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Games are ideal domains for exploring the capabilities of computational intel-
ligence. The rules are fixed, the scope of the problem is constrained, and the
interactions of the players are well defined. Contrast this to the real world—the
game of life—where the rules often change, the scope of the problem is almost
limitless, and the participants interact in an infinite number of ways. Games
can be a microcosm of the real world (e.g. the role of game theory in economics,
social interaction, and animal behavior), and successfully achieving high com-
puter performance in a nontrivial game can be a stepping stone towards solving
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Abstract

In 1950 Claude Shannon published his seminal work on how to pro-
gram a computer to play chess. Since then, developing game-playing
programs that can compete with (and even exceed) the human world
champions has been a long-sought-after goal of the artificial intelligence
research community. In Shannon’s time, it would have seemed unlikely
that only a scant 50 years would be needed to develop programs that play
world-class backgammon, checkers, chess, Othello, and Scrabble. These
remarkable achievements are the result of a better understanding of the
problems being solved, major algorithmic insights, and tremendous ad-
vances in hardware technology. Computer games research is one of the
important success stories of artificial intelligence. This article reviews the
past successes, current projects, and future research directions for artificial
intelligence using computer games as a research test-bed.

Introduction

more challenging real-world problems.

*Portions of this article have been published in [53] and are reproduced with permission

and without further citation.



Historically, games have been a popular choice for demonstrating new re-
search ideas in artificial intelligence (AI). Indeed, one of the early goals of Al
was to build a program capable of defeating the human world chess champion
in a match. This challenge proved to be more difficult than was anticipated; the
AT literature is replete with optimistic predictions. It eventually took almost
50 years to complete the task—a remarkably short time when one considers
the software and hardware advances needed to make this amazing feat possible.
Often overlooked, however, is that this result was also a testament to human
abilities. Considering the formidable computing power that Deep Blue used in
its 1997 exhibition match against world chess champion Garry Kasparov (ma-
chine: 200,000,000 chess positions per second; man: two per second), one can
only admire the human champions for withstanding the technological onslaught
for so long.

Computer-games research was started by some of the luminaries in comput-
ing science history. In 1950, Claude Shannon published his seminal paper that
laid out the framework for building high-performance game-playing programs
[55]. In 1951, Alan Turing did a hand simulation of his computer chess algo-
rithm (a lack of resources prevented him from actually programming it) [73]; the
algorithm lost to a weak human player. Around this time, Arthur Samuel be-
gan work on his famous checkers-playing program, the first program to achieve
notable success against human opposition [49, 51]. By 1958, Alan Newell and
Herb Simon had begun their investigations into chess, which led eventually led
to fundamental results for artificial intelligence and cognitive science [43]. An
impressive lineup to say the least!

In the half century years since Shannon’s paper, enormous progress has been
made in constructing high-performance game-playing programs. In Shannon’s
time, it would have seemed unlikely that within a scant 50 years checkers (8 x 8
draughts), Othello!, and Scrabble? programs would exist that exceed the abil-
ities of the best human players, while backgammon and chess programs could
play at a level comparable to the human world champion. These remarkable
accomplishments are the result of a better understanding of the problems be-
ing solved, major algorithmic insights, and tremendous advances in hardware
technology. The work on computer games has been one of the most successful
and visible results of artificial intelligence research. For some games, one could
argue that the Turing test has been passed [37].

This article discusses the progress made in developing programs for the clas-
sic board and card games. For a number of games, a short history of the progress
in building a world-class program for that game is given, along with a brief de-
scription of the strongest program. In each case we highlight a single feature
of the program that is a major contributor to the program’s strength. The his-
tories are necessarily brief. I apologize in advance to the many hard-working
researchers and hobbyists whose work is not mentioned here.

Section 2 briefly summarizes some of the major advances in technology that

1Othello is a registered trademark of Tsukuda Original, licensed by Anjar Co.
2Scrabble is a registered trademark of the Milton Bradley Company, a division of Hasbro,
Inc.



facilitated the construction of world-championship-caliber programs. Section
3 reports the past successes where computers have met or exceeded the best
human players (backgammon, checkers, chess, Othello, and Scrabble). Section
4 highlights games of current academic interest (bridge, go, and poker). Section
5 discusses some of the future challenges of using games as a research test-bed
for artificial intelligence.

Although this article emphasizes the artificial intelligence viewpoint, one
should not underestimate the engineering effort required to build these pro-
grams. One need only look at the recent success of the Deep Blue chess machine
to appreciate the effort required. That project spanned eight years (12 if one
includes the pre-IBM time), and included several full-time people, extensive
computing resources, chip design, and grandmaster consultation. Some of the
case studies hint at the amount of work required to construct these systems.
In all cases, the successes reported in this article are the result of consistent
progress over many years.

2 Enabling Technologies

The biggest advances in computer game-playing have come as a result of work
done on the alpha-beta search algorithm. This algorithm received the most
attention because of the research community’s preoccupation with chess. With
the Deep Blue victory over world chess champion Garry Kasparov, interest in
methods suitable for chess has waned and been replaced by activity in other
games. One could argue that the chess victory removed a ball and shackle that
was stifling the creativity of researchers who were building high-performance
game-playing systems.

The alpha-beta research led to a plethora of search enhancements which sig-
nificantly improved the efficiency of the search. Some of these enhancements
include iterative deepening, caching previously seen sub-tree results (transpo-
sition tables), successor reordering, search extensions/reductions, probabilistic
cutoffs, and parallel search. The results are truly amazing. Even though there
is an exponential difference between the best-case and the worst-case for an
alpha-beta search, most high-performance game-playing programs are search-
ing within a small constant of the best case [45].

Sadly, the community of researchers involved in this work have done a rel-
atively poor job of selling the technology, resulting in many of the ideas being
reinvented for other domains. For example, many search techniques pioneered
with alpha-beta have become standard in other search domains, with few real-
izing the lineage of the ideas.

At the heart of many game-playing programs is an evaluation function. Early
on, game developers quickly encountered the knowledge acquisition bottleneck,
and traded-off quality of knowledge for speed of the program. Simple evaluation
functions, linear combinations of easily identifiable features, were the mainstay
of computer games programs for many decades. Alternative approaches, such as
modeling human cognitive processes, turned out to be much harder to do than



initially expected, and generally resulted in poor performance. Games program-
mers quickly learned that a little heuristic knowledge, when combined with deep
search, can produce amazing performance results. Indeed, one could argue that
the viability of brute-force search, once a term with negative connotations in the
AT community, is one of the main research results from games-related research
[22].

In the last decade, new techniques have moved to the forefront of games
research. Two in particular are mentioned here since they are likely to play a
more prominent role in the near future:

1. Monte Carlo simulation has been successfully applied to games with imper-
fect or non-deterministic information. In these games it is too expensive
to search all possible outcomes. Instead only a representative sample is
chosen to give a statistical profile of the outcome. This technique has been
successful in bridge, poker and Scrabble.

2. Temporal-difference learning is the direct descendent of Samuel’s machine
learning research [64]. Here a database of games (possibly generated by
computer self-play) can be used to bootstrap a program to find a good
combination of knowledge features. The algorithm has been successfully
applied to backgammon, and has recently shown promise in chess.

The most obvious hardware advance is simply speed. To read about Samuel’s
checkers-playing program running on a 1963 machine that could execute 15 mil-
lion additions per minute [44] starkly brings home the point that orders of
magnitude more computing power makes many things possible. Indeed, con-
sidering the paucity of computing power at Samuel’s disposal, one can only be
filled with admiration at what he achieved.

Computer games research pioneered competitions to assess the quality of
the systems being developed. Since 1970, there have been annual computer
chess tournaments. There is now an annual Computer Olympiad which brings
together many of the top programs and their developers in head-to-head compe-
tition (see www.msoworld.com). The competitive spirit has spread throughout
the AI community; competitions now exist for other applications, including
theorem proving, planning and natural language.

3 Swuccess in Computer Games

In a number of games, computers have enjoyed success that puts them on par
or better with the best humans in the world. In some sense, this is the past, in
that active research to develop high-performance programs for these games is
on the wane (or is now non-existent). These include games where computers are
better than all humans (checkers, Othello, Scrabble) and those where computers
are competitive with the human world champion (backgammon and chess).



3.1 Backgammon

The first concerted effort at building a strong backgammon program was un-
dertaken by Hans Berliner of Carnegie Mellon University. In 1979 his program,
BK@G9.8, played an exhibition match against the the newly-crowned world cham-
pion Luigi Villa [6, 7]. The stakes were $5,000, winner take all. The final score
was seven points to one in favor of the computer, with BKG9.8 winning four of
the five games played (the rest of the points came from the doubling cube).
Backgammon is a game of both skill and luck. In a short match, the dice
can favor one player over another. Berliner writes that “In the short run, small
percentage differences favoring one player are not too significant. However, in
the long run a few percentage points are highly indicative of significant skill
differences” [7]. Thus, assessing the results of a five-game match are difficult.
Afterwards Berliner analyzed the program’s play and concluded that [6]:

There is no doubt that BKG9.8 played well, but down the line Villa
played better. He made the technically correct plays almost all the
time, whereas the program did not make the best play in eight out
of 73 non-forced situations.

BK(G9.8 was an important first step, but major work was still needed to bring
the level of play up to that of the world’s best players.

In the late 1980s, IBM researcher Gerry Tesauro began work on a neural-net-
based backgammon program. The net used encoded backgammon knowledge
and, training on data sets of games played by expert players, learned the weights
to assign to these pieces of knowledge. The program, Neurogammon, was good
enough to win first place in the 1989 Computer Olympiad [68].

Tesauro’s next program, T'D-Gammon used a neural network that was trained
using temporal difference learning. Instead of training the program with data
sets of games played by humans, Tesauro was successful in having the program
learn using the temporal differences from self-play games. The evolution in TD-
Gammon from version 0.0 to 3.0 saw an increase in the knowledge used, a larger
neural net, and the addition of small selective searches. The resulting program
is acknowledged to be on par with the best players in the world, and possibly
even better.

In 1998, an exhibition match was played between world champion Malcolm
Davis and TD-Gammon 3.0 (at the AAAT'98 conference). To reduce the luck
factor, 100 games were played over three days. The final result was a narrow
eight-point win for Davis. Both Davis and Tesauro have done extensive analysis
of the games, coming up with similar conclusions [66]:

While this analysis isn’t definitive, it suggests that we may have wit-
nessed a superhuman level of performance by TD-Gammon, marred
only by one horrible blunder redoubling to 8 in game 16, costing a
whopping 0.9 points in equity and probably the match!

A notable feature of TD-Gammon is its neural net evaluation function. The
net takes as input the current board position and returns as output the score



for the position (roughly, the probability of winning) [69]. The net has approxi-
mately 300 input values [65, 67]. The latest version, T'D-Gammon 3.0, contains
160 hidden units. Each unit takes a linear sum of the weighted values of its
inputs, and then converts it to a value in the range -3 to 3 (a backgammon is
worth three points, a gammon two, and a win, one point). The conversion is
done with a sigmoid function, allowing the output to be a nonlinear function
of the inputs. The resulting neural net has approximately 50,000 weights that
need to be trained.

The weights in the hidden units were trained using temporal difference learn-
ing from self-play games. By playing the program against itself, there was an
endless supply of data for the program to train itself against. In a given game
position, the program uses the neural net to evaluate each of the roughly 20
different ways it can play its dice roll, and then chooses the move leading to
the maximum evaluation. Each game is played to completion, and then tempo-
ral difference learning is applied to the sequence of moves. Close to 1,500,000
self-play games were used for training TD-Gammon 3.0.

Tesauro’s success with temporal difference learning in his backgammon pro-
gram is a major milestone in artificial intelligence research.

3.2 Checkers

Arthur Samuel began thinking about a checkers program in 1948 but did not
start coding until a few years later. He was not the first to write a checkers-
playing program; Christopher Strachey pre-dated him by a few months [63].
Over the span of three decades, Samuel worked steadily on his program, with
performance taking a back seat to his higher goal of creating a program that
learned. Samuel’s checkers player is best known for its single win against Robert
Nealey in a 1963 exhibition match. From this single game, many people erro-
neously concluded that checkers was a “solved” game.

In the late 1970’s, a team of researchers at Duke University built a strong
checkers-playing program that defeated Samuel’s program in a short match [72].
Early success convinced the authors that their program was possibly one of
the 10 best players in the world. World champion Marion Tinsley effectively
debunked that, writing that: “The programs may indeed consider a lot of moves
and positions, but one thing is certain. They do not see much!” [71]. Efforts
to arrange a match between the two went nowhere and the Duke program was
quietly retired.

Interest in checkers was rekindled in 1989 with the advent of strong commer-
cial programs and a research effort at the University of Alberta: Chinook. Chi-
nook was authored principally by Jonathan Schaeffer, Norman Treloar, Robert
Lake, Paul Lu, and Martin Bryant. In 1990, the program earned the right to
challenge for the human world championship. The checkers federations refused
to sanction the match, leading to the creation of a new title: the world man-
machine championship. This title was contested for the first time in 1992, with
Marion Tinsley defeating Chinook in a 40-game match by a score of 4 wins
to 2. Chinook’s wins were the first against a reigning world champion in a



non-exhibition event for any competitive game.

There was a rematch in 1994, but after six games (all draws), Tinsley re-
signed the match and the title to Chinook, citing health concerns. The following
week he was diagnosed with cancer, and he died eight months later. Chinook
has subsequently defended its title twice, and has not lost a game since 1994.
The program was retired from human competitions in 1997 [52].

The structure of Chinook is similar to that of a typical chess program: search,
knowledge, database of opening moves, and endgame databases [52, 54]. Chi-
nook uses alpha-beta search with a myriad of enhancements including iterative
deepening, transposition table, move ordering, search extensions, and search
reductions. Chinook was able to average a minimum of 19-ply searches against
Tinsley (using 1994 hardware) with search extensions occasionally reaching 45
ply into the tree. The median position evaluated was typically 25-ply deep into
the search.

A notable feature in Chinook is its use of endgame databases. The databases
contain all checkers positions with eight or fewer pieces, 444 billion (4 x 10'")
positions compressed into six gigabytes for real-time decompression. Unlike
chess programs which are compute-bound, Chinook becomes I/O-bound after a
few moves in a game. The deep searches mean that the database is occasionally
being hit on the first move of a game. The databases introduce accurate values
(win/loss/draw) into the search (no error), reducing the program’s dependency
on its heuristic evaluation function (small error). In many games, the program
is able to backup a draw score to the root of a search within 10 moves by each
side from the start of a game. This suggests that it may be possible to determine
the game-theoretic value of the starting position of the game (one definition of
“solving” the game).

Chinook is the first program to win a human world championship for any
game. At the time of Chinook’s retirement, the gap between the program and the
highest-rated human was 200 rating points (using the chess rating scale) [52]. A
gap this large means that the program would score 75% of the possible points in
a match against the human world champion. Since then, faster processor speeds
mean that Chinook has become stronger, further widening the gap between man
and machine.

3.3 Chess

The progress of computer chess was strongly influenced by an article by Ken
Thompson which equated search depth with chess-program performance [70].
Basically, the paper presented a formula for success: build faster chess search
engines. The milestones in chess program development become a statement of
the state-of-the-art in high-performance computing:

e 1978-1980: The pioneering programs from Northwestern University, most
notably Chess 4.6 [60], ran on a top-of-the-line Control Data computer
and achieved the first major tournament successes.



e 1980-1982: Belle, the first program to earn a U.S. master title, was a
machine built to play chess. It consisted of 10 large wire-wrapped boards
using LSI chips [15].

e 1983-1984: Cray Blitz used a multi-processor Cray supercomputer [30].

e 1985-1986: The Hitech chess machine was based on 64 special-purpose
VLSI chips (one per board square) [8, 16].

e 1985-1986: Waycool used a 256-processor hypercube [17].

e 1987-present: ChipTest (and its successors Deep Thought and Deep Blue)
took VLSI technology even further to come up with a chess chip [27, 28,
29].

In 1987, ChipTest shocked the chess world by tieing for first place in a
strong tournament, finishing ahead of a former world champion and defeating a
grandmaster. The unexpected success aroused the interest of world champion
Garry Kasparov, who played a two-game exhibition match against the program
in 1989. Man easily defeated machine in both games.

The Deep Blue team worked for seven years on improving the program,
including designing a single-chip chess search engine and making significant
strides in the quality of their software. In 1996, the chess machine played a six-
game exhibition match against Kasparov. The world champion was stunned by
a defeat in the first game, but he recovered to win the match, scoring three wins
and two draws to offset the single loss. The following year, another exhibition
match was played. Deep Blue scored a brilliant win in game two, handing
Kasparov a psychological blow from which he never recovered. In the final,
decisive game of the match, Kasparov fell into a trap and the game ended
quickly. This gave Deep Blue an unexpected match victory, scoring two wins,
three draws and a loss.

It is important to keep this result in perspective. First, it was an exhibition
match; Deep Blue did not earn the right to play Kasparov.® Second, the match
was too short to accurately determine the better player; world-championship
matches have varied from 16 to 48 games in length. Although it is not clear
just how good Deep Blue is, there is no doubt that the program is a strong
grandmaster.

What does the research community think of the Deep Blue result? Many
are filled with admiration at this feat of engineering. Some are cautious about
the significance. John McCarthy writes that [41]:

In 1965, the Russian mathematician Alexander Kronrod said, “Chess
is the Drosophila* of artificial intelligence.” However, computer
chess has developed much as genetics might have if the geneticists

3To be fair, it is unlikely that the international chess federation will ever allow computers
to compete for the world championship.

4The drosophila is the fruit fly. The analogy is that the fruit fly is to genetics research as
games are to artificial intelligence research.



had concentrated their efforts starting in 1910 on breeding racing
Drosophila. We would have some science, but mainly we would have
very fast fruit flies.

In retrospect, the chess “problem” turned out to be much harder than was
expected by the computing pioneers. The Deep Blue result is a tremendous
achievement, and a milestone in the history of computing science.

From the scientific point of view, it is to be regretted that Deep Blue has
been retired, the hardware unused, and the programming team disbanded. The
scientific community has a single data point that suggests machine might be
better than man at chess. The data is insufficient and the sample size is not
statistically significant. Moreover, given the lack of interest in Deep Blue from
IBM, it is doubtful that this experiment will ever be repeated. Of what value
is a single, non-repeatable data point?

Deep Blue and its predecessors represents a decade-long intensive effort by
a team of people. The project was funded by IBM, and the principal scientists
who developed the program were Feng-hsiung Hsu, Murray Campbell, and Joe
Hoane.

The notable technological feature of Deep Blue is its amazing speed, the
result of building special-purpose chess chips. The chip includes a search engine,
a move generator, and an evaluation function [27]. The chip’s search algorithm
is based on alpha-beta. The evaluation function is implemented as small tables
on the chip; the values for these tables can be downloaded to the chip before
the search begins. These tables are indexed by board features and the results
summed in parallel to provide the positional score.

A single chip is capable of analyzing over two million chess positions per sec-
ond (using 1997 technology). It is important to note that this speed understates
the chip’s capabilities. Some operations that are too expensive to implement
in software can be done with little or no cost in hardware. For example, one
capability of the chip is to selectively generate subsets of legal moves, such as
all moves that can put the opponent in check. These increased capabilities give
rise to new opportunities for the search algorithm and the evaluation function.
Hsu estimates that each chess chip position evaluation roughly equates to 40,000
instructions on a general-purpose computer. If so, then each chip translates to
a 100 billion instruction per second chess supercomputer [27].

Access to the chip is controlled by an alpha-beta search algorithm that re-
sides on the host computer (an IBM SP-2). Each of the 32 SP-2 processors could
access 16 chips. The reported cumulative performance, 200,000,000 positions
analyzed per second, falls short of the peak speed (over one billion positions
per second) due to the inherent difficulty of getting good parallel performance
out of the alpha-beta algorithm. That massive amount of computing allows
the program to search deeper, significantly reducing the probability that it will
make an error (as Kasparov found out to his regret).

The artificial intelligence community gave a collective sigh of relief when
Deep Blue defeated Kasparov. It was time to move on to new challenges in the
field.



3.4 Othello

The first major Othello program was Paul Rosenbloom’s Iago [48], achieving
impressive results given its early-1980s hardware. It dominated play against
other Othello programs of the time, but played only two games against world-
class human players, losing both. The program’s ability to predict 59% of the
moves played by human experts was extrapolated to conclude that the program’s
playing strength was of world-championship caliber.

By the end of the decade, Iago had been eclipsed. Kai-Fu Lee and San-
joy Mahajan’s program Bill represented a major improvement in the quality of
computer Othello play [39]. The program combined deep search with exten-
sive knowledge (in the form of precomputed tables) in its evaluation function.
Bayesian learning was used to combine the evaluation function features in a
weighted quadratic polynomial.

Statistical analysis of the program’s play indicated that it was a strong
Othello player. Bill won a single game against Brian Rose, the highest rated
American Othello player at the time. In test games against Iago, Bill won every
game. These results led Lee and Mahajan to conclude that “Bill is one of the
best, if not the best, Othello player in the world.” As usual, there is danger in
extrapolating conclusions based on limited evidence.

With the advent of the Internet Othello Server (I0S), computer Othello tour-
naments became frequent. In the 1990s they were dominated by Michael Buro’s
Logistello. The program participated in 25 tournaments, finished first 18 times,
second six times, and fourth once. The program combined deep search with
an extensive evaluation function that was automatically tuned. That combined
with an extensive database of opening moves and a perfect endgame player are
a winning recipe for Othello.

Although it was suspected that by the mid-1990s, computers had surpassed
humans in their playing abilities at Othello, this was not properly demonstrated
until 1997, when Logistello played an exhibition match against world champion
Takeshi Murakami. In preparation for the match, Buro writes that [13]:

Bill played a series of games against different versions of Logistello.
The results showed that Bill, when playing 5-minute games running
on a PentiumPro/200 PC, is about as strong as a 3-ply Logistello,
even though Bill searches 8 to 9 plies. Obviously, the additional
search is compensated for by knowledge. However, the 3-ply Logis-
tello can only be called mediocre by today’s human standards.

Two explanations for the overestimation of playing strength in the
past come to mind: (1) during the last decade human players have
improved their playing skills considerably, and (2) the playing strength
of the early programs was largely overestimated by using ... non-
reliable scientific methods.

Logistello won all six games against Murakami by a total disc count of 264 to
120 [13]. This confirmed what everyone had expected about the relative playing
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strengths of man and machine. The gap between the best human players and the
best computer programs is believed to be large and effectively unsurmountable.

Outwardly, Logistello looks like a typical alpha-beta-based searcher. How-
ever, the construction of the evaluation function is novel. The program treats
the game as having 13 phases: 13 16 discs on the board, 17 20 discs, ..., and 61
64 discs.®> Each phase has a different set of weights in the evaluation function.
The evaluation-function features are patterns of squares comprising combina-
tions of corners, diagonals, and rows. These patterns capture important Othello
concepts, such as mobility, stability and parity. Logistello has 11 such patterns,
which with rotations and reflections yields 46. Some of the patterns include a
3 x 3 and a 5 x 2 configuration of stones anchored in a corner, and all diagonals
of length greater than 3.

The weights for each entry in each pattern (46) for each phase of the game
(11) are determined by linear regression. There are over 1.5 million table entries
that need to be determined. The data was trained using 11 million scored
positions obtained from self-play games and practice games against another
program [12]. The evaluation function is completely table-driven. Given a
position, all 46 patterns are matched against the position, with a successful
match returning the associated weight. These weights are summed to get the
overall evaluation which approximates the final disc differential.

Michael Buro comments on the reasons why Logistello easily won the Mu-
rakami match[13]:

When looking at the games of the match the main reasons for the
clear outcome are as follows:

1. Lookahead search is very hard for humans in Othello. The disad-
vantage becomes very clear in the endgame phase, where the board
changes are more substantial than in the opening and middlegame
stage. Computers are playing perfectly in the endgame while hu-
mans often lose discs.

2. Due to the automated tuning of the evaluation functions and
deep selective searches, the best programs estimate their winning
chance in the opening and middlegame phase very accurately. This
leaves little room for human innovations in the opening, especially
because the best Othello programs are extending their opening books
automatically to explore new variations.

3.5 Scrabble

The first documented Scrabble program appears to have been written by Stuart
Shapiro and Howard Smith and was published in 1977 [56]. In the 1980s a
number of Scrabble programming efforts emerged and by the end of the decade,
it was apparent that these programs were strong players. With access to the

5Note that there is no need for a phase for less than 13 discs on the board, since the search
from the first move easily reaches 13 or more discs.
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entire Scrabble dictionary in memory (now over 100,000 words), the programs
held an important advantage in any games against humans.

At the first Computer Olympiad in 1989 the Scrabble winner was Crab writ-
ten by Andrew Appel, Guy Jacobson, and Graeme Thomas [40]. Second was
Tyler written by Alan Frank. Subsequent Olympiads saw the emergence of TSP
(Jim Homan), which edged out Tyler in the second and third Olympiads. All
of these programs were very good, and quite possibly strong enough to be a
serious test for the best players in the world.

Part of their success was due to the fast, compact Scrabble move gener-
ator developed by Appel [4]. Steven Gordon subsequently developed a move
generator that was twice as fast, but used five times as much storage [26].

Brian Sheppard began working on a Scrabble program in 1983, and started
developing Maven in 1986. In a tournament in December 1986, Maven scored
eight wins and two losses over an elite field, finishing in second place on tie-
break. Sheppard describes the games against humans at this tournament [57]:

Maven reels off JOUNCES, JAUNTIER, and OVERTOIL on succes-
sive plays, each for exactly 86 points, to come from behind against
future national champion Bob Felt. Maven crushed humans repeat-
edly in offhand games. The human race begins to contemplate the
potential of computers.

In the following years, Maven continued to demonstrate its dominating play
against human opposition. Unfortunately, since it did not compete in the Com-
puter Olympiads, it was difficult to know how strong it was compared to other
programs at the time.

In the 1990s, Sheppard developed a pre-endgame analyzer (for when there
were a few tiles left in the bag) and improved the program’s ability to simulate
likely sequences of moves. These represented important advances in the pro-
gram’s ability. It was not until 1997, however, that the opportunity arose to
properly assess the program’s abilities against world-class players. In 1997, a
two-game match between Maven and Adam Logan, one of the best players in
North America, ended in two wins for the human. Unfortunately, the match
was not long enough to get a sense of who was really the best player.

In March 1998, the New York Times sponsored an exhibition match between
Maven and a team consisting of world champion Joel Sherman and the runner-
up Matt Graham. It is not clear whether the collaboration helped or hindered
the human side, but the computer won convincingly by a score of six wins to
three. The result was not an anomaly. In July of that year, Maven played
another exhibition match against Adam Logan (at the AAAT'98 conference),
scoring nine wins to five.

Shortly after the Logan match, Brian Sheppard wrote:

The evidence right now is that Maven is far stronger than human
players. ... I have outright claimed in communication with the cream
of humanity that Maven should be moved from the “championship
caliber” class to the “abandon hope” class, and challenged anyone
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who disagrees with me to come out and play. No takers so far, but
maybe one brave human will yet venture forth.

No one has.

Maven divides the game into three phases [59]: early game, pre-endgame,
and endgame. The early game starts at move one and continues until there
are nine or fewer tiles left in the bag (i.e., with the opponent’s seven tiles, this
implies that there are 16 or fewer unknown tiles). In the pre-endgame and
endgame phases, specialized searches are performed taking advantage of the
limited amount of unknown information.

In the early game phase, the program uses simulations to get a statistical
analysis of the likely consequences of making a move. Typically, 1,000 three-ply
simulations are done when making a move decision. The move leading to the
highest average point differential is selected. The issue with the simulations is
move generation. On average there are over 700 legal moves per position, and
the presence of two blanks in the rack can increase this figure to over 5,000!6
Contrast this, for example, with chess where the average number of moves to
consider in a position is roughly 40. Thus, Maven needs to pare the list of pos-
sible moves down to a small list of likely moves. Omitting an important move
from this list will have serious consequences; it will never be played. Conse-
quently, Maven employs multiple move generators, each identifying moves that
have important features that merit consideration. These move generators are:

e Score and Rack. This generator finds moves that result in a high score and
a good rack (tiles remaining in your possession). Strong players evaluate
their rack based on the likeliness of the letters being used to aid upcoming
words. For example, playing a word that leaves a rack of QXI would
be less preferable than leaving QUI; the latter offers more potential for
playing the Q effectively.

e Bingo Blocking. Playing all seven letters in a single turn leads to a bonus
of 50 points (a bingo). This move generator finds moves that reduce the
chances of the opponent scoring a bingo on their next turn. Sometimes it
is worth sacrificing points to reduce the opponent’s chances of scoring big.

e Immediate Scoring. This generates the moves with the maximum number
of points (this becomes more important as the end of the game nears).

Each routine provides up to 10 candidate moves. Merging these lists results in
typically 20-30 unique candidate moves to consider. In the early part of the
game only the Score and Rack generator is used. In the pre-endgame there are
four: the three listed above plus a pre-endgame evaluator that “took years to
tune to the point where it didn’t blunder nearly always” [58]. In the endgame,
all possible moves are considered.

The move generation routines are highly effective at filtering the hundreds
or thousands of possible moves [58]:

6As a frequent Scrabble player, T painfully admit that the number of words that T find are
considerably smaller than this!
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It is important to note that simply selecting the one move preferred
by the Score and Rack evaluator plays championship caliber Scrab-
ble. My practice of combining 10 moves from multiple generators is
evidence of developing paranoia on my part. “Massive overkill” is
the centerpiece of Maven’s design philosophy.

Obviously, this move filtering works very well, given the level of the pro-
gram’s play. The Scrabble community has extensively analysed Maven’s play
and found a few minor errors in the program’s play. Postmortem analysis of
the Logan match showed that Maven made mistakes that averaged nine points
per game. Logan’s average was 40 points per game. Maven missed seven fishing
moves opportunities to exchange some tiles (69 points lost), some program-
ming errors (48 points lost), and several smaller mistakes (6 points lost). The
programming errors have been corrected. If a future version of Maven included
fishing, the error rate would drop to less than one point per game. Maven would
be playing nearly perfect Scrabble.

Of the points lost due to programming errors, Brian Sheppard writes:

It just drives me crazy that I can think up inventive ways to get com-
puters to act intelligently, but I am not smart enough to implement
them correctly.

And that is the soliloquy of every games programmer.
ii INSERT SIDEBAR HERE ;;

3.6 Other Games

Superhuman performance has probably been achieved in several lesser-known
games. For example, for both the ancient African game of awari (also called
mancala) and the recently invented lines of action, there seems little doubt that
computers are significantly stronger than all human players [74]. This will not
be conclusively demonstrated until the human champions accept the computer
challenges for a serious match.

For some games, computers have been able to determine the result of per-
fect play and a sequence of moves to achieve this result.” In these games the
computer can play perfectly, in the sense that the program will never make a
move that fails to achieve the best-possible result. Solved games include nine
men’s morris [21], connect-4 [1], qubic [2], go moku [2], and 8 x 8 domineering
[11].

This article has not addressed one-player games (or puzzles). Single-agent
search (A*) has been successfully used to optimally solve instances of the 24-
puzzle [36] and Rubik’s Cube [35].

"This is in contrast to the game of Hex where it is easy to prove the game to be a first
player win, but computers are not yet able to demonstrate that win.
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4 Current Research Efforts

In the past decade, a number of games have become popular research test-beds.
These games are resistant to alpha-beta search, either because of the large
branching factor in the search tree, or the presence of unknown information. In
many respects, the research being done for these games has the potential to be
much more widely applicable than the work done on the alpha-beta search-based
programs.

4.1 Bridge

Work on computer bridge began in the early 1960s ([5], for example), but it
wasn’t until the 1980s that major efforts were undertaken. The advent of the
personal computer spurred on numerous commercial projects that resulted in
programs with relatively poor capabilities. Perennial world champion Bob Ham-
man once remarked that the commercial programs “would have to improve to be
hopeless” [24]. A similar opinion was shared by another frequent world cham-
pion, Zia Mahmood. In 1990, he offered a prize of £1,000,000 to the person who
developed a program that could defeat him at bridge. At the time, this seemed
like a safe bet for the foreseeable future.

In the 1990s, several academic efforts began using bridge for research in
artificial intelligence [19, 23, 24, 61, 62]. The commercial Bridge Baron program
teamed up with Dana Nau and Steve Smith from the University of Maryland.
The result was a victory in the 1997 world computer bridge championship. The
program used a hierarchical task network for the play of the hand. Rather
than building a search tree where each branch was the play of a card, they
would define each branch to be a strategy, using human-defined concepts such
as finesse and squeeze [61, 62]. The result was an incremental improvement in
the program’s card play, but it was still far from being world-class caliber.

Beginning in 1998, Matthew Ginsberg’s program GIB started dominating
the computer bridge competition, handily winning the world computer bridge
championship. The program started producing strong results in competitions
against humans, including an impressive result in an exhibition match against
world champions Zia Mahmood and Michael Rosenberg (held at AAAT’98). The
match lasted two hours, allowing 14 boards to be played. The result was in doubt
until the last hand, before the humans prevailed by 6.31 IMPs (International
Match Points). This was the first notable man-machine success for computer
bridge-playing programs. Zia Mahmood, impressed by the rapid progress made
by GIB, withdrew his million pound prize.

GIB was invited to compete in the Par Contest at the 1998 world bridge
championships. This tournament tests the contestant’s skills at playing out
bridge hands. In a select field of 35 of the premier players in the world, the
program finished strongly in 12th place. Michael Rosenberg won the event
with a score of 16,850 out of 24,000; GIB scored 11,210. Of the points lost by
GIB, 1,000 were due to time (there was a 10 point penalty per minute spent
thinking), 6,000 were due to GIB not understanding the bidding, and 6,000 were
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due to GIB’s inability to handle some hands where the correct strategy involves
combining different possibilities [24].

The name GIB originally stood for “Goren In a Box”, a tribute to one of the
pioneers of bridge. Another interpretation is “Ginsberg’s Intelligent Bridge.”
The current version of GIB uses a fast search to play out a hand. It simulates
roughly 50 different scenarios for the placement of the opponent’s cards, and
chooses the play that maximizes the expected score [24]. Ginsberg has developed
a new version of the algorithm that will eliminate the simulations and replace
it with perfect information [25] ®. Regardless, GIB is very strong at the play of
the hand.

A challenging component of the game is the bidding. Most previous attempts
at bridge bidding have been based on an expert-defined set of rules. This is
largely unavoidable, since bidding is an agreed-upon convention for communi-
cating card information. GIB takes this one step further, building on the ability
to quickly simulate a hand [24]. The program has access to a large database of
bidding rules (7,400 rules from the commercial program Meadowlark Bridge).
At each point in the bidding, GIB queries the database to find the set of plau-
sible bids. For each bid, the rest of the auction is projected using the database,
and then the play of the resulting contract is simulated. GIB chooses the bid
that leads to the average best result for the program.

Although intuitively appealing, this approach does have some problems. No-
tably the database of rules may have gaps and errors in it. Consider a rule where
the response to the bid 4 is incorrect in the database. GIB will direct its play
towards this bid because it assumes the opponents will make the (likely bad)
database response. As Ginsberg writes, “it is difficult to distinguish a good
choice that is successful because the opponent has no winning options from a
bad choice that appears successful because the heuristic fails to identify such
options” [24].

GIB uses three partial solutions to the problem of an erroneous or incomplete
bidding system. First, the bidding database can be examined by doing extensive
off-line computations to identify erroneous or missing bid information. This
is effective, but can take a long time to complete. Second, during a game,
simulation results can be used to identify when a database response to a bid
leads to a poor result. This may be evidence of a database problem, but it could
also be the result of effective disruptive bidding by GIB. Finally, GIB can be
biased to make bids that are “close” to the suggested database bids, allowing
the program the flexibility to deviate from the database.

To summarize, GIB is well on the way to becoming a world-class bridge
player. The program’s card play is already at a world-class level (as evidenced by
the Par Contest result), and current efforts will only enhance this. The bidding
needs improvement, and this is currently being addressed. Had Zia Mahmood
not withdrawn his offer, he might have lost his money within a couple of years
from now.

8 At the time of this writing, these results have not yet been published.
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4.2 Go

The history of computer go has not been dominated by hardware advances, as
seen in computer chess. Computer go tournaments proliferated in the 1990s,
and the organizers had the benefit of the chess experience. Two tournament
rules were instituted that had a significant impact on how program develop-
ment would occur. The first required all competitors to run on a commercially
available single-processor machine. This had the advantage of putting all the
programs on a level playing field by factoring out most hardware differences.
The second rule required that an entire game had to completed in 30 minutes
per player. Since games could be as long as 180 moves a side, programmers
were faced with critical cost-benefit decisions in their implementations. The
rules had the advantages of making tournaments easy to organize (no expensive
hardware setup or modem connections needed) and ensured that competitions
could be completed quickly with lots of games being played.

The first go program was written by Al Zobrist in 1970 [76]. Walter Reitman
and Bruce Wilcox began researching go programs in 1972 [47], an effort that
has continued for Wilcox to the current day. These early efforts produced weak
programs; there was no obvious single algorithm to build a program around, as
alpha-beta had done for chess. The difficulty of writing a go program became
evident; a strong program would need lots of patterns and knowledge, with only
a limited dependence on search.

Computer go tournaments began in 1984 with a short-lived series of annual
tournaments at the USENIX conference. In 1987, the First International Go
Congress was held, and there have been annual events ever since. The mid-1990s
were dominated by the program HandTalk, written by Zhixing Chen. HandTalk
remained stagnant for a few years while it was being rewritten. During that
period, Michael Reiss’ God++ assumed front-runner status. Although the top
programs claim a performance level of up to 3 kyu on the go rating scale (a
middle amateur level), most experts believe that the programs are much weaker
than that (around 8 kyu).

The Ing Prize has been set up as an incentive to build strong go programs.
The grand prize of roughly $1.5 million will be won by the developers of the
first program to beat a strong human player on a 19 x 19 board. To qualify to
play for the grand prize, a program must win a number of matches of increasing
difficulty. Currently, the programs have to defeat three junior players (ages 11
to 13). Don’t let their age fool you; they are very strong players! The winner
of the annual International Go Congress gets the chance to play. To qualify for
this event, a program must finish in the top three in one of the North American,
European, or Asian championships.

Go has been resistant to the techniques that have been successfully applied
to the games discussed in this article. For example, because of the 19 x 19 board
and the resulting large branching factor, alpha-beta search alone has no hope of
producing strong play. Instead, the programs perform small, local searches that
use extensive application-dependent knowledge. David Fotland, the author of
the Many Faces of Go program, identifies over 50 major components needed by
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a strong go-playing program. The components are substantially different from
each other, few are easy to implement, and all are critical to achieving strong
play. In effect, you have a linked chain, where the weakest link determines the
overall strength.

Martin Miiller (author of Ezplorer) gives a stark assessment of the reality of
the current situation in developing go programs [42]:

Given the complexity of the task, the supporting infrastructure for
writing go programs should offer more than is offered for other games
such as chess. However, the available material (publications and
source code) is far inferior. The playing level of publicly available
source code ..., though improved recently, lags behind that of the
state-of-the-art programs. Quality publications are scarce and hard
to track down. Few of the top programmers have an interest in pub-
lishing their methods. Whereas articles on computer chess or general
game-tree search methods regularly appear in mainstream Al jour-
nals, technical publications on computer go remain confined to hard
to find proceedings of specialized conferences. The most interesting
developments can be learned only by direct communication with the
programmers and never get published.

Although progress has been steady, it will take many decades of research and
development before world-championship-caliber go programs exist.

4.3 Poker

There are many popular poker variants. Texas Hold’em is generally acknowl-
edged to be the most strategically complex variant of poker that is widely played.
It is the premier event at the annual World Series of Poker.” Until recently,
poker has been largely ignored by the computing academic community. There
are two main approaches to poker research [9]. One approach is to use sim-
plified variants that are easier to analyze. However, one must be careful that
the simplification does not remove challenging components of the problem. For
example, Findler worked on and off for 20 years on a poker-playing program
for 5-card draw poker [18]. His approach was to model human cognitive pro-
cesses and build a program that could learn, ignoring many of the interesting
complexities of the game.

The other approach is to pick a real variant, and investigate it using math-
ematical analysis, simulation, and/or ad-hoc expert experience. Expert players
with a penchant for mathematics are usually involved in this approach. None
of this work has led to the development of strong poker-playing programs.

There is one event in the meager history of computer poker that stands out.
In 1984 Mike Caro, a professional poker player, wrote a program that he called
Orac (Caro spelled backwards). It played one-on-one, no-limit Texas Hold’em.

97The 2000 winner of this event was Chris Ferguson, whose research career began in artificial
intelligence (he has published with Richard Korf [46]).
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Few technical details are known about Orac other than it was programmed on
an Apple IT computer in Pascal. However, Caro arranged a few exhibitions of
the program against strong players [14]:

It lost the TV match to casino owner Bob Stupak, but arguably
played the superior game. The machine froze on one game of the
two-out-of-three set when it had moved all-in and been called with
its three of a kind against Stupak’s top two pair. Under the rules,
the hand had to be replayed. In the [world series of poker] matches,
it won one (from twice world champion Doyle Brunson — or at least
it had a two-to-one chip lead after an hour and a quarter when the
match was cancelled for a press conference) and lost two (one each
to Brunson and then-reigning world champion Tom McEvoy), but

again was fairly unlucky. In private, preparatory exhibition
matches against top players, it won many more times than it lost.
It had even beaten me most of the time.

Unfortunately, Orac was never properly documented and the results never re-
produced. It is highly unlikely that Orac was as good as this small sample
suggests. No scientific analysis was done to see whether the results were due to
skill or luck. As further evidence, none of the present day commercial efforts
can claim to be anything but intermediate-level players.

In the 1990s, the creation of an Internet Relay Chat poker server gave the
opportunity for humans (and computers) to play interactive games over the
Internet. A number of hobbyists developed programs to play on IRC. Foremost
among them is R00lbot, developed by Greg Wohletz. The program’s strength
comes from using expert knowledge at the beginning of the game, and doing
simulations for subsequent betting decisions.

The University of Alberta program Loki, authored by Darse Billings, Aaron
Davidson, Jonathan Schaeffer and Duane Szafron, is the first serious academic
effort to build a strong poker-playing program. Loki plays on the IRC poker
server and, like R00lbot, is a consistent big winner. Unfortunately, since these
games are played with fictitious money, it is hard to extrapolate these results
to casino poker.

To play poker well, a program needs to be able to assess hand strength
(chances that you have the current best hand), assess hand potential (chances
that additional cards will improve your hand), model the opponents (exploiting
tendancies in their play), handle deception (misleading informaiton given by the
opponents), and bluff (deceive the opponents). In strategic games like chess, the
performance loss by ignoring opponent modeling is small, and hence it is usually
ignored. In contrast, not only does opponent modeling have tremendous value
in poker, it can be the distinguishing feature between players at different skill
levels. If a set of players all have a comparable knowledge of poker fundamentals,
the ability to alter decisions based on an accurate model of the opponent may
have a greater impact on success than any other strategic principle.'®

10The importance of opponent modelling can be seen in the First and Second International
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To assess a hand, Loki compares its cards against all possible opponent
holdings. Naively, one could treat all opponent hands as equally likely, however
this skews the hand evaluations compared to more realistic assumptions. Many
weak hands are likely to have been folded early on in the game. Therefore,
for each possible opponent hand, a probability (or weight) is computed that
indicates the likelihood that the opponent would have played that hand in the
observed manner.

The simplest approach to determining these weights is to treat all opponents
the same, calculating a single set of weights to reflect reasonable behavior, and
use them for all opponents. An off-line simulation was used to compute the
expected value for each possible hand; these results closely approximate the
ranking of hands by strong players. This is called Generic Opponent Modeling
(GOM) [10]. Although rather simplistic, this model is quite powerful in that it
does a good job of skewing the hand evaluations to take into account the most
likely opponent holdings.

Obviously, treating all opponents the same is clearly wrong; each player has
a different style. Specific Opponent Modeling (SOM) customizes the calcula-
tions to include opponent-specific information. The probability of an opponent
holding a particular hand is adjusted by feeding into a neural net the betting
frequency statistics gathered on that opponent from previous hands. These
statistics usually provide enough information to differentiate, for example, ag-
gressive playing styles from conservative ones.

In competitive poker, opponent modeling is much more complex than por-
trayed here. For example, players can act to mislead their opponents into con-
structing an erroneous model. Early in a session a strong poker player may try
to create the impression of being very conservative, only to exploit that image
later in that session when the opponents are using an incorrect opponent model.
A strong player has to have a model of each opponent that can quickly adapt
to changing playing styles.

At best, Loki plays at the strong intermediate level. A considerable gap
remains to be overcome before computers will be as good as the best human
players. Recent research has focussed on trying to build “optimal” playing
strategies [34].

4.4 Other Games

Several less well-known games are providing interesting challenges. The follow-
ing three examples all have one property in common: a large branching factor.

Shogi, often referred to as Japanese chess, is very popular in Japan, with
major tournaments each year culminating in world championsip match. From
the search point of view, Shogi is more challenging than chess: 9 x 9 board (ver-
sus 8 x 8 for chess), 40 pieces (32 for chess), 8 piece types (6), 80-120 average
branching factor (40), and captured pieces can return to the board (removed
from the board). Checkmating attacks are critical in Shogi; the programs need

RoShamBo (rock, paper scissors) competitions (www.cs.ualberta.ca/ games).
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specialized checkmate solvers. These solvers have had some spectacular suc-
cesses. For example, programs are now capable of solving composed problems
with a solution length of over 1,500 ply! Nevertheless, the best programs play
at the master’s level, while world-championship-level play is still a few decades
away [31].

Hex is an elegant game with a simple rule set: alternate placing a stone of
your colour on an empty square. One player tries to create a chain of stones
connecting the top to the bottom of the board. The other player tries to connect
the left side to the right side. It can be mathematically shown that the game is a
first player win, and that draws are not possible. Queenbee was the first program
to achieve success against strong programs [75]. The program uses alpha-beta
search with a novel evaluation function. Hezy is currently the strongest program
in the world and is competitive with strong human players for smaller board
sizes. The program uses a specialized search for wvirtual connections, using a
theorem-prover-like technique for proving that two points not connected can be
connected by a series of moves [3].

A recently invented game that has become popular for games researchers is
Amazons. It is played on a 10 x 10 board, with each player having four queens.
Pieces move like a queen in chess, but after moving they shoot an arrow in any
direction. The square on which the arrow lands now becomes a wall and cannot
be occupied by a queen. In effect, each move reduces the playing area available.
If you run out of moves, you lose. In the opening phase of the game, there can
be several thousand moves to choose from. The best programs typically search
five ply ahead (deeper in the endgame). Because of the territorial nature of the
game, Amazons is often touted as a research stepping stone between the search-
intensive approaches used in chess and the knowledge-intensive approaches used
in go. AI research into this game is only three years old. The best programs
play reasonably well, but are not yet competitive with strong human players
[74].

Interesting research is also being done on puzzles. Recently, major advances
have occurred in building programs that can solve crossword puzzles. Proverb
(Michael Littman, Greg Keim, et al.) scores remarkably well (over 95% of the
words correct) on the New York Times crossword puzzles without understanding
the clues [33]!

Another challenging puzzle is Sokoban. Here the large branching factor
(could be over 100) and deep solution lengths (some optimal solutions are over
700 moves) make for a daunting search. On a standard test set, the program
Rolling Stone can only solve 57 of 90 problems [32].

5 The Future of Computer Games
In the realm of board and card games, go will continue to taunt Al researchers
for many decades to come. As well, new games will come along to provide inter-

esting challenges. For example, the game of Octi was invented to be resistant
to computer algorithms (www.octi.net). It is characterized by having a large
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branching factor, making deep search impractical. However Octi has the addi-
tional dimension that a move can change the capabilities of a piece, making it
challenging to design an evaluation function.

The research into board and card games is, in some sense, historically mo-
tivated because these were interesting challenges at the dawn of the computing
age. However, with the advent of home computers, new forms of computer
games and a $20 billion (and growing) industry has emerged: interactive com-
puter games. There are numerous products on the market covering the gamut
of action games (e.g. shoot’em-up games like Quake), role-playing games (e.g.
player goes on a quest, as in Baldur’s Gate), adventure games (e.g. navigating
through a scripted story, as in King’s Quest), strategy games (e.g. controlling
armies in a war, such as Command and Conquer), “God” games (e.g. evolving
a simulated population, as in SimCity), and sports (e.g. controlling a player
or coaching a team, such as FIFA’01) [38]. Historically, these games have been
long on graphics, and short on artificial intelligence.!!

John Laird has promoted interactive computer games as an opportunity
for the AT research community [38]. Many interactive computer games require
computer characters that need to interact with the user in a realistic, believable
manner. Computer games are the ideal application for developing human-level
AL There is already a need for it, since human game players are generally dissat-
isfied with computer characters. The characters are shallow, too easy to predict,
and, all too often, exhibit artificial stupidity rather than artificial intelligence.
This has led to the success of on-line games (such as Ultima Online), where play-
ers compete against other humans. The current state of the art in developing
realistic characters can be described as being primitive, with simple rule-based
systems and finite-state machines being the norm. The lack of sophistication
is due to the lack of research effort (and, cause and effect, research dollars).
This is changing, as more games companies and researchers recognize that Al
will play an increasingly important role in game design and development. The
quality of the computer graphics may draw you to a product, but the play of
the game will keep you using the product (and buying the sequel). Artificial
intelligence is critical to creating a satisfying gaming experience.

Finally, the last few years have seen research on team games become popular.
The annual RoboCup competition encourages hardware builders and software
designers to test their skills on the soccer field (www.robocup.com).

Although this article has emphasized building games programs that can
compete with humans, there are many other Al challenges that can use games
as an interesting experimental test bed. Some sample projects include:

1. Data mining: There are large databases of endgame positions for chess,
checkers and awari. It is dissatisfying that all a program can do is look up
a specific position in the database. If the ezact positon is in the database,
you get useful information, else nothing. Surely there must be some way of
mining this data to learn the principals of strong endgame play. As well,

Ror example, path finding is a critical component of many games, yet it took until 1996
for the industry to “discover” A*.
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there are large databases of chess opening moves. Can this be analyzed to
discover new opening ideas? Can one characterize opponent’s strengths
and weaknesses? Can the data be extrapolated to similar positions?

2. Learning: Using temporal-difference learning to tune an evaluation func-
tion is just the precursor to other exciting applications of learning technol-
ogy to games. For example, research in applying learning algorithms can
result in more focussed and informed game-tree searches, better opponent
modelling in poker, and adaptive characters in commercial games.

3. Annotating games: Developing annotators that can provide an interesting
and informative analysis of a game is a challenging problem. There have
been some attempts at automating the commentary for chess games (the
International Computer Chess Association has an annual competition),
but the results are mediocre. It is hard to differentiate between the trivial
and the interesting, the verbose and the informative, all the while antici-
pating the questions humans would like answered in the commentary. An
interesting example is the work done on providing computer commentary
to RoboCup games [20].

Games will continue to be an interesting domain for exploring new ideas in
artificial intelligence.

6 Conclusions

Shannon, Turing, Samuel, Newell and Simon’s early writings were pioneering,
realizing that computer games could be a rich domain for exploring the bound-
aries of computer science and artificial intelligence. Software and hardware
advances have led to significant success in building high-performance game-
playing programs, resulting in milestones in the history of computing. With
it has come a change in people’s attitudes. Whereas in the 1950s and 1960s,
understanding how to build strong game-playing program was at the forefront
of artificial-intelligence research, today it has been demoted to lesser status. In
part this is an acknowledgment of the success achieved in this field — no other
area of artificial intelligence research can claim such an impressive track record
of producing high-quality working systems. But it is also a reflection on the
nature of artificial intelligence itself. It seems that as the solution to problems
become understood, the techniques become less “Alish”.

The work on computer games has resulted in advances in numerous areas
of computing. One could argue that the series of computer-chess tournaments
that began in 1970 and continue to this day represents the longest running ex-
periment in computing science history. Research using games has demonstrated
the benefits of brute-force search, something that has become a widely accepted
tool for a number of search-based applications. Many of the ideas that saw the
light of day in game-tree search have been applied to other algorithms. Build-
ing world-championship-caliber games programs has demonstrated the cost of
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constructing high-performance artificial-intelligence systems. Games have been
used as experimental test beds for many areas of artificial intelligence. And so
on.

Arthur Samuel’s concluding remarks from his 1960 paper are as relevant
today as they were when he wrote the paper [50]:

Just as it was impossible to begin the discussion of game-playing
machines without referring to the hoaxes of the past, it is equally
unthinkable to close the discussion without a prognosis. Program-
ming computers to play games is but one stage in the development
of an understanding of the methods which must be employed for
the machine simulation of intellectual behavior. As we progress in
this understanding it seems reasonable to assume that these newer
techniques will be applied to real-life situations with increasing fre-
quency, and the effort devoted to games ... will decrease. Perhaps
we have not yet reached this turning point, and we may still have
much to learn from the study of games.
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Sidebar: So, You Think You Are Good at Scrabble?

In AAAT98, Maven played an exhibition match against Adam Logan, one
of the top Scrabble players in North America. Logan won three of the first
four games of the match, but Maven won six of the next seven. Going into the
critical 12th game, Maven led by a score of seven wins to four. The following
annotations are based on comments from Brian Sheppard. The columns of a
Scrabble board are specified from left-to-right by the letters a to 0. Rows are
specified from top-to-bottom using the numbers 1 to 15. Moves are specified by
giving the square of the first letter of the word. If the coordinate begins with
a number, then the word is placed horizontally. If the coordinate begins with a
letter, then the word is placed vertically. The blank is referred to by “7”.

Follow along yourself. How good are the moves that you find?

Maven versus Adam Logan

1. Maven(ACNTVYZ) plays CAVY at 8f, 24 pts, Maven=24 Logan=0. The
alternative is ZANY, scoring 32 points, but leaving a poor selection of
letters in the rack.

2. Logan(EGLNORY) plays YEARLONG at g6, 66 pts, Maven=24 Lo-
gan=66. The only bingo! A 50 point bonus.

3. Maven(ADNNOTZ) plays DOZY at 6d, 37 pts, Maven=61 Logan=66.
AZLON(10e,34,NTD) or ZOON(11e,26,ADNT) can also be considered.

4. Logan(ADEFOTYV) plays OFT at h13, 21 pts, Maven=61 Logan=87.
Of course, you also considered VOTED(5A,27,AF), OVA(H13,21,DEFT),
FOVEAL(10b,22,DT), and ADVENT(12¢,22,FO).

5. Maven(AENNNOT) plays NEON at 5b, 15 pts, Maven=76 Logan=87.

6. Logan(ACDEEIV) plays DEVIANCE at 12b, 96 pts, Maven=76 Lo-
gan=183. Another bingo!
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10.

11.

12.

13.

14.

15.

Maven(AHINRTU) plays HURT at 4a, 34 pts, Maven=110 Logan=183.

Logan(DDEEMMN) plays EMENDED at c7, 26 pts, Maven=110 Lo-
gan=209.

Maven(ABEINNP) plays IAMB at 8a, 33 pts, Maven=143 Logan=209.

Logan(AILMTTU) plays MATH at al, 27 pts, Maven=143 Logan=236.
Strong players also consider UTA(3a,20,ILMT) which scores fewer points
but gets rid of the annoying “U”.

Maven(EFGNNPS) plays FEIGN at €10, 18 pts, Maven=161 Logan=236.
FENS(j9,24,GNP) scores more points, but FEIGN keeps better tiles.

Logan(AILORTU) plays TUTORIAL at 15h, 77 pts, Maven=161 Lo-
gan=313. Adam Logan’s third bingo!
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Figure 1: Maven plays BOS (j10) scoring 26 points.

Maven(?ABNOPS) plays BOS at j10, 26 pts, Maven=187 Logan=313.
See Figure 1. Sheppard considers this to be a “fantastic move” and one
of the most difficult moves in the game.

Logan(IILPRSU) plays PILIS at 15a, 34 pts, Maven=187 Logan=347.
PILIS, PULIS, PILUS, and PURIS are all good.

Maven(7AKNPRS) plays SPANKER at k5, 105 pts, Maven=292 Lo-
gan=347. The only bingo, reviving Maven’s chances despite the 160 point
deficit.
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16.

17.
18.

19.

20.
21.
22.

23.

Logan(EEEORUS) plays OE at b1, 12 pts, Maven=292 Logan=359. The
best move, dumping extra vowels.

Maven(?THITTWW) plays JAW at 7j, 13 pts, Maven=305 Logan=359.

Logan(AEEGRSU) plays GREASE at m3, 31 pts, Maven=305 Logan=390.
AGER(L9,24,ESU) also merits consideration.

Maven(?HRTTWX) plays AX at 6m, 25 pts, Maven=330 Logan=390.
Maven’s second brilliant move, choosing AX over GOX(13G,36) and sac-
rificing 11 points.

Logan(EIIILQU) plays LEI at 05, 13 pts, Maven=330 Logan=403.
Maven(?AHRTTW) plays WE at 9b, 10 pts, Maven=340 Logan=390.

Logan(AIIIOQU) plays QUAI at j2, 35 pts, Maven=340 Logan=438. A
98 point lead and only a few moves are left in the game. Obviously, it’s
all over...

Maven(7AHRTTU) plays MOUTHPART at 1a, 92+8 pts, Maven=440
Logan=438. See Figure 2. Wonderful! Maven scores exactly 100 points,
edging Adam Logan by 2. Sheppard writes that “Maven steals the game
on the last move. Adam, of course, was stunned, as it seemed that there
were no places for bingos left on this board. If I hadn’t felt so bad for
Adam, who played magnificently, I would have jumped and cheered.” This
game put Maven up by eight games to four, so winning the match was no
longer in doubt.

How often do you score 438 points in a game of Scrabble... and lose?

Just in case some of the words used in this game are not part of your everyday
vocabulary, here are a few useful definitions (taken from the commercial version
of Maven):

Bos: a pal

Fens: marshes.

Foveal: a shallow anatomical depression.
Gox: gaseous oxygen.

Pilis: a Philippine tree.

Uta: a type of lizard.

Zoon: whole product of one fertilized egg.
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Figure 2: Maven  Logan, final position
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