-ply Logistello,even though Bill sear
hes 8 to 9 plies. Obviously, the additionalsear
h is 
ompensated for by knowledge. However, the 3-ply Logis-tello 
an only be 
alled medio
re by today's human standards.Two explanations for the overestimation of playing strength in thepast 
ome to mind: (1) during the last de
ade human players haveimproved their playing skills 
onsiderably, and (2) the playing strengthof the early programs was largely overestimated by using ... non-reliable s
ienti�
 methods.Logistello won all six games against Murakami by a total dis
 
ount of 264 to120 [13℄. This 
on�rmed what everyone had expe
ted about the relative playing10



strengths of man and ma
hine. The gap between the best human players and thebest 
omputer programs is believed to be large and e�e
tively unsurmountable.Outwardly, Logistello looks like a typi
al alpha-beta-based sear
her. How-ever, the 
onstru
tion of the evaluation fun
tion is novel. The program treatsthe game as having 13 phases: 13{16 dis
s on the board, 17{20 dis
s, ..., and 61{64 dis
s.5 Ea
h phase has a di�erent set of weights in the evaluation fun
tion.The evaluation-fun
tion features are patterns of squares 
omprising 
ombina-tions of 
orners, diagonals, and rows. These patterns 
apture important Othello
on
epts, su
h as mobility, stability and parity. Logistello has 11 su
h patterns,whi
h with rotations and re
e
tions yields 46. Some of the patterns in
lude a3� 3 and a 5� 2 
on�guration of stones an
hored in a 
orner, and all diagonalsof length greater than 3.The weights for ea
h entry in ea
h pattern (46) for ea
h phase of the game(11) are determined by linear regression. There are over 1.5 million table entriesthat need to be determined. The data was trained using 11 million s
oredpositions obtained from self-play games and pra
ti
e games against anotherprogram [12℄. The evaluation fun
tion is 
ompletely table-driven. Given aposition, all 46 patterns are mat
hed against the position, with a su

essfulmat
h returning the asso
iated weight. These weights are summed to get theoverall evaluation whi
h approximates the �nal dis
 di�erential.Mi
hael Buro 
omments on the reasons why Logistello easily won the Mu-rakami mat
h[13℄:When looking at the games of the mat
h the main reasons for the
lear out
ome are as follows:1. Lookahead sear
h is very hard for humans in Othello. The disad-vantage be
omes very 
lear in the endgame phase, where the board
hanges are more substantial than in the opening and middlegamestage. Computers are playing perfe
tly in the endgame while hu-mans often lose dis
s.2. Due to the automated tuning of the evaluation fun
tions anddeep sele
tive sear
hes, the best programs estimate their winning
han
e in the opening and middlegame phase very a

urately. Thisleaves little room for human innovations in the opening, espe
iallybe
ause the best Othello programs are extending their opening booksautomati
ally to explore new variations.3.5 S
rabbleThe �rst do
umented S
rabble program appears to have been written by StuartShapiro and Howard Smith and was published in 1977 [56℄. In the 1980s anumber of S
rabble programming e�orts emerged and by the end of the de
ade,it was apparent that these programs were strong players. With a

ess to the5Note that there is no need for a phase for less than 13 dis
s on the board, sin
e the sear
hfrom the �rst move easily rea
hes 13 or more dis
s.11



entire S
rabble di
tionary in memory (now over 100,000 words), the programsheld an important advantage in any games against humans.At the �rst Computer Olympiad in 1989 the S
rabble winner was Crab writ-ten by Andrew Appel, Guy Ja
obson, and Graeme Thomas [40℄. Se
ond wasTyler written by Alan Frank. Subsequent Olympiads saw the emergen
e of TSP(Jim Homan), whi
h edged out Tyler in the se
ond and third Olympiads. Allof these programs were very good, and quite possibly strong enough to be aserious test for the best players in the world.Part of their su

ess was due to the fast, 
ompa
t S
rabble move gener-ator developed by Appel [4℄. Steven Gordon subsequently developed a movegenerator that was twi
e as fast, but used �ve times as mu
h storage [26℄.Brian Sheppard began working on a S
rabble program in 1983, and starteddeveloping Maven in 1986. In a tournament in De
ember 1986, Maven s
oredeight wins and two losses over an elite �eld, �nishing in se
ond pla
e on tie-break. Sheppard des
ribes the games against humans at this tournament [57℄:Maven reels o� JOUNCES, JAUNTIER, and OVERTOIL on su

es-sive plays, ea
h for exa
tly 86 points, to 
ome from behind againstfuture national 
hampion Bob Felt. Maven 
rushed humans repeat-edly in o�hand games. The human ra
e begins to 
ontemplate thepotential of 
omputers.In the following years, Maven 
ontinued to demonstrate its dominating playagainst human opposition. Unfortunately, sin
e it did not 
ompete in the Com-puter Olympiads, it was diÆ
ult to know how strong it was 
ompared to otherprograms at the time.In the 1990s, Sheppard developed a pre-endgame analyzer (for when therewere a few tiles left in the bag) and improved the program's ability to simulatelikely sequen
es of moves. These represented important advan
es in the pro-gram's ability. It was not until 1997, however, that the opportunity arose toproperly assess the program's abilities against world-
lass players. In 1997, atwo-game mat
h between Maven and Adam Logan, one of the best players inNorth Ameri
a, ended in two wins for the human. Unfortunately, the mat
hwas not long enough to get a sense of who was really the best player.In Mar
h 1998, the New York Times sponsored an exhibition mat
h betweenMaven and a team 
onsisting of world 
hampion Joel Sherman and the runner-up Matt Graham. It is not 
lear whether the 
ollaboration helped or hinderedthe human side, but the 
omputer won 
onvin
ingly by a s
ore of six wins tothree. The result was not an anomaly. In July of that year, Maven playedanother exhibition mat
h against Adam Logan (at the AAAI'98 
onferen
e),s
oring nine wins to �ve.Shortly after the Logan mat
h, Brian Sheppard wrote:The eviden
e right now is that Maven is far stronger than humanplayers. ... I have outright 
laimed in 
ommuni
ation with the 
reamof humanity that Maven should be moved from the \
hampionship
aliber" 
lass to the \abandon hope" 
lass, and 
hallenged anyone12



who disagrees with me to 
ome out and play. No takers so far, butmaybe one brave human will yet venture forth.No one has.Maven divides the game into three phases [59℄: early game, pre-endgame,and endgame. The early game starts at move one and 
ontinues until thereare nine or fewer tiles left in the bag (i:e:, with the opponent's seven tiles, thisimplies that there are 16 or fewer unknown tiles). In the pre-endgame andendgame phases, spe
ialized sear
hes are performed taking advantage of thelimited amount of unknown information.In the early game phase, the program uses simulations to get a statisti
alanalysis of the likely 
onsequen
es of making a move. Typi
ally, 1,000 three-plysimulations are done when making a move de
ision. The move leading to thehighest average point di�erential is sele
ted. The issue with the simulations ismove generation. On average there are over 700 legal moves per position, andthe presen
e of two blanks in the ra
k 
an in
rease this �gure to over 5,000!6Contrast this, for example, with 
hess where the average number of moves to
onsider in a position is roughly 40. Thus, Maven needs to pare the list of pos-sible moves down to a small list of likely moves. Omitting an important movefrom this list will have serious 
onsequen
es; it will never be played. Conse-quently, Maven employs multiple move generators, ea
h identifying moves thathave important features that merit 
onsideration. These move generators are:� S
ore and Ra
k. This generator �nds moves that result in a high s
ore anda good ra
k (tiles remaining in your possession). Strong players evaluatetheir ra
k based on the likeliness of the letters being used to aid up
omingwords. For example, playing a word that leaves a ra
k of QXI wouldbe less preferable than leaving QUI; the latter o�ers more potential forplaying the Q e�e
tively.� Bingo Blo
king. Playing all seven letters in a single turn leads to a bonusof 50 points (a bingo). This move generator �nds moves that redu
e the
han
es of the opponent s
oring a bingo on their next turn. Sometimes itis worth sa
ri�
ing points to redu
e the opponent's 
han
es of s
oring big.� Immediate S
oring. This generates the moves with the maximum numberof points (this be
omes more important as the end of the game nears).Ea
h routine provides up to 10 
andidate moves. Merging these lists results intypi
ally 20-30 unique 
andidate moves to 
onsider. In the early part of thegame only the S
ore and Ra
k generator is used. In the pre-endgame there arefour: the three listed above plus a pre-endgame evaluator that \took years totune to the point where it didn't blunder nearly always" [58℄. In the endgame,all possible moves are 
onsidered.The move generation routines are highly e�e
tive at �ltering the hundredsor thousands of possible moves [58℄:6As a frequent S
rabble player, I painfully admit that the number of words that I �nd are
onsiderably smaller than this! 13



It is important to note that simply sele
ting the one move preferredby the S
ore and Ra
k evaluator plays 
hampionship 
aliber S
rab-ble. My pra
ti
e of 
ombining 10 moves from multiple generators iseviden
e of developing paranoia on my part. \Massive overkill" isthe 
enterpie
e of Maven's design philosophy.Obviously, this move �ltering works very well, given the level of the pro-gram's play. The S
rabble 
ommunity has extensively analysed Maven's playand found a few minor errors in the program's play. Postmortem analysis ofthe Logan mat
h showed that Maven made mistakes that averaged nine pointsper game. Logan's average was 40 points per game. Maven missed seven �shingmoves|opportunities to ex
hange some tiles (69 points lost), some program-ming errors (48 points lost), and several smaller mistakes (6 points lost). Theprogramming errors have been 
orre
ted. If a future version of Maven in
luded�shing, the error rate would drop to less than one point per game. Maven wouldbe playing nearly perfe
t S
rabble.Of the points lost due to programming errors, Brian Sheppard writes:It just drives me 
razy that I 
an think up inventive ways to get 
om-puters to a
t intelligently, but I am not smart enough to implementthem 
orre
tly.And that is the soliloquy of every games programmer.<< INSERT SIDEBAR HERE >>3.6 Other GamesSuperhuman performan
e has probably been a
hieved in several lesser-knowngames. For example, for both the an
ient Afri
an game of awari (also 
alledman
ala) and the re
ently invented lines of a
tion, there seems little doubt that
omputers are signi�
antly stronger than all human players [74℄. This will notbe 
on
lusively demonstrated until the human 
hampions a

ept the 
omputer
hallenges for a serious mat
h.For some games, 
omputers have been able to determine the result of per-fe
t play and a sequen
e of moves to a
hieve this result.7 In these games the
omputer 
an play perfe
tly, in the sense that the program will never make amove that fails to a
hieve the best-possible result. Solved games in
lude ninemen's morris [21℄, 
onne
t-4 [1℄, qubi
 [2℄, go moku [2℄, and 8� 8 domineering[11℄.This arti
le has not addressed one-player games (or puzzles). Single-agentsear
h (A*) has been su

essfully used to optimally solve instan
es of the 24-puzzle [36℄ and Rubik's Cube [35℄.7This is in 
ontrast to the game of Hex where it is easy to prove the game to be a �rstplayer win, but 
omputers are not yet able to demonstrate that win.
14



4 Current Resear
h E�ortsIn the past de
ade, a number of games have be
ome popular resear
h test-beds.These games are resistant to alpha-beta sear
h, either be
ause of the largebran
hing fa
tor in the sear
h tree, or the presen
e of unknown information. Inmany respe
ts, the resear
h being done for these games has the potential to bemu
h more widely appli
able than the work done on the alpha-beta sear
h-basedprograms.4.1 BridgeWork on 
omputer bridge began in the early 1960s ([5℄, for example), but itwasn't until the 1980s that major e�orts were undertaken. The advent of thepersonal 
omputer spurred on numerous 
ommer
ial proje
ts that resulted inprograms with relatively poor 
apabilities. Perennial world 
hampion Bob Ham-man on
e remarked that the 
ommer
ial programs \would have to improve to behopeless" [24℄. A similar opinion was shared by another frequent world 
ham-pion, Zia Mahmood. In 1990, he o�ered a prize of $1,000,000 to the person whodeveloped a program that 
ould defeat him at bridge. At the time, this seemedlike a safe bet for the foreseeable future.In the 1990s, several a
ademi
 e�orts began using bridge for resear
h inarti�
ial intelligen
e [19, 23, 24, 61, 62℄. The 
ommer
ial Bridge Baron programteamed up with Dana Nau and Steve Smith from the University of Maryland.The result was a vi
tory in the 1997 world 
omputer bridge 
hampionship. Theprogram used a hierar
hi
al task network for the play of the hand. Ratherthan building a sear
h tree where ea
h bran
h was the play of a 
ard, theywould de�ne ea
h bran
h to be a strategy, using human-de�ned 
on
epts su
has �nesse and squeeze [61, 62℄. The result was an in
remental improvement inthe program's 
ard play, but it was still far from being world-
lass 
aliber.Beginning in 1998, Matthew Ginsberg's program GIB started dominatingthe 
omputer bridge 
ompetition, handily winning the world 
omputer bridge
hampionship. The program started produ
ing strong results in 
ompetitionsagainst humans, in
luding an impressive result in an exhibition mat
h againstworld 
hampions Zia Mahmood and Mi
hael Rosenberg (held at AAAI'98). Themat
h lasted two hours, allowing 14 boards to be played. The result was in doubtuntil the last hand, before the humans prevailed by 6.31 IMPs (InternationalMat
h Points). This was the �rst notable man-ma
hine su

ess for 
omputerbridge-playing programs. Zia Mahmood, impressed by the rapid progress madeby GIB, withdrew his million pound prize.GIB was invited to 
ompete in the Par Contest at the 1998 world bridge
hampionships. This tournament tests the 
ontestant's skills at playing outbridge hands. In a sele
t �eld of 35 of the premier players in the world, theprogram �nished strongly in 12th pla
e. Mi
hael Rosenberg won the eventwith a s
ore of 16,850 out of 24,000; GIB s
ored 11,210. Of the points lost byGIB, 1,000 were due to time (there was a 10 point penalty per minute spentthinking), 6,000 were due to GIB not understanding the bidding, and 6,000 were15



due to GIB's inability to handle some hands where the 
orre
t strategy involves
ombining di�erent possibilities [24℄.The name GIB originally stood for \Goren In a Box", a tribute to one of thepioneers of bridge. Another interpretation is \Ginsberg's Intelligent Bridge."The 
urrent version of GIB uses a fast sear
h to play out a hand. It simulatesroughly 50 di�erent s
enarios for the pla
ement of the opponent's 
ards, and
hooses the play that maximizes the expe
ted s
ore [24℄. Ginsberg has developeda new version of the algorithm that will eliminate the simulations and repla
eit with perfe
t information [25℄ 8. Regardless, GIB is very strong at the play ofthe hand.A 
hallenging 
omponent of the game is the bidding. Most previous attemptsat bridge bidding have been based on an expert-de�ned set of rules. This islargely unavoidable, sin
e bidding is an agreed-upon 
onvention for 
ommuni-
ating 
ard information. GIB takes this one step further, building on the abilityto qui
kly simulate a hand [24℄. The program has a

ess to a large database ofbidding rules (7,400 rules from the 
ommer
ial program Meadowlark Bridge).At ea
h point in the bidding, GIB queries the database to �nd the set of plau-sible bids. For ea
h bid, the rest of the au
tion is proje
ted using the database,and then the play of the resulting 
ontra
t is simulated. GIB 
hooses the bidthat leads to the average best result for the program.Although intuitively appealing, this approa
h does have some problems. No-tably the database of rules may have gaps and errors in it. Consider a rule wherethe response to the bid 4� is in
orre
t in the database. GIB will dire
t its playtowards this bid be
ause it assumes the opponents will make the (likely bad)database response. As Ginsberg writes, \it is diÆ
ult to distinguish a good
hoi
e that is su

essful be
ause the opponent has no winning options from abad 
hoi
e that appears su

essful be
ause the heuristi
 fails to identify su
hoptions" [24℄.GIB uses three partial solutions to the problem of an erroneous or in
ompletebidding system. First, the bidding database 
an be examined by doing extensiveo�-line 
omputations to identify erroneous or missing bid information. Thisis e�e
tive, but 
an take a long time to 
omplete. Se
ond, during a game,simulation results 
an be used to identify when a database response to a bidleads to a poor result. This may be eviden
e of a database problem, but it 
ouldalso be the result of e�e
tive disruptive bidding by GIB. Finally, GIB 
an bebiased to make bids that are \
lose" to the suggested database bids, allowingthe program the 
exibility to deviate from the database.To summarize, GIB is well on the way to be
oming a world-
lass bridgeplayer. The program's 
ard play is already at a world-
lass level (as eviden
ed bythe Par Contest result), and 
urrent e�orts will only enhan
e this. The biddingneeds improvement, and this is 
urrently being addressed. Had Zia Mahmoodnot withdrawn his o�er, he might have lost his money within a 
ouple of yearsfrom now.8At the time of this writing, these results have not yet been published.16



4.2 GoThe history of 
omputer go has not been dominated by hardware advan
es, asseen in 
omputer 
hess. Computer go tournaments proliferated in the 1990s,and the organizers had the bene�t of the 
hess experien
e. Two tournamentrules were instituted that had a signi�
ant impa
t on how program develop-ment would o

ur. The �rst required all 
ompetitors to run on a 
ommer
iallyavailable single-pro
essor ma
hine. This had the advantage of putting all theprograms on a level playing �eld by fa
toring out most hardware di�eren
es.The se
ond rule required that an entire game had to 
ompleted in 30 minutesper player. Sin
e games 
ould be as long as 180 moves a side, programmerswere fa
ed with 
riti
al 
ost-bene�t de
isions in their implementations. Therules had the advantages of making tournaments easy to organize (no expensivehardware setup or modem 
onne
tions needed) and ensured that 
ompetitions
ould be 
ompleted qui
kly with lots of games being played.The �rst go program was written by Al Zobrist in 1970 [76℄. Walter Reitmanand Bru
e Wil
ox began resear
hing go programs in 1972 [47℄, an e�ort thathas 
ontinued for Wil
ox to the 
urrent day. These early e�orts produ
ed weakprograms; there was no obvious single algorithm to build a program around, asalpha-beta had done for 
hess. The diÆ
ulty of writing a go program be
ameevident; a strong program would need lots of patterns and knowledge, with onlya limited dependen
e on sear
h.Computer go tournaments began in 1984 with a short-lived series of annualtournaments at the USENIX 
onferen
e. In 1987, the First International GoCongress was held, and there have been annual events ever sin
e. The mid-1990swere dominated by the program HandTalk, written by Zhixing Chen. HandTalkremained stagnant for a few years while it was being rewritten. During thatperiod, Mi
hael Reiss' Go4++ assumed front-runner status. Although the topprograms 
laim a performan
e level of up to 3 kyu on the go rating s
ale (amiddle amateur level), most experts believe that the programs are mu
h weakerthan that (around 8 kyu).The Ing Prize has been set up as an in
entive to build strong go programs.The grand prize of roughly $1.5 million will be won by the developers of the�rst program to beat a strong human player on a 19� 19 board. To qualify toplay for the grand prize, a program must win a number of mat
hes of in
reasingdiÆ
ulty. Currently, the programs have to defeat three junior players (ages 11to 13). Don't let their age fool you; they are very strong players! The winnerof the annual International Go Congress gets the 
han
e to play. To qualify forthis event, a program must �nish in the top three in one of the North Ameri
an,European, or Asian 
hampionships.Go has been resistant to the te
hniques that have been su

essfully appliedto the games dis
ussed in this arti
le. For example, be
ause of the 19�19 boardand the resulting large bran
hing fa
tor, alpha-beta sear
h alone has no hope ofprodu
ing strong play. Instead, the programs perform small, lo
al sear
hes thatuse extensive appli
ation-dependent knowledge. David Fotland, the author ofthe Many Fa
es of Go program, identi�es over 50 major 
omponents needed by17



a strong go-playing program. The 
omponents are substantially di�erent fromea
h other, few are easy to implement, and all are 
riti
al to a
hieving strongplay. In e�e
t, you have a linked 
hain, where the weakest link determines theoverall strength.Martin M�uller (author of Explorer) gives a stark assessment of the reality ofthe 
urrent situation in developing go programs [42℄:Given the 
omplexity of the task, the supporting infrastru
ture forwriting go programs should o�er more than is o�ered for other gamessu
h as 
hess. However, the available material (publi
ations andsour
e 
ode) is far inferior. The playing level of publi
ly availablesour
e 
ode ..., though improved re
ently, lags behind that of thestate-of-the-art programs. Quality publi
ations are s
ar
e and hardto tra
k down. Few of the top programmers have an interest in pub-lishing their methods. Whereas arti
les on 
omputer 
hess or generalgame-tree sear
h methods regularly appear in mainstream AI jour-nals, te
hni
al publi
ations on 
omputer go remain 
on�ned to hardto �nd pro
eedings of spe
ialized 
onferen
es. The most interestingdevelopments 
an be learned only by dire
t 
ommuni
ation with theprogrammers and never get published.Although progress has been steady, it will take many de
ades of resear
h anddevelopment before world-
hampionship-
aliber go programs exist.4.3 PokerThere are many popular poker variants. Texas Hold'em is generally a
knowl-edged to be the most strategi
ally 
omplex variant of poker that is widely played.It is the premier event at the annual World Series of Poker.9 Until re
ently,poker has been largely ignored by the 
omputing a
ademi
 
ommunity. Thereare two main approa
hes to poker resear
h [9℄. One approa
h is to use sim-pli�ed variants that are easier to analyze. However, one must be 
areful thatthe simpli�
ation does not remove 
hallenging 
omponents of the problem. Forexample, Findler worked on and o� for 20 years on a poker-playing programfor 5-
ard draw poker [18℄. His approa
h was to model human 
ognitive pro-
esses and build a program that 
ould learn, ignoring many of the interesting
omplexities of the game.The other approa
h is to pi
k a real variant, and investigate it using math-emati
al analysis, simulation, and/or ad-ho
 expert experien
e. Expert playerswith a pen
hant for mathemati
s are usually involved in this approa
h. Noneof this work has led to the development of strong poker-playing programs.There is one event in the meager history of 
omputer poker that stands out.In 1984 Mike Caro, a professional poker player, wrote a program that he 
alledOra
 (Caro spelled ba
kwards). It played one-on-one, no-limit Texas Hold'em.9The 2000 winner of this event was Chris Ferguson, whose resear
h 
areer began in arti�
ialintelligen
e (he has published with Ri
hard Korf [46℄).18



Few te
hni
al details are known about Ora
 other than it was programmed onan Apple II 
omputer in Pas
al. However, Caro arranged a few exhibitions ofthe program against strong players [14℄:It lost the TV mat
h to 
asino owner Bob Stupak, but arguablyplayed the superior game. The ma
hine froze on one game of thetwo-out-of-three set when it had moved all-in and been 
alled withits three of a kind against Stupak's top two pair. Under the rules,the hand had to be replayed. In the [world series of poker℄ mat
hes,it won one (from twi
e world 
hampion Doyle Brunson | or at leastit had a two-to-one 
hip lead after an hour and a quarter when themat
h was 
an
elled for a press 
onferen
e) and lost two (one ea
hto Brunson and then-reigning world 
hampion Tom M
Evoy), but| again | was fairly unlu
ky. In private, preparatory exhibitionmat
hes against top players, it won many more times than it lost.It had even beaten me most of the time.Unfortunately, Ora
 was never properly do
umented and the results never re-produ
ed. It is highly unlikely that Ora
 was as good as this small samplesuggests. No s
ienti�
 analysis was done to see whether the results were due toskill or lu
k. As further eviden
e, none of the present day 
ommer
ial e�orts
an 
laim to be anything but intermediate-level players.In the 1990s, the 
reation of an Internet Relay Chat poker server gave theopportunity for humans (and 
omputers) to play intera
tive games over theInternet. A number of hobbyists developed programs to play on IRC. Foremostamong them is R00lbot, developed by Greg Wohletz. The program's strength
omes from using expert knowledge at the beginning of the game, and doingsimulations for subsequent betting de
isions.The University of Alberta program Loki, authored by Darse Billings, AaronDavidson, Jonathan S
hae�er and Duane Szafron, is the �rst serious a
ademi
e�ort to build a strong poker-playing program. Loki plays on the IRC pokerserver and, like R00lbot, is a 
onsistent big winner. Unfortunately, sin
e thesegames are played with �
titious money, it is hard to extrapolate these resultsto 
asino poker.To play poker well, a program needs to be able to assess hand strength(
han
es that you have the 
urrent best hand), assess hand potential (
han
esthat additional 
ards will improve your hand), model the opponents (exploitingtendan
ies in their play), handle de
eption (misleading informaiton given by theopponents), and blu� (de
eive the opponents). In strategi
 games like 
hess, theperforman
e loss by ignoring opponent modeling is small, and hen
e it is usuallyignored. In 
ontrast, not only does opponent modeling have tremendous valuein poker, it 
an be the distinguishing feature between players at di�erent skilllevels. If a set of players all have a 
omparable knowledge of poker fundamentals,the ability to alter de
isions based on an a

urate model of the opponent mayhave a greater impa
t on su

ess than any other strategi
 prin
iple.1010The importan
e of opponent modelling 
an be seen in the First and Se
ond International19



To assess a hand, Loki 
ompares its 
ards against all possible opponentholdings. Naively, one 
ould treat all opponent hands as equally likely, howeverthis skews the hand evaluations 
ompared to more realisti
 assumptions. Manyweak hands are likely to have been folded early on in the game. Therefore,for ea
h possible opponent hand, a probability (or weight) is 
omputed thatindi
ates the likelihood that the opponent would have played that hand in theobserved manner.The simplest approa
h to determining these weights is to treat all opponentsthe same, 
al
ulating a single set of weights to re
e
t reasonable behavior, anduse them for all opponents. An o�-line simulation was used to 
ompute theexpe
ted value for ea
h possible hand; these results 
losely approximate theranking of hands by strong players. This is 
alled Generi
 Opponent Modeling(GOM) [10℄. Although rather simplisti
, this model is quite powerful in that itdoes a good job of skewing the hand evaluations to take into a

ount the mostlikely opponent holdings.Obviously, treating all opponents the same is 
learly wrong; ea
h player hasa di�erent style. Spe
i�
 Opponent Modeling (SOM) 
ustomizes the 
al
ula-tions to in
lude opponent-spe
i�
 information. The probability of an opponentholding a parti
ular hand is adjusted by feeding into a neural net the bettingfrequen
y statisti
s gathered on that opponent from previous hands. Thesestatisti
s usually provide enough information to di�erentiate, for example, ag-gressive playing styles from 
onservative ones.In 
ompetitive poker, opponent modeling is mu
h more 
omplex than por-trayed here. For example, players 
an a
t to mislead their opponents into 
on-stru
ting an erroneous model. Early in a session a strong poker player may tryto 
reate the impression of being very 
onservative, only to exploit that imagelater in that session when the opponents are using an in
orre
t opponent model.A strong player has to have a model of ea
h opponent that 
an qui
kly adaptto 
hanging playing styles.At best, Loki plays at the strong intermediate level. A 
onsiderable gapremains to be over
ome before 
omputers will be as good as the best humanplayers. Re
ent resear
h has fo
ussed on trying to build \optimal" playingstrategies [34℄.4.4 Other GamesSeveral less well-known games are providing interesting 
hallenges. The follow-ing three examples all have one property in 
ommon: a large bran
hing fa
tor.Shogi, often referred to as Japanese 
hess, is very popular in Japan, withmajor tournaments ea
h year 
ulminating in world 
hampionsip mat
h. Fromthe sear
h point of view, Shogi is more 
hallenging than 
hess: 9�9 board (ver-sus 8 � 8 for 
hess), 40 pie
es (32 for 
hess), 8 pie
e types (6), 80-120 averagebran
hing fa
tor (40), and 
aptured pie
es 
an return to the board (removedfrom the board). Che
kmating atta
ks are 
riti
al in Shogi; the programs needRoShamBo (ro
k, paper s
issors) 
ompetitions (www.
s.ualberta.
a/~games).20



spe
ialized 
he
kmate solvers. These solvers have had some spe
ta
ular su
-
esses. For example, programs are now 
apable of solving 
omposed problemswith a solution length of over 1,500 ply! Nevertheless, the best programs playat the master's level, while world-
hampionship-level play is still a few de
adesaway [31℄.Hex is an elegant game with a simple rule set: alternate pla
ing a stone ofyour 
olour on an empty square. One player tries to 
reate a 
hain of stones
onne
ting the top to the bottom of the board. The other player tries to 
onne
tthe left side to the right side. It 
an be mathemati
ally shown that the game is a�rst player win, and that draws are not possible. Queenbee was the �rst programto a
hieve su

ess against strong programs [75℄. The program uses alpha-betasear
h with a novel evaluation fun
tion. Hexy is 
urrently the strongest programin the world and is 
ompetitive with strong human players for smaller boardsizes. The program uses a spe
ialized sear
h for virtual 
onne
tions, using atheorem-prover-like te
hnique for proving that two points not 
onne
ted 
an be
onne
ted by a series of moves [3℄.A re
ently invented game that has be
ome popular for games resear
hers isAmazons. It is played on a 10� 10 board, with ea
h player having four queens.Pie
es move like a queen in 
hess, but after moving they shoot an arrow in anydire
tion. The square on whi
h the arrow lands now be
omes a wall and 
annotbe o

upied by a queen. In e�e
t, ea
h move redu
es the playing area available.If you run out of moves, you lose. In the opening phase of the game, there 
anbe several thousand moves to 
hoose from. The best programs typi
ally sear
h�ve ply ahead (deeper in the endgame). Be
ause of the territorial nature of thegame, Amazons is often touted as a resear
h stepping stone between the sear
h-intensive approa
hes used in 
hess and the knowledge-intensive approa
hes usedin go. AI resear
h into this game is only three years old. The best programsplay reasonably well, but are not yet 
ompetitive with strong human players[74℄.Interesting resear
h is also being done on puzzles. Re
ently, major advan
eshave o

urred in building programs that 
an solve 
rossword puzzles. Proverb(Mi
hael Littman, Greg Keim, et al.) s
ores remarkably well (over 95% of thewords 
orre
t) on the New York Times 
rossword puzzles without understandingthe 
lues [33℄!Another 
hallenging puzzle is Sokoban. Here the large bran
hing fa
tor(
ould be over 100) and deep solution lengths (some optimal solutions are over700 moves) make for a daunting sear
h. On a standard test set, the programRolling Stone 
an only solve 57 of 90 problems [32℄.5 The Future of Computer GamesIn the realm of board and 
ard games, go will 
ontinue to taunt AI resear
hersfor many de
ades to 
ome. As well, new games will 
ome along to provide inter-esting 
hallenges. For example, the game of O
ti was invented to be resistantto 
omputer algorithms (www.o
ti.net). It is 
hara
terized by having a large21



bran
hing fa
tor, making deep sear
h impra
ti
al. However O
ti has the addi-tional dimension that a move 
an 
hange the 
apabilities of a pie
e, making it
hallenging to design an evaluation fun
tion.The resear
h into board and 
ard games is, in some sense, histori
ally mo-tivated be
ause these were interesting 
hallenges at the dawn of the 
omputingage. However, with the advent of home 
omputers, new forms of 
omputergames and a $20 billion (and growing) industry has emerged: intera
tive 
om-puter games. There are numerous produ
ts on the market 
overing the gamutof a
tion games (e.g. shoot'em-up games like Quake), role-playing games (e.g.player goes on a quest, as in Baldur's Gate), adventure games (e.g. navigatingthrough a s
ripted story, as in King's Quest), strategy games (e.g. 
ontrollingarmies in a war, su
h as Command and Conquer), \God" games (e.g. evolvinga simulated population, as in SimCity), and sports (e.g. 
ontrolling a playeror 
oa
hing a team, su
h as FIFA'01) [38℄. Histori
ally, these games have beenlong on graphi
s, and short on arti�
ial intelligen
e.11John Laird has promoted intera
tive 
omputer games as an opportunityfor the AI resear
h 
ommunity [38℄. Many intera
tive 
omputer games require
omputer 
hara
ters that need to intera
t with the user in a realisti
, believablemanner. Computer games are the ideal appli
ation for developing human-levelAI. There is already a need for it, sin
e human game players are generally dissat-is�ed with 
omputer 
hara
ters. The 
hara
ters are shallow, too easy to predi
t,and, all too often, exhibit arti�
ial stupidity rather than arti�
ial intelligen
e.This has led to the su

ess of on-line games (su
h as Ultima Online), where play-ers 
ompete against other humans. The 
urrent state of the art in developingrealisti
 
hara
ters 
an be des
ribed as being primitive, with simple rule-basedsystems and �nite-state ma
hines being the norm. The la
k of sophisti
ationis due to the la
k of resear
h e�ort (and, 
ause and e�e
t, resear
h dollars).This is 
hanging, as more games 
ompanies and resear
hers re
ognize that AIwill play an in
reasingly important role in game design and development. Thequality of the 
omputer graphi
s may draw you to a produ
t, but the play ofthe game will keep you using the produ
t (and buying the sequel). Arti�
ialintelligen
e is 
riti
al to 
reating a satisfying gaming experien
e.Finally, the last few years have seen resear
h on team games be
ome popular.The annual RoboCup 
ompetition en
ourages hardware builders and softwaredesigners to test their skills on the so

er �eld (www.robo
up.
om).Although this arti
le has emphasized building games programs that 
an
ompete with humans, there are many other AI 
hallenges that 
an use gamesas an interesting experimental test bed. Some sample proje
ts in
lude:1. Data mining: There are large databases of endgame positions for 
hess,
he
kers and awari. It is dissatisfying that all a program 
an do is look upa spe
i�
 position in the database. If the exa
t positon is in the database,you get useful information, else nothing. Surely there must be some way ofmining this data to learn the prin
ipals of strong endgame play. As well,11For example, path �nding is a 
riti
al 
omponent of many games, yet it took until 1996for the industry to \dis
over" A*. 22



there are large databases of 
hess opening moves. Can this be analyzed todis
over new opening ideas? Can one 
hara
terize opponent's strengthsand weaknesses? Can the data be extrapolated to similar positions?2. Learning: Using temporal-di�eren
e learning to tune an evaluation fun
-tion is just the pre
ursor to other ex
iting appli
ations of learning te
hnol-ogy to games. For example, resear
h in applying learning algorithms 
anresult in more fo
ussed and informed game-tree sear
hes, better opponentmodelling in poker, and adaptive 
hara
ters in 
ommer
ial games.3. Annotating games: Developing annotators that 
an provide an interestingand informative analysis of a game is a 
hallenging problem. There havebeen some attempts at automating the 
ommentary for 
hess games (theInternational Computer Chess Asso
iation has an annual 
ompetition),but the results are medio
re. It is hard to di�erentiate between the trivialand the interesting, the verbose and the informative, all the while anti
i-pating the questions humans would like answered in the 
ommentary. Aninteresting example is the work done on providing 
omputer 
ommentaryto RoboCup games [20℄.Games will 
ontinue to be an interesting domain for exploring new ideas inarti�
ial intelligen
e.6 Con
lusionsShannon, Turing, Samuel, Newell and Simon's early writings were pioneering,realizing that 
omputer games 
ould be a ri
h domain for exploring the bound-aries of 
omputer s
ien
e and arti�
ial intelligen
e. Software and hardwareadvan
es have led to signi�
ant su

ess in building high-performan
e game-playing programs, resulting in milestones in the history of 
omputing. Withit has 
ome a 
hange in people's attitudes. Whereas in the 1950s and 1960s,understanding how to build strong game-playing program was at the forefrontof arti�
ial-intelligen
e resear
h, today it has been demoted to lesser status. Inpart this is an a
knowledgment of the su

ess a
hieved in this �eld | no otherarea of arti�
ial intelligen
e resear
h 
an 
laim su
h an impressive tra
k re
ordof produ
ing high-quality working systems. But it is also a re
e
tion on thenature of arti�
ial intelligen
e itself. It seems that as the solution to problemsbe
ome understood, the te
hniques be
ome less \AIish".The work on 
omputer games has resulted in advan
es in numerous areasof 
omputing. One 
ould argue that the series of 
omputer-
hess tournamentsthat began in 1970 and 
ontinue to this day represents the longest running ex-periment in 
omputing s
ien
e history. Resear
h using games has demonstratedthe bene�ts of brute-for
e sear
h, something that has be
ome a widely a

eptedtool for a number of sear
h-based appli
ations. Many of the ideas that saw thelight of day in game-tree sear
h have been applied to other algorithms. Build-ing world-
hampionship-
aliber games programs has demonstrated the 
ost of23




onstru
ting high-performan
e arti�
ial-intelligen
e systems. Games have beenused as experimental test beds for many areas of arti�
ial intelligen
e. And soon.Arthur Samuel's 
on
luding remarks from his 1960 paper are as relevanttoday as they were when he wrote the paper [50℄:Just as it was impossible to begin the dis
ussion of game-playingma
hines without referring to the hoaxes of the past, it is equallyunthinkable to 
lose the dis
ussion without a prognosis. Program-ming 
omputers to play games is but one stage in the developmentof an understanding of the methods whi
h must be employed forthe ma
hine simulation of intelle
tual behavior. As we progress inthis understanding it seems reasonable to assume that these newerte
hniques will be applied to real-life situations with in
reasing fre-quen
y, and the e�ort devoted to games ... will de
rease. Perhapswe have not yet rea
hed this turning point, and we may still havemu
h to learn from the study of games.7 A
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h, but Maven won six of the next seven. Going into the
riti
al 12th game, Maven led by a s
ore of seven wins to four. The followingannotations are based on 
omments from Brian Sheppard. The 
olumns of aS
rabble board are spe
i�ed from left-to-right by the letters a to o. Rows arespe
i�ed from top-to-bottom using the numbers 1 to 15. Moves are spe
i�ed bygiving the square of the �rst letter of the word. If the 
oordinate begins witha number, then the word is pla
ed horizontally. If the 
oordinate begins with aletter, then the word is pla
ed verti
ally. The blank is referred to by \?".Follow along yourself. How good are the moves that you �nd?Maven versus Adam Logan1. Maven(ACNTVYZ) plays CAVY at 8f, 24 pts, Maven=24 Logan=0. Thealternative is ZANY, s
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7. Maven(AHINRTU) plays HURT at 4a, 34 pts, Maven=110 Logan=183.8. Logan(DDEEMMN) plays EMENDED at 
7, 26 pts, Maven=110 Lo-gan=209.9. Maven(ABEINNP) plays IAMB at 8a, 33 pts, Maven=143 Logan=209.10. Logan(AILMTTU) plays MATH at a1, 27 pts, Maven=143 Logan=236.Strong players also 
onsider UTA(3a,20,ILMT) whi
h s
ores fewer pointsbut gets rid of the annoying \U".11. Maven(EFGNNPS) plays FEIGN at e10, 18 pts,Maven=161 Logan=236.FENS(j9,24,GNP) s
ores more points, but FEIGN keeps better tiles.12. Logan(AILORTU) plays TUTORIAL at 15h, 77 pts, Maven=161 Lo-gan=313. Adam Logan's third bingo!

Figure 1: Maven plays BOS (j10) s
oring 26 points.13. Maven(?ABNOPS) plays BOS at j10, 26 pts, Maven=187 Logan=313.See Figure 1. Sheppard 
onsiders this to be a \fantasti
 move" and oneof the most diÆ
ult moves in the game.14. Logan(IILPRSU) plays PILIS at 15a, 34 pts, Maven=187 Logan=347.PILIS, PULIS, PILUS, and PURIS are all good.15. Maven(?AKNPRS) plays SPANKER at k5, 105 pts, Maven=292 Lo-gan=347. The only bingo, reviving Maven's 
han
es despite the 160 pointde�
it. 30



16. Logan(EEEORUS) plays OE at b1, 12 pts, Maven=292 Logan=359. Thebest move, dumping extra vowels.17. Maven(?HJTTWW) plays JAW at 7j, 13 pts, Maven=305 Logan=359.18. Logan(AEEGRSU) plays GREASE at m3, 31 pts,Maven=305 Logan=390.AGER(L9,24,ESU) also merits 
onsideration.19. Maven(?HRTTWX) plays AX at 6m, 25 pts, Maven=330 Logan=390.Maven's se
ond brilliant move, 
hoosing AX over GOX(13G,36) and sa
-ri�
ing 11 points.20. Logan(EIIILQU) plays LEI at o5, 13 pts, Maven=330 Logan=403.21. Maven(?AHRTTW) plays WE at 9b, 10 pts, Maven=340 Logan=390.22. Logan(AIIIOQU) plays QUAI at j2, 35 pts, Maven=340 Logan=438. A98 point lead and only a few moves are left in the game. Obviously, it'sall over...23. Maven(?AHRTTU) plays MOUTHPART at 1a, 92+8 pts, Maven=440Logan=438. See Figure 2. Wonderful! Maven s
ores exa
tly 100 points,edging Adam Logan by 2. Sheppard writes that \Maven steals the gameon the last move. Adam, of 
ourse, was stunned, as it seemed that therewere no pla
es for bingos left on this board. If I hadn't felt so bad forAdam, who played magni�
ently, I would have jumped and 
heered." Thisgame put Maven up by eight games to four, so winning the mat
h was nolonger in doubt.How often do you s
ore 438 points in a game of S
rabble... and lose?Just in 
ase some of the words used in this game are not part of your everydayvo
abulary, here are a few useful de�nitions (taken from the 
ommer
ial versionof Maven):� Bos: a pal� Fens: marshes.� Foveal: a shallow anatomi
al depression.� Gox: gaseous oxygen.� Pilis: a Philippine tree.� Uta: a type of lizard.� Zoon: whole produ
t of one fertilized egg.31



Figure 2: Maven | Logan, �nal position
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