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Abstract

Poker is an interesting test-bed for artificial intelligence research. It is a game of imperfect
information, where multiple competing agents must deal with probabilistic knowledge, risk
assessment, and possible deception, not unlike decisions made in the real world. Opponent modeling
is another difficult problem in decision-making applications, and it is essential to achieving high
performance in poker.

This paper describes the design considerations and architecture of the poker program Poki. In
addition to methods for hand evaluation and betting strategy, Poki uses learning techniques to
construct statistical models of each opponent, and dynamically adapts to exploit observed patterns
and tendencies. The result is a program capable of playing reasonably strong poker, but there remains
considerable research to be done to play at a world-class level.  2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The artificial intelligence community has recently benefited from the positive publicity
generated by chess, checkers, backgammon, and Othello programs that are capable of
defeating the best human players. However, there is an important difference between these
board games and popular card games like bridge and poker. In the board games, players
have complete knowledge of the entire game state, since everything is visible to both
participants. In contrast, bridge and poker involve imperfect information, since the other
players’ cards are not known. Traditional methods like deep search have not been sufficient
to play these games well, and dealing with imperfect information is the main reason that
progress on strong bridge and poker programs has lagged behind the advances in other
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games. However, it is also the reason these games promise greater potential research
benefits.

Poker has a rich history of study in other academic fields. Economists and mathemati-
cians have applied a variety of analytical techniques to poker-related problems. For exam-
ple, the earliest investigations in game theory, by luminaries such as John von Neumann
and John Nash, used simplified poker to illustrate the fundamental principles [22,23,38].

Until recently, the computing science community has largely ignored poker. However,
the game has a number of attributes that make it an interesting domain for artificial
intelligence research. These properties include incomplete knowledge, multiple competing
agents, risk management, opponent modeling, deception, and dealing with unreliable
information. All of these are challenging dimensions to a difficult problem.

We are attempting to build a program that is capable of playing poker at a world-
class level. We have chosen to study the game of Texas Hold’em, which is one of the
most strategically complex and popular variants of poker. Our experiences with our first
program, called Loki, were positive [6,7]. In 1999, we rewrote the program, christening the
new system Poki.

These programs have been playing on Internet poker servers since 1997, and have
accrued an impressive winning record, albeit against weak opponents. Early versions of the
program were only able to break even against better opposition, but recent improvements
have made the program substantially stronger, and it is now winning comfortably in those
more difficult games. Although most of these Internet games simulate real game conditions
quite well, it would be premature to extrapolate that degree of success to games where real
money is at stake. Regardless, analysis of Poki’s play indicates that it is not yet ready to
challenge the best human players. Ongoing research is attempting to bridge that gap.

Section 2 of this article reviews previous work and related research on poker. Section 3
provides an overview of Texas Hold’em, including an illustrative example of strategic
concepts, and a minimal set of requirements necessary to achieve world-class play. An
overview of Poki’s architecture is described in Section 4. Section 5 discusses the program’s
betting strategy, detailing some of the components of the system. The special problem of
opponent modeling is addressed in Section 6. Experimental methods and the performance
of the program are assessed in Section 7. Section 8 provides a generalized framework for
non-deterministic games, based on Poki’s simulation search strategy. Section 9 discusses
the challenges that remain for building a world-class poker-playing program.

2. Other research

There are several ways that poker can be used for artificial intelligence research. One
approach is to study simplified variants that are easier to analyze. We have already
mentioned some of the the founding work in game theory, which could only handle
extremely simple poker games. An example is Kuhn’s game for two players, using a three-
card deck, one-card hands, and one betting round, with at most two betting decisions [21].
While this was sufficient to demonstrate certain fundamental principles of game theory, it
bears little resemblance to normal competitive poker variations.
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Mathematicians have also explored many interesting problems related to poker, and
highly simplified variations are again sufficient to provide complex problems (see [26],
for example).

Another way to reduce the complexity of the problem is to look at a subset of the game,
and try to address each sub-problem in isolation. Several attempts have been made to apply
machine learning techniques to a particular aspect of poker (some examples include [9,20,
34,39]). Similarly, many studies only look at two-player poker games. Multi-player games
are vastly more complicated, even with the usual assumption of no co-operative behavior
between players. The danger with any type of simplification is that it can destroy the most
challenging and interesting aspects of the problem.

An alternate approach, which we advocate, is to tackle the entire problem: choose a
real variant of poker and address all of the considerations necessary to build a program
that performs at a level comparable to or beyond the best human players. Clearly this is
a most ambitious undertaking, but also the one that promises the most exciting research
contributions if successful.

Nicholas Findler worked on and off for 20 years on a poker-playing program for 5-card
Draw poker [12]. His primary objective was to model human cognitive processes, and he
developed a program that could learn. While successful to a degree, the program itself was
not reported to be a strong player. Furthermore, the game of 5-card Draw, although quite
popular at that time, is not as strategically complex as other poker games, such as 7-card
Stud and Texas Hold’em.

Some success in analyzing larger scale poker variants was achieved by Norman Zadeh
in the 1970s, and much of this work is still of value today [40,41]. Other individuals,
including expert players with a background in mathematics, have gained considerable
insight into “real” poker by using partial mathematical analyses, simulation, and ad hoc
expert experience (see [33] is a popular example).

There is a viable middle-ground between the theoretical and empirical approaches.
Recently, Daphne Koller and Avi Pfeffer have revived the possibility of investigating poker
from a game-theoretic point of view [19]. They presented a new algorithm for finding
optimal randomized strategies in two-player imperfect information games, which avoids
the usual exponential blow-up of the problem size when converting it to normal form. This
algorithm is used in their Gala system, a tool for specifying and solving a greatly extended
range of such problems. However, the size of the translated problems is still proportional
to the size of the game tree, which is prohibitively large for most common variations of
poker. For this reason, the authors concluded “. . . we are nowhere close to being able to
solve huge games such as full-scale poker, and it is unlikely that we will ever be able to do
so”.

Nevertheless, this does raise the interesting possibility of computing near-optimal
solutions for real poker variants, which might require far less computation to obtain a
satisfactory answer. This is analogous to efficient approximation algorithms for certain
combinatorial optimization problems that are known to be intractable (NP-hard).

One obvious technique for simplifying the problem is to use abstraction, collecting many
instances of similar sub-problems into a single class. There are many states in the poker
game tree that are isomorphic to each other (for example, a hand where all relevant cards
are hearts and diamonds is isomorphic to two corresponding hands with all spades and
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clubs). Beyond this, strictly distinct cases might be so similar that the appropriate strategy
is essentially identical. For example, the smallest card of a hand being a deuce instead of
a trey may have no bearing on the outcome. This is analogous to the approach used by
Matt Ginsberg in partition search, where he defined equivalence classes for the smallest
cards of each suit in a bridge hand [14]. Jiefu Shi and Michael Littman have made some
preliminary attempts along these lines to produce near-optimal solutions for a scaled-down
version of Texas Hold’em [31].

A second method is aimed at constructing a shallower game tree, using expected value
estimates to effectively truncate subtrees. This is similar to the method used so successfully
in most perfect information games, where an evaluation function is applied to the leaves of
a depth-limited search. However, it is not as easy to accomplish because, unlike perfect
information games, the states of a poker game tree are not independent of each other
(specifically, we cannot distinguish states where the opponent has different possible hidden
cards). Ken Takusagawa, a former student of Koller and Pfeffer, has extended their work
by combining this method with abstraction, to produce some near-optimal solutions for
particular scenarios of Texas Hold’em [35]. Alex Selby has applied the Simplex algorithm
directly to two-player pre-flop Hold’em, and has computed optimal solutions for that re-
defined game, using expected values in place of the post-flop phase [28].

Our own empirical studies over the past few years have used similar methods of
abstraction and expected value estimation to reduce the computational complexity of the
problem, so the approaches are not as different as they may at first appear. It will be
interesting to see if these theoretical “hybrid techniques” can be applied directly to a
competitive poker program in the future.

3. Texas Hold’em

We have chosen to study the game of Texas Hold’em, the poker variation used to
determine the world champion in the annual World Series of Poker. Hold’em is generally
considered to be the most strategically complex poker variant that is widely played in
casinos and card clubs. It is also convenient because it has particularly simple rules and
logistics.

We assume the reader is familiar with the ranking of poker hands (if not, many good
introductions to poker can be found on the Internet). In the following description, and
throughout the paper, italics are used for common poker terms, which are defined in the
glossary (Appendix A).

3.1. Rules of play

A hand 1 of Texas Hold’em begins with the pre-flop. Each player is dealt two hole cards
face down, followed by the first round of betting, which is started with two forced bets

1 The term “hand” is used in two ways: to denote a player’s private cards, and to refer to one complete deal,
or game. We have not tried to avoid the possible ambiguity, preferring to use the same terminology used by most
serious poker players whenever possible. In each instance, the intended meaning of “hand” should be clear from
the context.
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called the small blind and the big blind. Three community cards, collectively called the
flop, are then dealt face up on the table, and the second round of betting occurs. On the turn,
a fourth community card is dealt face up and another round of betting ensues. Finally, on
the river, a fifth community card is dealt face up and the final round of betting occurs. The
players still active in the game at that time reveal their two hole cards for the showdown.
The best five-card poker hand formed from each player’s two private hole cards and the
five public community cards wins the pot. If a tie occurs, the pot is split.

Texas Hold’em is typically played with 8 to 10 players. Limit Texas Hold’em uses a
structured betting system, where the amount of each bet is strictly controlled in each betting
round. 2 There are two denominations of bets, called a small bet and a big bet, which will
be $10 and $20 in this paper. In the first two betting rounds, all bets and raises are $10,
while in the last two rounds, they are always $20. In general, when it is a player’s turn
to act, one of three betting options is available: fold, check/call, or bet/raise. 3 There is
normally a maximum of three raises allowed per betting round. The betting option rotates
clockwise until each player has matched the current bet, or folded. If there is only one
player remaining (all others having folded) that player is the winner and is awarded the pot
without having to reveal their cards.

3.2. Poker strategy

To illustrate some of the decisions one must face in Hold’em, we will present a sample
hand, with some typical reasoning a good player might go through. This hand is relatively
basic, in order to make the example easier to follow. Many complex interactions can
contribute to much more difficult situations, but it is hoped that this example will suffice to
demonstrate some of the strategic richness of the game.

The game is $10–$20 Limit Hold’em with ten players. We “have the button”, meaning
that we will be the last to act in each betting round, which is an advantage. The two players
to the left of us post the small blind ($5) and the big blind ($10), and the cards are dealt.
The action begins with the player to the left of the big blind, who calls $10 (we will refer to
this player as “EP”, for “early position”). The next three players fold (throwing their cards
into the discard pile), a middle position player (MP) calls $10, and the next two players
fold.

We are next to act and have 7♦–6♦. A strong poker player would know that this is a
reasonably good drawing hand, which should be profitable to play for one bet from late
position against several players. This would not be a good hand to call a raise with, or to
play against only one or two opponents. From previous hands played, we know that EP is
a tight (conservative) player. We expect that EP probably has two big cards, since he called
in early position (but didn’t raise, making large pairs highly unlikely for this particular
player). Our opponent modeling has concluded that MP is a loose player, who sees the flop
about 70% of the time, so he could have almost anything (e.g., any pair, any two cards of

2 In No-limit Texas Hold’em, there are no restrictions on the size of bets; a player may wager any amount, up
to their entire stack, at any time.

3 A check and a call are logically equivalent, in that the betting level is not increased. The term check is used
when the current betting level is zero, and call when there has been a wager in the current betting round. Similarly,
a bet and a raise are logically equivalent, but the term bet is used for the first wager of a betting round.



206 D. Billings et al. / Artificial Intelligence 134 (2002) 201–240

Fig. 1. Sample hand after the flop.

the same suit, or even a hand like 6–4 of different suits). The small blind is an extremely
tight player who will probably fold most hands rather than calling another $5. The big
blind almost always defends her blind (i.e., she will call a raise).

A raise in this situation, for deceptive purposes, is not completely out of the question.
However, it would be inappropriate against this particular set of opponents (it might be
more suitable in a game with higher limits). We call the $10, the small blind calls, and the
big blind checks.

The flop is Q♠–7♥–4♦. We have second pair (connecting with the second largest card
on the board) for a hand of moderate strength and moderate potential for improvement.
If we do not currently have the best hand, there are five direct outs (outcomes) that can
immediately improve our hand (7♠, 7♣, 6♠, 6♣, 6♥). We also have some indirect flush
and straight potential, which will come in about 7% of the time, 4 and can be treated as
roughly three direct outs. The board texture is fairly dry, with only a few possible straight
draws, and no direct flush draws. Therefore, any bets by the opponents are likely to indicate
a made hand (e.g., a pair) rather than a draw (a hand where additional cards are needed),
unless they are a chronic bluffer. An expert player wouldn’t actually need to go through
this thought process—it would simply be known the moment the flop hits the table, through
experience and pattern recognition.

Both blinds check, EP bets, and MP folds (see Fig. 1). There is $60 in the pot, and it
will cost us $10 to call. We believe the bettor seldom bluffs, and almost certainly has a
Queen, given his early position pre-flop call. 5 The small blind is known to check-raise on
occasion, and might also have a Queen, but is more likely to have a poor match with the
board cards, because he is highly selective before the flop. We have never observed the big
blind check-raising in the past, so the danger of being trapped for an extra bet is not too
high.

If we play, we must decide whether to raise, trying to drive the other players out of the
hand, or call, inviting others to call also. If there was a good chance of currently having
the best hand, we would be much more inclined to raise. However, we feel that chance

4 73 out of 990 outcomes (43 flushes and 30 straights).
5 Ironically, reasonably good players are often the most predictable, whereas very good players are not.
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is relatively small in the current situation. We might also want to drive out other players
who are looking to hit the same cards we want, such as 5–3, which needs a 6 to make a
straight against our two pair. However, the added equity from having an extra bet in the pot
is normally greater than the risk of shared outs, so we are happy to let the blinds draw with
us against the bettor.

From our previous study and experience, we know that calling in this situation is a small
positive expectation play, but we still cannot rule out the possibility of raising for a free-
card. If we raise now, we may induce the bettor to call and then check to us next round,
when we can also check and get a second card for “free” (actually for half-price). We need
to assess the likelihood that EP will re-raise immediately (costing us two extra bets, which
is a very bad result), or will call but then bet into us again on the turn anyway (costing us
one extra bet). Since we do not feel we have much control over this particular player, we
reject the fancy raise maneuver, and just call the $10. Both of the blinds fold, so we are
now one-on-one with the bettor. Despite the many factors to consider, our decision is made
quickly (normally within one second when it is our turn).

The turn card is the 5♥ and EP bets. The 5♥ gives us an open-ended draw to a straight,
in addition to our other outs. In terms of expected value, this is essentially a “free pass” to
the river, as we now have a clearly correct call of $20 to win $90. However, we again need
to consider raising. This opponent will probably give us credit for having a very strong
hand, since the 5♥ connects for several plausible two pair hands or straights. We could
also be slow-playing a very strong hand, like a set (three of a kind using a pocket pair, such
as 4♠–4♣). Since we’re quite certain he has only one pair, this particular opponent might
even fold the best hand, especially if his kicker (side-card) is weak. At the very least, he
will probably check to us on the river, when we can also check, unless we improve our
hand. Thus we would be investing the same amount of money as calling twice to reach the
showdown, and we would be earning an extra big bet whenever we make our draw. On the
other hand, we don’t necessarily have to call that last bet on the river (although if we fold
too often, we will become vulnerable to bluffing). We decide to make the expert play in
this situation, confidently raising immediately after his bet. He thinks about his decision
for a long time, and reluctantly calls.

The river card is the 5♠, and our opponent immediately checks. We know that he is not
comfortable with his hand, so we can consider bluffing with what we believe is the second-
best hand. From our past sessions we know that once this player goes to the river, he will
usually see the hand through to the end. In effect, his decision after our raise was whether
to fold, or to call two more bets. Since a bluff in this situation is unlikely to be profitable,
we stick to our plan and check. He shows Q♣–J♣, we say “good hand”, and throw our
cards into the discard pile.

Now we consider what effect this hand has had on our table image, in anticipation of
how the players at the table will react to our future actions. The better players might have
a pretty good idea of what we had (a small pair that picked up a good draw on the turn),
and won’t make any major adjustments to their perception of our play. Our opponent, EP,
is more likely to call us down if a similar situation arises, so we might earn an extra bet
on a strong hand later. Weaker players may think we are a somewhat wild gambler, so
we expect them to call even more liberally against us. This reinforces our plan of seldom
bluffing against them, but betting for value with more marginal hands.
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3.3. Requirements for a world-class poker player

We have identified several necessary attributes for an algorithm to play poker at a world-
class level. A system may handle some of these requirements indirectly, rather than by
explicit design, but all of them must be solved at least satisfactorily if a program is to
compete with the best human players. We present one or more ways of solving each
requirement, but there are many different approaches that could be just as viable, or
possibly much better. Furthermore, these components are not independent of each other.
They must be continually refined and integrated as new capabilities are added to the system.

Hand strength assesses the strength of a hand in relation to the other hands. A simple
hand strength computation is a function of the cards held and the current community cards.
A better evaluation takes into account the number of players still in the game, the relative
position of the player at the table, and the history of betting for the current game. An
even more accurate calculation considers the probabilities for each possible opponent hand,
based on the likelihood of each hand being played to the current point in the game.

Hand potential computes the probability that a hand will improve to win, or that a
leading hand will lose, after future community cards appear. For example, a hand that
contains four cards in the same suit may have a low hand strength, but has good potential
to win with a flush as additional community cards are dealt. Conversely, a hand with a high
pair might be expected to decrease in strength if many draws are available for opposing
hands. At a minimum, hand potential is a function of the cards in the hand and the current
community cards. However, a better calculation would use all of the additional factors
described in the hand strength computation.

Bluffing makes it possible to win with a weak hand, 6 and creates doubt on the part of
the opponent, thereby increasing the amount won on subsequent strong hands. Bluffing
is essential for successful play. Game theory can be used to compute a theoretically
optimal bluffing frequency in certain situations. A minimal bluffing system would bluff this
percentage of hands, indiscriminately. In practice, other factors (such as hand potential)
should also considered. A better system would identify profitable bluffing opportunities
by deducing the opponent’s approximate hand strength and predicting their probability of
folding.

Unpredictability makes it difficult for opponents to form an accurate model of our
strategy. Mixing strategies (occasionally handling a given situation in different ways) hides
information about the nature of our current hand. By varying our playing style over time,
opponents may be induced to make mistakes based on incorrect beliefs.

Opponent modeling determines a likely probability distribution of the opponent’s hand.
Minimal opponent modeling might use a single generic model for all opponents. This can
be improved by modifying those probabilities based on the personal betting history and
collected statistics of each opponent.

Certain fundamental principles of poker, such as pot odds, are taken as a given. There
are several other identifiable characteristics that might not be necessary to play reasonably
strong poker, but may eventually be required for world-class play. Collectively, these
concepts are part of an overall betting strategy, which determines whether we fold, call, or

6 Other forms of deception such as slow-playing (calling with a strong hand) are not considered here.
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raise in any particular situation. The most important of these attributes for poker-playing
programs are discussed in greater detail in the following sections.

4. Poki’s architecture

A poker game consists of a dealer together with multiple players that represent either
human players or computer players. In our Java implementation, these players are defined
as objects. The dealer handles the addition and removal of players from the game, deals the
cards to each player at the start of a new hand, prompts each player for an appropriate action
when it is their turn, broadcasts player actions to other players, and updates a public game
context as the game progresses. The game context contains all of the public information
about the game, including the names and relative locations of the players, and the board
cards.

We have implemented several different dealer interfaces: an IRC-Dealer for playing
against other players on the Internet Relay Chat poker server, a Tournament-Dealer for
self-play experiments, and a TCP/IP-Dealer that allows Poki to play against humans
using a web browser, and against other programs using a published protocol (see http:
//www.cs.ualberta.ca/~games/poker/).

An overview of Poki’s architecture is shown in Fig. 2. Although each version of the
program represents and uses the available information in a different way, all versions share
a common high-level architecture.

In addition to the public game context, Poki stores private information: its current hand,
and a collection of statistical opponent models. The assessment of the initial two-card
hand is explained in Section 5.1, and the first-round betting decisions are made with a
simple rule-based system. The opponent model (essentially a probability distribution over
all possible hands) is maintained for each player participating in the game, including Poki

Fig. 2. The architecture of Poki.
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itself, as detailed in Section 6. The Opponent Modeler uses the Hand Evaluator, a simplified
rule-based Betting Strategy, and learned parameters about each player to update the current
model after each opponent action, as described in Section 5.2.4. After the flop, the Hand
Evaluator in turn uses the opponent model and the game state information to assess the
value of Poki’s hand in the current context, as explained in Sections 5.2.1 and 5.2.2. Thus,
there is a certain amount of cyclic feedback among the core components of the system. The
evaluation is used by a more sophisticated rule-based Betting Strategy to determine a plan
(how often to fold, call, or raise in the current situation), and a specific action is chosen,
as discussed in Section 5.2.5 and throughout Section 5. The entire process is repeated each
time it is our turn to act. For a more advanced decision procedure, the Simulator iterates
this process using different instantiations of opponent hands, as discussed in Section 5.3.

5. Betting strategy

Betting strategies before the flop and after the flop are significantly different. Before
the flop there is little information available to influence the betting decision (just two hole
cards and the previous player actions), and a relatively simple expert system is sufficient for
competent play. After the flop the program can analyze how all possible opponent holdings
combine with the given public cards, and many other factors are relevant to each decision.
A post-flop betting strategy uses the full game context, the private hand, and the applicable
opponent models to generate an action. Three betting strategies will be described in this
paper, one for the pre-flop and two for the post-flop.

5.1. Pre-flop betting strategy

There are {52 choose 2} = 1326 possible hands prior to the flop. The value of one
of these hands is called an income rate, and is based on a simple technique that we will
call a roll-out simulation. This is an off-line computation that consists of playing several
million hands (trials) where all players call the first bet (i.e., the big blind), and then all the
remaining cards are dealt out without any further betting. This highly unrealistic always
call assumption does not necessarily reflect an accurate estimate for the expected value of
the hand. However, it does provide a first-order approximation, and the relative values of
the hands are reasonably accurate for the given situation.

More generally, this method is referred to as the all-in equity. It is a calculation of the
percentage expectation for the current hand assuming the player is all-in, 7 and all active
hands proceed to the showdown. It can be applied at any phase of the game, and serves as
a baseline estimate of the expected value of a hand in any given situation.

5.1.1. Comparing pre-flop strategies
The best known and most widely respected expert opinion on pre-flop play is that

of David Sklansky, a professional poker player and author of the most important books

7 Under normal table stakes rules, a player who does not have enough money on the table to meet the
outstanding bet can go all-in, and remains eligible to win the portion of the pot contributed to. The betting
continues (toward a side-pot) for the remaining active hands.
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on the game [32,33]. In Texas Hold’em for the Advanced Player [33] he prescribes a
hand classification scheme to be used in typical middle limit games (e.g., $20–$40 limit
Hold’em). There is a strong correlation between his rankings and the results of the roll-out
simulations.

Before proceeding to a closer comparison of the two ranking systems, a few caveats
should be mentioned. First, there is no single ranking of starting hands that applies
to all situations. An expert player will make adjustments based on the prevailing con-
ditions (for example, a loose game (many players seeing the flop), a wild game (lots
of gambling), etc.). Furthermore, the true expectation of each hand will depend on
the precise context at the time of each betting decision. For example, a hand is as-
sessed very differently after all previous players have folded than it would be af-
ter one or more players have called. The general guidelines must cover a wide va-
riety of situations, so naturally there will be exceptions. Sklansky’s recommenda-
tions are also intended for a full game of ten players. A completely different set
of hand rankings are necessary for short-handed games, and this is reflected in the
different income rates computed by roll-out simulations with fewer players in the
hand.

Table 1 shows how the roll-out simulations compare to Sklansky’s rankings. In the
tables, “s” refers to a suited hand (two cards of the same suit), “o” refers to an offsuit
hand (two cards of different suits), and “*” indicates a pocket pair (two cards of the same
rank). Table 1 is divided into eight groups, corresponding to Sklansky’s rating system, with
Group 1 being the best hands, and Group 8 being weak hands that should only be played
under special circumstances (e.g., for one bet after many players have called). In general,
there is a strong correlation between Sklansky’s rankings and the income rates obtained
from roll-out simulations.

The simulation values demonstrate a bias in favor of certain hands that play well against
many players, known as “good multi-way hands”. These are cards that can easily draw
to a very strong hand, such as a flush (e.g., suited hands like A♥–2♥), a straight (e.g.,
connectors like 8♥–7♣), or three of a kind (e.g., a pocket pair like 2♥–2♣). Since all
ten players proceed to the showdown in a roll-out simulation, the average winning hand
needs to be considerably stronger than in a real ten player game (where typically half
of the players will fold before the flop, and many hands are won uncontested before
the showdown). By the same reasoning, large pairs may be undervalued, because of
the unaccounted potential of winning without improvement against a smaller number of
opponents.

Conversely, Sklansky’s rankings show evidence of a bias in favor of unsuited connectors,
where suited hands should be preferred. 8 Certain small-card combinations, such as 7♠–
6♠, may have been given a higher ranking by Sklansky because they add a good balance of
deception to the overall play list (for example, one does not want the opposition to conclude
that we cannot have a 7 when the flop is 7♥–7♦–3♣). However, the hands intended for
information hiding purposes should not extend to the unsuited connectors like 7♣–6♥,
which have a much lower overall expectation.

8 The highest valued hands not in Sklansky’s rankings are T7s (+231) and Q7s (+209).
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Table 1
Income rate values versus Sklansky groupings

Group 1 Group 2 Group 3 Group 4

+2112 AA∗ +714 TT∗ +553 99∗ +481 T9s [1]

+1615 KK∗ +915 AQs +657 JTs +515 KQo

+1224 QQ∗ +813 AJs +720 QJs +450 88∗

+935 JJ∗ +858 KQs +767 KJs +655 QTs

+1071 AKs +718 AKo +736 ATs +338 98s [1]

+555 AQo +449 J9s

+430 AJo

+694 KTs

Group 5 Group 6 Group 7 Group 8

+364 77∗ +304 66∗ +214 44∗ −75 87o [2]

+270 87s [1] +335 ATo +92 J9o [2] +87 53s [3] (> 43s)

+452 Q9s +238 55∗ +41 43s [3] +119 A9o

+353 T8s [1] +185 86s +141 75s +65 Q9o

+391 KJo +306 KTo +127 T9o −129 76o [2]

+359 QJo +287 QTo +199 33∗ −42 42s [3] (< 52s)

+305 JTo +167 54s −15 98o [2] −83 32s [3] (< 52s)

+222 76s [1] +485 K9s +106 64s +144 96s

+245 97s [1] +327 J8s +196 22∗ +85 85s

+538 A9s +356 K8s −51 J8o [2]

+469 A8s +309 K7s +206 J7s

+427 A7s +278 K6s −158 65o [2]

+386 A6s +245 K5s −181 54o [2]

+448 A5s +227 K4s +41 74s

+422 A4s +211 K3s +85 K9o

+392 A3s +192 K2s −10 T8o

+356 A2s +317 Q8s

+191 65s [1]

Three possible explanations for the differences: [1] small card balancing, [2] bias for unsuited connectors,
and [3] logical error (inconsistent).

There are also a few instances of small logical errors in Sklansky’s rankings. For
example, 43s is ranked in Group 7, ahead of 53s in Group 8, but it can be shown that 53s
logically dominates 43s, because it has the same straight and flush potential, with better
high-card strength. Similarly, 52s dominates 42s and 32s, but 52s is not ranked in any of
the eight groups, whereas the latter are members of Group 8.
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Since the differences are not large, it is clear that roll-out simulations provide an
acceptable means of quantifying the pre-flop value of each hand. This information is
currently used as part of a formula-based expert system for playing before the flop, which
is not unlike the guidelines given by Sklansky in the aforementioned text. We prefer to use
the computed results, rather than transcribing the Sklansky rules, because

(a) we wish to eliminate the use of human knowledge whenever possible,
(b) the roll-out simulation information is quantitative rather than qualitative, and
(c) the algorithmic approach can be applied to many different specific situations (such

as having exactly six players in the game), whereas Sklansky gives only a few
recommendations for atypical circumstances.

Future versions of the program should be even more autonomous, adapting to the
observed game conditions and making context-sensitive decisions on its own.

5.1.2. Iterated roll-out simulations
An interesting refinement to roll-out simulation is to use repeated iterations of the

technique, where the previous results govern the betting decision for each player. In the
ten player case, a negative value in the previous simulation would dictate that the hand
be folded, rather than calling the big blind. This drastically reduces the number of active
players in each hand, producing a more realistic distribution of opponents and probable
hands. The result is a reduction in the bias toward multi-way hands, and a much better
estimation of the hands that can be played profitably when ten players are originally dealt
in.

After each round of simulations has reached a reasonable degree of stability, another
iteration is performed. This process eventually reaches an equilibrium, defining a set of
hands that can be played profitably against the blinds and the other unknown hands. The
results are most applicable to the “play or don’t play” decision for each player. Although
much better than a simple roll-out simulation, this technique is still far from perfect,
because other important considerations such as betting position and known opponent
actions have not been accounted for.

In our experiments, each iteration lasted for 50,000 trials. A diminishing noise factor was
added to each income rate, analogous to the cooling factor used in simulated annealing.
This gives negative expectation hands a chance to recover as the prevailing context
changes. After ten generations, the remaining positive expectation hands were played for
another 500,000 trials, to ensure stability. The resulting set of profitable hands, shown
in Table 2, is in strong agreement with expert opinion on this matter. The table shows a
comparison of the income rates for 10-player roll-out simulations (IR-10) and the results
refined by iterating (Iterated). The values shown are in milli-bets (e.g., a hand with an
income rate of +1000 should win an average of one small bet each time it is played). The
iterated values are reasonable estimates of actual income rates, unlike the simple roll-out
values, which are only used as relative measures.

One of the factors used by Sklansky and other experts is the possibility of a hand being
dominated. For example, AQ is said to dominate AJ, because the AQ has a tremendous
advantage if they are in a hand against each other (an Ace on board does not help the AJ).
In contrast, AQ does not dominate the inferior holding of KJ, because they are striving to hit
different cards. The role of domination is clearly demonstrated in the results of the iterated
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Table 2
Iterated income rate (profitable hands)

Hand IR-10 Iterated Hand IR-10 Iterated Hand IR-10 Iterated

AA∗ +2112 +2920 ATs +736 +640 KQo +515 +310

KK∗ +1615 +2180 99∗ +553 +630 QTs +655 +280

QQ∗ +1224 +1700 KQs +858 +620 QJs +720 +270

JJ∗ +935 +1270 AQo +555 +560 A9s +538 +220

TT∗ +714 +920 KJs +767 +480 ATo +335 +200

AKs +1071 +860 88∗ +450 +450 KTs +694 +190

AKo +718 +850 77∗ +364 +390 KJo +391 +160

AQs +915 +780 AJo +430 +380 A8s +469 +110

AJs +813 +680 JTs +657 +360 66∗ +304 +40

roll-out simulations. Examples include the increased value of large pairs and AK unsuited,
and the diminished value of KQ (which is dominated by AA, KK, QQ, AK, and AQ).

Iterated roll-out simulations have also been used to compute accurate expected values for
two-player pre-flop Hold’em. The resulting betting decisions are in very good agreement
with Alex Selby’s computation of the optimal game-theoretic strategy, in which he used
an adaptation of the Simplex algorithm for solving this game directly [28]. 9 The small
number of cases where the strategies differ are all near the boundary conditions between
raise and call, or call and fold. Furthermore, the expected values are always close to the
threshold for making the alternate choice, with a difference usually less than 0.1 small bets.

5.2. Basic betting strategy

The basic betting strategy after the flop chooses an action using three steps:
(1) Compute the effective hand strength, EHS, of Poki’s hand relative to the board.
(2) Use the game context, a set of betting rules, and formulas to translate the EHS into

a probability triple: {Pr(fold),Pr(call),Pr(raise)}.
(3) Generate a random number in the range zero to one, and use it to choose an action

from the probability distribution. This contributes to the unpredictability of the
program.

EHS is a measure of how well the program’s hand stands in relationship to the remaining
active opponents in the game. It is a combination of the current hand strength (HS) and
positive potential (PPot) for the hand to improve. These are discussed in the following
sections.

9 We are assuming that an optimal solution to the re-defined game of pre-flop Hold’em will serve as a near-
optimal solution to the pre-flop phase of real Hold’em (i.e., that a “perfect” solution to a simpler game will be a
“good” solution to the full-scale version).
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HandStrength(ourcards,boardcards)
{

ahead = tied = behind = 0
ourrank = Rank(ourcards,boardcards)
/* Consider all two card combinations of the remaining cards.*/
for each case(oppcards)
{

opprank = Rank(oppcards,boardcards)
if(ourrank > opprank) ahead + = 1
else if(ourrank == opprank) tied + = 1
else /* < */ behind + = 1

}
handstrength = (ahead + tied/2) / (ahead + tied + behind)
return(handstrength)

}

Fig. 3. Hand strength calculation.

5.2.1. Hand strength
The hand strength, HS, is the probability that a given hand is better than that of an

active opponent. Suppose an opponent is equally likely to have any possible two hole card
combination. 10 All of these opponent hands can be enumerated, identifying when Poki’s
hand is better (+1), tied (+ 1

2 ), or worse (0). Taking the summation and dividing by the
total number of possible opponent hands gives the (unweighted) hand strength. Fig. 3 gives
the algorithm for a simple hand strength calculation.

Suppose our hand is A♦–Q♣ and the flop is J♥–4♣–3♥. There are 47 remaining
unknown cards and therefore {47 choose 2} = 1081 possible hands an opponent might
hold. In this example, any three of a kind, two pair, one pair, or AK is better (444 cases),
the remaining AQ combinations are equal (9 cases), and the rest of the hands are worse
(628 cases). Counting ties as one half, this corresponds to a percentile ranking, or hand
strength, of 0.585. In other words, there is a 58.5% chance that A♦–Q♣ is better than a
random hand.

The hand strength calculation is with respect to one opponent, but can be extrapolated to
multiple opponents by raising it to the power of the number of active opponents. 11 Against
five opponents with random hands, the adjusted hand strength, HS5, is 0.5855 = 0.069.
Hence, the presence of the additional opponents has reduced the likelihood of A♦–Q♣
being the best hand to only 6.9%.

10 This is not true, in general, but simplifies the presentation of the algorithm. We eliminate this assumption and
generalize the algorithm in the next section.

11 This assumes that all of the opponent hands are independent of each other. Strictly speaking, this is not true.
To be a useful estimate for the multi-player case, the error from this assumption must be less than the error
introduced from other approximations made by the system. More accurate means are available, but we defer that
discussion in the interest of clarity.
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Table 3
Hand potential example

A♦–Q♣ hole cards J♥–4♣–3♥ board cards

After flop After turn and river cards

Ahead Tied Behind Sum

Ahead 449,005 3,211 169,504 628 × 990 = 621,720

Tied 0 8,370 540 9 × 990 = 8,910

Behind 91,981 1,036 346,543 444 × 990 = 439,560

Sum 540,986 12,617 516,587 1,081 × 990 = 1,070,190

5.2.2. Hand potential
After the flop, there are still two more board cards to be revealed. On the turn, there is

one more card to be dealt. We want to determine the potential impact of these cards. The
positive potential, PPot, is the chance that a hand which is not currently the best improves
to win at the showdown. The negative potential, NPot, is the chance that a currently leading
hand ends up losing.

PPot and NPot are calculated by enumerating over all possible hole cards for the
opponent, like the hand strength calculation, and also over all possible board cards. For
all combinations of opponent hands and future cards, we count the number of times Poki’s
hand is behind, but ends up ahead (PPot), and the number of times Poki’s hand is ahead but
ends up behind (NPot). The algorithm is given in Fig. 4, and the results for the preceding
example are shown in Table 3. In this example, if the hand A♦–Q♣ is ahead against one
opponent after five cards, then after 7 cards there is a 449,005/621,720 = 72% chance of
still being ahead.

Computing the potential on the flop can be expensive, given the real-time constraints of
the game (about one second per decision). There are {45 choose 2} = 990 possible turn
and river cards to consider for each possible two-card holding by the opponent. In practice,
a fast approximation of the PPot calculation may be used, such as considering only the
next one card to come. Previous implementations have used a fast function to produce a
crude estimate of PPot, which was within 5% of the actual value about 95% of the time.

5.2.3. Effective hand strength
The effective hand strength, EHS, combines hand strength and potential to give a single

measure of the relative strength of Poki’s hand against an active opponent. One simple
formula for computing the probability of winning at the showdown 12 is:

Pr(win) = Pr(ahead) × Pr(opponent does not improve)

+ Pr(behind) × Pr(we improve)

= HS × (1 − NPot) + (1 − HS) × PPot.

12 The formula can be made more precise by accounting for ties, but becomes less readable.



D. Billings et al. / Artificial Intelligence 134 (2002) 201–240 217

HandPotential(ourcards,boardcards)
{

/* Hand potential array, each index represents ahead, tied,
and behind. */

integer array HP[3][3] /* initialize to 0 */
integer array HPTotal[3] /* initialize to 0 */

ourrank = Rank(ourcards,boardcards)
/* Consider all two card combinations of the remaining cards

for the opponent.*/
for each case(oppcards)
{

opprank = Rank(oppcards,boardcards)
if(ourrank > opprank) index = ahead
else if(ourrank = opprank) index = tied
else /* < */ index = behind
HPTotal[index] + = 1

/* All possible board cards to come. */
for each case(turn)
{

for each case(river)
{ /* Final 5-card board */

board = [boardcards,turn,river]
ourbest = Rank(ourcards,board)
oppbest = Rank(oppcards,board)
if(ourbest > oppbest) HP[index][ahead ] + = 1
else if(ourbest == oppbest) HP[index][tied ] + = 1
else /* < */ HP[index][behind] + = 1

}
}

}

/* PPot: were behind but moved ahead. */
PPot = (HP[behind][ahead] + HP[behind][tied]/2

+ HP[tied][ahead]/2)
/ (HPTotal[behind] + HPTotal[tied]/2)

/* NPot: were ahead but fell behind. */
NPot = (HP[ahead][behind] + HP[tied][behind]/2

+ HP[ahead][tied]/2)
/ (HPTotal[ahead] + HPTotal[tied]/2)

return(PPot,NPot)
}

Fig. 4. Hand potential calculation.
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In practice, we generally want to bet when we currently have the best hand, regardless
of negative potential, so that an opponent with a marginal hand must either fold, or pay to
draw. Hence, NPot is not as important as PPot for betting purposes. Since we are interested
in the probability that our hand is either currently the best, or will improve to become the
best, one possible formula for EHS sets NPot = 0, giving:

EHS = HS + (1 − HS) × PPot. (1)

This has the effect of betting a hand aggressively despite good draws being possible for
opponent hands, which is a desirable behavior.

For n active opponents, this can be generalized to:

EHS = HSn + (1 − HSn) × PPot, (2)

assuming that the same EHS calculation suffices for all opponents. This is not a good
assumption, since each opponent has a different style. A better generalization is to have a
different HS and PPot for each opponent i . EHS with respect to each opponent can then be
defined as:

EHSi = HSi + (1 − HSi ) × PPoti . (3)

Modifying these calculations based on individual opponents is the subject of Section 6.

5.2.4. Weighting the enumerations
The calculations of hand strength and hand potential in Figs. 3 and 4 assume that all two

card combinations are equally likely. However, the probability of each hand being played
to a particular point in the game will vary. For example, the probability that the opponent
holds Ace–King is much higher than 7–2 after the flop, because most players will fold 7–2
before the flop.

To account for this, Poki maintains a weight table for each opponent. The table has an
entry for every possible two card hand, where each value is the conditional probability of
the opponent having played those cards to the current point in the game. To get a better
estimate of hand strength, each hand in the enumeration is multiplied by its corresponding
probability in the weight table.

In practice, the weights have a value in the range zero to one, rather than absolute
probabilities (summing to one), because only the relative sizes of the weights affect the
later calculations. When a new hand begins, all entries are initialized to a weight of one. As
cards become known (Poki’s private cards or the public board cards), many hands become
impossible, and the weight is set to zero.

After each betting action, the weight table for that opponent is updated in a process
called re-weighting. For example, suppose an opponent calls before the flop. The updated
weight for the hand 7–2 might be 0.01, since it should normally be folded. The probability
of Ace–King might be 0.40, since it would seldom be folded before the flop, but is often
raised. The relative value for each hand is increased or decreased to be consistent with
every opponent action.

The strength of each possible hand is assessed, and a mixed strategy (probable
distribution of actions) is determined by a formula-based betting strategy. These values are
then used to update the weight table after each opponent action. The algorithm is shown in
Fig. 5.
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UpdateWeightTable(Action A, WeightTable WT, GameContext GC,
OpponentModel OM)

{
foreach (entry E in WT)
{

ProbabilityDistribution PT[FOLD,CALL,RAISE]

PT = PredictOpponentAction(OM, E, GC)
WT[E] = WT[E] * PT[A]

}
}

Fig. 5. Updating the weight table.

Fig. 6. Progressive weight tables for one opponent in the example hand.

For example, assume that the observed player action is a bet, and that the weight table
currently has entries:

[A♠–K♣,0.40], . . . , [Q♦–2♦,0.20], . . . .

Further assume that in the given situation, the PredictOpponentAction procedure (see
Fig. 5) generates probability distributions {Pr(fold), Pr(check/call), Pr(bet/raise)} of
{0.0,0.7,0.3} for the hand A♠–K♣, and {0.0,0.1,0.9} for the hand Q♦–2♦. After re-
weighting, the new weight table entry for A♠–K♣ will be 0.4×0.3 = 0.12, and 0.2×0.9 =
0.18 for Q♦–2♦. Had the opponent checked in this situation, the weights would be 0.28
and 0.02, respectively. 13

Table 4 shows a possible game scenario based on the example given in Section 3.2 (with
the five players that immediately folded in the pre-flop removed). In this hand, player EP
is assumed to be a default player rather than the well-modeled tight opponent described
previously. Fig. 6 shows Poki’s weight table for EP at three stages of the hand (pre-flop,
flop, and river). In each figure, darker cells correspond to higher relative weights. Suited

13 In the parlance of Bayesian (conditional) probabilities, the old weight table represents the prior distribution
of the opponent’s cards, and the new weight table is the posterior distribution.
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Table 4
Betting history for hand described in Section 3.2

SB BB EP MP Poki

Pre-flop

small blind big blind call call call

call check

Flop Q♠ 7♥ 4♦
check check bet fold call

fold fold

Turn 5♥
bet raise

call

River 5♠
check check

hands are shown in the upper right portion of the grid, and unsuited hands are on the lower
left. The program gathers more information as the hand is played, refining the distribution
of hands that are consistent with the betting actions of EP.

5.2.5. Probability triples and evaluation functions
A probability triple is an ordered triple of values, PT = {f, c, r}, such that f + c + r =

1.0, representing the probability distribution that the next betting action in a given context
is a fold, call, or raise, respectively. This representation of future actions (analogous to a
mixed strategy in game theory) is used in three places in Poki:

(1) The basic betting strategy uses a probability triple to decide on a course of action
(fold, call, or raise).

(2) The opponent modeling component (Section 6) uses an array of probability triples
to update the opponent weight tables.

(3) In a simulation-based betting strategy (Section 5.3) probability triples are used to
choose actions for simulated opponent hands.

Hand strength (HS), potential (PPot, NPot), and effective hand strength (EHS), are
simple algorithms for capturing some of the probabilistic information needed to make a
good decision. However, there are many other factors that influence the betting decision.
These include things like pot odds, implied odds, relative betting position, betting history
of the current hand, etc. Hence the probability triple generation routine consists of ad hoc
rules and formulas that use EHS, the opponent model, game conditions, and probability
estimates to assess the likelihood of each possible betting action. A professional poker
player (Billings) defined this system based on crude estimates of the return on investment
for each betting decision. We refer to this as either a rule-based or formula-based betting
strategy. The precise details of this procedure will not be discussed, as they are of limited
scientific interest.
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An important advantage of the probability triple abstraction is that most of the expert-
defined knowledge in Poki has been gathered together into the triple-generation routines.
This is similar to the way that external knowledge is restricted to the evaluation function
in alpha-beta search. The probability triple framework allows the “messy” elements of the
program to be amalgamated into one component, which can then be treated as a black box
by the rest of the system. Thus, aspects like Hold’em-specific knowledge, complex expert-
defined rule systems, and knowledge of human behavior are all separated from the engine
that uses this input for its calculations. The essential algorithms should be applicable to
other poker variants with little or no modification, and perhaps to substantially different
domains.

5.3. Selective sampling and simulation-based betting strategy

Having an expert identify all the betting rules necessary to play poker is time consuming
and difficult. The game is strategically complex, and decisions must be based on the exact
context of the current game, and historical information of past sessions. A system based
on expert rules is unlikely to produce a world-class level of play, because covering every
relevant situation in sufficient detail is not feasible. We believe that dynamic, adaptive,
computer-oriented techniques will be essential to compete with the best human players.

As mentioned above, a knowledge-based betting strategy is analogous to a static
evaluation function in deterministic perfect information games. Given the current state of
the game, it attempts to determine the action that yields the best result. The corresponding
analogue would be to add search to the evaluation function. While this is easy to achieve
in a game such as chess (consider all possible moves as deeply as resources permit), the
same approach is not directly applicable to poker. There are fundamental differences in
the structure of imperfect information game trees, and the total number of possibilities to
consider is prohibitive.

Toward this end, Poki supports a simulation-based betting strategy. It consists of playing
out many likely scenarios, keeping track of how much money each decision will win
or lose. Every time it faces a decision, Poki invokes the Simulator to get an estimate
of the expected value (EV) of each betting action (see the dashed box in Fig. 2, with
the Simulator replacing the Action Selector). A single trial consists of playing out the
hand from the current state of the game through to the end. Many trials produce a full-
information simulation (which is not to be confused with the simpler roll-out simulations
mentioned in Section 5.1).

Each trial is played out twice—once to consider the consequences of a check or call, and
once to consider a bet or raise. In each trial, a hand is assigned to each opponent, based
on the probabilities maintained in their weight table. The resulting instance is simulated to
the end, and the amount of money won or lost is determined. Probability triples are used
to determine the future actions of Poki and the opponents, based on the two cards they
are assigned for that trial and threshold values determined by the specific opponent model.
The average over all trials in which we check or call is the call EV, and the average for
the matching trials where we bet or raise is the raise EV. The fold EV can be calculated
without simulation, since there is no future profit or loss.
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In the current implementation, we simply choose the action with the greatest expectation.
If two actions have the same expectation, we opt for the most aggressive one (prefer a raise,
then a call, then a fold). To increase the program’s unpredictability, we can randomize the
selection between betting actions whose EVs are close in value, but the level of noise in
the simulation already provides some natural variation for close decisions. 14

Enumerating all possible opponent hands and future community cards would be
analogous to exhaustive game tree search, and is impractical for poker. Simulation is
analogous to a selective expansion of some branches of a game tree. To get a good
approximation of the expected value of each betting action, one must have a preference
for expanding and evaluating the nodes that are most likely to occur. To obtain a correctly
weighted average, all of the possibilities must be considered in proportion to the underlying
non-uniform probability distribution of the opponent hands and future community cards.
We use the term selective sampling to indicate that the assignment of probable hands to
each opponent is consistent with this distribution.

At each betting decision, a player must choose a single action. The choice is strongly
correlated to the quality of the cards that they have, and we can use the opponent model
and formula-based betting strategy to compute the likelihood that the player will fold,
call, or raise in each instance. The player’s action is then randomly selected based on this
probability distribution, and the simulation proceeds. As shown in Fig. 2, the Simulator
calls the opponent model to obtain each of our opponent’s betting actions and our own
actions. Where two or three alternatives are equally viable, the resulting EVs should be
nearly equal, so there is little consequence if the “wrong” action is chosen.

It is reasonable to expect that the simulation approach will be better than the static
approach, because it essentially uses a selective search to augment and refine a static
evaluation function. Barring serious misconceptions, or bad luck on a limited sample size,
playing out many relevant scenarios will improve the estimates obtained by heuristics
alone, resulting in a more accurate assessment overall.

As seen in other domains, we find that the search itself contains implicit knowledge.
A simulation contains inherent information that improves the basic evaluation, such as:

• hand strength (fraction of trials where our hand is better than the one assigned to the
opponent),

• hand potential (fraction of trials where our hand improves to the best, or is overtaken),
and

• subtle considerations not addressed in the simplistic betting strategy (e.g., implied
odds, extra bets won after a successful draw).

It also allows complex strategies to be uncovered without providing additional expert
knowledge. For example, simulations produce advanced betting tactics like check-raising
as an emergent property, even if the basic strategy used within each trial is incapable of
this play.

At the heart of the simulation is the evaluation function, discussed in Section 5.2.5.
The better the quality of the evaluation function, the better the simulation results will

14 Unfortunately, this simple approach does convey some useful information to observant opponents, in that the
strength of our hand and the betting level are too closely correlated. Moving toward a near-optimal mixed strategy
would provide better information-hiding, and may be necessary to reach the world-class level.
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be. Furthermore, the evaluation system must be compatible and harmonious with the
nature of the simulations. Since the formula-based betting strategy was developed and
tuned for the original system, it may not be entirely consistent or appropriate for use
in the simulation-based version. It is possible that built-in biases which were useful (or
compensated for) in the original version are sources of serious systemic error when used
as the evaluation function for simulations. It may be the case that a simpler function would
be more balanced, producing better results.

One of the interesting results of work on alpha-beta search is that even a simple
evaluation function can result in a powerful program. We see a similar situation in poker.
The implicit knowledge contained in the search itself improves the basic evaluation,
refining the quality of the approximation. As with alpha-beta, there are important tradeoffs
to consider. A more sophisticated evaluation function can reduce the size of the tree, at
the cost of more time spent on each node. In simulation analysis, we can improve the
accuracy of each trial, but at the expense of reducing the total number of trials performed
in real-time.

Variations of selective sampling have been used in other games, including Scrabble [30],
backgammon [36], and bridge [15]. Likelihood weighting is another method of biasing
stochastic simulations [13,29]. In our case, the goal is different because we need to
differentiate between EVs (for call/check, bet/raise) instead of counting events. Poker also
imposes tight real-time constraints (typically a maximum of a few seconds per decision).
This forces us to maximize the information gained from a limited number of samples. The
problem of handling unlikely events (which is a concern for any sampling-based result) is
smoothly handled by the re-weighting system (Section 5.2.4), allowing Poki to dynamically
adjust the likelihood of an event based on observed actions. An unlikely event with a large
payoff figures naturally into the EV calculations.

6. Opponent modeling

No poker strategy is complete without a good opponent modeling system. A strong
poker player must develop a dynamically changing (adaptive) model of each opponent, to
identify potential weaknesses.

In traditional games, such as chess, this aspect of strategy is not required to achieve a
world-class level of play. In perfect information games, it has been sufficient to play an
objectively best move, without special regard for the opponent. If the opponent plays sub-
optimally, then continuing to play good objective moves will naturally exploit those errors.
Opponent modeling has been studied in the context of two-player games, but the research
has not translated into significant performance benefits [8,17,18].

In poker, the situation is different. Two opponents can make opposite kinds of errors—
both can be exploited, but it requires a different response for each. For example, one
opponent may bluff too much, the other too little. We adjust by calling more frequently
against the former, and less frequently against the latter. To simply call with the optimal
frequency would decline an opportunity for increased profit, which is how the game is
scored. Even very strong players can employ radically different styles, so it is essential to
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try to deduce each opponent’s basic approach to the game, regardless of how well they
play.

6.1. RoShamBo

The necessity of modeling the opponent is nicely illustrated in the game of RoShamBo
(also known as Rock–Paper–Scissors). This is a well-known “kid’s game”, where each
player chooses an action simultaneously, and there is a cyclic set of outcomes: scissors
beats paper, paper beats rock, and rock beats scissors (choosing the same action results
in a tie). The game-theoretic optimal strategy for this zero sum game is also well-known:
one chooses any of the three actions uniformly at random. However, the optimal strategy is
oblivious to opponent actions, and is not exploitive. The best one can do using the optimal
strategy is to break even in the long run (an expected value of zero, even if the opponent
always goes rock). Contrary to popular belief, the game is actually very complex when
trying to out-guess an intelligent opponent.

The International RoShamBo Programming Competition 15 is an annual contest for
programs that play Rock–Paper–Scissors [3]. More than 50 entries were submitted from
all over the world for each competition. Every program plays every other program in a
round-robin tournament, with each match consisting of 1000 games. Scores are based on
total games won, and on the match results (with the match declared a draw if the scores
are not different by a statistically significant margin). Since the optimal strategy can only
draw each match, it consistently finishes in the middle of the pack, and has no chance of
winning the tournament.

The authors of the top entries, including some well-known AI researchers, have
commented that writing a strong RoShamBo program was much more challenging than
they initially expected [4,11]. The best programs do sophisticated analysis of the full
history of the current match in order to predict the opponent’s next action, while avoiding
being predictable themselves. Programs that used a simple rule-base for making their
decisions consistently finished near the bottom of the standings. All of the top programs
define completely general methods for pattern detection, some of which are remarkably
elegant. Given the simple nature of RoShamBo, some of these nice ideas may be applicable
to the much more complex problems faced by a poker playing system.

6.2. Statistics-based opponent modeling

In poker, opponent modeling is used in at least two different ways. We want a general
method of deducing the strength of the opponent’s hand, based on their actions. We also
want to predict their specific action in a given situation.

At the heart of an opponent modeling system is a predictor. The predictor’s job
is to map any given game context into a probability distribution over the opponent’s
potential actions. In limit poker, this distribution can be represented by a probability triple
{Pr(fold), Pr(call), Pr(raise)}.

15 See http://www.cs.ualberta.ca/~games.
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One way to predict an opponent action would be to use our own betting strategy, or some
other set of rules, to make a rational choice on behalf of the opponent. When we use this
type of fixed strategy as a predictor, we are assuming the player will play in one particular
“reasonable” manner, and we refer to it as generic opponent modeling (GOM).

Another obvious method for predicting opponent actions is to expect them to continue
to behave as they have done in the past. For example, if an opponent is observed to bet
40% of the time immediately after the flop, we can infer that they will normally bet with
the top 40% of their hands in that situation (including a certain percentage of weak hands
that have a good draw). When we use an opponent’s personal history of actions to make
predictions, we call it specific opponent modeling (SOM).

Our first opponent modeling effort was based on the collection of simple statistical
information, primarily on the betting frequencies in a variety of contexts. For example, a
basic system distinguishes twelve contexts, based on the betting round (pre-flop, flop, turn,
or river), and the betting level (zero, one, or two or more bets). For any particular situation,
we use the historical frequencies to determine the opponent’s normal requirements (i.e.,
the average effective hand strength) for the observed action. This threshold is used as input
into a formula-based betting strategy that generates a mixed strategy of rational actions for
the given game context (see Section 5.2.5).

However, this is a limited definition of distinct contexts, since it does not account for
many relevant properties, such as the number of active opponents, the relative betting
position, or the texture of the board cards (e.g., whether many draws are possible).
Establishing a suitable set of conditions for defining the various situations is not an easy
task. There are important trade-offs that determine how quickly the algorithm can learn
and apply its empirically discovered knowledge. If a context is defined too broadly, it
will fail to capture relevant information from very different circumstances. If it is too
narrow, it will take too long to experience enough examples of each scenario, and spotting
general trends becomes increasingly difficult. Equally important to deciding how many
equivalence classes to use is knowing what kinds of contextual information are most
relevant in practice.

Furthermore, there are many considerations that are specific to each player. For example,
some players will have a strong affinity for flush draws, and will raise or re-raise on the
flop with only a draw. Knowing these kinds of personality-specific characteristics can
certainly improve the program’s performance against typical human players, but this type
of modeling has not yet been fully explored.

Opponent modeling in poker appears to have many of the characteristics of the most
difficult problems in machine learning—noise, uncertainty, an unbounded number of
dimensions to explore, and a need to quickly learn and generalize from relatively small
number of heterogeneous training examples. 16 As well, the real-time nature of poker (a few
seconds per betting decision) limits the effectiveness of most popular learning algorithms.

16 By “heterogeneous” we mean that not all games and actions reveal the same type or amount of information.
For example, if a player folds a hand, we do not get to see their cards.
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Fig. 7. A neural network predicting an opponent’s future action.

6.3. Neural network-based opponent modeling

To create a more general system for opponent modeling, we implemented a neural
network for predicting the opponent’s next action in any given context. Guessing the next
action is useful for planning advanced betting strategies, such as a check-raise, and is also
used in each trial of a full-information simulation (see Section 5.3).

A standard feed-forward neural net was trained on contextual data collected from online
games against real human opponents. The networks contain a set of nineteen inputs
corresponding to properties of the game context, such as the number of active players,
texture of the board, opponent’s position, and so on. These are easily identified factors that
may either influence, or are correlated with a player’s next action.

The output layer consists of three nodes corresponding to the fold, call, and raise
probabilities. Given a set of inputs, the network will produce a probability distribution
of the opponent’s next action in that context (by normalizing the values of the three output
nodes).

By graphically displaying the relative connection strengths, we are able to determine
which input parameters have the largest effects on the output. After observing networks
trained on many different opponents, it is clear that certain factors are dominant in
predicting the actions of most opponents, while other variables are almost completely
irrelevant. The accuracy of these networks (and other prediction methods) is measured by
cross-validating with the real data collected from past games with each opponent. Details
are available in a previous paper [10].

Fig. 7 shows a typical neural network after being trained on a few hundred hands played
by a particular opponent. The inputs are the on the top row, with the activation level
ranging from zero (fully white) to one (fully black). The thickness of the lines represent
the magnitude of the weights (black being positive, grey being negative). In this example,
the connections from input node number twelve (true if the opponent’s last action was a
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raise) are very strong, indicating that it is highly correlated with what the opponent will do
next. The bottom row shows the network predicting that the opponent will probably fold,
with a small chance of calling.

The first result of this study was the identification of new features to focus on
when modeling common opponents. This produced a relatively small set of context
equivalence classes which significantly improved the statistical opponent modeling
reported previously [10]. We are currently experimenting with using a real-time neural
network system to replace the frequency table method entirely. Preliminary results from
games with both human and computer opponents suggest that this may lead to a dramatic
improvement.

7. Performance evaluation

Measuring the performance of a poker-playing program is difficult. Poki is a complex
system of interacting components, and changing a single component often has cascading
effects, leading to unpredictable and unforeseen behavior. We have employed a variety of
methods for assessing the program, but none of them is completely adequate.

7.1. Experimental methodology

Poker is a game of high variance, and the element of luck dominates the outcome of
any one hand. Among evenly matched players, the effects of good or bad fortune are still
significant even after several thousand hands. Measurements are always susceptible to high
levels of noise and anomalous games. Furthermore, players are constantly adapting during
this time, improving their understanding of each opponent, or changing styles to make it
more difficult for others to form an accurate model of them.

Self-play experiments are a simple way to test new features, by playing older versions of
the program against newer versions. This provides an easily controlled closed environment,
where many thousands of hands can be played quickly.

To reduce variance we use a duplicate tournament system similar to that used in duplicate
bridge. Since each hand can be played with no memory of preceding hands, in a ten-player
game each deal of the cards can be replayed ten times, shuffling the seating arrangement
each time so that every player holds each hand once. This reduces the amount of noise
considerably, and also reduces the effects of relative seating position (for example, it would
be advantageous to always act immediately after a particularly aggressive or unpredictable
player). However, this method still admits a lot of variance. For example, one player might
choose to fold a marginal hand whereas another might play in that same situation, possibly
winning or losing many bets.

Another assessment method attempts to compute an objective measurement of the
expected value for each decision, using the perfect information of the actual situation.
For example, a weak looking hand might actually win 20% of the time against the current
field, and the EV for making a “loose call” in that situation might be +0.6 bets, compared
to −0.6 bets for a more conservative fold, or −0.2 bets for a raise. When comparing two
or more players, this kind of specific evaluation of an action can be applied to the first
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differing decision of each deal, since the subsequent betting actions are not comparable
(being different contexts). While this method is attractive in principle, it is somewhat
difficult to define a reliable EV measure for all situations, and consequently it has not
been used extensively to date.

The major drawback of self-play experiments is that they lack the wide variety of
styles and game conditions exhibited by real players. Other researchers have previously
commented on the “myopia” of self-play games in chess [2]. The problem is much more
acute and limiting for the development of a poker-playing system, because the style of the
opponent is of paramount importance to correct play. A program that does very well against
normal opponents may be vulnerable to a particular type of erratic or irrational player,
even if their play is objectively worse. Although we try to create a variety of computer
opponents by varying parameter settings of the players (e.g., percentage of hands played,
aggressiveness, advanced betting strategies, etc.), the range of styles is still much more
restricted than that of human opponents.

Even with a carefully selected, well-balanced field of artificial opponents, it is important
to not over-interpret the results of any one experiment. Often all that can be concluded
is the relative ranking of the algorithms amongst themselves. One particular strategy may
dominate in a self-play experiment, even though another approach is more robust in real
games against human opponents.

A good demonstration of this limitation was seen in the testing of early simulation-
based betting strategies. The results of self-play experiments were very encouraging, and
occasionally spectacular. However, this was largely due to the pure aggressiveness of the
new strategy, which was particularly effective at exploiting the overly conservative nature
of its computer opponents at that time. When testing the new betting strategy in online
games, it was much less successful against reasonably strong human opposition, who were
able to adapt quickly.

For this reason, playing games against real human opponents is still indispensable for
proper evaluation. Unfortunately, this entails other sources of inaccuracy.

A poker program can participate in a real game with willing participants, using a laptop
computer on the table. This turns out to be surprisingly difficult, due to the fast pace of
a real game and the amount of information to be entered. Even with numerous single-
character accelerators, text entry is a bottleneck to the process. A well-designed graphical
interface might help considerably, and an automatic card-reader (e.g., a bar-code scanner)
could prevent the operator from giving away useful information, since only the program
would know its hand. However, it may always be more practical to have human players
participate in a virtual game, rather than having programs compete in the physical world.

For more than three years, our programs have regularly participated in online poker
games against human opposition on the Internet Relay Chat (IRC). Players connect to
the IRC poker server and participate in numerous games that are conducted by dedicated
software. No real money is at stake, but the accumulated bank-roll for each player is
preserved between sessions, and a variety of statistics are maintained. There is a hierarchy
of games for limit Hold’em, and a player must win a specified amount in the introductory
level games to qualify for the higher tiered games.

These lowest level games (open to everyone) vary from wild to fairly normal, offering
a wide variety of game conditions to test the program. The second and third tier games
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resemble typical games in a casino or card room. Most of these players take the game
seriously, and some are very strong (including some professionals). Since Poki has been a
consistent winner in these higher tiered games (and is in the top 10% of all players on the
server), we believe the program plays better than the average player in a low-limit casino
game.

Recently, several online poker servers have begun offering real-money games played
over the Internet. The response has been very favorable, and it is normal to have more than
1000 players logged into a virtual card room at any given time. With the agreement of
the entrepreneurs, this might provide a future venue for testing programs in a completely
realistic setting.

Another form of online poker is a free Java web applet, where users can play at a table
with poker programs and other people. Poki currently hosts such a facility, which provides
an interesting hybrid between self-play experiments and games against humans. 17

While online poker is useful for measuring the progress of a program, it is not a
controlled environment. The game is constantly changing, and positive results over a given
time-frame can easily be due to playing against a weaker set of opponents, rather than
actual improvements to the algorithm. Considering that it may take thousands of hands
to measure small improvements, it is difficult to obtain precise quantified results. There
is also no guarantee that an objectively stronger program will be more successful in this
particular style of game. Certain plays that might be good against master players could be
inappropriate for the more common opponents in these games. Moreover, regular players
may have acquired a lot of experience against previous versions of Poki, making it difficult
to achieve the same level of performance.

As a result, it is still beneficial to have a master poker player review hundreds of hands
played by the program, looking for errors or dubious decisions. Needless to say, this is a
slow and laborious method of assessment. A human master can also play against one or
more versions of the program, probing for weaknesses or unbalanced strategy. Based on
these direct encounters, we believe Poki is an intermediate level player, but has not yet
reached the master level.

7.2. Experimental results

The unit of measurement for program performance is the average number of small bets
won per hand (sb/hand). For example, in a game of $10/$20 Hold’em with 40 hands
per hour, an income rate of +0.05 sb/hand translates into $20 per hour. Human players
sometimes use this metric in preference to dollars per hour, since it is not dependent on the
speed of play, which can vary from 20 to 60 hands per hour.

Since no variance reduction methods are available for online games, we generally test
new algorithms for a minimum of 20,000 hands before interpreting the results. On this
scale, the trends are usually clear and stable amid the noise. Unfortunately, it can take
several weeks to accumulate this data, depending on the popularity of the online game in
question.

17 See http://www.cs.ualberta.ca/~games.
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Fig. 8. Poki’s performance on the IRC poker server (introductory level games).

Any embellishment resulting in an improvement of +0.05 sb/hand in self-play
experiments against previous versions is considered to be significant. However, this does
not always translate into comparable gains in actual games, as many factors affect the
ultimate win rate. Nevertheless, the program has made steady progress over the course
of the project. In recent play on the IRC poker server, Poki has consistently performed
between +0.10 and +0.20 sb/hand in the lowest level games, and between +0.07 and
+0.10 sb/hand in the higher tiered games against stronger opposition.

The results of simulation-based betting strategies have so far been inconsistent. Despite
some programming errors that were discovered later, the earliest (1998) versions of
simulation-based Loki outperformed the regular formula-based version in both self-
play experiments (+0.10 ± 0.04 sb/hand), and in the introductory level games of IRC
(+0.13 sb/hand vs +0.08 sb/hand). However, it lost slowly in the more advanced
IRC games, whereas the regular version would at least break even.

The more recent versions are substantially stronger, but a similar pattern is apparent.
Fig. 8 shows that both the regular betting strategy (labeled “poki”) and the simulation-based
betting strategy (labeled “pokisim-S”) win at about +0.20 sb/hand in the introductory level
games on the IRC poker server. It is quite likely that differences in playing strength cannot
be demonstrated against this particular level of opposition, since both may be close to their
maximum income rate for this game. In other words, there are diminishing returns after
achieving a very high win rate, and further improvement becomes increasingly difficult.
However, there is a clear difference in the more advanced games, where the regular betting
strategy routinely wins at about +0.09 sb/hand, but the simulation-based version could
only break even (peaking at +0.01 sb/hand after 5000 hands, but returning to zero after
10,000 hands).
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Fig. 9. Poki’s performance on the web applet.

When the simulation-based versions were introduced, some of the credit for their success
was probably due to the solid reputation that the more conservative versions of Poki had
previously established. Many opponents required several hundred hands to adjust to the
more aggressive style resulting from the simulations. However, the stronger opposition
was able to adapt much quicker, and learned to exploit certain weaknesses that had not
been detrimental against weaker players.

Fig. 9 shows some recent results using the online web applet. This game consists of
several computer players (some of which are intentionally weaker than the most recent
versions of Poki), and at least one human opponent at all times. Since the artificial players
are quite conservative, this game is quite a bit tighter than most IRC games, and the win
rate for the regular formula-based betting strategy is +0.13 sb/hand. The simulation-based
betting strategy performs at +0.08 sb/hand, indicating that this particular set of opponents
are much less vulnerable to its strategy differences than the players in the introductory IRC
games.

A new simulation-based player (labeled “pokisim-A”) maintains three different methods
for opponent modeling (statistical frequencies, the rule-based method used by Poki, and a
real-time neural network predictor), and uses whichever one has been most successful for
each opponent in the past. Not surprisingly, it outperforms the single approach, earning
+0.12 sb/hand, for a 50% overall improvement in this particular game. This is roughly
the same degree of success as the formula-based strategy (“poki”), despite the fact that the
original system has benefited from much more tuning, and that the underlying evaluation
function was not designed for this fundamentally different approach.
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We note that the variance is quite a bit higher in this experiment, which is the more
common situation. 18 The results could be quite misleading if interpreted after only
5000, or even after 15,000 hands. The two bottom lines cross over at 15,000 hands, but
“pokisim-S” is lower before and after that point.

There have been hundreds of self-play experiments over the last few years, testing
individual enhancements, and the effects of different game conditions. We refer the reader
to our previous publications for further details [5–7,10,24,25,27].

8. A framework for non-deterministic game-playing programs

Using simulations for non-deterministic games is not new. Consider the following three
games:

(1) In Scrabble, the opponent’s tiles are unknown, so the outcome of future turns must
be determined probabilistically. A simulation consists of repeatedly generating a
plausible set of tiles for the opponent. Each trial might involve a two ply or four ply
search of the game tree, to determine which move leads to the maximum gain in
points for the program. A simulation-based approach has been used for a long time
in Scrabble programs. Brian Sheppard, the author of the Scrabble program Maven,
coined the term “simulator” for this type of game-playing program structure [30].

(2) In backgammon, simulation is used for “rollouts” of the remainder of a game, and
are now generally regarded to be the best available estimates for the equity of a
given position. A simulation consists of generating a series of dice rolls, and playing
through to the end of the game with a strong program choosing moves for both sides.
Gerry Tesauro has shown that relatively simple rollouts can achieve a level of play
comparable to the original neural network evaluation function of TD-Gammon [36,
37].

(3) In bridge, the cards of other players are hidden information. A simulation consists
of assigning cards to the opponents in a manner that is consistent with the bidding.
The hand is then played out and the result determined. Repeated deals are played out
to decide which play produces the highest probability of success. Matt Ginsberg has
used this technique in GIB to achieve a world-class level for play of the hand [15].

In the above examples, the programs are not using traditional Monte Carlo simulation to
generate the unknown information. They use selective sampling, biased to take advantage
of all the available information. In each case, and in poker, we are using information about
the game state to skew the underlying probability distribution, rather than assuming a
uniform or other fixed probability distribution. Monte Carlo techniques might eventually
converge on the right answer, but selective sampling allows reduced variance and faster
convergence.

In the Scrabble example, Maven does not assign tiles for the opponent by choosing
from the remaining unknown tiles uniformly at random. It biases its choice to give the
opponent a “nice” hand, because strong players usually make plays that leave them with

18 The relatively low variance in the previous figure may again be a result of both programs being close to
maximal gains against that particular level of opposition.
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SimulationFramework()
{

obvious_move = NO
trials = 0
while( ( trials <= MAX_TRIALS ) and ( obvious_move == NO ) )
{

trials = trials + 1
position = current_state_of_the_game +

( selective_sampling to generate_missing_information )
for( each legal move m )
{

value[m] + = PlayOut( position.m, info )
}
if( exists i such that value[i] >> value[j] ( forall j �= i ) )
{

obvious_move = YES
}

}
select move based on value[]

}

Fig. 10. Framework for two-player, zero-sum, imperfect information games.

good tiles for future turns (such as letters that may score the 50 point bonus for using all
tiles). It also samples without replacement, to ensure that every remaining tile is selected
equally often, thereby reducing the natural variance [30]. In backgammon, future dice rolls
are generated randomly, but the choice of moves is made by an external player agent. In
bridge, the assignment of cards to an opponent is subject to the information obtained from
the bidding. If one opponent has indicated high point strength, then the assignment of cards
to that opponent reflects this information [15].

The alpha-beta framework has proven to be an effective tool for the design of two-player,
zero-sum, deterministic games with perfect information. It has been around for more than
30 years, and in that time the basic structure has not changed much (although there have
been numerous algorithmic enhancements to improve the search efficiency). The search
technique usually has the following properties:

(1) The search is full breadth, but limited depth. That is, all move alternatives are
considered, except those that can be logically eliminated (such as alpha-beta
cutoffs).

(2) Heuristic evaluation occurs at the leaf nodes of the search tree, which are interior
nodes of the game tree.

(3) The search gets progressively deeper (iterative deepening), until real-time con-
straints dictate that a choice be made.

The alpha-beta algorithm typically uses integer values for positions and is designed to
identify a single “best” move, not differentiating between other moves. The selection of the
best move may be brittle, in that a single node mis-evaluation can propagate to the root of
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Fig. 11. Comparing two search frameworks.

the search and alter the move choice. As the search progresses, the bounds on the value of
each move are narrowed, and the certainty of the best move choice increases. The deeper
the search, the greater the confidence in the selected move, and after a certain point there
are diminishing returns for further search.

In an imperfect information game of respectable size, it is impossible to examine the
entire game tree of possibilities [19]. This is especially true for poker because of the many
opponents, each making their own decisions. The pseudo-code for the proposed method of
selective sampling is shown in Fig. 10 [5]. This approach has the following properties:

(1) The search is full depth, but limited breadth. That is, each line is played out to the
end of the game (in poker, to the showdown or until one player wins uncontested).

(2) Heuristic evaluation occurs at the interior nodes of the search tree to decide on future
moves by the players. Outcomes are determined at the leaf nodes of the game tree,
and are 100% accurate.

(3) The search gets progressively wider, performing trials consistent with the probabil-
ity distribution of hidden information, until real-time constraints dictate that a choice
be made.

The expected values of all move alternatives are computed, and the resulting choice
may be a randomized mixed strategy. As the search progresses, the values for each move
become more precise, and the certainty of the best move choice increases. 19 The more
trials performed, the greater the confidence in the selected move, and after a certain point
there are diminishing returns for performing additional trials.

Although the move sequences examined during an alpha-beta search are systematic and
non-random, it can be viewed as a sampling of related positions, used as evidence to
support the choice of best move. In the case of selective sampling, the evidence is statistical,
and the confidence can be measured precisely. The two contrasting methods are depicted
in Fig. 11, with alpha-beta search on the left and simulation-based search on the right.

As noted previously, it is not essential to continue each trial to the end of the game.
In non-deterministic games, the expected value of internal game tree nodes can also
be heuristically estimated with a score (as in Scrabble), an evaluation function (as in
backgammon), or other methods (such as the roll-out simulations described in Section 5.1).

19 The “best” move is somewhat subjective. Here we do not consider certain plays, such as deliberately
misrepresenting the hand to the opponents.
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An important feature of the simulation-based framework is the notion of an obvious
move. Although some alpha-beta programs try to incorporate an obvious move feature,
the technique is usually ad hoc and based on programmer experience, rather than a sound
analytic technique (an exception is the B∗ proof procedure [1]). In the simulation-based
framework, an obvious move is well-defined. If one choice exceeds the alternatives by a
statistically significant margin, we can stop the simulation early and take that action, with
precise knowledge of the mathematical validity of the decision. Like alpha-beta pruning,
this early cut-off may prove to be an effective means for reducing the required amount of
search effort, especially if it is applied at all levels of the imperfect information game tree.

The proposed framework is not a complete ready-made solution for non-deterministic
games, any more than alpha-beta search is the only thing required for high-performance in
a particular deterministic game. As discussed in Section 5.3, there are many trade-offs to be
considered and explored. One must find a good balance between the amount of effort spent
on each trial, and the total number of trials completed in the allotted time. There are many
different ways to create an evaluation function, and as with other strong game programs,
speed and consistency may be more important than explicit knowledge and complexity.

9. Conclusions and future work

Poker is a complex game, with many different aspects, from mathematics and hidden
information to human psychology and motivation. To master the game, a player must
handle all of them at least adequately, and excel in most. Strong play also requires a player
to be adaptive and unpredictable—any form of fixed recipe can and will be exploited by a
good opponent. Good players must dynamically alter their style, based on the current game
conditions and on historical knowledge (including past sessions). In contrast, traditional
games like chess are somewhat homogeneous in nature, where one can focus very deeply
on one particular type of strategy.

Like other computer game-playing research, poker has a well-defined goal, and the
relative degree of success is measurable—whether the program plays the game well, or
doesn’t. We have resisted the temptation of focusing only on the clearly tractable problems,
in favor of grounding the research on those topics that actually affect the bottom line the
most. As a result, developing Poki has been a cyclic process. We improve one ability of
the program until it becomes apparent that another property is the performance bottleneck.
Some of the components in the current system are extremely simplistic (such as a constant
where a formula or an adaptive method would be better), but do not yet appear to limit
overall performance. Others have received much more attention, but are still woefully
inadequate.

Human poker players are very good at understanding their opponent, often forming
an accurate model based on a single data point (and occasionally before the first hand
is dealt!). Programs may never be able to match the best players in this area, but they must
at least try to reduce the gap, since they can clearly be superior in other aspects of the game.
Although Poki has successfully used opponent modeling to improve its level of play, it is
abundantly clear that these are only the first steps, and there are numerous opportunities
for improvement.



236 D. Billings et al. / Artificial Intelligence 134 (2002) 201–240

For example, the current system becomes slower to adjust as more information is
collected on a particular opponent. This “build-up of inertia” after thousands of data points
have been observed can be detrimental if the player happens to be in an uncommon mood
that day. Moreover, past success may have largely been due to opponents staying with
a fixed style that does not vary over time (most computer opponents certainly have this
property). It is much more difficult to track good players who constantly “change gears”
for a relatively brief time. Although recent actions are mixed with the long-term record, a
superior historical decay function could allow the system to keep up with current events
better.

It is easy to gather lots of data on each opponent, but it is difficult to discern the most
useful features. It is possible that simpler metrics may be better predictors of an opponent’s
future behavior. There are also several techniques in the literature for learning in noisy
domains where one must make inferences based on limited data, which have not yet been
explored.

For the simulations, the major problem is the high variance in the results. Even with
noise reduction techniques, the standard deviation can still be high. Faster machines and
parallel computations might help to base decisions on a larger sample size. This eventually
has diminishing returns, and our empirical results suggest that the benefits may be small
beyond a necessary minimum number of data points (roughly 500). Once the critical
minimum can be attained in real-time, the more important issue is whether the trials are
fair and representative of the situation being modeled.

For the game of bridge, simulations have successfully allowed computer programs to
play hands at a world-class level [15]. Nevertheless, limitations in the simulation-based
approach and the high variance have prompted Matt Ginsberg, the author of GIB, to look
at other solutions, including building the entire search tree [16]. We too may have to look
for new approaches to overcome the limitations of simulations.

The poker project is rich in research opportunities, and there is no shortage of new ideas
to investigate. Having explored some fairly straight-forward techniques to accomplish a
reasonable level of play, we are now contemplating re-formulations that might produce a
breakthrough to a world-class level of play. Toward this end, some of our current research
has moved toward empirical techniques for deriving game-theoretic near-optimal solutions
for betting strategies. We have also given more attention to two-player Hold’em, in which
many of the flaws of the current system are emphasized.

However, it is not clear if a single unifying framework is possible for poker programs.
Certain abilities, such as the accurate estimation of expected values in real time, will
eventually be well-solved. However other aspects, like opponent modeling, are impossible
to solve perfectly, since even the opponents may not understand what drives their actions!
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Appendix A. Glossary of poker terms

This appendix contains definitions of common poker terms used in this paper. More ex-
tensive poker glossaries are available on the world wide web, such as http://www.kimberg.
com/poker/dictionary.html, or http://conjelco.com/pokglossary.html.

• All-in To have one’s entire stake committed to the current pot. Action continues
toward a side pot, with the all-in player being eligible to win only the main pot.

• All-in Equity The expected income if the current hand was permitted to go to the
showdownwith no further betting.

• Bet To make the first wager of a betting round (compare raise).
• Big Bet The largest bet size in limit poker. $20 in $10–$20 Hold’em.
• Big Blind A forced bet made before the deal of the cards. $10 in $10–$20 Hold’em,

posted by the second player to the left of the button.
• Blind A forced bet made before the deal of the cards (see small blind and big blind ).
• Bluff To bet with the expectation of losing if called.
• Board The community cards shared by all players.
• Button The last player to act in each betting round in Texas Hold’em.
• Call To match the current level of betting. If the current level of betting is zero, the

term checkis preferred.
• Check To decline to make the first wager of a betting round (compare call).
• Check-RaiseTo check on the first action and then raise in the same betting round

after someone else has bet.
• Community Cards The public cards shared by all players.
• ConnectorsTwo cards differing by one in rank, such as 7–6. More likely to make a

straight than other combinations.
• Draw A hand with good potential to make a strong hand, such as a straight draw or a

flush draw (compare made hand).
• Dry Lacking possible draws or betting action, as in a dry board or a dry game.
• Flop The first three community cards dealt in Hold’em, followed by the second

betting round (compare board).
• Fold To discard a hand instead of matching the outstanding bet, thereby losing any

chance of winning the pot.
• Free-Card RaiseTo raise on the flop intending to checkon the turn .
• Hand (a) A player’s private cards (two hole cards in Hold’em). (b) One complete

game, from the dealing of the cards to the showdown (or until one player wins
uncontested).

• Hole Card A private card in Hold’em.
• Implied Odds The pot oddsbased on the probable future size of the pot instead of

the current size of the pot.
• Income rateThe expected amount a hand will win.
• Kicker A side card, often deciding the winner when two hands are otherwise tied

(e.g., a player holding Q–J when the board is Q–7–4 has top pair with a Jack kicker).
• Loose GameA game having several loose players.
• Loose PlayerA player who does not fold often (e.g., one who plays most hands at

least to the flop in Hold’em).
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• Made hand A hand with a good chance of currently being the best, such as top pair
on the flop in Hold’em (compare draw).

• Mixed strategy Handling a particular situation in more than one way, such as to
sometimes call, and sometimes raise.

• Near-optimal A good approximation of a game-theoretic optimal solution.
• Offsuit Two cards of different suits (compare suited).
• Open-Ended DrawA draw to a straight with eight cards to make the straight, such

as 6–5 with a board of Q–7–4 in Hold’em.
• Outs Cards that will improve a hand to a probable winner (compare draw).
• Pocket PairTwo cards of the same rank, such as 6–6. More likely to make three of a

kind than other combinations (see set).
• Pot Odds The ratio of the size of the pot to the size of the outstanding bet, used to

determine if a draw will have a positive expected value.
• Pre-flop In Hold’em, the first betting round after the deal of the cards and before the

flop.
• RaiseTo increase the current level of betting. If the current level of betting is zero,

the term bet is preferred.
• Raising for a Free-cardTo raise on the flop intending to checkon the turn .
• River The fifth community card dealt in Hold’em, followed by the fourth (and final)

betting round.
• Second pair Matching the second highest community card in Hold’em, such as

having 7–6 with a board of Q–7–4.
• SetThree of a kind, formed with a pocket pair and one card of matching rank on the

board. A powerful well-disguised hand (compare trips ).
• ShowdownThe revealing of cards at the end of a hand to determine the winner and

award the pot.
• Side-pot A second pot for the bets made by active players after another player is

all-in .
• Slow-play To call with a strong hand, and then raise in a later betting round, for

purposes of deception.
• Small Bet The smallest bet size in limit poker. $10 in $10–$20 Hold’em.
• Small Blind A forced bet made before the deal of the cards. $5 in $10–$20 Hold’em,

posted by the first player to the left of the button.
• Suited Two cards of the same suit, such as both Hearts. More likely to make a flush

than other combinations (compare offsuit).
• Table ImageThe general perception other players have of one’s play.
• Table StakesA poker rule allowing a player who cannot match the outstanding bet

to go all-in with his remaining money, and proceed to the showdown(also see side
pot).

• Texture of the Board Classification of the type of board, such as having lots of high
cards, or not having many draws (see dry ).

• Tight Player A player who usually folds unless the situation is clearly profitable (e.g.,
one who folds most hands before the flop in Hold’em).

• Top pair Matching the highest community card in Hold’em, such as having Q–J
with a board of Q–7–4.
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• Trips Three of a kind, formed with one hole cardand two cards of matching rank on
the board. A strong hand, but not well-disguised (compare set).

• Turn The fourth community card dealt in Hold’em, followed by the third betting
round.

• Wild Game A game with a lot of raising and re-raising. Also called an action game.
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