
The Games Computers (and People) PlayJonathan Shae�erDepartment of Computing SieneUniversity of AlbertaEdmonton, AlbertaCanada T6G 2H1jonathan�s.ualberta.aMay 10, 2000AbstratIn the 40 years sine Arthur Samuel's 1960 Advanes in Computershapter, enormous progress has been made in developing programs to playgames of skill at a level omparable to, and in some ases beyond, whatthe best humans an ahieve. In Samuel's time, it would have seemedunlikely that only a sant 40 years would be needed to develop programsthat play world-lass bakgammon, hekers, hess, Othello, and Srabble.These remarkable ahievements are the result of a better understandingof the problems being solved, major algorithmi insights, and tremendousadvanes in hardware tehnology. Computer games researh is one of themajor suess stories of arti�ial intelligene.This hapter an be viewed as a suessor to Samuel's work. A reviewof the sienti� advanes made in developing omputer games is given.These ideas are the ingredients required for a suessful program. Casestudies for the games of bakgammon, bridge, hekers, hess, Othello,poker, and Srabble are presented. They are the reipes for buildinghigh-performane game-playing programs.1 IntrodutionArthur Samuel is one of the pioneers of arti�ial intelligene researh. Togetherwith Claude Shannon [1℄ and Alan Turing [2℄, he laid the foundation for buildinghigh-performane game-playing programs. Samuel is best known for developinghis hekers program. Over his areer, he onsistently sold his work as researhin mahine learning. His papers desribing the program and its learning apa-bilities are lassis in the literature [3, 4℄. These papers are still frequently itedtoday, almost four deades sine the original researh was ompleted. There arefew omputing papers around today whose lifespan is 10 years, let alone 40.1



In the years sine Samuel's 1960 hapter for the �rst volume of Advanes inComputers, enormous progress has been made in onstruting high-performanegame-playing programs. In Samuel's time, it would have seemed unlikely thatwithin a sant 40 years hekers (8� 8 draughts), Othello1, and Srabble2 pro-grams would exist that exeed the abilities of the best human players, whilebakgammon and hess programs ould play at a level omparable to the hu-man world hampion. These remarkable aomplishments are the result of abetter understanding of the problems being solved, major algorithmi insights,and tremendous advanes in hardware tehnology. The work on omputer gameshas been one of the most suessful and visible results of arti�ial intelligeneresearh. For some games, one ould argue that the Turing test has been passed[5℄.When talking about omputer games, it is important to draw the distintionbetween using games as a researh tool for exploring new ideas in omputing,versus using omputing to do researh into games. The former is the subjet ofthis hapter; the latter is not. Nevertheless, it is important to reognize thatbuilding high-performane game-playing programs has also been of enormousbene�t to the respetive game-playing ommunities. The tehnology has ex-panded human understanding of games, allowing us to explore more of the rihtapestry and intelletual hallenges that games have to o�er. Computers o�erthe key to answering some of the puzzling, unknown questions that have tan-talized game a�ionados. For example, omputers have shown that the hessendgame of king and two bishops versus king and knight is generally a win,ontrary to expert opinion [6℄. In hekers, the famous 100-year position tooka entury of human analysis to \prove" a win; the hekers program Chinooktakes a few seonds to prove the position is atually a draw (it is now alled the197-year position)[7℄.This hapter an be viewed as a suessor to Samuel's 1960 hapter, dis-ussing the progress made in developing programs for the lassi board andard games over the last four deades. A review of the sienti� advanes madein developing omputer games is presented (Setion 2). It onentrates on searhand knowledge for two-person perfet-information games, and simulation-basedapproahes for games of imperfet or non-deterministi information. These ideasare the ingredients needed for a suessful program. Setion 3 presents sevenase studies to highlight progress in the games of hekers, Othello, Srabble(superior to man), bakgammon, hess (omparable to the human world ham-pion), bridge, and poker (human supremay may be threatened). These aresuessful reipes for building high-performane game-playing programs.Although this hapter disusses the sienti� advanes, one should not un-derestimate the engineering required to build these programs. One need onlylook at the reent suess of the Deep Blue hess mahine to appreiate thee�ort required. That projet spanned eight years, and inluded several full-timepeople, extensive omputing resoures, omputer hip design, and grandmaster1Othello is a registered trademark of Tsukuda Original, liensed by Anjar Co.2Srabble is a registered trademark of the Milton Bradley Company, a division of Hasbro,In. 2



onsultation. Some of the ase studies hint at the amount of work required tobuild these systems. In all ases, the suesses reported in this hapter are theresult of onsistent progress over many years.2 AdvanesThe biggest advanes in omputer game-playing over the last 40 years haveome as a result of work done on the alpha-beta searh algorithm. Althoughthis algorithm is not suitable for some of the games disussed in this hapter,it reeived the most attention beause of the researh ommunity's preoupa-tion with hess. With the Deep Blue vitory over world hess hampion GarryKasparov, interest in methods suitable for hess has waned and been replaedby ativity in other games. One ould argue that the hess vitory removeda ball and shakle that was stiing reativity doing researh on game-playingprograms.Beause of the historial emphasis on searh, the material in this setion isheavily biased towards it. In the last deade, new tehniques have moved to theforefront of games researh. Two in partiular are given speial emphasis sinethey are likely to play a more prominent role in the near future:1. Monte Carlo simulation has been suessfully applied to games with imper-fet or non-deterministi information. In these games it is too expensiveto searh all possible outomes. Instead only a representative sample ishosen to give a statistial pro�le of the outome. This tehnique has beensuessful in bridge, poker and Srabble.2. Temporal-di�erene learning is the diret desendent of Samuel's mahinelearning researh. Thus it is �tting that this method be inluded in thishapter. Here a database of games (possibly generated by omputer self-play) an be used to bootstrap a program to �nd a good ombinationof knowledge features. The algorithm has been suessfully applied tobakgammon, and has reently shown promise in hess.This setion gives a representative sample of some of the major results andresearh thrusts over the past 40 years. Setion 2.1 disusses the advanes insearh tehnology for two-player perfet information games. Advanes in knowl-edge engineering have not kept pae, as disussed in Setion 2.2. Setion 2.3disusses the emerging simulation framework for games of non-deterministi orimperfet information. The material is intended to give a avor of the progressmade in these areas, and it is not intended to be exhaustive.2.1 Advanes in SearhThe minimax algorithm was at the heart of the hekers program desribed inSamuel's 1960 hapter. Minimax assumes that one player tries to maximizetheir result (often alled Max), while the other tries to minimize what Max3



an ahieve (the Min player). The program builds a searh tree of alternatingmoves by Max and Min. A leaf node is assigned either the game-theoreti valueif known (win, loss, draw) or a heuristi estimate of the likelihood of winning(using a so-alled evaluation funtion). These values are maximized (by Max)and minimized (by Min) from the leaves bak to the root of the searh. Withingiven resoures (typially time), it is usually not possible to searh deep enoughto reah leaf nodes for whih the game-theoreti result is known. The evaluationfuntion uses appliation-dependent knowledge and heuristis to ome up withan estimate of the winning hanes for the side to move.Consider the example in Figure 1, where maximizing nodes are indiatedby squares and minimizing nodes by ovals. The root, Max (node A), has tohoose a move that leads to positions B, C, or D. It is Min to play at thesethree positions and, similarly, Min's hoie of move will lead to a position withMax to move. At the leaves of the tree are the heuristi values. These valuesare maximized at the Max nodes (the nodes left-to-right beginning with E),minimized at the Min nodes (B, C, and D), and maximized at the root (A).In this example, the minimax value of the tree is 5. The bold lines indiate thebest line of play: Max will play from A to C to maximize his sore, while Minwill play from C to H to minimize Max's sore. Max then hooses the branhleading to a sore of 5, the maximum of the possible moves. The best line ofplay is often alled the prinipal variation.
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1 2Figure 1: Searhing a min-max tree.The minimax algorithm is a depth-�rst, left-to-right traversal of the tree,evaluating all suessors of Max and Min nodes. If one assumes that the treehas a uniform branhing fator of w and a �xed depth of d moves (or ply), thenthe algorithm must examine O(wd) leaf nodes. Clearly, the exponential growthof the searh tree limits the e�etiveness of the algorithm.Sometime in the late 1950s or early 1960s, the alpha-beta algorithm for4



searhing minimax trees was invented (the algorithm may have been indepen-dently disovered, but the �rst publiation appears in [8℄). Alpha-beta simplyand elegantly proves that many branhes in the searh tree need not be onsid-ered sine they are irrelevant to the �nal searh result.Consider Figure 1 again. The searh of nodes E and F show that the valueof B is � 4. Now, onsider searhing G. The �rst hild of G has a valueof 6. Thus, Max will guarantee that G's value is � 6. Searhing G's otherhildren is pointless sine they an only inrease G's value, whih annot a�etB's value. Hene further searh at G has been proven to be unneessary. Theother hildren are said to be ut-o� or pruned. Shaded nodes in the �gure havebeen eliminated from the searh by alpha-beta. In this example, the numberof leaf nodes onsidered has been redued from 27 using minimax to 16 withalpha-beta.The alpha-beta algorithm searhes a tree using two bounds: � and �. � isthe minimum value that player Max has ahieved. � is the maximum value towhih player Min an limit Max to (onversely, the best that Max an ahievegiven Min's best play). Any node where a sore results in the ondition � � �auses a ut-o�.The alpha-beta algorithm is given in Figure 2.3 For a d-ply searh, it isalled by: AlphaBeta( rootnode, �1, +1, d, MAXNODE ).Again assuming a tree of �xed branhing fator w and searh depth d, alpha-beta improves the best ase of the searh tree size to O(wd=2) (or, to be morepreise, wdd=2e + wbd=2 � 1) [9℄. This best ase ours when the move leadingto the best minimax sore is searhed �rst at every interior node.4 If the worstmove is searh �rst at every node, then alpha-beta will build an O(wd) minimaxtree.Although the 20 lines of ode in Figure 2 look simple, this is misleading.These are possibly the most deeptive lines of ode in the arti�ial intelligeneliterature! Alpha-beta has the insidious property of hiding errors. For example,an evaluation funtion error may only be deteted when the error happens topropagate to the root of the searh tree. The deeper the searh, the harder itis for the error to be minimized and maximized all the way bak to the root.Consequently, many game-playing programs have bugs that survive for yearsbefore the right sequene of events ours that allows the problem to manifestitself.5In pratie, a high-performane alpha-beta implementation is often 20 ormore pages of ode. The reason for this is the exponential di�erene in thesearh e�ort between the best and worst alpha-beta ases. Considerable e�orthas to be invested to ensure a nearly best-ase result. The onsequene is a3The Negamax formulation is more onise [9℄.4At nodes where a ut-o� ours, one only needs to searh a move that is suÆient toimmediately ause the ut-o�.5Empirial evidene suggests that this only happens in important tournament games!5



int AlphaBeta( position p, int alpha, int beta, int depth, int type ){ /* Chek for a leaf node */if( depth == 0 )return( Evaluate( p ) );/* Identify legal moves */numbmoves = GenerateMoves( p, movelist );if( numbmoves == 0 )return( Evaluate( p ) );if( type == MAXNODE )nexttype = MINNODE;else nexttype = MAXNODE;/* Call AlphaBeta reursively for eah move */for( move = 1; move <= numbmoves; move++ ){ p = MakeMove( p, movelist[ move ℄ );value = AlphaBeta( p, alpha, beta, depth-1, nexttype );p = UndoMove( p, movelist[ move ℄ );/* Update best value found so far */if( type == MAXNODE )alpha = MAX( value, alpha );else beta = MIN( value, beta );/* Chek for a ut-off. Minimax without this line of ode */if( alpha >= beta )break;}if( type == MAXNODE )return( alpha );else return( beta );} Figure 2: The alpha-beta algorithm.myriad of enhanements to alpha-beta, signi�antly inreasing the omplexityof the searh proess.The main alpha-beta searh enhanements an be haraterized into fourgroups:1. Cahing information: avoiding repeated work.2. Move ordering: inreasing the likelihood of the best move being searhed�rst at a node.3. Searh window: hanging the [�, �℄ window to speulatively redue searhe�ort.4. Searh depth: dynamially adjusting the depth to redistribute searh ef-fort, attempting to maximize the value of the information gathered fromthe searh. 6



Eah of these enhanements is disussed in turn.2.1.1 Cahing InformationFor most games, the searh tree is really a misnomer; it is a searh graph. Twodi�erent sequenes of moves an transpose into eah other. For example, inhess, the move sequene 1. d4 d5 2. Nf3 gives rise to the same position asthe sequene 1. Nf3 d5 2. d4. Deteting these transpositions and eliminatingredundant searh e�ort an signi�antly redue the searh-tree size.The transposition table is a ahe of reently searhed positions. When asubtree has been searhed, the result is saved in the transposition table. Beforesearhing a node in the tree, the table is onsulted to see if it has been previouslysearhed. If so, the table information may be suÆient to stop further searhat this node. The table is usually implemented as a large hash table [10, 11℄.The e�etiveness of the transposition table is appliation dependent [12, 13℄.For games like hess and hekers, where a single move hanges a few squares onthe board, the bene�ts an be massive (roughly a 75% redution for hess and89% for hekers for a typial searh). For games like Othello, where a movean hange many squares on the board, the likelihood of two move sequenestransposing into eah other is small (roughly a 33% redution for a typialsearh).2.1.2 Move OrderingThe exponential di�erene in the searh-tree size between the best and worstase of alpha-beta hinges on the order in whih moves are onsidered. At a nodewhere a ut-o� is to our, it should be ahieved with the �rst move searhed.Hene, e�ort is applied at interior nodes to order the moves from the most toleast likely to ause a ut-o�.The most important plae for move ordering is at the root of the searh.For example, if a 10-ply searh is initiated without any prior preparation, theresulting searh tree is likely to be large. The �rst move searhed may providea poor bound (� value), inreasing the size of the searh window used for thesubsequent moves. Considering the best move �rst narrows the searh window,inreasing the hanes for ut-o�s in the tree.Most alpha-beta-based programs use a tehnique alled iterative deepeningto maximize the hanes of the best move being searhed �rst [11℄. The programstarts by searhing all moves 1-ply deep. The moves are then ordered based onthe returned sores. The tree is then re-searhed, this time 2-ply deep, and soon. The idea is that the best move for a (d�1)-ply searh is likely to also be bestfor a d-ply searh. By investing the overhead of repeating portions of the searh,the hanes are inreased that the best move is onsidered �rst in the last (mostexpensive) iteration. Experiene shows that the ost of the early iterations isa small prie to pay for the large gains ahieved by improved move ordering atthe root of the tree. This is an important result that has been applied to manyother searh domains (for example, single-agent searh [14℄).7



The idea of onsidering the best move �rst should be applied at all nodes inthe tree. At interior nodes, heaper methods are used to improve the quality ofthe move ordering. Three popular hoies are:� Transposition table. When reording a searh result in the table, savethe sore and the move that leads to the best sore. When the node isrevisited (within the same or the next iteration), if the sore informationis insuÆient to ause a ut-o�, then the best move from the previoussearh an be onsidered �rst. Sine the move was previously best, thereis a good hane that it is still the best move.� Appliation-dependent knowledge. Many games have appliation-dependentproperties that an be exploited by a move ordering sheme. For example,in hess apture moves are more likely to ause a ut-o� than non-apturemoves. Hene, many programs onsider all apture moves �rst at eahnode.� History heuristi. There are numerous appliation-dependent move-orderingalgorithms in the literature. One appliation-independent tehnique thathas proved to be simple and e�etive is the history heuristi [15, 16℄. Amove that is best in one position is likely also best in similar positions.The heuristi maintains a global history sore for eah move that indiateshow often that move has been best. Moves an then be ordered by theirhistory heuristi sore. A subset of this idea, the killer heuristi, is alsopopular [17℄.The ontrast between the transposition table and history heuristi is interest-ing. The transposition table stores the exat ontext under whih a move isonsidered best (i.e., it saves the position with the move). The history heuris-ti reords whih moves are most often best, but has no knowledge about theontext that makes the move strong. Other move ordering shemes fall some-where in between these two extremes by, for example, adding more ontext tothe history-heuristi moves.Move ordering in game-playing programs is highly e�etive. For example,a reent study showed that the best move was searhed �rst over 90% of thetime in hess and hekers programs, and over 80% of the time in an Othelloprogram [12℄. The hess result is quite impressive when one onsiders that atypial position has 35 legal moves to hoose from.2.1.3 Searh WindowThe alpha-beta algorithm searhes the tree with an initial searh window of[�1, +1℄. Usually, the extreme values do not our. Hene, the searh anbe made more eÆient by narrowing the range of values to onsider, inreasingthe likelihood of ut-o�s. Aspiration searh enters the searh window aroundthe value expeted from the searh, plus or minus a reasonable range (Æ) ofunertainty. If one expets the searh to produe a value near, say, 40 then the8



searh an be alled with a searh window of [40� Æ, 40 + Æ℄. The searh willresult in one of three ases:� 40� Æ < result < 40 + Æ. The atual value is within the searh window.This value has been determined with less e�ort than would have beenrequired had the full searh window been used.� result � 40 � Æ. The atual value is below the aspiration window (thesearh is said to fail low). To �nd the atual value, a seond searh isneeded with the window [�1, result℄.� result � 40 + Æ. The atual value is above the aspiration window (thesearh is said to fail high). To �nd the atual value, a seond searh isneeded with the window [result, +1℄.Aspiration searh is a gamble. If the result is within the searh window, thenthe enhanement wins. Otherwise an additional searh is needed. Aspirationsearh is usually ombined with iterative deepening. The result of the (d�1)-plyiteration an be used as the enter of the aspiration window used for the d-plysearh. Æ is appliation dependent and determined by empirial evidene.The idea of speulatively hanging the searh-window size an be appliedthroughout the searh. Consider an interior node with a searh window of [�,�℄. The �rst move is searhed and returns a sore v in the searh window. Thenext move will be searhed with the window [v, �℄. If the move ordering ise�etive, then there is a high probability that the best move at this node wassearhed �rst. Hene, the remaining moves are expeted to return a sore thatis � v. Searh e�ort an be saved by modifying the searh window to provethat the remaining moves are inferior. This an be done using the window [v,v + 1℄. Oasionally, this assumption will be wrong, in whih ase a move thatreturns a value v < v0 < � will have to be re-searhed with the new window[v0, �℄. This is the idea behind the NegaSout [18, 19℄ and Prinipal VariationSearh [20℄ algorithms.A searh window of width one (��� = 1) is alled a minimal window. Theidea of minimal windows an be taken to the extreme. Pearl's Sout algorithm[21℄ an be used to answer a Boolean question about the searh value (e.g., isthe root value � 0?). More reently, the MTD(f) algorithm uses only minimalwindows to determine the value of the root. This algorithm has been shown tobe superior to alpha-beta in terms of number of nodes expanded in the searhtree [12, 13℄.2.1.4 Searh DepthAlthough alpha-beta is usually desribed as a �xed-depth searh, better per-formane an be ahieved using a variable searh depth. The searh an beompared to a stok portfolio; don't treat all stoks as being equal. You shouldinvest in those that have the most promise, and redue or eliminate your hold-ings in those that look like losers. The same philosophy holds true in searh9



trees. If there is some hint in the searh that a sequene of moves looks promis-ing, then it may be a good idea to extend the searh along that line to get moreinformation. Similarly, moves that appear to be bad should have their searhe�ort redued. There are a number of ways that one an dynamially adjustthe depth to maximize the amount of information gathered by the searh.Most alpha-beta-based programs have a number of appliation-dependenttehniques for altering the searh depth. For example, hess programs usuallyextend heking moves an additional ply sine these moves indiate that some-thing interesting is happening. Most programs have a \hopeless" metri forreduing the searh depth. For example, in hess if one side has lost too muh(e.g., a queen and a rook), it is very unlikely this subtree will eventually end upas part of the prinipal variation. Hene, the searh depth may be redued.There are a number of tehniques that may be useful for a variety of domains.In hess, null-move searhes have been very e�etive at urtailing analysis ofpoor lines of play. The idea is that if one side is given two moves in a row andstill an't ahieve anything, then this line of play is likely bad. Hene, the searhdepth is redued. This idea an be applied reursively throughout the searh[22, 23℄.Another important idea is ProbCut [24℄. Here the result of a shallow searhis used as a preditor of whether the deeper searh would produe a value thatis relevant to the searh window. Statistial analysis of the program's searhesis used to �nd a orrelation between the values of a shallow and deep searh.If the shallow searh result indiates that the deeper searh will not produea value that is large enough to a�et the node's value, then further e�ort isstopped.Although both the null-move and ProbCut heuristis purport to be applia-tion independent, in fat they both rely on game-spei� properties. Null-moveut-o�s are only e�etive if the onsequenes of giving a side two moves in a rowis serious. This auses problems, for example, in hekers where giving a playeran extra move may allow them to esape from a position where having only onemove loses (these are known as zugzwang positions). ProbCut depends on therebeing a strong orrelation between the values of shallow and deep searhes. Forgames with low variane in the leaf node values, this works well. If there is highvariane, then the evaluation funtion must be improved to redue the variane.In hess programs, for example, the variane is generally too high for ProbCutto be e�etive.The most ommon form of searh extension is the quiesene searh. It iseasier to get a reliable evaluation of a leaf position if that position is quiet orstable (quiesent). Hene, a small searh is done to resolve immediate apturemoves or threats [11℄. Sine these position features are disovered by searh,this redues the amount of expliit appliation-dependent knowledge requiredin the evaluation funtion.A searh-extension idea that has attrated a lot of attention is singularextensions [25℄. The searh attempts to identify fored (or singular) moves.This an be ahieved by manipulating the searh window to see if the best moveis signi�antly better than the seond-best move. When a singular move is10



found, then the searh along that line of play is extended an additional ply (ormore). The idea is that foring moves indiate an interesting property of theposition that needs to be explored further.In addition, there are various other extensions ommonly used, most basedon extending the searh to resolve the onsequenes of a threat [26, 27℄.2.1.5 Close to Perfetion?Numerous studies have attempted to quantify the bene�ts of alpha-beta en-hanements in �xed-depth searhes (for example, [10, 16℄). Move ordering andthe transposition table usually make the biggest performane di�erene, withother enhanements generally being muh smaller in their impat.The size of trees built by game-playing programs appears to be lose to thatof the minimal alpha-beta tree. For example, in hess, Belle is reported to bewithin a fator of 2.2 [28℄, Phoenix within 1.4 [15℄, Hiteh within 1.5 [28℄ andZugzwang within 1.2 [29℄. These results suggest that there is little room forimprovement in �xed-depth alpha-beta searhing.The above omparisons have been done against the approximate minimalsearh tree. However, �nding the real minimal tree is diÆult, sine the searhtree is really a searh graph. The real minimal searh should exploit this prop-erty by:1. seleting the move that builds the smallest tree to produe a ut-o�, and2. preferring moves that maximize the bene�ts of the transposition table (i.e.reuse results as muh as possible).Naturally, these objetives an onit. In ontrast to the above impressivenumbers, results suggested that hess programs are o� by a fator of three ormore from the real minimal searh graph [12, 13℄. Thus, there is still room forimprovements in alpha-beta searh eÆieny. Nevertheless, given the exponen-tial nature of alpha-beta, that programs an searh within a small onstant ofoptimal is truly impressive.Forty years of researh into alpha-beta have resulted in a reipe for a �nelytuned, highly eÆient searh algorithm. The program designer has a rih setof searh enhanements at their disposal. The right ombination is appliationdependent and a matter of taste. Although building an eÆient searher is wellunderstood, deiding where to onentrate the searh e�ort is not. It remainsa hallenge to identify ways to seletively extend or redue the depth in suh away as to maximize the quality of the searh result.2.1.6 Alternative ApproahesSine its disovery. alpha-beta has been the mainstay of omputer games de-velopment. Over the years, a number of interesting alternatives to alpha-beta-based searhing have been proposed.Berliner's B* algorithm attempts to prove the best move, without neessarilydetermining the best move's value [30, 31℄. In its simplest form, B* assigns an11



optimisti (upper bound) and a pessimisti (lower bound) value to eah leafnode. These values are reursively baked up the tree. The searh ontinuesuntil there is one move at the root whose pessimisti value is as good as all thealternative move's optimisti values. In e�et, this is a proof that the best move(but not neessarily its value) has been found.There are several drawbaks with B*, most notably the non-standard methodfor evaluating positions. It is diÆult to devise reliable optimisti and pes-simisti evaluation funtions. B* has been re�ned so that the evaluations arenow probability distributions. However, the resulting algorithm is omplex andneeds onsiderable appliation tuning. It has been used in the Hiteh hessprogram, but even there the performane of alpha-beta is superior [31℄.MAllester's onspiray numbers algorithm tries to exploit properties of thesearh tree [32℄. The algorithm reords the minimal number of leaf nodes in asearh tree that must hange their value (or onspire) to hange the value ofthe root of the tree. Consider a Max node having a value of 10. To raise thisvalue to, say, 20, only one of the hildren has to have its value beome 20. Tolower the value to, say, 0, all hildren with a value greater than 0 must havetheir value lowered. Conspiray numbers works by reursively baking up thetree the minimum numbers of nodes that must hange their value to ause thesearh tree to beome a partiular value. The algorithm terminates when thee�ort required to hange the value at the root of the searh (i.e., onspiraynumber) exeeds a prede�ned threshold.Conspiray numbers aused quite a stir in the researh ommunity beauseof its innovative aspet of measuring resistane to hange in the searh. Consid-erable e�ort has been devoted to understanding and improving the algorithm.Unfortunately it has a lot of overhead (for example: slow onvergene, ostof updating the onspiray numbers, maintaining the searh tree in memory)whih has been an impediment to its usage in high-performane programs. Avariation on the original onspiray numbers algorithm has been suessfullyused in the Ulysses hess program [33℄.There are other innovative alternatives to alpha-beta, eah of whih is worthyof study. These inlude BPIP [34℄, min/max approximation [35℄, and meta-greedy algorithms [36℄.Although all these alpha-beta alternatives have many desirable properties,none of them is a serious hallenger to alpha-beta's dominane. The oneptualsimpliity of the alpha-beta framework makes it relatively easy to ode andhighly eÆient at exeution time. The alpha-beta alternatives are muh harderto ode, the algorithms are not as well understood, and there is generally a largeexeution overhead. Perhaps if the researh ommunity devoted as muh e�ortto understanding these algorithms as they did in understanding alpha-beta, wewould see a new algorithm ome to the fore. Until that happens, alpha-beta willontinue to dominate as the searh algorithm of hoie for two-player perfetinformation games.
12



2.1.7 ConlusionsResearh on understanding the alpha-beta algorithm has dominated games re-searh sine its disovery in the early 1960's. This proess was aelerated bythe disovery of the strong orrelation of program performane with alpha-betasearh depth [37℄. This gave a simple formula for suess: build a fast searhengine. This led to the building of speial-purpose hips for hess [38℄ andmassively parallel alpha-beta searhers [29℄.Searh alone is not the answer. Additional searh eventually leads to di-minishing returns in the bene�ts ahievable [39℄. Eventually, there omes thepoint where the most signi�ant performane gains are to be had by identify-ing and implementing missing piees of appliation knowledge. This was evi-dent, for example, in the 1999 world omputer hess hampionship, where thedeep-searhing, large multi-proessor programs �nished behind the shallower-searhing, PC-based programs that used more hess knowledge.For many popular games, suh as hess, hekers, and Othello, alpha-betahas been suÆient to ahieve world-lass play. Hene, there was no need to lookfor alternatives. For arti�ial-intelligene purists, this is an unsatisfatory re-sult. By relying on so-alled brute-fore searhing, these programs an minimizetheir dependene on knowledge. However, for other games, most notably Go,searh-intensive solutions will not be e�etive. Radially di�erent approahesare needed.2.2 Advanes in KnowledgeIdeally, no knowledge other than the rules of the game should be needed tobuild a strong game-playing program. Unfortunately, for interesting games itis usually too deep to searh to �nd the game-theoreti value of a position.Hene knowledge for di�erentiating favorable from unfavorable positions has tobe added to the program. Nevertheless, there are some ases where the programan learn position values without using heuristi knowledge.The �rst example is the transposition table. This is a form of rote learning.By saving information and reusing it, the program is learning, allowing it toeliminate nodes from the searh without searhing. Although the table is usuallythought of as something loal to an individual searh, \important" entries anbe saved to disk and used for subsequent searhes. For example, by saving sometransposition table results from a game, they may be used in the next game toavoid repeating the same mistake [40, 41℄.A seond example is endgame databases. Some games an be solved from theend of the game bakwards. One an enumerate all positions with one piee onthe board, and reord whih positions are wins, losses, and draws. These resultsan be baked up to solve all positions with two piees on the board, and so on.The result is an endgame database ontaining perfet information. For hess,most of the �ve-piee endgames have been solved, with some six-piee endgamesalso solved [6℄. This is of limited value, sine most games are over before suh asimpli�ed position is reahed. In hekers, all eight-piee endgames have been13



solved [42℄. The databases play a role in the searh of the �rst move of a game!Endgame databases have been used to solve the game of Nine Men's Morris [43℄.A third form of knowledge omes from the human literature. Most gameshave an extensive literature on the best opening moves of the game. This infor-mation an be olleted in an opening book and made available to the program.The book an either be used to selet the program's move, or as advie tobias the program's opening move seletion proess. Many programs modify theopening book to tailor the moves in it to the style of the program.When pre-omputed or human knowledge is not available, then the game-playing program must fall bak on its evaluation funtion. The funtion assignssores to positions that are a heuristi assessment of the likelihood of winning (orlosing) from the given position. Appliation-dependent knowledge and heuristisare usually applied to a position to sore features that are indiators of the truevalue of the position.The program implementor (usually in onsultation with a domain expert)will identify a set of features (f) that an be used to assess the position. Eahfeature is given a weight (w) that reets how important that feature is inrelation to the others in determining the overall assessment. Most programs usea linear ombination of this information to arrive at a position value:value = nXi=1 wi � fi (1)where n is the number of features. For example, in hess two features that areorrelated with suess are the material balane and pawn struture (f1 andf2). Material balane is usually muh more important than pawn struture,and hene has a muh higher weighting (w1 >> w2).Identifying whih features might be orrelated with the �nal result of thegame is still largely done by hand. It is a omplex proess that is not well un-derstood. Usually the features ome from human experiene. However, humanonepts are often vague and hard to de�ne algorithmially. Even well-de�nedonepts may be impratial beause of the omputational overhead. One ouldapply onsiderable knowledge in the assessment proess, but this inreases theost of performing an evaluation. The more expensive the evaluation funtion isto ompute, the smaller the searh tree that an be explored in a �xed amount oftime. Thus, eah piee of knowledge has to be evaluated on what it ontributesto the auray of the overall evaluation, and the ost (both programmer timeand exeution time) of having it.Most evaluation funtions are arefully tuned by hand. The knowledge hasbeen judiiously added, taking into aount the expeted bene�ts and the ostof omputing the knowledge. Hene, most of the knowledge that is used isof a general-purpose nature. Unfortunately, it is the exeptions to the knowl-edge that ause the most performane problems. As hess grandmaster KevinSpraggett said [42℄:I spent the �rst half of my areer learning the priniples for playingstrong hess and the seond half learning when to violate them.14



Most game-playing program's evaluation funtions attempt to apture the �rsthalf of Spraggett's experiene. Implementing the seond half is often too diÆultand omputationally time onsuming, and generally has a small payo� (exeptperhaps at the highest levels of play).Important progress has been made in setting the weights automatially. Al-though this seems like it should be muh easier than building an evaluationfuntion, in reality it is a laborious proess when done by hand. Automatingthis proess would result in a huge redution in the e�ort required to build ahigh-performane game-playing program.Temporal di�erene learning has ome to the fore as a major advane inweighting evaluation funtion features. Samuel pioneered the idea [3, 4℄, but itonly beame reognized as a valuable learning algorithm after Sutton extendedand formalized this work [44℄. Temporal di�erene learning is at the heart ofTesauro's world-hampionship-aliber bakgammon program (see Setion 3.1),and has shown promising results in hess (disussed later in this setion).Temporal di�erene learning (TDL) is a reinforement learning algorithm.The learner has an input state, produes an output ation, and later reeivesfeedbak (ommonly alled the reward) on how well its ation performed. Forexample, a hess game onsists of a series of input states (positions) and ations(the move to play). At the end of the game, the reward is known: win, loss,or draw. In between the start and the end of the game, a program will use afuntion to map the inputs onto the outputs (deide on its next move). Thisfuntion is a preditor of the future, sine it is attempting to maximize itsexpeted outome (make a move that leads to a win). The goal in reinforementlearning is to propagate the reward information bak along the game's movesequene to improve the quality of ations (moves) made. This is aomplishedby attributing the redit (or blame) to the outputs that led to the �nal reward.By doing so, the learner's evaluation funtion will hange, hopefully in suh away as to be a better preditor of the �nal reward.To ahieve the large-sale goal of mathing inputs to the result of the game,TDL fouses on the smaller goal of modifying the learner so that the urrentpredition is a better approximation of the next predition [44, 45℄. Considera series of preditions P1; P2; :::PN on the outome of a game. These ould bethe program's assessment of the likelihood of winning from move to move. Inhess, the initial position of a game, P1, has a value that is likely lose to 0. Fora win PN = 1 while a loss would have PN = �1. For the moves in between, theassessments will vary.If the likelihood of winning for position t (Pt) is less (more) than that ofposition t + 1 (Pt+1), then we would like to inrease (derease) the value ofposition t to be a better preditor of the value of t + 1. The idea behindtemporal di�erene learning is to adjust the evaluation based on the inrementaldi�erenes in the assessments. Thus,4 = Pt+1 � Ptmeasures that di�erene between the predition for move t+1 and that for move15



4wt = �(Pt+1 � Pt) tXk=1 �t�k 5w Pkwhere:� w is the set of weights being tuned,� t is the time step being altered, in a sequene of moves from 1; 2; :::; N�1,� 4wt is the hange in the set of weights at step t as a result of applyingtemporal di�erenes,� Pt is the predition at time step t (for the end of the game, PN , the �naloutome is used),� � (0 � � � 1) ontrols how muh redit gets propagated bak to theprevious estimates (� = 0 implies no feedbak, while � = 1 would have allprevious moves sharing equally),� 5wPk is the set of partial derivatives for eah omponent of w, and� � > 0 is the rate of learning (a small � auses small inremental hanges;a large � makes larger steps).� and � are heuristi parameters that need to be tuned for eah appliationdomain. Figure 3: The TD(�) algorithm.t. This adjustment an be done by modifying the weights of the evaluationfuntion to redue the 4 from move to move.Temporal di�erene learning is usually desribed with a variable weightingof reeny. Rather than onsidering only the previous move, one an onsider allprevious moves with non-uniform weights (usually exponential). These movesshould not all be given the same importane in the deision-making proess,sine the evaluation of moves made many moves previously are less likely to berelevant to the urrent evaluation. Instead, previous moves are weighted by �p,where p reets how far bak the move is. The parameter � ontrols how muhredit is given to previous moves, giving exponentially deaying feedbak of thepredition error over time. Hene, this algorithm is alled TD(�). Figure 3 givesthe temporal di�erene relation used by TD(�).A typial appliation of TDL is for a program with an evaluation funtion,but unknown weights for the features. By playing a series of games, the pro-gram gets feedbak on the relative importane of features. TDL propagates thisinformation bak along the move sequene played, ausing inremental hangesto the feature weights. The result is that the evaluation funtion values get16



tuned to be better preditors.In addition to Tesauro's suess in bakgammon (Setion 3.1), there are tworeent TDL data points in hess. First, Cilkhess, urrently one of the strongesthess programs, was tuned using temporal di�erene learning and the resultsare enouraging. Don Dailey, a o-author of Cilkhess, writes that [46℄:Muh to my surprise, TDL seems to be a suess. But the weight setthat omes out is SCARY; I'm still afraid to run with it even thoughit beats the hand-tuned weights. They are hard to understand too,beause TDL expresses hess onepts any way that is onvenientfor it. So if you reate a heuristi to desribe a hess onept, TDLmay use it to \�x" something it onsiders broken in your weight set.An interesting data point was ahieved in the KnightCap hess program[47℄. Starting with a program that knew only about material and had all otherevaluation funtion terms weighted with zero, the program was able to quiklytune its weights to ahieve an impressive inrease in its performane. Theauthors reognized that the preditions of a hess program were the result ofan extensive searh, and the sore at the root of the tree was really the value ofthe leaf node on the prinipal variation. Consequently, the temporal di�erenelearning should use the prinipal variation leaf positions, not the positions atthe root of the searh tree [48℄. This algorithm has been alled TDLeaf(�) [47℄.These suesses are exiting, and o�er the hope that a major omponent ofbuilding high-performane game-playing programs an be automated.62.3 Simulation-Based ApproahesIn the 1990s, researh into non-deterministi and imperfet information gamesemerged as an important appliation for arti�ial-intelligene investigations.In many ways, these domains are more interesting than two-player perfet-information games, and promise greater long-term researh potential. Handlingimperfet or probabilisti information signi�antly ompliates the game, but isa better model of the vagaries of real-world problems.For non-deterministi and imperfet information games, alpha-beta searhdoes not work. The branhes in the searh tree represent probabilisti outomesbased on, for example, the roll of the die or unknown ards. At best onean bak up probabilities of expeted outomes. For these games it is usuallyimpratial to build the entire game tree of all possibilities.Simulations an be used to sample the spae of possible outomes, tryingto gather statistial evidene to support the superiority of one ation.7 Theprogram an instantiate the missing information (e.g. assign ards or determinedie rolls), play the game through to ompletion, and then reord the result.This an be repeated with a di�erent assignment of the missing information.6An exellent survey of mahine learning applied to games an be found in [49℄.7Some of the material in this setion has been taken from [50℄.17



By repeating this proess many times, a statistial ranking of the move hoiesan be obtained.Consider the imperfet-information game of bridge. The delarer does notknow in whih hand eah of the 26 hidden ards are. The simulator an instan-tiate one possible assignment of ards to eah opponent, and then play the handthrough to ompletion (a trial). Thus, a single data point has been obtained onthe number of triks that an be won. This an then be repeated by dealing adi�erent set of ards to eah opponent. When these simulated hands have beenrepeated a suÆient number of times, the statistis gathered from these runsan be used to deide on a ourse of ation. For example, it may be that in90% of the samples a partiular ard play led to the best result. Based on thisevidene, the program an then deide with high on�dene what the best ardto play is.For eah trial in the simulation, one instane of the non-deterministi orunknown information is applied. Hene, a representative sample of the searhspae is looked at to gather statistial evidene on whih move is best. Figure 4shows the pseudo-ode for this approah. Some of its harateristis inlude:1. The program iterates on the number of samples taken.2. The searh for eah sample usually goes to the end of the game.3. Heuristi evaluation usually ours at the interior nodes of the searh todetermine a subset of branhes to onsider, reduing the ost of a sample(and allowing more samples to be taken).The simulation bene�ts from seletive samples that use information from thegame state (i.e. suh as the bidding aution in bridge), rather than a uniformdistribution or other �xed distribution sampling tehnique.Statistial sampling has noise or variane. The sampling must be done ina way that aptures the reality of the situation, ruling out impossible senar-ios and properly reeting the likelihood of improbable senarios. The morerepresentative the samples, the less the variane is likely to be. Seletive sam-pling refers to arefully hoosing the simulation data to be as representative aspossible [50℄.It is important to distinguish seletive sampling from traditional Monte Carlotehniques. Seletive sampling uses information about the game state to skewthe underlying probability distribution, rather than assuming uniform or other�xed probability distributions. Monte Carlo tehniques may eventually onvergeon the right answer, but seletive sampling allows for faster onvergene and lessvariane.As an example, onsider the imperfet-information and non-deterministigame of Srabble. Brian Sheppard, author of Maven, writes that for his simu-lations he generates [51℄:... a distribution of raks that mathes the distribution atually seenin games. In Maven we use a uniform distribution of the rak, andwe take steps to ensure that every tile is represented as often as it18



/* From a given state, simulate and return the best move */move Simulator( known state state )f obvious move = NO;trials = 0;while( ( trials <= MAX TRIALS ) and ( obvious move == NO ) )f trials = trials + 1;/* Generate the missing information */missing info = seletive sampling to generate missing information;numbmoves = GeneratePlausibleMoves( state, missing info, movelist );/* Consider all moves */for( m = 1; m <= numbmoves; m++ )f state = MakeAtion( state, movelist[ m ℄, missing info );value[m℄ = value[m℄ + Searh( state );state = UndoAtion( state, movelist[ m ℄, missing info );g/* Test to see if one move is statistially better than all others */if( 9 i suh that value[ i ℄ >> value[ j ℄(8 j, j 6= i) )f obvious move = YES;gg/* Return the move with the highest sore */return( move i k value[ i ℄ >= value[ j ℄ (8 j, j 6= i) );g Figure 4: Simulation-based searh.should be. We do this without introduing statistial bias by alwaysinluding in the opponent's tiles for the next iteration the one tilethat has been most underrepresented among all previous raks.Seletive sampling need not be perfet. In Srabble, the opponent's tiles donot ome from a uniform distribution: opponents tend to play away bad lettersand keep good letters. Sheppard is onvined that this small re�nement to themodel of the opponent's hands would make little di�erene in the simulationresults.An important feature of the simulation-based framework is the notion ofan obvious move. Although many alpha-beta-based programs inorporate anobvious move feature, the tehnique is usually ad ho and the heuristi is theresult of programmer experiene rather than a sound analyti tehnique. In thesimulation-based framework, an obvious move is statistially well-de�ned. Asmore samples are taken, if one hoie exeeds the alternatives by a statistiallysigni�ant margin, one an stop the simulation early and ommit to the ation,19



with full knowledge of the statistial validity of the deision.It is interesting to ompare alpha-beta and simulation-based searh meth-ods. Alpha-beta onsiders all possible moves at a node that annot be logiallyeliminated; simulation-based searh an only look at a representative sample.Whereas alpha-beta searh typially has a depth limitation, most simulation-based programs follow a path from the root of the searh to the end of the game.Thus, one an haraterize alpha-beta searh trees as having large width, butlimited depth. Simulations, on the other hand, typially have limited breadthbut large depth. Figure 5 illustrates the di�erenes in these two approahes,where an \x" is used to indiate where evaluations our in the searh.
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(a) Alpha-beta searh (b) Simulation searhFigure 5: Contrasting searh methods.Simulations are used in many branhes of siene, but have only reentlyemerged as a powerful tool for onstruting high-performane game-playing pro-grams. They have proven to be e�etive in bakgammon, bridge, poker, andSrabble. This tehnique deserves to be reognized as an important frameworkfor building game-playing programs, equal in stature to the alpha-beta model.2.4 PerspetivesEnormous progress has been made in understanding the algorithms needed tobuild game-playing programs. Most of this work has been driven by the desireto satisfy one of the early goals of arti�ial intelligene researh, building aprogram apable of defeating the human world hess hampion. Hene, mostgames-related researh has onentrated on alpha-beta searh. With the hesssuess on the horizon, many researhers branhed out into other games. Asa result, researh e�orts on two-player perfet-information games has movedto the bakground. New vistas are being explored, with temporal-di�erenelearning and simulations being samples of the urrent researh thrusts.The researh in developing algorithms for game playing has appliability toother appliation domains, but the ommunity of researhers involved have done20



a poor job selling the tehnology. For example, many of the searh tehniquespioneered with alpha-beta have beome standard in other searh domains (e.g.,iterative deepening), with few realizing the lineage of the ideas.3 Advanes in Computer GamesThis setion summarizes the progress made in a number of popular games.These inlude games where omputers are better than all humans (hekers,Othello, and Srabble), are as good as the human world hampion (bakgammonand hess), and some where human supremay may be hallenged in the nearfuture (bridge and poker). Eah setion ontains a brief history of programdevelopment for that game, a ase study on the best program in the area, anda representative sample of their play. The ase study highlights interesting orunique aspets of the program.The histories are neessarily brief. I apologize in advane to the many hard-working researhers and hobbyists whose work is not mentioned here.3.1 BakgammonThe �rst onerted e�ort at building a strong bakgammon program was un-dertaken by Hans Berliner of Carnegie Mellon University. In 1979 his program,BKG9.8, played an exhibition math against the the newly-rowned world ham-pion Luigi Villa [52, 53℄. The stakes were $5,000, winner take all. The �nal sorewas 7-1 in favor of the omputer, with BKG9.8 winning four of the �ve gamesplayed (the rest of the points ame from the doubling ube).Bakgammon is a game of both skill and luk. In a short math, the diean favor one player over another. Berliner writes that \In the short run, smallperentage di�erenes favoring one player are not too signi�ant. However, inthe long run a few perentage points are highly indiative of signi�ant skilldi�erenes" [53℄. Thus, assessing the results of a �ve-game math are diÆult.Afterwards Berliner analyzed the program's play and onluded that [52℄:There is no doubt that BKG9.8 played well, but down the line Villaplayed better. He made the tehnially orret plays almost all thetime, whereas the program did not make the best play in eight outof 73 non-fored situations.BKG9.8 was an important �rst step, but major work was still needed to bringthe level of play up to that of the world's best players.In the late 1980s, IBM researher Gerry Tesauro began work on a neural-net-based bakgammon program. The net used enoded bakgammon knowledgeand, training on data sets of games played by expert players, learned the weightsto assign to these piees of knowledge. The program, Neurogammon, was goodenough to win �rst plae in the 1989 Computer Olympiad [54℄.Tesauro's next program used a neural network that was trained using tempo-ral di�erene learning. Instead of training the program with data sets of games21



played by humans, Tesauro was suessful in having the program learn using thetemporal di�erenes from self-play games. The evolution in TD-Gammon fromversion 0.0 to 3.0 saw an inrease in the knowledge used, a larger neural net, andthe addition of small seletive searhes. The resulting program is aknowledgedto be on par with the best players in the world, and possibly even better.In 1998, an exhibition math was played between world hampion MalolmDavis and TD-Gammon 3.0. To redue the luk fator, 100 games were playedover three days. The �nal result was a narrow eight-point win for Davis. BothDavis and Tesauro have done extensive analysis of the games, oming up withsimilar onlusions [55℄:While this analysis isn't de�nitive, it suggests that we may have wit-nessed a superhuman level of performane by TD-Gammon, marredonly by one horrible blunder redoubling to 8 in game 16, osting awhopping 0.9 points in equity and probably the math!3.1.1 TD-GammonBakgammon ombines both skill and luk. The luk element omes from therolls of the die, making onventional searh tehniques impratial. A singleroll of the die results in one of 21 distint ombinations, eah of whih resultsin an average of 20 legal moves to onsider. With a branhing fator of over400, many of whih are equally likely and annot be pruned, brute-fore searhwon't be e�etive.TD-Gammon is a neural network that takes as input the urrent boardposition and returns as output the sore for the position (roughly, the probabilityof winning) [56℄. The neural network ats as the evaluation funtion. Eah ofthe onnetions in the neural net is parameterized with a weight. Eah node isa funtion of the weighted sum of eah of its inputs, produing an equity valueas output.The neural net has approximately 300 input values (see Figure 6) [45, 57℄.For eah of the 24 points on the board, there are four inputs for eah playergiving the number of piees they have on that point. Additional inputs foreah side are the number of piees on the bar, the number of piees taken o�the board, and whose turn it is. The likelihood of ahieving a gammon or abakgammon are also input. The remaining 100 inputs are from funtions thatompute positional features, taken from the Neurogammon program. The inputsto the net were hosen to simplify the system, and not to minimize the numberof inputs.TD-Gammon 2.0 used no bakgammon knowledge and had a neural net on-taining 80 hidden units. This program was suÆient to play strong bakgam-mon, but not at a world-lass level. Tesauro was able to improve the program'sperformane to be world-lass aliber by adding Neurogammon's bakgammonknowledge as input to the neural net. This version, TD-Gammon 3.0, ontains160 hidden units in the neural network. Eah unit in the net takes a linear sumof the weighted values of its input, and then onverts it to a value in the range22
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Figure 6: TD-Gammon 3.0's neural network.-3 to 3. A bakgammon is worth three points, a gammon two, and a win, onepoint. The onversion is done with a nonlinear sigmoid funtion, allowing theoutput to be a nonlinear funtion of the inputs. The resulting neural net hasapproximately 50,000 weights that need to be trained.The weights in the hidden units were trained using temporal di�erene learn-ing from self-play games. By playing the program against itself, there was anendless supply of data for the program to train itself against. In a given gameposition, the program uses the neural net to evaluate eah of the roughly 20di�erent ways it an play its die roll, and then hooses the move leading tothe maximum evaluation. Eah game is played to ompletion, and then tempo-ral di�erene learning is applied to the sequene of moves. Roughly 1,500,000self-play games were used for training TD-Gammon 3.0.TD-Gammon has been augmented with a seletive three-ply searh. For eahof its moves, TD-Gammon onsiders the most likely opponent responses, andits replies to those responses. Eah state onsidered in the searh has roughly400 possibilities, so for eah of the 21 die rolls, TD-Gammon only onsidersa handful of likely best moves for the opponent (seletively paring down thesearh).A ritial omponent of strong bakgammon is the handling of the doublingube. The ube strategy was added after the program was trained. It usesa theoretial doubling formula developed by mathematiians in the 1970s [58℄.During a game, TD-Gammon's reward estimates are fed into this formula toome up with an approximation of the expeted doubling payo�.Post-mortem analysis of bakgammon games use simulations (or roll-outs asthey are alled in the bakgammon ommunity). A roll-out onsists of repeat-edly simulating the play from a starting position through to the end of the game.Eah trial onsists of a di�erent sequene of die rolls. Eah move deision is23



based on a one-ply searh. A simulation is stopped after 10,000 trials or whena move beomes statistially better than all the alternatives.3.1.2 The Best of Computer BakgammonThe following game was the 18th played in the exhibition math between TD-Gammon 3.0 and world hampion Malolm Davis, held at the 1998 onfereneof the Amerian Assoiation for Arti�ial Intelligene. The game ommentsare by Gerry Tesauro (GT), Malolm Davis (MD) and TD-Gammon (TD). TDgives the top moves in a position, ordered by their sore. These values weredetermined after the math by roll-outs. Tesauro explains how to interpret thesores [59℄:Ignoring gammons and bakgammons, if player's move deision is0.1 worse than the best move, the player has redued his winninghanes by about 5%, and bakgammon experts would regard thatas a \blunder." On the other hand, if the error is 0.02 or less, it onlyosts about 1% in winning hanes, and suh errors are regarded assmall.Eah of the 24 points is numbered and given relative to the side to move(White is ounter lokwise from their home; Blak is lokwise from theirhome). A move onsists of 1 to 4 hekers being moved, eah spei�ed with theirfrom- and to-points. The bar is labeled as point number 25. An � indiates aapture move. In the following text, for eah turn the side to move (Blak orWhite) is given, followed by the die roll and the moves hosen.Blak: Malolm Davis | White: TD-Gammon 3.0B 5,1: 24-23 13-8; W 4,2: 8-4 6-4; B 6,2: 24-18 18-16; W 6,4: 24-1813�9; MD: A good play. Hitting twie is reasonably lose. GT: Good play byTD. Aggressively blitzing with 13�9 8�2 or 8�2 6-2 is not bad, but ommittal.TD's play keeps more options open and seems to be a more solid all-aroundpositional play, and in fat it omes out on top in the roll-out results. TD:24-18 13�9 = 0.252; 13�9 8�2 = 0.216; 8�2 6-2 = 0.207.B 4,2: 25-23 13-9; MD: A total toss-up versus 8-4. Going to the 9 point ismore my style, ignoring the 3 dupliation. GT: Whoops, the roll-outs say that8-4 is slightly better. Not only is it fewer shots, but it's also a better point ifmissed and overed. Not sure what MD was thinking here. TD: 25-23 8-4 =-0.389; 25-23 13-9 = -0.407.W 6,6: 24-18 13-7 13-7 13-7; MD: Not hallenging. Going to the 3 pointdupliates 1's and is about a 4% error. GT: I have to onfess that this one isbeyond me. I would have held on to the midpoint and slotted the 3 point withthe last six. TD's play gives up a point, leaves two blots instead of one, in notvery good loations, and yet it wins the roll-out. I guess what's going on is thatTD's play leaves a bunh of builders to make the �ve point, whih is perhaps thekey point in this position. The midpoint is not so valuable when White already24
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242322Figure 7: Malolm Davis (Blak) versus TD-Gammon 3.0 (White).White to play a 2-1.owns the 18 point, and playing 9-3 makes it very unlikely that White will be ableto make the �ve point anytime soon. Well done, TD! TD: 24-18 13-7 13-7 13-7= 0.516; 24-18 13-7 13-7 9-3 = 0.444.B 4,3: 9-5 8-5; MD: High marks to the human. Hitting is a slight error,perhaps more so if the ube is about to be turned, as it reates a more volatileposition. TD: 9-5 8-5 = -0.479; 23-20 20�16 = -0.482.White doubles, Blak takes; MD: This double is apparently a little tooaggressive, although not at all unreasonable. GT: Based on 10,000 full roll-outswith the ube, the double is barely orret. The no-double equity is 0.73, whereasthe equity after double/take is 0.75.W 3,3: 8-5 8-5 6-3 6-3; MD: TD's biggest piee movement error. Makingthe 15 and 3 points is about 2% better. GT: Many options here: one an attemptto disengage with 18-15 18-15, safety the blot, make the 5 point, or make the 3point. TD makes the best play hanging bak on the 18 point and keeping all full-ontat options open. However, the position thematially points to disengagingsine White is far ahead in the rae and has gotten all the bak hekers out.The roll-outs reveal that this is better than TD's hoie. TD: 18-15 18-15 6-36-3 = 0.547; 8-5 8-5 6-3 6-3 = 0.522.B 1,1: 13�12 12-11 11-10 6-5; MD: My biggest error { I was playingquikly and didn't onsider the muh better 6-4 6-4. GT: A tough hoie forMD. He an hit the blot while he has the hane, or wait and build up his boardwith 6-4 6-4 and hope that TD has trouble learing the 18 point. If he's going tohit, perhaps he should hit safely with 13�12 13-12 13-12 6-5. The hoie is notlear to me, but the roll-outs say that MD's play is a big mistake. TD: 6-5 6-55-4 5-4 = -0.466; 13�12 13-12 13-12 6-5 = -0.489; (5th ranked move) 13�1212-11 11-10 6-5 = -0.549. 25



W 5,2: 25�23 23-18; B 5,1: 10-5 5-4; W 6,3: 18-15 15-9; B 4,2:8-4 5-3; W 4,1: 9-5 7-6; B 5,1: 8-3 6-5; MD: A photo ompared to 6-5 6-1.GT: Bold play by MD, risking an immediate fatal hit in order to keep a nieinner board struture. I would have hikened out and played safe with 6-1 4-3.The roll-outs ome out about equal. TD: 6-1 4-3 = -0.535; 8-3 6-5 = -0.544;6-5 6-1 = -0.545.W 6,5: 6-1 9-3; B 5,2: 8-3 6-4; MD: Perhaps a very good play. GT: IfMD slots the ae point, it ould be a liability in the event of immediate ationafter TD rolls a �ve. Instead, he hooses 6-4, avoiding the blot, but making hisown �ves awkward. The roll-outs give a statistially insigni�ant edge to 3-1.TD: 8-3 3-1 = -0.401; 8-3 6-4 = -0.414.W 2,1: 3-1 5-4; B 5,1: 6-1 3-2; MD: Perhaps a very good play by thehuman. Leaving only one blot gives up about 2%. GT: Talk about �ves beingawkward! MD makes an outstanding play here, leaving three blots in the homeboard, but keeping a smooth distribution and hoping to straighten everything outnext turn. I would have played the more raven 4-3 or 5-4, whih turns outbadly in the roll-outs. Being able to play the bad rolls well is the hallmark of ahampion. TD: 6-1 3-2 = -0.657; 6-1 4-3 = -0.716; 6-1 5-4 = -0.728.W 2,1: 18-16 18-17; See Figure 7. MD: A �ne play. GT: Brian Sheppard,who was in the audiene at the time, applauded TD for this spetaularly un-omputer-like play. White ould easily leave no blots with 7-6 7-5, and keep allthe points with 4-1. However, TD realizes that it's ahead in the rae and behindin timing, and that if it waits on the 18 point, it may well have to break it nextturn, when MD's board will likely be leaned up and muh stronger. So this isan exellent time to run with 18-17 18-16. Blak's board is suh a mess thathe probably won't hit even if he an. TD: 18-17 18-16 = 0.718; 18-16 16-15 =0.668; 4-3 3-1 = 0.558; 7-6 7-5 = 0.550.B 4,2: 5-1 4-2; W 4,1: 16-15 15-11; MD: Straightforward. GT: Another�ne play by TD. It's tempting to button up and leave one blot and fewer shotswith 17-16 7-3. However, this leaves a diÆult point to lear next turn, plus it'snot a good idea to allow Blak to aomplish both hitting and esaping with �vesnext turn. TD: 16-15 15-11 = 0.424; 17-16 7-3 = 0.392.B 3,3: 13-10 13-10 10-7 10-7; W 3,2: 11-9 9-6; B 4,3: 7-4 6-2; MD:Close, but the best play. GT: MD saves a six in the out�eld so he won't have tobreak the 23 point next turn. An eminently reasonable idea, but uriously 7-37-4 omes out a tiny bit better in the roll-outs, quite possibly due to samplingnoise. TD: 7-4 7-3 = -0.763; 7-4 6-2 = -0.777.W 2,1: 6-5 17-15; B 6,4: 23-17 7-3; MD: Not lear and very lose. GT:A tough hoie. MD boldly breaks the anhor and leaves two blots, rather thanwrek his board with 7-1 5-1. Comparing apples and oranges is often diÆult forhumans and, here, the roll-outs say that safety is better. TD: 7-1 5-1 = -0.822;23-17 7-3 = -0.865.W 4,1: 7-3 3�2; MD: TD is fearless. Hitting is right by a huge margin.GT: A sary play, but it's often been said that \Computers don't get sared."TD: 7-3 3�2 = 0.575; 7-6 7-3 = 0.514.26



B 2,1: 25-23 17-16; W 2,1: no move; Blak redoubles, Whitepasses; MD: Against a human it would be right to double if there's any haneat all that the ube might be taken. However, there's no hane of that againsta [TD-Gammon℄, so this is a small ube error. GT: Whoops! This position isatually too good to redouble! Blak does slightly better by holding the ube andtrying to win a gammon by piking up the seond blot. 10,000 roll-outs with theube indiate an equity advantage of 0.04 to playing on instead of ashing.Tesauro's postmortem analysis of the math strongly suggests that TD-Gammon was the better player [55℄:I rolled out every position in the Davis{TD math where the dou-bling ube was turned (full roll-outs with the ube, no settlements).There were 130 suh positions. In 72 positions, TD-Gammon dou-bled:1. TD made 63 orret doubles and 9 inorret doubles; total eq-uity loss 1.25.2. MD made 56 orret take/pass deisions and 16 inorret; totalequity loss 2.60.In 58 positions, Malolm Davis doubled:� MD made 46 orret doubles and 12 inorret; total equity loss1.58.� TD made 54 orret take/pass deisions and 4 inorret; totalequity loss 0.19.Of ourse, to get the whole story, we also have to hek all the posi-tions where a player ould have doubled but didn't. It's infeasible toroll out all these positions, but I did do roll-outs of eah of the 130\turn-before" positions, to see if a player missed a double the turnbefore the ube was atually o�ered. To summarize those results:� In 72 positions, TD orretly waited in 67 and missed doublesin 5; total equity loss 0.25.� In 58 positions, MD orretly waited in 45 and missed doublesin 13; total equity loss 1.24.However, 4 of MD's \errors" were at the end of the math when hewas playing onservatively to protet his math lead. If we ignorethese then he only missed doubles in 9 positions, for a total equityloss of 0.61.Malolm has also done a preliminary analysis with Jelly�sh [a om-merial program℄ of the heker plays, whih indiated that TDplayed better. (The fat that TD obtained more opportunities todouble than MD also suggests it was moving the piees better.)27



3.2 BridgeWork on omputer bridge began in the early 1960s ([60℄, for example), but itwasn't until the 1980s that major e�orts were made. The advent of the personalomputer spurred on numerous ommerial projets that resulted in programswith relatively poor apabilities. Perennial world hampion Bob Hamman oneremarked that the ommerial programs \would have to improve to be hopeless"[61℄. A similar opinion was shared by another frequent world hampion, ZiaMahmood. In 1990, he o�ered a prize of $1,000,000 to the person who developeda program that ould defeat him at bridge. At the time, this seemed like a safebet for the foreseeable future.In the 1990s, several aademi e�orts began using bridge for researh in ar-ti�ial intelligene [62, 63, 61, 64, 65℄. The ommerial Bridge Baron programteamed up with Dana Nau and Steve Smith from the University of Maryland.The result was a program that won the 1997 world omputer bridge hampi-onship. The program used a hierarhial task network for the play of the hand.Rather than building a searh tree where eah branh was the play of a ard,they would de�ne eah branh to be a strategy, using human-de�ned oneptssuh as �nesse and squeeze [64, 65℄. The result was an inremental improvementin the program's ard play, but it was still far from being world-lass aliber.Beginning in 1998, Mathew Ginsberg's program GIB started dominatingthe omputer bridge ompetition, handily winning the world omputer bridgehampionship. The program started produing strong results in ompetitionsagainst humans, inluding an impressive result in an exhibition math againstworld hampions Zia Mahmood and Mihael Rosenberg. The math lastedtwo hours, allowing 14 boards to be played. The result was in doubt untilthe last hand, before the humans prevailed by 6.31 IMPs (International MathPoints). This was the �rst notable man-mahine suess for omputer bridge-playing programs. Zia Mahmood, impressed by the rapid progress made byGIB, withdrew his million pound prize.GIB was invited to ompete in the Par Contest at the 1998 world bridgehampionships. This tournament tests the ontestant's skills at playing outbridge hands. In a selet �eld of 35 of the premier players in the world, theprogram �nished strongly in 12th plae. Mihael Rosenberg won the eventwith a sore of 16,850 out of 24,000; GIB sored 11,210. Of the points lost byGIB, 1,000 were due to time (there was a 10 point penalty per minute spentthinking), 6,000 were due to GIB not understanding the aution, and 6,000 weredue to GIB's inability to handle some hands where the orret strategy involvesombining di�erent possibilities [61℄. The latter two issues are urrently beingaddressed.3.2.1 GIBThe name GIB originally stood for \Goren In a Box", a tribute to one of thepioneers of bridge. Another interpretation is \Ginsberg's Intelligent Bridge."To play out a hand, a variation of alpha-beta searh an be used. The28



average branhing fator is roughly 4. Alpha-beta pruning and transpositiontables redues it to approximately 1.7. Ordering moves at interior nodes of thesearh to favor those moves that give the opponent the least number of possibleresponses (i.e. preferring small sub-trees over large ones), further redues thebranhing fator to 1.3. Given the depth of the searh (to the end of the hand;possibly a tree of depth 52), the trees are surprisingly small (on the order of 106nodes).Ginsberg's partition searh algorithm is used to augment the searh [63℄.Partition searh is a \smart" transposition table, where di�erent hands that haveinonsequential di�erenes are treated as the same hand, signi�antly inreasingthe number of table hits. For example, from a transposition table's point ofview, the hands \� K Q 8 4 2" and \� K Q 8 4 3" are di�erent. However, byrepresenting the entry as \� K Q 8 X X", where \X" denotes any small ard,the analysis on the �rst hand an be applied to the seond hand. The resultof adding partition searh redues the average searh tree size for a deal to aremarkably small 50,000 nodes.To deide how to play a hand, GIB uses a simulation [61℄. For eah trial,ards are dealt to eah opponent that are onsistent with the play thus far.Typially 50 deals are used in the simulation; the ard play that results inthe highest expeted number of triks won is hosen to be played. Simulationsare not without their disadvantages. An important omponent to the playof the hand are so-alled information-gathering plays. A trik is played (andpossibly lost) to reveal more information on the makeup of the opponent's hands.Unfortunately, sine a simulation involves assigning ards to the opponents, theprogram has perfet knowledge of where all the ards lie and, within a given trial,information gathering plays are not needed! This demonstrates a limitation ofperfet-information variants of imperfet-information reality.Most previous attempts at bridge bidding have been based on an expert-de�ned set of rules. This is largely unavoidable, sine bidding is an agreed-upononvention for ommuniating ard information. GIB takes this one step further,building on the ability to quikly simulate a hand [61℄. The program has aessto a large database of bidding rules (7,400 rules from the ommerial programMeadowlark Bridge). At eah point in the bidding, GIB queries the database to�nd the set of plausible bids. For eah bid, the rest of the aution is projetedusing the database, and then the play of the resulting ontrat is simulated.GIB hooses the bid that leads to the average best result for the program.Although intuitively appealing, this approah does have some problems. No-tably, as with opening books in other games, the database of rules may havegaps and errors in it. Consider a rule where the response to the bid 4� is in-orret in the database. GIB will diret its play towards this bid beause itassumes the opponent's will make the (likely bad) database response. As Gins-berg writes, \it is diÆult to distinguish a good hoie that is suessful beausethe opponent has no winning options from a bad hoie that appears suessfulbeause the heuristi fails to identify suh options" [61℄.GIB uses three partial solutions to the problem of an erroneous or inompletebidding system. First, the bidding database an be examined by doing extensive29



o�-line omputations to identify erroneous or missing bid information. Thisis e�etive, but an take a long time to omplete. Seond, during a game,simulation results an be used to identify when a database response to a bidleads to a poor result. This may be evidene of a database problem, but it ouldalso be the result of e�etive disruptive bidding by GIB. Finally, GIB an bebiased to make bids that are \lose" to the suggested database bids, allowingthe program the exibility to deviate from the database.To summarize, GIB is well on the way to beoming a world-lass bridgeplayer. The program's ard play is already at a world-lass level (as evidened bythe Par Contest result), and urrent e�orts will only enhane this. The biddingneeds improvement, and this is urrently being addressed. Had Zia Mahmoodnot withdrawn his o�er, he might have lost his money within a ouple of yearsfrom now.3.2.2 The Best of Computer BridgeThe following hand is board 11 of the 1998 exhibition math between GIB andworld hampions Zia Mahmood and Mihael Rosenberg, held at the annualonferene of the Amerian Assoiation for Arti�ial Intelligene in 1998. Thehumans won the math by 6.31 IMPs over 14 deals.North: Zia� A J 9~ 7 3} K Q J 10 8 5 3| KWest: GIB1 East: GIB2� 10 7 6 2 � K Q 4~ J 6 4 ~ A 10} 7 2 } 9 6| A 10 9 3 | 8 7 6 5 4 2South: Rosenberg� 8 5 3~ K Q 9 8 5 2} A 4| Q JSouth West North East1} pass1~ pass 3} pass3~ pass 3� pass4} pass 4~ passpass pass
30



Opening lead: 2�Figure 8: Mahmood-Rosenberg versus two GIBs.The hand shown in Figure 8 was analyzed by Mike Whittaker and reportedin Bridge Magazine [66℄,8 ommenting on GIB's defensive play.GIB1, West, led with a small �, won by the Queen. GIB2 swithed to a },won by dummy's Jak. Leading a ~ to the King won, and Rosenberg then leda |, won by GIB1. A seond } lead was won by the Ae and Rosenberg trieda � to the Jak, losing to the King. GIB2 ashed the Ae ~ before leading asmall � to dummy's Ae. Rosenberg found himself loked in dummy, fored tolead a }. This had the e�et of promoting the Jak ~ for GIB2 and Rosenberg�nished two down.Finally, we ome to the FAQ (Frequently Asked Question): will the om-puters ever triumph against top quality human opposition? The idea has alwaysbeen laughed at but I would not be too omplaent. Before long the sheer omput-ing power of the omputer will give it a de�nite edge over even the best humandelarer in ontrats that require tehnial expertise. However, I think that theomplexities of the bidding language, the use of deeption in play and defenseand some abstrat qualities, suh as table presene, will keep the humans ahead,at least for a while.Figure 9 is used to illustrate GIB's stellar play of the hand. The analysiswas done by Onno Eskes and reported in IMP magazine [67℄9.West opens 2 |, showing a weak hand with both major suits. Unpleasant,but on the other hand, it beomes a lot easier for us to stay out of a ~ ontrat.We on�dently reah 7 }. West leads the Jak �. I greet dummy with approval.\Well bid," I remember thinking. I ount �ve trumps, twie Ae-King-Queen,Ae � and a ru� in dummy. What an go wrong?Trumps four-zero. If left-hand opponent has them all, I will go down. Ifopponent on the right has them, I an �nesse against his Jak. But then Iannot ru� a ~ anymore. Well, then they'd better not be four-zero. I take Ae� and lead a } to the Ae. West disards a �. I urse under my breath andstart thinking again. Are there any hanes left? In |, maybe? If those arefour-four, I an disard a loser on the �fth |.8Reprodued with permission. Minor editing hanges have been made to onform with thestyle of this hapter.9Reprodued with permission. Minor editing hanges have been made to onform with thestyle of this hapter.
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North� A 3~ 7 4} Q 8 7 4| A K Q 6 3West EastSouth� Q 2~ A K Q 10 8 3} A K 10 3 2| |Contrat: 7}Opening lead: J�Figure 9: Illustrating GIB's play of the hand.But I have only one entry left. I should have started by ruÆng a |. \Onedown," I onede, \how are the lubs divided?" \Four-four," is the painful reply.Fortunately for us, exatly the same thing happened at the other table!The next day I am still disgusted with the hand. It is a nie problem, however.I deide to present the hand to GIB... I enter the hands and the aution. I alsoenter the explanation of the bids (West at least 4-4 in the majors, less thanopening strength) and the opening lead. Then the omputer starts to bubble.After 30 seonds it produes Ae �. I tell it whih ard East plays to the �rsttrik. Again 30 seonds of thinking. Ae |! I let East and West follow small.The omputer disards Queen �. Another 30 seonds. Small |, ru�ed in hand!Forlorn, I wath the omputer �nish the rest of the play in immaulate fashion.Ae } (disovering the bad trump split), } to the Queen, King |, Queen | anda good |. East ru�s, South over-ru�s and he an now ru� his last ~ in dummy.Beaten by the omputer! The humiliation is omplete when the mahinesubtly announes that it just sored plus 2140.3.3 ChekersArthur Samuel began thinking about a hekers program in 1948 but did notstart oding until a few years later. He was not the �rst to write a hekers-playing program; Strahey pre-dated him by a few months [68℄. Over the spanof three deades, Samuel worked steadily on his program with performane tak-ing a bak seat to his higher goal of reating a program that learned. Samuel'sprogram is best known for its single win against Robert Nealey in a 1963 exhi-bition math. From this single game, many people erroneously onluded thathekers was a \solved" game.In the late 1970's, a team of researhers at Duke University built a stronghekers-playing program that defeated Samuel's program in a short math [69℄.Early suess onvined the authors that their program was possibly one of32



the 10 best players in the world. World hampion Marion Tinsley e�etivelydebunked that, writing that: \The programs may indeed onsider a lot of movesand positions, but one thing is ertain. They do not see muh!" [70℄. E�ortsto arrange a math between the two went nowhere and the Duke program wasquietly retired.Interest in hekers was rekindled in 1989 with the advent of strong ommer-ial programs and a researh e�ort at the University of Alberta: Chinook. Chi-nook was authored prinipally by Jonathan Shae�er, Norman Treloar, RobertLake, Paul Lu, and Martin Bryant. In 1990, the program earned the right tohallenge for the human world hampionship. The hekers federations refusedto santion the math, leading to the reation of a new title: the world man-mahine hampionship. This title was ontested for the �rst time in 1992, withMarion Tinsley defeating Chinook in a 40-game math by a sore of 4 winsto 2. Chinook's wins were the �rst against a reigning world hampion in anon-exhibition event for any ompetitive game.There was a remath in 1994, but after six games (all draws), Tinsley re-signed the math and the title to Chinook, iting health onerns. The followingweek he was diagnosed with aner, and he died eight months later. Chinookhas subsequently defended its title twie, and has not lost a game sine 1994.The program was retired in 1997 after it beame lear that there was no livingperson whose abilities ame lose to that of the program [42℄.Chinook is the �rst program to win a human world hampionship. At thetime of this writing, the gap between Chinook and the highest-rated human is200 rating points (using the hess rating sale) [42℄, making it unlikely thathumans will ever improve to Chinook's level of play.3.3.1 ChinookIn his 1960 Advanes in Computers hapter, Samuel felt bad about using theartile to desribe his work instead of his predeessor, Strahey. The sameomment that Samuel wrote in 1960 applies to this setion, after substitutingShae�er's name for Samuel's and replaing Strahey with Samuel: \While itis grossly unfair to dismiss Samuel's work in a single paragraph and to disussthe present writer's own e�orts in some detail, in the interests of onisenessthis will have to be done. Perhaps suh high-handed behavior an be exusedif the writer publily apologizes for his ation, as he does now, and publilyaknowledges the redit whih Dr. Samuel is due."The struture of Chinook is similar to that of a typial hess program: searh,knowledge, opening book, and endgame databases [42, 71℄. Chinook uses alpha-beta searh (NegaSout) with a myriad of enhanements inluding iterativedeepening, transposition table, history heuristi, searh extensions, and searhredutions. Further performane is provided by a parallel searh algorithm.With 1994 tehnology, an 18-proessor Silion Graphis Power Challenge, Chi-nook was able to average a minimum of 19-ply searhes against Tinsley withsearh extensions oasionally reahing 45 ply into the tree. The median posi-tion evaluated was typially 25-ply deep into the searh.33



The searh depths ahieved are usually suÆient to unover most tati-al threats in a position, however they are inadequate to resolve positionalsubtleties. Hene, onsiderable omputational e�ort is devoted to identifyingpromising lines of play to extend the searh, and futile lines to redue the searhdepth. Experiments show that a program searhing 17 ply plus extensions willdefeat a program going 23 ply deep without extensions (eah program used thesame amount of time for eah searh). By most standards, giving up 6-ply ofsearh for the extensions is extraordinarily high. However, players like Tinsleyhave onsistently demonstrated an ability to analyze 30-ply deep (or more), soChinook has to be able to math this apability.The evaluation funtion was manually tuned over a period of �ve years.For eah of four game phases, it onsists of 25 features ombined by a linearfuntion. Interestingly, most of the features in Samuel's program were not usedin Chinook|many of them were there to overome the limitations of the shallowsearh depths that Samuel ould ahieve using 1960's hardware. The evaluationfuntion was arefully tuned by a hekers expert through extensive trial-and-error testing. Attempts at automatially tuning the evaluation funtion wereunsuessful.There were two major improvements to the evaluation funtion that are ofinterest. First, in 1992 a major hange enhaned the program's knowledge butresulted in a two-fold redution in the number of positions that the programould analyze per seond (e�etively osting it one ply of searh) [42℄. Despitethe redued searh pro�ieny, the new knowledge signi�antly improved thequality of the evaluations, resulting in a stronger program. This was strongevidene that Chinook's searh depths were hitting diminishing returns for ad-ditional searh e�orts [39℄; more was to be gained by the addition of usefulknowledge than additional searh.The seond re�nement was allowing the sum of positional sores to be able toexeed the value of a heker. In priniple, this is dangerous sine the programmay prefer large positional sores over material ones. However, a ritial om-ponent in human grandmaster play is the ability to reognize the exeptions;when material is a seondary onsideration. Adding this apability eliminateda serious soure of errors, and was a major reason for Chinook's exellent resultin the 1992 world man-mahine hampionship.Chinook uses an endgame database ontaining all hekers positions witheight or fewer piees. This database has 444 billion (4 � 1011) positions, om-pressed into six gigabytes for real-time deompression. Unlike hess programswhih are ompute-bound, Chinook beomes I/O-bound after a few moves in agame. The deep searhes mean that the database is oasionally being hit on the�rst move of a game. The databases introdue aurate values (win/loss/draw)into the searh, reduing the heuristi error. In many games, the program isable to bakup a draw sore to the root of a searh within 10 moves by eah sidefrom the start of a game. This suggests that it may be possible to determinethe game-theoreti value of the starting position of the game (one de�nition of\solving" the game).Chinook has aess to a large database of opening moves ompiled from the34



hekers openings literature. This extensive opening book allows the programto play its �rst moves from the opening database, ome out of the book, andthen usually be able to searh deeply enough to �nd its way into the endgamedatabase. This implies that the window for program error is very small. In the1994 Chinook{Tinsley math, �ve of the six games followed this pattern (in theother game, Tinsley made an error and Chinook had to try for a win). All thepositions in the opening book were veri�ed using at least 19-ply searhes. Thisunovered numerous errors in the published literature.A database of all known games played by Marion Tinsley was ompiled.When the program was out of its opening book, this database ould be usedto bias the searh. For example, when playing the weaker side of an opening,the program would inlude a favorable bias towards any move that Tinsley hadpreviously played in this position. The idea is that, sine Tinsley rarely madea mistake, his move is likely to be the right hoie. When playing the strongerside of the opening, the database was used for a di�erent purpose. By biasingthe searh againstmoves suggested by the database, the program ould inreasethe hanes of playing a new move, thereby throwing the human opponent ontotheir own resoures (inreasing the hane of human error).Arthur Samuels' program did not ome lose to reahing the pinnale ofhekers. In part, this was beause of the limited hardware resoures that hehad available to him at the time. But it was also due to his insistene ondeveloping a program that learned everything by itself. Samuel wrote in his1960 hapter that \suggestions that [I℄ inorporate standard openings or otherforms of man-devised heker lore have been onsistently rejeted. ... [I℄ refuseto pass judgment on whether the program makes good moves for the rightreasons, demanding instead, that it develop its own reasons" [72℄. Ironially, amajor reason for the suess of Chinook was the use of the \man-devised" lorethat Samuel onsistently rejeted.3.3.2 The Best of Computer ChekersIn the 1992 world man-mahine hampionship, the math was tied at one winapiee at the start of game 14. The annotations are based on those appearingin [42℄. Comments in italis are from Marion Tinsley. The game notation isidential to that used in hess: olumns are labeled a to h from left to right,and the rows are labeled 1 to 8 from bottom to top. An � indiates a apturemove. Blak: Marion Tinsley | White: Chinook1. h6-g5 a3-b4 2. b6-5 Sine the standard starting position is drawish,tournament hekers uses the so-alled \Three Move Ballot". The �rst threemoves of the game (two by Blak, one by White) are hosen randomly, resultingin some interesting, lop-sided starting positions. Hene two games are playedfor eah opening, with the opponents swithing olors after the �rst game. Atthe time of this math, 142 openings had been approved for tournament play.Chinook has to have opening knowledge for both sides of all the openings.35
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0Z0Z030ZZ0Z0Z0Z00Z0Z0Z0Z20Z0Z0Z004030Z02Z0Z0Z0100Z0Z0101Z0Z040Z0(a) 16. ... a5-b6 (b) 34. ... e3-d4Figure 10: Tinsley (Blak) versus Chinook (White).2. ... b4-a5 3. g5-f4 g3�e5 4. d6�f4 e3�g5 5. f6�h4 d2-e3 6. g7-f63-d4 7. e7-d6 d4�b6 8. a7�5 b2-3 9. h8-g7 3-d4 Chinook is now outof its opening book. The program reports having a small advantage.10. 5-b4 e1-d2 11. d6-e5 d4-5 12. g7-h6 I one laughed at [grand-master Willie℄ Ryan for forgetting his own published play, but no more! Bakin 1948, I gave the better f6-g5 to draw... Pat MCarthy [a top British player℄later asked me why I didn't take this simple route. The answer? I had simplyforgotten it! Tinsley seems to think g7-h6 is a bad move, but Chinook seesnothing wrong with it.12. ... h2-g3 Chinook expets 7-d6 in reply, with an even game.13. h6-g5 Tinsley has no omment on this move, but Chinook thinks it is amajor mistake. Analysis onduted months after the game indiates that afterh6-g5 the game is probably lost. Tinsley attahes the blame to his previousmove whih apparently leads to a position that he feels unomfortable with,even though it leads to a draw (assuming perfet play).13. ... a1-b2 14. b4-a3 5-b6 Suddenly Chinook believes it has a hugeadvantage (over one-half of a heker). This may not be obvious by looking atthe position; it is the result of searhing over 20 plies into the future.15. f8-g7 b6-a7 This illustrates an important lesson about putting knowl-edge into a program: every piee of knowledge has its exeptions. Normally,putting a man into the dog-hole (a7 for White; h2 for Blak) is bad, but here itturns out to be very strong. Unfortunately, Chinook always penalizes the dog-hole; it does not understand any of the exeptions. After this b6-a7, I neversaw a glimpse of a draw.16. 7-d6 a5-b6 See Figure 10a. Inredible! Chinook is sari�ing a hekeragainst Tinsley. Prior to this math, Chinook had a history of misassessing thesetype of sari�es, resulting in some bad losses. Tinsley himself identi�ed this asa serious weakness in the program. Fortunately, a few days before the mathbegan, a serious problem in Chinook's evaluation funtion was unovered (and�xed) that explained the program's poor play in these type of positions.17. b8-7 a7-b8=k Now the preeding moves make sense. This sari�ehas been in the works for a few moves now and Tinsley has been avoiding it.Now he has run out of safe moves and is fored to aept it. It is hard to believe36



that Blak an survive. White has a mobile king and strong bak rank (makingit hard for Blak to get a king). What is Blak to do?18. 7�a5 b8-a7 19. d8-e7 a7-b8 Is Chinook winning? The positionlooks very strong, but Chinook reports only a moderate advantage. The pro-gram intended to play b2-3, but at the last minute swithes to a7-b8 by anarrow margin. The alpha-beta searh di�erentiates between the moves by aninsigni�ant (and likely random) 3/100ths of the value of a heker. After thegame, Tinsley revealed that he was praying for b2-3, as he laimed that it ledto a draw. a7-b8 may be the only winning move.20. g7-h6 g1-h2 21. d6-5 b8-7 22. e5-d4 7-d6 Winning bak theheker with a dominating position. Unfortunately, Chinook's sore does notreet this. It was searhing so deep that it must have found a way for Blakto extriate himself.23. f6-e5 d6�f8 24. g5-f4 e3�g5 25. h6�f4 f8-e7 26. 5-b4 d2-3 Atthis point, Chinook's analysis revealed why the assessment had been low overthe past few moves: it saw that it was winning a heker but thought Blakould draw despite the heker de�it. Now the searh is able to see far enoughahead to realize that the draw is unlikely.27. b4�d2 1�e3�g5 28. a3�1=k e7-d6 29. d4-3 d6�f4 30. 3-d2 g5-f6 Chinook announes it has found a fored win in its endgame database.For this math, the program had aess to all the seven-piee positions, and asmall portion of the eight-piee endgames.31. d2-e1=k f6-e7 32. 1-b2 f4-e3 33. b2-3 e7-f8=k 34. 3-b4 e3-d4 Tinsley resigns. See Figure 10b. The winning line goes as follows: b4-a3f8-e7 a5-b4 d4-e3 b4-3 e7-d6 3-b2 d6-e5 b2-1=k, and now g3-f4 frees White'shekers. After e1�g3, then f4-g5 surprisingly traps the king. The dominantWhite kings ontrol the enter of the board, keeping Blak's piees at bay.After Tinsley extended his hand in resignation, the rowd rushed forward toongratulate Tinsley. Congratulate Tinsley? \That's a �ne draw," exlaimedGrandmaster Con MCarrik, the math referee. One the truth was revealed,the spetators were stunned. The audiene thought that Tinsley had found abeautiful drawing line!With Chinook leading 2-1, Tinsley looked like he was in trouble. However,Chinook forfeited game 18 due to tehnial problems and then was out-playedin game 25. In the last game of the math, trailing 3-2 and needing a win,Chinook was pre-programmed to treat a draw as a loss. The program saw adraw, rejeted it, and went on to lose the game and the math.3.4 ChessThe progress of omputer hess was strongly inuened by an artile by KenThompson whih equated searh depth with hess-program performane [37℄.Basially, the paper presented a formula for suess: build faster hess searhengines. The milestones in hess program development beome a statement ofthe state-of-the-art in high-performane omputing:37



� 1980-1982: Thompson's Belle, the �rst program to earn a U.S. master title,was a mahine built to play hess. It onsisted of 10 large wire-wrappedboards using LSI hips [73℄.� 1983-1984: Cray Blitz used a multi-proessor Cray superomputer [74℄.� 1985-1986: The Hiteh hess mahine was based on 64 speial-purposeVLSI hips (one per board square) [75, 28℄.� 1985-1986: Wayool used a 256-proessor hyperube [76℄.� 1987-present: ChipTest (and its suessors Deep Thought and Deep Blue)took VLSI tehnology even further to ome up with a hess hip [38, 77,78℄.In 1987, ChipTest shoked the hess world by tieing for �rst plae in astrong tournament, �nishing ahead of a former world hampion and defeating agrandmaster. The unexpeted suess aroused the interest of world hampionGarry Kasparov, who played a two-game exhibition math against the programin 1989. Man easily defeated mahine in both games.The Deep Blue team worked for seven years on improving the program, in-luding designing a single-hip hess searh engine and making signi�ant stridesin the quality of their software. In 1996, the hess mahine played a six-gameexhibition math against Kasparov. The world hampion was stunned by a de-feat in the �rst game, but he reovered to win the math, soring three wins andtwo draws to o�set the single loss. The following year, another exhibition mathwas played. Deep Blue sored a brilliant win in game two, handing Kasparova psyhologial blow that he never reovered from. In the �nal, deisive gameof the math, Kasparov fell into a trap and the game ended quikly. This gaveDeep Blue an unexpeted math vitory, soring two wins, three draws and aloss.It is important to keep this result in perspetive. First, it was an exhibitionmath; Deep Blue did not earn the right to play Kasparov.10 Seond, the mathwas too short to aurately determine the better player; world-hampionshipmathes are typially at least 20 games long. Although it is not lear just howgood Deep Blue is, there is no doubt that the program is a strong grandmaster.What does the researh ommunity think of the Deep Blue result? Manyare �lled with admiration at this feat of engineering. Some are autious aboutthe signi�ane. John MCarthy writes that [79℄:In 1965, the Russian mathematiian Alexander Kronrod said, \Chessis the Drosophila11 of arti�ial intelligene." However, omputerhess has developed muh as genetis might have if the genetiistshad onentrated their e�orts starting in 1910 on breeding raing10To be fair, it is unlikely that the international hess federation will ever allow omputersto ompete for the world hampionship.11The drosophila is the fruit y. The analogy is that the fruit y is to genetis researh asgames are to arti�ial intelligene researh. 38



Drosophila. We would have some siene, but mainly we would havevery fast fruit ies.In retrospet, the hess \problem" turned out to be muh harder than anyonethought in Samuel's time. The Deep Blue result is a tremendous ahievement,and a milestone in the history of both arti�ial intelligene and omputingsiene.From the sienti� point of view, it is to be regretted that Deep Blue hasbeen retired, the hardware unused, and the programming team disbanded. Thesienti� ommunity has a single data point that suggests mahine might bebetter than man at hess. The data is insuÆient and the sample size is notstatistially signi�ant. Moreover, given the urrent lak of interest in DeepBlue from IBM, it is doubtful that this experiment will ever be repeated. Ofwhat value is a single, non-repeatable data point?3.4.1 Deep BlueDeep Blue and its predeessors represents a deade-long intensive e�ort by ateam of people. The projet was funded by IBM, and the prinipal sientistswho developed the program were Feng-hsiung Hsu, Murray Campbell, and JoeHoane.Deep Blue's speed omes from a single-hip hess mahine. The hip inludesa searh engine, a move generator, and an evaluation funtion [38℄. The hip'ssearh algorithm is alpha-beta, but it is restrited to always use a minimalwindow. Transposition tables are not implemented on the hip (it would taketoo muh hip real estate). The searh is apable of doing a limited set of searhextensions. The evaluation funtion is implemented as small tables on the hip;the values for these tables an be downloaded to the hip before the searhbegins. These tables are indexed by board features and the results summed inparallel to provide the positional sore.A single hip is apable of analyzing over two million hess positions per se-ond. It is important to note that this speed understates the hip's apabilities.Some operations that are too expensive to implement in software an be donewith little or no ost in hardware. For example, one apability of the hip isto seletively generate subsets of legal moves, suh as all moves that an putthe opponent in hek. These inreased apabilities give rise to new opportu-nities for the searh algorithm and the evaluation funtion. Hsu estimates thateah hess hip position evaluation roughly equates to 40,000 instrutions ona general-purpose omputer. If so, then eah hip translates to a 100 billioninstrution per seond hess superomputer [38℄.Aess to the hip is ontrolled by an alpha-beta searh algorithm that isimplemented on the host omputer (an IBM SP-2). Deep Blue uses alpha-beta with iterative deepening and transposition tables. Considerable e�ort wasdevoted to researhing searh extensions. The Deep Blue team pioneered theidea of singular extensions, using loal searh to identify fored moves [25℄.Other extensions inlude those for threats and piee inuene [27℄. Extensive39



tuning was done to �nd the right ombination of extensions that maximizedthe bene�ts while not ausing an explosion in searh e�ort. In Deep Blue,a searh extension would inrease the searh depth by an amount up to twoply. The algorithm used frational extensions (e.g. a threat might inrease thesearh depth by 0.5 ply), allowing several features to ombine to ause a searhextension.The searh has been parallelized. For the 1997 Kasparov math, Deep Blueused a 30-proessor IBM SP-2, with eah proessor onneted to 16 hess hips.The parallel searh algorithm uses a three-level hierarhy. The �rst four ply aredone by a single master proess. The leaves of the master's tree are searhedan additional four or more ply deeper by the other SP-2 proessors. The par-allel searh running on the SP-2 uses a variant on Hsu's Delayed Branh TreeExpansion algorithm [80℄. The leaf nodes of these searhes are passed o� to thehess hips for additional searh. In e�et, one ould view the hips as perform-ing a sophistiated evaluation using at least a four-ply searh, plus extensions.During the Kasparov math, Deep Blue \only" searhed 200 million positionsper seond on average. The maximum hardware speed is roughly one billionpositions per seond (30 proessors � 16 hips per proessor � 2 million posi-tions per seond). The di�erene reets both the diÆulty of ahieving a highdegree of parallelism with alpha-beta, and the team deision that more eÆientsearhing was unlikely to have an impat against Kasparov.The biggest di�erene in Deep Blue's performane in 1997 ompared to 1996was undoubtedly due to improved hess knowledge. Chess grandmaster JoelBenjamin worked with the team to identify weaknesses in the program's play.The evaluation funtion onsists of over 8,000 tunable parameters. Most of theterms are ombined linearly to arrive at a position value, but some terms aresaled to reate a non-linear relationship. Although several attempts were madeto tune the parameters automatially, in the end the tuning was primarily doneby hand.The program uses an endgame database of all positions with �ve or fewerpiees on the board, although this is rarely a fator in a game. The openingbook is small, but Deep Blue has aess to a large database of grandmastergames. When the program is out of its book, it will query the grandmasterdatabase to �nd all games where the board position has arisen. All moves forthis position retrieved from the database are assessed, based on who played itand how favorably the game ended. These moves reeive a positive or negativebias that inuenes the evaluation of a line of play. Essentially, moves with ahistory of suess are favored, and those with a bad trak reord are disouraged.3.4.2 The Best of Computer ChessIn the 1997 math against world hampion Garry Kasparov, Deep Blue lostthe �rst game, ausing many to predit an easy vitory for man over mahine.The seond game astounded the hess world, onviningly demonstrating DeepBlue's hampionship-aliber skills. In the game notation, olumns are labeled ato h from left to right and the rows are labeled 1 to 8 from bottom to top. An40
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0s0Z0Z0ZZ0Z0Zko0RlQa0o0oZpZPoPZ00OpZBZ0ZZ0O0Z0ZP0Z0Z0ZPZZ0Z0ZKZ0(a) 24. Ra3 (b) 45. Ra6Figure 11: Deep Blue (White) versus Kasparov (Blak).� indiates a apture move.White: Deep Blue | Blak: Gary Kasparov1. e4 e5 2. Nf3 N6 3. Bb5 a6 4. Ba4 Nf6 5. O{O Be7 6.Re1 b5 7. Bb3 d6 8. 3 O{O 9. h3 h6 10. d4 Re8 11. Nbd2Bf8 12. Nf1 Bd7 13. Ng3 Na5 14. B2 5 15. b3 N6 16. d5 Ne717. Be3 Ng6 18. Qd2 Until now, standard opening theory. Kasparovrepeatedly laimed that he understood how to play against omputers. Indeedthis position is onsistent with the ommon pereption that omputers are weakin losed (bloked) positions. Nevertheless, with his next move Kasparov beginsto appear omplaent, perhaps underestimating his dangerous foe.18. ... Nh7 19. a4 Nh4 20. N�h4 Q�h4 21. Qe2 Qd8 Blak'slast few moves have aomplished nothing exept to exhange a pair of knightson the opposite side of the board from all the ation.22. b4 Q7 23. Re1 With this move, the audiene began to sensethat something was di�erent with Deep Blue's play, ompared to the quality ofplay seen in the 1996 math. From the human's point of view, this move showsextraordinary insight into the position. At �rst glane, it looks like the rook isbeing moved to a useless square. However, this is a \prophylati move" thatsubtly restrits Blak's options. The move beomes very strong if Blak allowsthe -�le to beome open.23. ... 4 24. Ra3 See Figure 11a. Another strong move, intendingto double the rooks on the a-�le. Most omputer programs would immediatelyexhange a-pawns. Joel Benjamin revealed afterward that Deep Blue had aommon omputer tendeny to release tension by exhanging pawns. Speialknowledge was added to refrain from these exhanges, thereby maximizing theomputer's options in the position.24. ... Re8 25. Ra1 Qd8 26. f4 Another strong positional movethat is \obvious" to humans, but usually diÆult to �nd for omputers. Havingseured the advantage on the queen-side, the program now strives to dominatethe king-side. Subsequent analysis showed that this move may not have beenstrongest. Although the idea is good, 26. a�b5 a�b5 27. Ba7 would allowWhite to make inroads on the queen-side.41



26. ... Nf6 27. f�e5 d�e5 28. Qf1 Another human-like move. 28.Qf2 may have been even stronger.28. ... Ne8 29. Qf2 Nd6 30. Bb6 Qe8 31. R3a2 Be7 Kasparovhas drifted into a horribly passive position. He an only wait for Deep Blue toattak.32. B5 Bf8 33. Nf5 B�f5 34. e�f5 f6 35. B�d6 B�d6 36.a�b5 At �rst glane, Qb6 seems to win material. However e4 gives Blakounter-play.36. ... a�b5 37. Be4 Blak's position is miserable, and everyone ex-peted the seemingly rushing 37. Qb6. However, there is a hidden trap: 37.... Rxa2 38. Rxa2Ra8 38. Rxa8Qxa8 39. Qxd6Qa1+ 40. Kh2Q1 with aprobable draw. In some lines, Blak an play e4 and get (limited) ounter-play.37. Be4 upset Kasparov: the move eliminates all ounter-hanes. Kasparovouldn't believe that the program would pass up the hane to win material.This position gave rise to onsiderable ontroversy after the math. Kasparov'sdisbelief that a omputer was apable of this level of sophistiation resulted inhis leveling unfounded ausations of heating against the Deep Blue team.37. ... R�a2 38. Q�a2 Qd7 39. Qa7 R7 40. Qb6 Rb7 41.Ra8+ Kf7 42. Qa6 Q7 43. Q6 Qb6+ 44. Kf1 An error, but noone knew it at the time...44. ... Rb8 45. Ra6 Kasparov resigns. See Figure 11b. Theaudiene erupted in applause. History was made! But | inredible as it seems| the �nal position is a draw! The analysis is long and diÆult, but the amazingQe3 seures a miraulous draw. Even the inredible searh depths of Deep Bluewere inapable of �nding this within the time onstraints of a game.Muh has been made of Kasparov's missed opportunity. However, this dis-trats the disussion from the real issue: Deep Blue played a magni�ent game.Who ares if there is a minor imperfetion in a masterpiee? Most lassi gamesof hess ontain many aws. Perfet hess is still an elusive goal, even for Kas-parov and Deep Blue.Despite the defeat, even Kasparov had grudging respet for his eletroniopponent [81℄:In Deep Blue's Game 2 we saw something that went well beyondour wildest expetations of how well a omputer would be able toforesee the long-term positional onsequenes of its deisions. Themahine refused to move to a position that had a deisive short-termadvantage | showing a very human sense of danger. I think thismoment ould mark a revolution in omputer siene...Kasparov pressed hard for a win in games 3, 4, and 5 of the math. In theend, he seemed to run out of energy. In game 6, he made an unharateristimistake early in the game and Deep Blue quikly apitalized. The dream ofa world-lass hess-playing program, a 50-year quest of the omputing sieneand arti�ial intelligene ommunities, was �nally realized.42



3.5 OthelloThe �rst major Othello program was Paul Rosenbloom's Iago [82℄. It ahievedimpressive results given its early-1980s hardware. It played only two gamesagainst world-lass players, losing both. However, it dominated play againstother Othello programs of the time. Based on the program's ability to predit59% of the moves played by human experts, Rosenbloom onluded that theprogram's playing strength was of world-hampionship aliber.By the end of the deade, Iago had been elipsed. Kai-Fu Lee and San-joy Mahajan's program Bill represented a major improvement in the quality ofomputer Othello play [83℄. The program ombined deep searh with exten-sive knowledge (in the form of preomputed tables) in its evaluation funtion.Bayesian learning was used to ombine the evaluation funtion features in aweighted quadrati polynomial.Statistial analysis of the program's play indiated that it was a strongOthello player. Bill won a single game against Brian Rose, the highest ratedAmerian Othello player at the time. In test games against Iago, Bill won everygame. These results led Lee and Mahajan to onlude that \Bill is one of thebest, if not the best, Othello player in the world." As usual, there is danger inextrapolating onlusions based on limited evidene.With the advent of the Internet Othello Server (IOS), omputer Othellotournaments beame routine. In the 1990s they were dominated by MihaelBuro's Logistello. The program partiipated in 25 tournaments, �nished �rst 18times, seond six times, and fourth one. The program ombined deep searhwith an extensive evaluation funtion that was automatially tuned. This wasombined with an extensive opening book and a perfet endgame player.Although it was suspeted that in the mid-1990s, omputers surpassed hu-mans in their playing abilities at Othello, this was not properly demonstrateduntil 1997, when Logistello played an exhibition math against world hampionTakeshi Murakami. In preparation for the math, Buro writes that [84℄:Bill played a series of games against di�erent versions of Logistello.The results showed that Bill, when playing 5-minute games runningon a PentiumPro/200 PC, is about as strong as a 3-ply Logistello,even though Bill searhes 8 to 9 plies. Obviously, the additionalsearh is ompensated for by knowledge. However, the 3-ply Logis-tello an only be alled mediore by today's human standards.Two explanations for the overestimation of playing strength in thepast ome to mind: (1) during the last deade human players haveimproved their playing skills onsiderably, and (2) the playing strengthof the early programs was largely overestimated by using ... non-reliable sienti� methods.Logistello won all six games against Murakami by a total dis ount of 264 to120 [84℄. This on�rmed what everyone had expeted about the relative playingstrengths of man and mahine. The gap between the best human players and thebest omputer programs is believed to be large and e�etively unsurmountable.43



3.5.1 LogistelloOutwardly, Logistello looks like a typial alpha-beta-based searher. The pro-gram has a highly-tuned searh algorithm, sophistiated evaluation funtion,and a large opening book.12 The arhiteture of the program is illustrated inFigure 12.
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Figure 12: Logistello's arhiteture [85℄.The searh algorithm is standard alpha-beta (NegaSout) with iterativedeepening, a large transposition table, and the killer heuristi. Corners area ritial region of the board. The program does a small quiesense searh ifthere is some ambiguity about who ontrols a orner.Buro introdued his ProbCut algorithm in Logistello [24℄. This searh en-hanement takes advantage of the Othello property that the results of a shallowsearh (s ply) are orrelated with the results of a deep searh (t ply). An s-ply12Note that endgame databases are not possible in Othello beause, unlike hess and hek-ers, the number of piees on the board inreases as the end of game approahes.44



searh produes a value vs. This value is extrapolated to give the value of at-ply searh vt. The deeper searh's estimated value is then ompared to thealpha-beta searh window, and the likelihood that vt will be relevant to thiswindow is omputed. If vt is likely to be irrelevant (e.g., is unlikely to reahalpha), then the searh is pruned on the basis of the shallow searh.The deeper searh value an be viewed as being:vt = a� vs + b+ ewhere a and b are onstants and e is the error (normally distributed with a meanof 0 and variane �2). Given s and t, the parameters a, b and e are determinedusing linear regression on a large number of samples. For eah sample position,searhes to depth s and t are performed.In a game, this information an be used to probabilistially eliminate treesusing the relationship vt � � with probability p if vs � (���1(p)��+��b)=a.The value of ��1(p), the ut threshold, is set aording to how muh on�deneone has in these ut-o�s. Buro uses ��1(1:5) = 0.93. With this value, Logistelloenhaned with ProbCut defeated the programwithout ProbCut by a sore of 52{18 [24℄. Sine then, Buro has re�ned the algorithm to make it more appliableand powerful [86℄.A speial searh ase ours as the end of game approahes. Here it ispossible to searh to the end and �nd the exat searh result given perfet playby both players. Typially, Logistello an solve a position when there are 22{26moves left in the game. The searh is a highly tuned, blindingly fast routinewith no knowledge to slow it down. When the program thinks it an solvethe position, it will alloate a large portion of its remaining time to determinewhether the position is a win, loss, or draw. One the result is determined,searhes on subsequent moves an be used (if neessary) to re�ne the sore tomaximize the result. One the position is solved, all the remaining moves of thegame an be played instantly.Logistello uses an evaluation funtion that has been automatially tuned.The program treats the game as having 13 phases: 13{16 diss on the board,17{20 diss, ..., and 61{64 diss.13 Eah phase has a di�erent set of weights inthe evaluation funtion. Thus, Equation 1 an be viewed as being:value = npXi=1 wp;i � fp;i (2)where p is the phase of the game.The evaluation-funtion features are patterns of squares omprising om-binations of orners, diagonals, and rows. These patterns apture importantOthello onepts, suh as mobility, stability and parity. Logistello has 11 suhpatterns, whih with rotations and reetions yields 46. Some of the patternsare a 3 � 3 and a 5 � 2 on�guration of stones anhored in a orner, and alldiagonals of length greater than 3.13Note that there is no need for a phase for less than 13 diss on the board, sine the searhfrom the �rst move easily reahes 13 or more diss.45



The weights for eah entry in eah pattern (46) for eah phase of the game(11) are determined by linear regression. There are over 1.5 million table entriesthat need to be determined. The data was trained using 11 million soredpositions obtained from self-play games and pratie games against anotherprogram [87℄. The evaluation funtion is ompletely table-driven. Given aposition, all 46 patterns are mathed against the position, with a suessfulmath returning the assoiated weight. These weights are summed to get theoverall evaluation whih approximates the �nal dis di�erential.Opening books are a ritial omponent to Othello programs. Ignoringpassed moves (oasionally one side has no legal moves), eah side has only30 moves to play in a game. Given that programs an solve games with, say,24 diss left on the board, that means that only the �rst 18 moves by eah sideare relevant. A strong opening book an guarantee that most of these movesare orret. Hene, onsiderable omputational e�ort is spent on building anopening book.The book is essentially a large tree of move sequenes starting from the initialposition of the game. It is built o�-line using the results from tournament andself-play games [88℄. The move sequene of a game an be analyzed bakwards,allowing eah position to get a more aurate sore than had the moves beenanalyzed in a forward manner (the bakwards searhes bene�t from the resultsobtained from the later searhes in the game). The �nal result (win, loss, draw)is propagated as far bak in the game as possible. These positions are added tothe book as aurate values. Other positions are assigned their heuristi value(obtained from a deeper searh than ourred in the game) and added to thebook. At all positions added to the book, all the move alternatives not playedare evaluated with a deep searh. The sores are then minimaxed bak up theopening book tree. For example, onsider the senario of Logistello playing agame and losing. Assume that the program identi�es the loss on its 20th move.The book program will analyze this position and sore all the alternative movesin this position. If the �rst 19 moves of a future game repeat the above movesequene, then the book will selet for its 20th move the one that leads tothe highest sore (whih is likely not the loss sore). In this way, Logistello isguaranteed to deviate its play from the earlier game.Deep searhes, good evaluation, and a strong opening book are a winningreipe for Othello. Mihael Buro omments on the reasons why Logistello easilywon the Murakami math[84℄:When looking at the games of the math the main reasons for thelear outome are as follows:1. Lookahead searh is very hard for humans in Othello. The disad-vantage beomes very lear in the endgame phase, where the boardhanges are more substantial than in the opening and middlegamestage. Computers are playing perfetly in the endgame while hu-mans often lose diss.2. Due to the automated tuning of the evaluation funtions anddeep seletive searhes, the best programs estimate their winning46



hane in the opening and middlegame phase very aurately. Thisleaves little room for human innovations in the opening, espeiallybeause the best Othello programs are extending their opening booksautomatially to explore new variations.3.5.2 The Best of Computer OthelloIn August 1997, the World Champion Takeshi Murakami played a six-gameexhibition math with Logistello. Having lost the �rst �ve games, Murakamifought hard for a win in the last game. Mihael Buro, author of Logistello, an-notates this game (omments are in italis) [89℄. Logistello's analysis is enlosedin [℄s giving the main lines of play and the �nal predited result from Logistello'spoint of view. Moves are given by speifying the olumn from left-to-right, \A"to \H", and the row from top-to-bottom, 1 to 8.White: Logistello | Blak: Takeshi Murakami1. F5 D6 2. C4 D3 3. C3 F4 4. C5 B3 5. C2 E6 6. C6 B4 7.B5 D2 8. E3 A6 9. C1 B6 10. F3 F6 11. F7 E1 12. E2 F1 13. E7G3 14. C7 G4 Logistello prefers D7 over Mr. Murakami's G4. After D7 theposition seems to be quite lose. Mr. Murakami's opening and early midgamewere awless in Logistello's view.15. G5 D1 See Figure 13a. Aording to Logistello's 26 ply seletivesearh, Mr. Murakami's D1 is probably two diss worse than playing F2.16. G1 F2 17. H3 H4 One move earlier, Mr. Murakami missed the lastopportunity to deprive Logistello of its free move to B1. While H5 ips F5 andthereby denies Logistello aess to B1, it also leads to a risky edge on�gurationafter the moves H6 and H7. This may be the reason why Mr. Murakami preferedH4, whih, however, loses two diss. Today's best programs would start seletivewin-loss-draw searhes in this position after onduting a �24 ply \midgame"Multi-ProbCut searh. This leaves human players with very little room for theslightest errors. [H5 H6 H7 = 4; H4 H5 D8 = 6℄18. H5 C8 Here, Mr. Murakami does not want to break Logistello's wallwhih would reate additional moves for Logistello. One plan is to move intothe south-west region (C8 or D8) or to exploit regional parity in the north-eastby playing G2. Although Mr. Murakami's G2 gives up orner H1 it leaves himwith the last move in this region. Mr. Murakami hose C8, losing two diss.[G2 B1 D8 = 6; D8 C8 D7 = 6; C8 B1 D7 = 8℄19. B1 D7 20. H2 E8 21. D8 G6 22. F8 G8 23. H6 G7 24.A2 A3 25. A4 B7 26. A8 B8 27. B2 See Figure 13b. In this gameMr. Murakami never thought he was losing until the late endgame where he wasfaed with a swindle threat. At �rst glane, Mr. Murakami seems to have theadvantage beause the eastern and northern edge on�gurations look weak forLogistello. However, the only losing move in this position is G2 whih allowsMr. Murakami to grab H1 and to seure enough edge and interior diss lateron. The optimal move is B2 whih Mr. Murakami had not antiipated in hisearlier alulations. 47



7757667777566777766656677666656776566667665666777757667777777777
7555555757565675556565555555555575656555665566557665566756666667(a) before 15. ... D1 (b) before 27. B2Figure 13: White: Logistello | Blak: Takeshi Murakami27. ... A1 This move reates a so-alled swindle in the south-east ornerregion, meaning that Logistello gets both remaining moves (H8 and H7) there|winning by 10. A little better is A5 whih loses by 8. [A5 A7 A1 H8 = 8; A1H8 H1 H7 = 10℄28. H8 H1 29. H7 G2 30. A5 A7 Logistello wins by 10 diss: 37{27.3.6 PokerThere are many popular poker variants. Texas Hold'em is generally aknowl-edged to be the most strategially omplex variant of poker that is widely played.It is the premier event at the annual world series of poker.Until reently, poker has been largely ignored by the omputing aademiommunity. However, poker has a number of attributes that make it an in-teresting domain for mainstream arti�ial-intelligene researh. These inludeimperfet knowledge (the opponent's hands are hidden), multiple ompetingagents (more than two players), risk management (betting strategies and theironsequenes), agent modeling (identifying patterns and weaknesses in the op-ponent's strategy and exploiting them), deeption (bluÆng and varying yourstyle of play), and dealing with unreliable information (taking into aountyour opponent's deeptive plays). All of these are hallenging dimensions to adiÆult problem.There are two main approahes to poker researh [90℄. One approah isto use simpli�ed variants that are easier to analyze. However, one must beareful that the simpli�ation does not remove hallenging omponents of theproblem. For example, Findler worked on and o� for 20 years on a poker-playingprogram for 5-ard draw poker [91℄. His approah was to model human ognitiveproesses and build a program that ould learn, ignoring many of the interestingomplexities of the game.The other approah is to pik a real variant, and investigate it using math-ematial analysis, simulation, and/or ad-ho expert experiene. Expert playerswith a penhant for mathematis are usually involved in this approah. Noneof this work has led to the development of strong poker-playing programs.There is one event in the meager history of omputer poker that stands out.48



In 1984 Mike Caro, a professional poker player, wrote a program that he alledOra (Caro spelled bakwards). It played one-on-one, no-limit Texas Hold'em.Few tehnial details are known about Ora other than it was programmed onan Apple II omputer in Pasal. However, Caro arranged a few exhibitions ofthe program against strong players [92℄:It lost the TV math to asino owner Bob Stupak, but arguablyplayed the superior game. The mahine froze on one game of thetwo-out-of-three set when it had moved all-in and been alled withits three of a kind against Stupak's top two pair. Under the rules,the hand had to be replayed. In the [world series of poker℄ mathes,it won one (from twie world hampion Doyle Brunson | or at leastit had a two-to-one hip lead after an hour and a quarter when themath was anelled for a press onferene) and lost two (one eahto Brunson and then-reigning world hampion Tom MEvoy), but| again | was fairly unluky. In private, preparatory exhibitionmathes against top players, it won many more times than it lost.It had even beaten me most of the time.Unfortunately, Ora was never properly doumented and the results never re-produed. It is highly unlikely that Ora was as good as this small samplesuggests. No sienti� analysis was done to see whether the results were dueto skill or luk (as was done, for example, in the BKG9.8{Villa math; see Se-tion 3.1). As further evidene, none of the ommerial e�orts an laim to beanything but intermediate-level players.In the 1990s, the reation of an Internet Relay Chat poker server gave theopportunity for humans (and omputers) to play interative games over theInternet. A number of hobbyists developed programs to play on IRC. Foremostamong them is R00lbot, developed by Greg Wohletz. The program's strengthomes from using expert knowledge at the beginning of the game, and doingsimulations for subsequent betting deisions.The University of Alberta program Loki, authored by Darse Billings, DenisPapp, Lourdes Pe~na, Jonathan Shae�er and Duane Szafron, is the �rst seriousaademi e�ort to build a strong poker-playing program. Loki plays on the IRCpoker server and, like R00lbot, is a onsistent big winner. Unfortunately, sinethese games are played with �titious money, it is hard to extrapolate theseresults to asino poker.At best, Loki and R00lbot are strong intermediate-level poker players. Aonsiderable gap remains to be overome before omputers will be as good asthe best human players.3.6.1 LokiMost readers will be familiar with one or more variants of poker. To avoidonfusion, the following gives a brief summary of Texas Hold'em. A hand beginswith the \pre-op", where eah player is dealt two ards fae down (the \hole"ards), followed by the �rst round of betting. Three ommunity ards are then49



dealt fae up on the table, alled the \op", and a seond round of bettingours. On the \turn", a fourth ommunity ard is dealt fae up and anotherround of betting ensues. Finally, on the \river", a �fth ommunity ard is dealtfae up and there is a �nal round of betting. All players still in the game revealtheir two hole ards for the showdown. The best �ve-ard poker hand formedfrom the two hole ards and the �ve ommunity ards wins the pot. If a tieours, the pot is split. Texas Hold'em is typially played with 8 to 10 players.Loki is named after the Norse God of mishief [93℄.14 Figure 14 shows theprogram's arhiteture and how the major omponents interat [94℄. In thediagram, retangles are major omponents, rounded retangles are major datastrutures, and ovals are ations. The data follows the arrows between ompo-nents. An annotated arrow indiates how many times data moves between theomponents for eah of the program's betting ations.The arhiteture revolves around generating and using probability triples[50℄. A probability triple is an ordered set of values, PT = [f,,r℄, suh that f+  + r = 1.0, representing the probability distribution that the next bettingation in a given ontext should be a fold, all, or raise, respetively. The TripleGenerator ontains the poker knowledge, and is analogous to an evaluationfuntion in two-player games. The Triple Generator alls the Hand Evaluatorto evaluate any two-ard hand in the urrent ontext. It uses the resulting handvalue, the urrent game state, and expert-de�ned betting rules to ompute thetriple. To evaluate a hand, the Hand Evaluator enumerates over all possibleopponent hands and ounts how many of them would win, lose, or tie the givenhand.Eah time it is Loki's turn to bet, the Ation Seletor uses a single probabilitytriple to deide what ation to take. For example, if the triple [0.0,0.8,0.2℄ weregenerated, then the Ation Seletor would never fold, all 80% of the time andraise 20% of the time. A random number is generated to selet one of theseations so that the program varies its play, even in idential situations.After the op, the probability for eah possible opponent hand is di�erent.For example, the probability that Ae-Ae hole ards are held is muh higherthan the ards 7-2, sine most players will fold 7-2 before the op. There isa Weight Table for eah opponent. Eah Weight Table ontains a value foreah possible two-ard hand that the opponent ould hold (47 hoose 2 = 1,081possibilities). The value is the probability that the hand would be played exatlyas that opponent has played so far. After an opponent ation, the OpponentModeler updates the Weight Table for that opponent in a proess alled re-weighting. The value for eah hand is inreased or dereased to be onsistentwith the opponent's ation. The Hand Evaluator uses the Weight Table inassessing the strength of eah possible hand, and these values are in turn usedto update the Weight Table after eah opponent ation.For example, suppose the weight for Ae{Ae is 0.7. That is, if these ardshave been dealt to an opponent, there is a 70% hane that they would haveplayed it in exatly the manner observed so far. What happens if the opponent14This setion is largely based on previously-published desriptions of Loki [50℄.50



Figure 14: Loki's arhiteture.now alls? Loki alulates the probability triple for these ards in the urrentontext (as it does for all possible two-ard holdings). Assume that the resultingtriple is [0.0, 0.2, 0.8℄. The updated weight for this ase would be 0:7�0:2 = 0:14.The relative likelihood of the opponent holding Ae-Ae has dereased to 14%beause they did not raise. The all value of 0.2 reets the possibility that thispartiular opponent might deliberately try to mislead us by alling instead ofraising. Using a probability distribution allows us to aount for unertainty inour beliefs.The Triple Generator provides good betting deisions. However, better re-sults an be ahieved by augmenting the evaluation with simulation. Loki anplay out many likely senarios to determine how muh money eah deision willwin or lose. Every time it faes a deision, Loki invokes the Simulator to getan estimate of the expeted value (EV) of eah betting ation (see the dashedbox in Figure 14 with the Simulator replaing the Ation Seletor). A simu-lation onsists of playing out the hand a spei�ed number of times, from theurrent state of the game through to the end. Folding is onsidered to havea zero EV, beause there is no future pro�t or loss. Eah trial is played outtwie | one to onsider the onsequenes of a hek/all and one to onsidera bet/raise as Loki's �rst ation. In eah trial, ards are dealt to eah opponent(based on the probabilities maintained in the Weight Table), the resulting gameis simulated to the end, and the amount of money won or lost is determined.Probability triples are used to approximate the ations of the opponents andLoki's subsequent ations based on their two ards assigned for that trial. Theaverage amount won or lost over all of the trials is taken as the EV of eahation. In the urrent implementation, the ation with the greatest expetationis seleted, folding if both expetations are negative. To inrease the program'sunpreditability, the seletion of betting ations whose EVs are lose in value51



an be randomized.It should be obvious that the simulation approah must be better than thesimple evaluation approah, sine simulation essentially uses a seletive searh toaugment and re�ne a stati evaluation funtion. Barring a serious misoneption(or bad luk on a limited sample size), playing out relevant senarios will improvethe default values obtained by heuristis, resulting in a more aurate estimate.For example, a simulation ontains impliit knowledge suh as:1. hand strength (fration of trials where Loki's hand is better than the oneassigned to the opponent),2. hand potential (fration of trials where Loki's hand improves to the best,or is overtaken), and3. subtle impliations not addressed in the simplisti betting strategy (e.g.\implied odds", extra bets won after a suessful draw).It also allows omplex strategies to be unovered without providing additionalexpert knowledge. For example, simulations an result in the emergene ofadvaned betting tatis like a hek-raise, even if the basi strategy withoutsimulation is inapable of this play.In strategi games like hess, the performane loss by ignoring opponentmodeling is small, and hene it is usually ignored. In ontrast, not only doesopponent modeling have tremendous value in poker, it an be the distinguishingfeature between players at di�erent skill levels. If a set of players all havea omparable knowledge of poker fundamentals, the ability to alter deisionsbased on an aurate model of the opponent may have a greater impat onsuess than any other strategi priniple.The Weight Table is the �rst step toward opponent modeling sine theweights for opponent ards are hanged based on the dynamis of the games.The simplest approah to determining these weights is to treat all opponentsthe same, alulating a single set of weights to reet reasonable behavior, anduse them for all opponents. An initial set of weights was determined by rank-ing the starting hands (as determined by o�-line simulations) and assigning aprobability ommensurate with the average return on investment of eah hand.These weights losely approximate the ranking of hands by strong players. InLoki, the Opponent Modeler uses probability triples to update the Weight Tableafter eah opponent ation (re-weighting). To aomplish this, the Triple Gen-erator is alled for eah possible two-ard hand. It then multiplies eah weightin the Weight Table by the entry in the probability triple that orresponds tothe opponent's ation.The above sheme is alled Generi Opponent Modeling (GOM) [95℄. Eahhand is viewed in isolation and all opponents are treated as the same player.Eah player's Weight Table is initially idential, and gets modi�ed based ontheir betting ation. Although rather simplisti, this model is quite powerful inthat it does a good job of skewing the hand evaluations to take into aount themost likely opponent holdings. 52



Obviously, treating all opponents the same is learly wrong. Eah player hasa di�erent style. Spei� Opponent Modeling (SOM) ustomizes the probabilitytriple funtion to represent the playing style of eah opponent. For a given game,the re-weighting fator applied to the entries of the Weight table is adjusted bybetting frequeny statistis gathered on that opponent from previous hands.This results in a shift of the assumed all and raise thresholds for eah player.During eah round of a game, the history of previous ations by the opponentis used to inuene the probability triple generated for that opponent.In ompetitive poker, opponent modeling is muh more omplex than por-trayed here. For example, players an at to mislead their opponents into on-struting an erroneous model. Early in a session a strong poker player may tryto reate the impression of being very onservative, only to exploit that imagelater in that session when the opponents are using an inorret opponent model.A strong player has to have a model of eah opponent that an quikly adaptto hanging playing styles.An important part of strong poker is bluÆng. Although mastering this isdiÆult for humans, it is not an obstale for a poker program. The omputeran extend the range of hands it will play to inlude a few that have smallnegative expetations.3.6.2 The Best of Computer PokerThe hand shown in Figure 15 was played on IRC against six opponents. Thefollowing abbreviations are used to show the betting in eah round: \sb": smallblind, \bb": big blind", \": all, \k": hek, \b": bet, \f": fold, and \r":raise. Instead of an ante, Texas Hold'em uses blinds to initially seed the pot.The sample game is $10/$20 Hold'em. Here the �rst player puts in $5 (thesmall blind), while the seond player puts in $10 (the big blind). The �rst twobetting rounds use $10 bets; the last two use $20 bets. There are a maximumof three raises per betting round.The following annotations in italis are by Darse Billings, o-author of Lokiand a former professional poker player.Loki makes a \loose all" with a fairly weak hand before the op, beause theonditions are otherwise ideal (last position, no raises, and a suited hand with5 or 6 opponents). In slightly less favorable irumstanes, Loki would fold thishand before the op.The op yields a good ush draw with an overard to the board. After the betand two alls, a raise is a viable option, sine it would have positive expetationagainst three opponents (> 25% of winning), and might also earn a \free ard"(no bet on the turn). Loki opts for the quieter alternative, whih gains anadditional aller in the small blind (whih is favorable in this situation). Ahigher spinner value for the mixed strategy would have resulted in a raise.The turn ard adds a straight possibility to the draw, and after everyoneshows weakness by heking, Loki deides to \semi-blu�". Unfortunately, thebig blind was playing possum and hek-raises with the best possible hand (astraight). In hindsight, this was a very risky play on his part | if Loki had53



Events opp1 opp2 opp3 opp4 opp5 opp6 LokiHole ards 4} Q}Preflop betting sb bb      kFlop ards 5} J� 7}Flop betting k b f  f  Turn ard 3|Turn betting k k k k b r f  River ard J}River betting k b f rf r Showdown opp2 shows 6� 4�Loki shows Q} 4}Loki wins $400Figure 15: Loki in Ationheked, he would have failed to earn anything from the other players with hisvery strong hand, and would have given away a free hane to make a betterhand. After Loki's bet, he is happily able to build a large pot.Loki is luky enough to make the ush, and raises on the river. After there-raise, the opponent's betting pattern suggests a full house (at least as likelyas a straight) and Loki alls.Loki's ush wins against the opponent's straight. Loki wins $400. Were thisonly real money...3.7 SrabbleThe �rst doumented Srabble program appears to have been written by StuartShapiro and Howard Smith and was published in 1977 [96℄. In the 1980s a num-ber of Srabble programming e�orts emerged and by the end of the deade, itwas apparent that these programs were strong players. With aess to the entireSrabble ditionary (now over 100,000 words), the programs held an importantadvantage in any games against humans.At the First Computer Olympiad in 1989 the Srabble winner was Crabwritten by Andrew Appel, Guy Jaobson, and Graeme Thomas [97℄. Seondwas Tyler written by Alan Frank. Subsequent Olympiads saw the emergene ofTSP (Jim Homan), whih edged out Tyler in the seond and third Olympiads.TSP later beame the ommerial program Crosswise. All of these programs54



were very good, and quite possibly strong enough to be a serious test for thebest players in the world.Part of their suess was due to the fast, ompat Srabble move generatordeveloped by Andrew Appel [98℄. Steven Gordon subsequently developed amove generator that was twie as fast, but used �ve times as muh storage [99℄.Brian Sheppard began working on a Srabble program in 1983, and starteddeveloping Maven in 1986. In a tournament in Deember 1986, Maven soredeight wins and two losses over an elite �eld, �nishing in seond plae on tie-break. Sheppard desribes the games against humans at this tournament [51℄:Maven reels o� JOUNCES, JAUNTIER, and OVERTOIL on sues-sive plays, eah for exatly 86 points, to ome from behind againstfuture national hampion Bob Felt. Maven rushed humans repeat-edly in o�hand games. The human rae begins to ontemplate thepotential of omputers.In the following years, Maven ontinued to demonstrate its dominating playagainst human opposition. Unfortunately, sine it did not ompete in the Com-puter Olympiads, it was diÆult to know how strong it was ompared to otherprograms at the time.In the 1990s, Sheppard developed a pre-endgame analyzer (for when therewere a few tiles left in the bag) and improved the program's ability to simulatelikely sequenes of moves. These represented important advanes in the pro-gram's ability. It was not until 1997, however, that the opportunity arose toproperly assess the program's abilities against world-lass players. In 1997, atwo-game math between Maven and Adam Logan, one of the best players inNorth Ameria, ended in two wins for the human. Unfortunately, the mathwas not long enough to get a sense of who was really the best player.In Marh 1998, the New York Times sponsored an exhibition math betweenMaven and a team onsisting of world hampion Joel Sherman and the runner-up Matt Graham. It is not lear whether the ollaboration helped or hinderedthe human side, but the omputer won onviningly by a sore of six wins tothree. The result was not an anomaly. In July of that year, Maven playedanother exhibition math against Adam Logan, soring nine wins to �ve.Shortly after the Logan math, Brian Sheppard wrote:The evidene right now is that Maven is far stronger than humanplayers. ... I have outright laimed in ommuniation with the reamof humanity that Maven should be moved from the \hampionshipaliber" lass to the \abandon hope" lass, and hallenged anyonewho disagrees with me to ome out and play. No takers so far, butmaybe one brave human will yet venture forth.No one has.3.7.1 MavenThe following desription ofMaven is based on information provided byMaven'sauthor, Brian Sheppard [100℄. 55



Maven divides the game into three phases: early game, pre-endgame, andendgame. The early game starts at move one and ontinues until there arenine or fewer tiles left in the bag (i:e:, with the opponent's seven tiles, thisimplies that there are 16 or fewer unknown tiles). From there, the pre-endgameontinues until there are no tiles in the bag. In the endgame, all the tiles in theopponent's rak are known.Maven uses the following tehniques in regular play, before the pre-endgameis reahed. The program uses the simulation framework desribed in Setion 2.3,with some important Srabble-spei� re�nements. Whereas for other games,suh as bridge and poker, the number of andidate moves is small, for Srabblethere an be many moves to onsider. On average there are over 700 legal movesper position, and the presene of two blanks in the rak an inrease this �gureto over 5,000! Thus, Maven needs to pare the list of possible moves (using themove generator algorithm desribed in [98℄) down to a small list of likely moves.Omitting an important move from this list will have serious onsequenes; itwill never be played. Consequently, Maven employs multiple move generators,eah identifying moves that have important features that merit onsideration.These move generators are:� Sore and Rak. This generator �nds moves that result in a high sore anda good rak (tiles remaining in your possession). Strong players evaluatetheir rak based on the likeliness of the letters being used to aid upomingwords. For example, playing a word that leaves a rak of QXI wouldbe less preferable than leaving QUI; the latter o�ers more potential forplaying the Q e�etively.� Bingo Bloking. Playing all seven letters in a single turn leads to a bonusof 50 points (often alled a bingo). This move generator �nds moves thatredue the hanes of the opponent soring a bingo on their next turn.Sometimes it is worth sari�ing points to redue the opponent's hanesof soring big.� Immediate Soring. This generates the moves with the maximum numberof points (this beomes more important as the end of the game nears).Eah routine provides up to 10 andidate moves. Merging these lists results intypially 20-30 unique andidate moves to onsider. In the early game only theSore and Rak generator is used. In the pre-endgame there are four: the threelisted above plus a pre-endgame evaluator that \took years to tune to the pointwhere it didn't blunder nearly always" [101℄. In the endgame, all possible movesare onsidered.The move generation routines are highly e�etive at �ltering the hundredsor thousands of possible moves [101℄:It is important to note that simply seleting the one move preferredby the Sore and Rak evaluator plays hampionship aliber Srab-ble. My pratie of ombining 10 moves from multiple generators is56



evidene of developing paranoia on my part. \Massive overkill" isthe enterpiee of Maven's design philosophy.Sheppard points out that his program is missing a �shing move generator.Sometimes it is better to pass a move or play a small word (one or two letters),so that you an exhange some of your tiles. For example, with the openingrak of AEINQST, you an play QAT for 24 points. Instead, you an �sh by notplaying a word and exhanging the Q. Of the 93 remaining tiles, 90 will make abingo.For the simulations, Maven does a two-ply searh to evaluate eah andidatemove (in e�et, this is a three-ply searh). It ould use a four-ply searh for theevaluation, but this results in fewer simulation data points. Sheppard disussesthe trade-o�s:If you ompare a four-ply horizon and a two-ply horizon, you �ndthat eah iteration of the four-ply horizon takes twie as long, andthe variane is twie as large, so you need 2 � p2 times as muhtime to simulate to equal levels of statistial auray. Sine Srab-ble has only limited long-term issues, it makes sense to do shallowlookaheads.The limited long-term issues mentioned are a onsequene of the rapid turnoverin the rak. Maven averages playing 4.5 tiles per turn. After a two-ply looka-head, there are few (if any) tiles left from the original rak. Consequently,positions being evaluated at the leaves of a two-ply searh are very di�erentthan the root node.Typially, 1,000 two-ply simulations are done when making a move deision.The move leading to the highest average point di�erential is seleted. After afew simulations, it may beome statistially obvious that some of the andidatemoves have little or no hane of being seleted beause their expeted valuesare too low. If a move's sore is at least two standard deviations below that ofthe best move, and at least 17 simulation iterations have been performed thenthe low-soring move is eliminated from onsideration. The assignment of tilesto opponent hands is done in a way that guarantees a uniform distribution. Aminimum of 14 iterations are needed to plae all tiles in an opponent's rak atleast one. The 17 iterations omes from 14 being rounded up to a power of two(16) and then an inadvertent o�-by-one error giving 17.Other pruning shemes are used to re�ne the move list. First, nearly identialplays usually lead to almost idential sores. For example, an opening move of\PLAY" versus \PALY" makes no di�erene in the simulation results. After101 simulations, the lower rated of almost-idential moves is pruned. Seondly,if it beomes impossible for a low-soring move to ath up to the best-soringmove given the number of trials remaining, then that move is pruned withoutany risk.In the pre-endgame, the program's emphasis hanges from soring pointsto soring wins. With fewer moves to onsider, the simulations are extendedto reah the end of the game to determine whih side wins. The simulations57



ontain additional pruning. If a andidate move is generating signi�antly fewerpoints than the best move and its frequeny of wins is less, then that move iseliminated.Using the simulations to ount the frequeny of wins and points an ausea dilemma. It may be ambiguous as to what the best move to play is [101℄:Sometimes one move is the winner both on points and wins, so thehoie is lear. But sometimes it is not lear, beause wins andpoints do not agree. In that ase Maven \mixes" wins and pointson a linear basis. There are two important pratial reason for this.First, the simulation might not be representative of the atual playof the game, either beause the opponent is inapable of playingas well as Maven (the good ase), or beause Maven's simulationsare mishandling the situation (the bad ase). In either of theseases extra points may ome in handy. Seond, in tournaments itis important to have a high point di�erential, sine that is used tobreak ties. My alulation shows that a 1% higher hane of winninga game is worth roughly a three to four point sari�e of point spread.We don't want to go overboard on defensive gestures at the end ofa game. It is better to lose oasionally to keep a high di�erential.A speial ase ours when there are only eight unknown tiles. In this ase,the opponent an have only one of eight possible tile holdings, soMaven searheseah ase to the end of the game to determine the �nal result. Sheppard hasreently extended his program to handle up to 12 unknown tiles (924 ombina-tions).When there are no tiles left to be drawn, Srabble reverts to a game ofperfet information (all missing tiles are in the opponent's rak). Alpha-betawould take too long to exhaustively searh this, sine the branhing fator islarge, and the program (move generation) is slow. Instead, Maven uses theB* algorithm (see Setion 2.1.6). The suess of B* hinges on assigning goodupper and lower bounds to the moves. Considerable heuristi ode is devotedto determining these bounds. Although Maven is apable of making an error inthe searh (e.g. poor bounds, or limits on spae), in pratie this is rarely seen.This may be the only example of a real system where B* is to be preferred toalpha-beta.The Srabble ommunity has extensively analysed Maven's play and founda few minor errors in the program's play. Postmortem analysis of the Loganmath showed that Maven made mistakes that averaged nine points per game.Logan's average was 40 points per game. Maven missed seven �shing moves(69 points lost), some programming errors (48 points lost), and several smallermistakes (6 points lost). The programming errors have have been orreted.If a future version of Maven inluded �shing, the points per game error ratewould drop to less than one per game. Maven would be playing nearly perfetSrabble.Of the points lost due to programming errors, Brian Sheppard writes:58



It just drives me razy that I an think up inventive ways to get om-puters to at intelligently, but I am not smart enough to implementthem orretly.And that is the soliloquy of every games programmer.3.7.2 The Best of Computer SrabbleIn July 1998, at the annual onferene of the Amerian Assoiation for Arti�ialIntelligene, Maven played an exhibition math against Adam Logan, one of thetop Srabble players in North Ameria. Logan won three of the �rst four gamesof the math, butMaven won six of the next seven games. Going into the ritial12th game,Maven led by a sore of seven wins to four. The following annotationsare by Brian Sheppard and originally appeared in the Srabble Players News.15The olumns of a Srabble board are spei�ed from left-to-right by the letters ato o. Rows are spei�ed from top-to-bottom using the numbers 1 to 15. Movesare spei�ed by giving the square of the �rst letter of the word. If the oordinatebegins with a number, then the word is plaed horizontally. If the oordinatebegins with a letter, then the word is plaed vertially. The blank is referred toby \?". Maven | Adam LoganMaven(ACNTVYZ) plays CAVY at 8f, 24 pts, Maven=24 Logan=0. Thealternative is ZANY for 32, but the CVT rak is poor. Muh better is 24 pointswith an NTZ rak. As to plaement, a better hoie than Maven's is probablyCAVY 8G. This version of Maven was not ideal at �rst-turn plaement, forinexusable internal reasons. Fortunately this is not a signi�ant skill fatorompared to soring and keeping good tiles. Maven is almost ideal at those skillfators.Logan(EGLNORY) plays YEARLONG at g6, 66 pts,Maven=24 Logan=66.Adam �nds the only bingo.Maven(ADNNOTZ) plays DOZY at 6d, 37 pts, Maven=61 Logan=66. It isDOZY(6d,37,ANNT) versus AZLON(10e,34,NTD) or ZOON(11e,26,ADNT).DOZY's extra points and retention of a vowel win despite dupliate Ns.Logan(ADEFOTV) plays OFT at h13, 21 pts, Maven=61 Logan=87.Adam's hoie is best. He also has VOTED(5A,27,AF), OVA(H13,21,DEFT),FOVEAL(10b,22,DT), and ADVENT(12,22,FO). Adam didn't think long, andsine the hoies are so lose it doesn't pay to think long!Maven(AENNNOT) plays NEON at 5b, 15 pts, Maven=76 Logan=87.NEON(5b,15,ANT) edges ANON(5b,15,ENT). I am not sure why, but learlyENT and ANT are both good rak leaves, and there must be some bene�t toavoiding a FANON hook in the \a" olumn. It may also be that ANON's vowel-onsonant-vowel-onsonant pattern is easier to overlap than NEON.15Reprodued with permission. Minor editing hanges have been made to onform with thestyle of this hapter. 59



Logan(ACDEEIV) plays DEVIANCE at 12b, 96 pts,Maven=76 Logan=183.Adam �nds the only bingo.Maven(AHINRTU) plays HURT at 4a, 34 pts, Maven=110 Logan=183.HUNT would usually surpass HURT, beause R is better than N, but here thereare three N's already on the board versus one R. It is important to note thatMaven did not hoose HUNT for the reason I gave; Maven hose HUNT beausein 1,000 iterations of simulation it found that HUNT sored more points thanHURT. The reason I am giving (that three N's have been played versus one R)is my interpretation of that same body of data.Logan(DDEEMMN) plays EMENDED at 7, 26 pts,Maven=110 Logan=209.EMENDED is a good play, following sound priniples: sore points, undoubleletters. Simulations give a two-point edge to MEM(13a,25,EDDN), however.Possibly the 8a-8d spot weighs against EMENDED, plus keeping an E is a valu-able bene�t for MEM. These advantages outweigh the extra point and dupliated\D"s.Maven(ABEINNP) plays IAMB at 8a, 33 pts, Maven=143 Logan=209.IAMB is really the only play, doubled N's notwithstanding.Logan(AILMTTU) plays MATH at a1, 27 pts, Maven=143 Logan=236.MATH(a1,27,ILTU) is best, with UTA(3a,20,ILMT) seond. The advantage ofMATH over UTA is its seven extra points, but the disadvantage is keeping a U.These almost wash, with an edge to MATH.Maven(EFGNNPS) plays FEIGN at e10, 18 pts, Maven=161 Logan=236.FEIGN is the only good move. FENS(j9,24,GNP) is higher soring, but FEIGNkeeps better tiles; NPS easily makes up the soring de�it plus a lot more ontop.Logan(AILORTU) plays TUTORIAL at 15h, 77 pts,Maven=161 Logan=313.Adam �nds the only bingo. (Atually, TUTORIAL also plays at 15f, but soresonly 59 there.)Maven(?ABNOPS) plays BOS at j10, 26 pts, Maven=187 Logan=313. SeeFigure 16. Maven made a great draw from the bag, and then made one ofthe most diÆult plays of the game. Maven has no bingos, and has to hoosehow to make one. Playing o� the B and P is indiated, so plays like BAPor BOP (7i,20) ome to mind. But Maven �nds two stronger, and surprising,alternatives: BOS(j10,26,?ANP) and BOPS(j9,25,?AN). These plays sore afew extra points as ompensation for playing the S, and they open the \k" olumnfor bingo-making. I would have thought that BOPS would win out, but BOS isbetter. BOS does show a higher point di�erential, but that is not why it is better.It is better beause the hane of getting a big bingo is higher due to the reationof a spot where a bingo an hit two double word squares. I believe that the greatmajority of human masters would have rejeted BOS without a seond thought,probably hoosing BOP. BOS is a fantasti play, and yet, there are two playsstill to ome in this game that are more diÆult still.Logan(IILPRSU) plays PILIS at 15a, 34 pts,Maven=187 Logan=347. PILIS,PULIS, PILUS, and PURIS are all good. Adam's hoie is best beause thereare only two U's left, and Adam doesn't want to risk getting a bad Q. When youlead the game you have to guard against extreme outomes.60



Figure 16: Maven plays BOS (j10) soring 26 points.Maven(?AKNPRS) plays SPANKER at k5, 105 pts,Maven=292 Logan=347.This is the only bingo, and a big boost to Maven's hanes. I saw SPANKERbut I wasn't sure it was legal, so I was sitting on the edge of my seat. Beingdown 160 points is depressing. Worse than depressing: it is nearly impossible toome bak from that far behind. The national hampionship tournament givesa prize to the greatest omebak, and in this 31-round, 400-player event there isoften only one game that features suh a omebak.Logan(EEEORUS) plays OE at b1, 12 pts, Maven=292 Logan=359. Adamplays the best move again. This play sores well, as his highest-soring playis just 13 points (ERE L6). OE dumps vowels while keeping all his onso-nants (an edge over ERE). It also keeps the U as \Q-insurane," an edge overMOUE(1a,7,EERS). And it bloks a bingo line. Not bad value, and a goodexample of how to make something positive happen on every rak.Maven(?HJTTWW) plays JAW at 7j, 13 pts, Maven=305 Logan=359.Maven's draw is bad overall, but at least there is hope if Maven an leardrek. Any play that dumps two of the big tiles is worth onsidering, with JAW,WORTH(11i,16,?JW), and WAW(b7,19,?JHTT) as leading ontenders. JAWwins beause the WH and TH are bearable ombinations, and the TT isn't toobad either. Many players would exhange this rak, but Maven didn't onsiderdoing so. I don't know how exhanging (keeping ?HT, presumably) would fare,but I suspet it wouldn't do well; there are few good tiles remaining, and drawinga Q is a real risk.Logan(AEEGRSU) plays GREASE at m3, 31 pts, Maven=305 Logan=390.Simulations show AGER(L9,24,ESU) as three points superior to GREASE, but61



I suspet that GREASE does at least as good a job of winning the game, sineit takes away S bingos o� of JAW. It also pays to sore extra points, whihprovide a ushion if Maven bingos. And it pays to turn over tiles, whih givesMaven fewer turns to ome bak.Maven(?HRTTWX) plays AX at 6m, 25 pts,Maven=330 Logan=390. Maven'smove is brilliant. Who would pik AX over GOX(13G,36)? Would you sari�e11 points, while at the same time reating a huge hook on the \o" olumn for anAX E play? And do so when there are two E's unseen among only 13 tilesand you don't have an E and you are only turning over one tile to draw one? Itseems razy, but here's the point: among the unseen tiles (AAEEIIIILOQUU)are only two onsonants, and one of them is the Q, whih severely restrits themoves that an be made on the \o" olumn. If Adam has EQUAL then Maven isdead, of ourse, but otherwise it is hard to get a deent sore on the \o" olumn.In e�et, Maven is getting a free shot at a big \o" olumn play. AX is at least10 points better than any other move, and gives Maven about a 20% hane ofwinning the game. The best alternative is HAW(b7,19). GOX is well bak.Logan(EIIILQU) plays LEI at o5, 13 pts, Maven=330 Logan=403. Adamsensibly bloks, and this is the best play. The unseen tiles from Adam's perspe-tive are ?AAEHIORTTUW, so Adam's vowelitis stands a good hane of beingured by the draw.Maven(?AHRTTW) playsWE at 9b, 10 pts,Maven=340 Logan=390. Againa problem move, and again Maven �nds the best play. In fat, it is the only playthat o�ers real winning hanes. Maven alulates that it will win if it draws aU, with the unseen tiles AEIIIOQUU. There may also be oasional wins whenAdam is stuk with the Q. This move requires fantasti depth of alulation.What will Maven do if it draws a U?Logan(AIIIOQU) plays QUAI at j2, 35 pts,Maven=340 Logan=438. Adam'snatural play wins unless there is an E in the bag. AQUA(N12,26), QUAIL(O11,15),QUAI(M12,26), and QUA(N13,24) also win unless there is an E in the bag, butwith muh, muh lower point di�erential than QUAI beause these plays do notblok bingos through the G in GREASE. There is no better play. If an E is inthe bag then Adam is lost.Maven(?AHRTTU) plays MOUTHPART at 1a, 92+8 pts, Maven=440 Lo-gan=438. See Figure 17. Maven sores 92 points for MOUTHPART, and eightpoints for the tiles remaining in Logan's rak. Maven was �shing for this bingowhen it played WE last turn. With this play Maven steals the game on the lastmove. Adam, of ourse, was stunned, as it seemed that there were no plaesfor bingos left on this board. If I hadn't felt so bad for Adam, who played mag-ni�ently, I would have jumped and heered. This game put Maven up by eightgames to four, so winning the math was no longer in doubt.How often do you sore 438 points in a game of Srabble... and lose?3.8 Other GamesConspiuously absent from this hapter is the Oriental game of Go. It has beenresistant to the tehniques that have been suessfully applied to the games62



Figure 17: Maven | Logan, �nal positiondisussed in this hapter. For example, beause of the 19 � 19 board and theresulting large branhing fator, alpha-beta searh alone has no hope of produ-ing strong play. Instead, the programs perform small, loal searhes that useextensive appliation-dependent knowledge. David Fotland, the author of theMany Faes of Go program, identi�es over 50 major omponents needed by astrong Go-playing program. The omponents are substantially di�erent fromeah other, few are easy to implement, and all are ritial to ahieving strongplay. In e�et, you have a linked hain, where the weakest link determines theoverall strength.Martin M�uller (author of Explorer) gives a stark assessment of the reality ofthe urrent situation in developing Go programs [102℄:Given the omplexity of the task, the supporting infrastruture forwriting Go programs should o�er more than is o�ered for othergames suh as hess. However, the available material (publiationsand soure ode) is far inferior. The playing level of publily avail-able soure ode ..., though improved reently, lags behind that ofthe state-of-the-art programs. Quality publiations are sare andhard to trak down. Few of the top programmers have an interestin publishing their methods. Whereas artiles on omputer hess orgeneral game-tree searh methods regularly appear in mainstreamAI journals, tehnial publiations on omputer Go remain on�nedto hard to �nd proeedings of speialized onferenes. The most in-teresting developments an be learned only by diret ommuniation63



with the programmers and never get published.Although progress has been steady, it will take many deades of researh anddevelopment before world-hampionship-aliber Go programs exist.At the other end of the spetrum to Go are solved games. For some games,omputers have been able to determine the result of perfet play and a sequeneof moves to ahieve this play.16 In these games the omputer an play perfetly,in the sense that the program will never make a move that fails to ahieve thebest-possible result. Solved games inlude Nine Men's Morris [43℄, Connet-4[103℄, Qubi [104℄, and Go Moku [104℄.This hapter has not addressed one-player games (or puzzles). Single-agentsearh has been suessfully used to optimally solve the 15-puzzle [14℄ and Ru-bik's Cube [105℄, and progress is being made on solving Sokoban problems [106℄.Reently, major advanes have ourred in building programs that an solverossword puzzles [107℄.The last few years have seen researh on team games beome popular. Theannual RoboCup ompetition enourages hardware builders and software de-signers to test their skills on the soer �eld (www.roboup.om).Finally, other areas of games-related interest inlude ommerial omputergames, suh as sports and role-playing games. The arti�ial-intelligene workon these games is still in its infany.4 ConlusionsSamuel was writing as a pioneer, one of the �rst to realize that omputer gamesould be a rih domain for exploring the boundaries of omputer siene and ar-ti�ial intelligene. Sine his 1960 paper, software and hardware advanes haveled to signi�ant suess and milestones in the history of omputing. With it hasome a hange in people's attitudes. Whereas in Samuel's time, understandinghow to build strong game-playing program was at the forefront of arti�ial-intelligene researh, today, 40 years later, it has been demoted to lesser status.In part this is an aknowledgment of the suess ahieved in this �eld | noother area of arti�ial intelligene researh an laim suh an impressive trakreord of produing high-quality working systems. But it is also a reetionon the nature of arti�ial intelligene itself. It seems that as the solution toproblems beome understood, the tehniques beome less \AIish".The work on omputer games has resulted in advanes in numerous areasof omputing. One ould argue that the series of omputer-hess tournamentsthat began in 1970 and ontinue to this day represents the longest runningexperiment in omputing siene. The games researh has demonstrated thebene�ts of brute-fore searh, something that has beome a widely aeptedtool for a number of searh-based appliations. Many of the ideas that saw the16This is in ontrast to the game of Hex where it is easy to prove the game to be a �rstplayer win, but omputers are not yet able to demonstrate that win.64



light of day in game-tree searh have been applied to other algorithms. Build-ing world-hampionship-aliber games programs has demonstrated the ost ofonstruting high-performane arti�ial-intelligene systems. Games have beenused as experimental test beds for many areas of arti�ial intelligene. And soon. Samuel's onluding remarks from his 1960 hapter are as relevant today asthey were when he wrote the paper [72℄:Just as it was impossible to begin the disussion of game-playingmahines without referring to the hoaxes of the past, it is equallyunthinkable to lose the disussion without a prognosis. Program-ming omputers to play games is but one stage in the developmentof an understanding of the methods whih must be employed forthe mahine simulation of intelletual behavior. As we progress inthis understanding it seems reasonable to assume that these newertehniques will be applied to real-life situations with inreasing fre-queny, and the e�ort devoted to games ... will derease. Perhapswe have not yet reahed this turning point, and we may still havemuh to learn from the study of games.5 AknowledgmentsI would like to extend my deepest admiration to the brave human hampions whoaepted the hallenge of a omputer opponent. In most ases, the hampionhad little to gain, but everything to lose. Malolm Davis, Garry Kasparov,Adam Logan, Zia Mahmood, Marion Tinsley, Mihael Rosenberg, and TakeshiMurakami made it possible to sienti�ally measure the progress of game-playingprograms.Many people made signi�ant ontributions to this hapter. I would liketo extend my sinere appreiation to: Bakgammon: Gerry Tesauro (authorof TD-Gammon) and Malolm Davis (world bakgammon hampion); Bridge:Matt Ginsberg (author of GIB), Mike Whittaker (Bridge Magazine), and OnnoEskes (IMP magazine); Chess: Murray Campbell (o-author of Deep Blue);Othello: Mihael Buro (author of Logistello); Poker: Darse Billings (o-authorof Loki) and Mike Caro (Card Player Magazine); Srabble: Brian Sheppard(author of Maven) and Joe Edley (Srabble Players News).I am appreiative of the feedbak from Darse Billings, Mihael Buro, AndreasJunghanns, Lourdes Pe~na, Jak van Ryswyk, and Roel van der Goot. Tehnialhelp was provided by Mark Brokington and Alie Nodelman.Finanial support was provided by the Natural Sienes and EngineeringResearh Counil of Canada (NSERC).Finally, I would like to thank Marvin Zelkowitz for the opportunity to on-tribute to this volume. It was an honor to follow in Arthur Samuel's footsteps.
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