
Single-Agent Search in the Presence of DeadlocksAndreas Junghanns, Jonathan Schae�erDepartment of Computing ScienceUniversity of AlbertaEdmonton, AlbertaCANADA T6G 2H1Email: fandreas, jonathang@cs.ualberta.caAbstractSingle-agent search is a powerful tool for solving a va-riety of applications. Most of the application domainsused to explore single-agent search techniques have theproperty that if you start with a solvable state, at notime in the search can you reach a state that is un-solvable. In this paper we address the implicationsthat arise when state transitions can lead to unsolv-able (deadlock) states. Deadlock states are partiallyresponsible for the failure of our attempts to solve po-sitions in the game of Sokoban. In this paper, we in-troduce pattern search, a real-time learning algorithmthat identi�es the minimal conditions (pattern) nec-essary for a deadlock, and applies that knowledge toeliminate provably irrelevant parts of the search tree.Identi�cation of deadlock patterns is equivalent to cor-recting the heuristic lower bound of a position to in-�nity. Generalizing pattern searches to �nd arbitrarylower bound increases yields a powerful new search en-hancement. In the game of Sokoban, pattern searchesresult in a 15-fold reduction of the cost of each addi-tional IDA* iteration.Keywords: single agent search, heuristic search,Sokoban, deadlocks, IDA*IntroductionSingle-agent search (A*) has been extensively studiedin the literature. There are a plethora of enhancementsto the basic algorithm that allows one to tailor the al-gorithms to the problem domains to maximize programperformance. The result is an impressive reduction inthe search e�ort required to solve challenging applica-tions (see (Korf 1997) for a recent example). How-ever, the applications used to illustrate the advancesin single-agent search e�ciency are \easy" in the sensethat they have some (or all) of the following properties:1) e�ective, inexpensive lower-bound estimators,2) small branching factor in the search tree, and3) moderate solution lengths.The sliding-tile puzzles are the best known examplesof these problems. Problem domains such as these alsoCopyright 1998, American Association for Arti�cial In-telligence (www.aaai.org). All rights reserved.

have the important property that given a solvable start-ing state, every move preserves the solvability, but notnecessarily the optimality of the solution.Sokoban is a popular one-player game. The rulesof the game are quite simple. Littered throughoutthe playing area, consisting of rooms and passageways,are stones (shown as circular discs) and goals (shadedsquares). There is a man whose job it is to move eachstone to a goal square. The man can only push onestone at a time and must push from behind the stone.A square can only be occupied by one of a wall, stoneor man at any time (Junghanns & Schae�er 1998).Since you cannot pull a stone, a single move cantransform the problem from being solvable to being un-solvable. Many of these so-called deadlock states aretrivial to identify and avoid in the search. Howeversome require extensive analysis to prove their existence;the search trees may be so large that they are essentiallyunsolvable by traditional search methods.Sokoban is a di�cult domain for many reasons:1) it has a complex lower-bound estimator(O(n3), given n goals (Kuhn 1955)),2) the branching factor is large and variable(potentially over 100),3) the solution may be very long (some problems re-quire over 500 moves to solve optimally), and4) some reachable states are unsolvable (deadlock).For sliding-tile puzzles, there are algorithms for gener-ating a non-optimal solution. In Sokoban, because ofthe presence of deadlock, often it is very di�cult to �ndany solution.Our previous attempts to solve Sokoban problemsusing standard single-agent search techniques are re-ported in (Junghanns & Schae�er 1998). There, us-ing our program Rolling Stone, we compare the dif-ferent techniques and their usefulness with respect tothe search e�ciency when solving Sokoban problems.Even though each of the �ve standard single-agentsearch enhancements we investigated resulted in signif-icant improvements (often several orders of magnitudein search-tree size reduction), at the time we were ableto only solve 20 problems of a 90-problem test suite(http://xsokoban.lcs.mit.edu/xsokoban.html).

We concluded that the standard techniques are in-su�cient to make further progress in the domain ofSokoban. Additional search enhancements are neededto enable us to solve signi�cantly more of the problemsfrom the test set. Since large portions of the searchare wasted searching problem con�gurations with dead-locks present, we speculated that the detection of thesedeadlocks could lead to signi�cant e�ciency gains. Thetechniques suggested in this paper are a direct result ofthose observations.In this paper, we introduce a new search enhance-ment that dynamically �nds deadlocks and improvedlower bounds. Pattern search is a real-time learningalgorithm that identi�es the minimal conditions nec-essary for a deadlock, and applies that knowledge toeliminate provably irrelevant parts of the search tree.By devoting a portion of the search e�ort to learningproperties about the search space, the program tradeso� search-tree size versus acquired knowledge. In thegame of Sokoban, the additional knowledge gained bythe pattern searches improves the program's search e�-ciency. The average growth rate of the tree is a factor of15 times smaller per IDA* (Korf 1985) iteration. Thisresults in 29 solved Sokoban problems, and signi�cantprogress towards solving many more.Pattern SearchesIn general, establishing the presence of deadlock can bequite involved. The deadlock may require as few as oneand as many as all the stones on the board. Provingthat a pattern of stones creates a deadlock will requirea search to verify that no possible solution path exists.Ideally, having discovered a deadlock pattern, any statecontaining that pattern will now be assigned the correctlower bound of in�nity.This section describes our pattern searches. We de-scribe how we prove the presence of deadlock by iden-tifying that the properties needed to prevent deadlockare not present. A pattern search results in a minimalpattern which is saved and used throughout the search.In e�ect, the program learns the deadlock patterns andeliminates any search path leading to a position con-taining a deadlock pattern.A deadlock implies a lower bound of in�nity. Whiletrying to prove/disprove a deadlock, we may be ableto show that our lower bound is too low. Even if adeadlock is not present, we may uncover a pattern thatallows the search to improve its admissible lower bound.Basic IdeaBy de�nition, a deadlock is a con�guration of stonessuch that not all of the stones can reach a goal. Ifwe make a move A-B, we might introduce a deadlock.If this deadlock was not present before the move, thenthe moved stone, now on square B, must be part of thatpattern. This is the initial stone used for the patternsearch. The pattern search will perform small searcheswith a subset of stones on the board to determine if adeadlock was introduced.

PatternSearch(From, To) fclear TestMaze;set StonePath = fTog;for(i=1; i <= MAX PATTERN SIZEAND NOT EffortLimit(); i++) fif(stone s on a square in StonePath)add closest s to TestMazeelse if(stone s on a square in ManPath)add closest s to TestMazeelse break;solution = PIDA*(TestMaze, SolLength,ManPath, StonePath);/* Test for a deadlock */if(solution == NO AND NOT EffortLimit()) fGeneralizeAndAddPattern(TestMaze, infty);break;g/* Test for a lower bound increase */if(solution == YES) flb = LowerBound(TestMaze);if(SolLength > lb)GeneralizeAndAddPattern(TestMaze,SolLength - lb);ggg Figure 1: Pseudo Code for Pattern SearchesIn the following, we will refer to two di�erent mazes:the original maze, which is the maze with all the stonesat the position after the move, and the test maze whichwill be used for the pattern searches.A pattern search iterates on the number of stonesin the test maze. We start by putting only the stonethat was moved to B in the test maze. PIDA* (seebelow) is called to solve this test maze. It either re-turns in failure (no solution, hence deadlock), or it�nds a solution. In the latter case, we are interestedin the set of squares that are used by the stones andthe man to e�ect the solution: the squares occupied bythe stones(s) on their path to the goal(s) (StonePath),and the squares touched by the man while pushing thestone(s) to a goal(s) (ManPath). In e�ect, these sets ofsquares are preconditions for the solution to work.The ManPath and StonePath are used to determinewhich stone from the original maze to include next inthe test maze. A stone in the original maze on a squarethat is on one of the squares in ManPath or StonePathcon
icts with the solution. The stone in StonePathclosest to square B (the square the stone was moved toin the original maze) is included next. If such a stonedoes not exist, the stone on ManPath closest1 to squareA is used. If none of those exists, the pattern searchreturns without �nding a deadlock.After including the next stone, PIDA* is called again,1Closest is always with respect to the distance of eitherthe stone or the man to the con
icting stone. These distancemeasures are possibly di�erent due to the more restrictedmovement of the stones.

Figure 2: Deadlock examplereturning with a solution determination and the twocon
ict sets. If deadlock has not been found, then thecon
ict sets are used to add another stone to the testmaze. If any of the returning searches indicates a longersolution length than the lower bound estimate of the po-sition, the current pattern is stored with a correspond-ing lower-bound increase. Figure 1 shows the pseudocode.The notion of bit (stone) patterns is similar to theMethod of Analogies (Adelson-Velskiy, Arlazarov, &Donskoy 1975). Pattern searches are a con
ict-driventop-down proof of correctness, while the Method ofAnalogies is a bottom-up heuristic approximation.ExampleFigure 2 shows a simple position, before and after themove Gd-Fd. The question is whether this move in-troduces a deadlock. Figure 3 shows how the testmaze is built. Since the last move ended up on squareFd, the test maze is initialized with this single stone(Figure 3a). A PIDA* search reveals a 5-move solu-tion (Fd-Fc-Ec-Dc-Cc-Bc), and sets ManPath to thesquares needed by the man (Gd-Ge-Fe-Fd-Gd-Gc-Fc-Ec-Dc-Cc), and StonePath to the squares used by thestone (Fd-Fc-Ec-Dc-Cc-Bc). Since there is a solution,we continue the pattern search.The original maze has a stone on one of the squaresthat the stone moved over (square Ec) which now getsincluded in the test maze (Figure 3b). PIDA* will solvethe test maze with the two stones and again �nd a so-lution. The ManPath is (Gd-Gc-Fc-Ec-Dc-Dd-Cd-Cc-Dc-Ec-Fc-Gc-Gd-Ge-Fe-Fd-Gd-Gc-Fc-Ec-Dc-Cc) andthe StonePath is (Ec-Dc-Cc-Cb Fd-Fc-Ec-Dc-Cc-Bc).This time there are no stones in con
ict withStonePath. However, there is a con
ict with the Man-Path, square Ge. This stone is added to the test maze(Figure 3c) and another search is commenced. A solu-tion will be found, requiring a fourth stone to be added(Figure 3d).The fourth call to PIDA* will return no solutionand announce a deadlock with this pattern of fourstones. Identifying the critical stones to examine hasbeen driven by whether they con
ict with a potentialsolution. The irrelevant parts of the maze (such as thestone on Hc) are ignored.

Generalizing the PatternsThe fewer stones in a deadlock pattern, the more likelyit will match an arbitrary position and be used to elim-inate futile branches of the search. A minimal dead-lock pattern is a deadlock pattern from which no stonecan be removed without making the remaining patternsolvable. The attentive reader will have noticed thatonly three stones are needed to guarantee deadlock inFigure 3; the stone on Ec is unnecessary. Before sav-ing the deadlock pattern, our program will attempt tominimize the number of stones in it.The deadlock set minimization routine takes an N-stone pattern and considers each of the possible N-1-stone sub-patterns. Each of the N-1-stone sub-patternsis searched to verify whether removing that stone pre-serves the deadlock. If the deadlock still exists, then theremoved stone was not part of the minimal deadlock setand is removed from the deadlock pattern.Customizing IDA* for Pattern SearchesIf the pattern searches used the same IDA* procedureand lower bound estimator as in Rolling Stone, thesearch would be prohibitively large and slow. Instead,we use a special version of IDA* (PIDA*) that is cus-tomized for pattern searches, allowing for additionaloptimizations that dramatically improve the search ef-�ciency. By relaxing the rules of Sokoban and introduc-ing new goal criteria, the resulting search will be moree�cient and will still return an admissible lower boundon the solution.One optimization is to remove stones from the testmaze once they reach a goal square or a man-reachablesquare. This comes from the observation that mostdeadlocks result in a number of stones getting crowdedtogether. Hence, if a stone \breaks free", we assumewe no longer need to consider it in that search sub-tree.Another optimization is to relax what we consider agoal state. Now, goal states are also positions wherethe man can reach all squares and at least one con
ictwith the current StonePath was found already.These shortcuts simplify the search leading to largesavings in the cost of a pattern search (from thousandsof nodes to an average of 50). However, this comes atthe cost of possibly missing a deadlock. In practice, thereduced search e�ort more than compensates for thefew missed opportunities.Since stones get removed from the board when theyreach a goal square, the best lower bound heuristic isnot appropriate (see (Junghanns & Schae�er 1998)). Acheaper heuristic can be used: the sum of the shortestdistances of each stone to its closest goal. When a stonemoves, this lower bound is easily updated. This resultsin large savings in the cost per node compared to theoriginalO(n3) lower bound. Since the number of stonesis small in a pattern search, most search-related rou-tines are fast, because their cost depends on the numberof stones in the maze.

Figure 3: Sequence of test mazes as passed to PIDA* (a, b, c and d)
Figure 4: Penalty ExampleTradeo�sPattern searches can be costly. There are three mainfactors involved in their cost: the frequency of the pat-tern searches, a bound on the size of a pattern search,and a bound on the deadlock pattern size.Frequency of Pattern Searches: We cannot af-ford to do a pattern search at every node in the IDA*search. We use some simple heuristics for deciding whento invest in a deadlock search.The pattern search is always done for a node forwhich a deadlock search has not been previously donebefore (as retrieved from the transposition table) andthe amount of e�ort spent below that node on a previ-ous iteration exceeds a threshold. For our experiments,we use a threshold of 50 nodes, a number that re
ectsthe size of a typical pattern search. Furthermore, if astone is pushed onto an articulation point of the under-lying graph structure of the maze, if the stone blocksan area for the man that was previously accessible, orif the stone pushed has no more legal moves, the pat-tern search is executed. These heuristics ensure theexecution of pattern searches where the possibility oferroneous lower bounds is high.Size of the Pattern Search: Pattern searches arerestricted to a maximum e�ort of 1000 nodes. If thethreshold is reached, the search is aborted.Pattern Size: Deadlock patterns are restricted to 8stones. This is an arti�cial limitation, but we have notfully explored the tradeo�s of �nding larger deadlockpatterns, versus the e�ort required to �nd them.Generalizing Pattern SearchesThe presence of a deadlock pattern in a position meansthe lower bound increases to in�nity. Can we �nd pat-terns that allow us to increase the lower bound by an

arbitrary amount, not just in�nity?Assume there are three stones in the test maze andPIDA* starts its �rst iteration but fails to �nd a so-lution. Hence PIDA* proved that this pattern cannotbe solved with the number of moves that the heuristiclower bound indicated. In other words, the lower boundis wrong.Some of the shortcuts used in the pattern searches arenot appropriate when searching for a lower bound in-crease. Thus a second search routine is used to look forpatterns that allow for arbitrary lower bound increases.If the �rst pattern search fails (looking for a deadlock),the second pattern search is executed, possibly �ndinga pattern that allows us to improve the lower bound.In Figure 4, after the move Hd-Gd a pattern searchlooking for a deadlock will fail. A pattern search look-ing to improve the lower bound will uncover that thesolution requires the non-optimalmoves Fd-Fe and Gd-Hd, proving that the lower bound is o� by four moves.Storage and Retrieval of PatternsTo incorporate the deadlock and penalty patterns intothe search, we need to save the patterns found anduse them to match positions in the search. The pat-tern matching is complicated by the fact that you needto match not only the stones, but also the man po-sition. With each pattern of stones the squares arestored which the man in the test maze cannot reach.To increase the usefulness of the information found bythe pattern searches, we use the multi-insert technique.Instead of the root node only, the top two ply of thepattern search nodes are stored.To match a pattern, the test maze must have thestones in the same places as the pattern and the manmust not be able to reach any of the non-reachablesquares stored together with the pattern. Since severalpatterns might match, stones that were used to matcha pattern are not used when looking for a second pat-tern to match, to avoid double penalization. To max-imize the penalties, the pattern matching starts withthe highest penalty patterns.This is similar to Ginsberg's Partition Search idea(Ginsberg 1996) where the entries of a hash table weregeneralized to hold information about sets of problemstates. In Rolling Stone a pattern is the informationabout the lower-bound increase of the set of problemstates in which this pattern is present.

Figure 5: Maze #30 receives a penalty of 38 (24+14) after 2 patterns were matchedExperimental ResultsFigure 5 shows maze #30 with a stone con�gurationthat arises during the search. Two penalty patternswere successfully matched, resulting in an increase of38 (14+28) to the lower bound.Given 20 million nodes of search e�ort, our programcan currently solve 29 problems of the 90 problem testsuite. Without the pattern searches, only 22 problemscan be solved2. Table 1 shows the results of search-ing these problems. Each column is labeled accord-ing to which of the three features is enabled: penaltysearches (pen), deadlock searches (dl) and multi-insert(mi), where + and - mean enabled and disabled, respec-tively. Two node numbers are given: the IDA* nodesand the IDA* + PIDA* nodes.Except for the small searches, the cost of perform-ing the additional PIDA* searches is o�set by the re-duction in the IDA* search nodes. Problem 53 is anexample. Previously, with 20,000,000 nodes of search,we were unable to solve this problem. Now the searchis accomplished with only 177 IDA* nodes and a totalof 1,229 nodes. Clearly, the pattern searches dominatethe search cost, but the knowledge uncovered allows usto solve the problem where we failed previously.Analysis of the data shows that the average growthrate of the search tree from iteration to iteration in anIDA* search decreased from 84,669 to 5,559 due to thepattern searches. Although this represents a signi�cantreduction in search e�ort (a factor of 15 per iteration),it demonstrates how resistant the problem is to search.Decreasing the growth rate of the search tree size gen-erally increases the number of iterations that the mainIDA* search can perform in the same time. For exam-ple, on 13 of the remaining 61 problems 3 or more ad-ditional IDA* iterations were accomplished (the maxi-mumwas 9 extra iterations). Since the average increaseof the tree size to the next iteration is 5,559, even 3 it-erations are signi�cant improvements.Pattern searches are a gamble: you invest search ef-fort (PIDA* nodes) expecting to �nd useful knowledge.A failed pattern search costs roughly 50 nodes. A suc-2We previously reported 20 problems solved. Increasingthe utility of the goal macros allowed the standard versionto solve two more problems.

cessful pattern search typically costs over 1,000 nodes,because of the additional di�culty of the search and thecost of minimizing the pattern. Only 12% of the patternsearches are successful at discovering something useful.Although this sounds low, the results show the value ofthe discovered knowledge. Problem #21 is one exam-ple of where the gamble does not pay o�. Even thoughthe tree size (IDA*) is reduced to about 33%, includingthe PIDA* nodes quadruples the total number of nodessearched.The results reported here are not the best numbersthat can be achieved. There are numerous param-eters in the search, each of which can be tuned formaximal performance. In Table 1, the PIDA* nodesdominate the cost of the search for some problems.Some additional heuristics for deciding when to do pat-tern searches can result in further improvements in thesearch e�ciency.Furthermore, examination of the results shows thatlower-bound increases are more bene�cial then thedeadlock patterns. More is to be gained by improvingthe lower bound than by identifying deadlock states.Conclusions and Future WorkSokoban is a challenging puzzle { for both man and ma-chine. The traditional enhanced single-agent search al-gorithms are inadequate to solve the entire 90-problemtest suite, even with their dramatic impact on thesearch tree size.The property of deadlocks in a search space adds con-siderable complexity to the search. The previously in-troduced deadlock tables (Junghanns & Schae�er 1998)are bene�cial for local deadlock detection, but inade-quate to handle non-trivial situations. Pattern searchescan detect global deadlock scenarios and are able toimprove the lower bound considerably, resulting in asubstantial improvement in search e�ciency.Further work is needed to identify when deadlocksare likely to occur and either avoid them or invest theresources to verify their existence. Detecting deadlocksis critical to any real-time application.The pattern searches were based on demonstratingwhether there existed a scenario by which all the stonesin a position subset could reach their goals, and in how

-dl -pen -mi +dl -pen -mi +dl +pen -mi +dl +pen +miIDA* IDA* IDA*+PIDA* IDA* IDA*+PIDA* IDA* IDA*+PIDA*1 53 53 125 50 410 50 4122 224 210 1,137 149 3,090 149 3,3293 393 188 3,734 97 7,231 97 11,7534 394 310 3,488 187 1,878 187 1,8795 1,768,356 16,071 110,709 2,813 61,608 2,664 66,6586 207 168 427 139 2,234 139 3,0087 30,118 20,833 138,685 2,818 61,879 2,743 61,0179 198,667 121,868 207,833 7,619 162,999 8,647 160,83317 10,108 1,676 9,512 1,103 23,771 821 22,58821 374,843 330,273 2,112,792 145,939 1,668,636 109,913 1,231,21738 312,017 104,255 128,451 75,244 117,770 75,244 118,83543 > 20,000,000 > 13,431,042 > 20,000,000 13,834 2,223,154 10,661 2,337,71251 50,675 97,299 99,754 133 2,564 133 6,04253 > 20,000,000 177 368 177 1,184 177 1,22955 > 20,000,000 > 13,198,858 > 20,000,000 4,527,930 12,482,548 4,462,920 12,301,51057 3,078,112 215,541 521,533 176,413 780,398 79,792 608,26162 127,434 821,533 872,317 2,036 21,395 440 18,71163 3,137,313 415,401 2,293,790 25,200 1,086,424 18,024 742,49065 1,333 1,333 2,272 980 3,848 1,355 4,24268 > 20,000,000 > 19,519,926 > 20,000,000 203,966 8,214,930 145,528 6,260,52970 > 20,000,000 > 9,189,442 > 20,000,000 > 619,739 > 20,000,000 185,820 3,639,14272 > 20,000,000 > 13,142,686 > 20,000,000 49,279 145,276 1,701 49,96273 > 20,000,000 > 19,011,026 > 20,000,000 29,586 45,309 29,586 45,31878 75 75 267 75 882 75 88279 4,474 3,799 5,504 1,970 13,163 1,957 10,55580 2,430 109 2,981 98 9,555 98 10,53481 305,185 16,655 50,344 1,991 28,502 1,908 21,33382 162,517 151,720 717,656 230 32,395 471 49,32383 1,198 90 2,883 90 7,204 90 7,271P >149,566,126 > 89,812,617 >127,286,562 > 5,889,885 > 47,210,237 5,141,390 27,796,575Table 1: Experimental Datamany moves. There are other proof conditions that canbe tried. One promising avenue for proving that dead-lock is not being introduced is the reversible move. Forexample, assume that in position P move A-B is made.It may be easy to verify that there is a sequence ofmoves that e�ectively unmakes the move A-B (possiblyas simple as B-A) resulting in all the stones and theman being back as they were in position P. If this canbe shown, then this is a proof that deadlock was notintroduced by A-B. This property can be veri�ed witha search where the goal conditions are changed.Although pattern searches can be enhanced to makethem more e�cient, it appears they are inadequate tosuccessfully solve all 90 Sokoban test positions. This isthe subject of ongoing research.AcknowledgementsThe authors would like to thank the German Aca-demic Exchange Service, the Killam Foundation andthe Natural Sciences and Engineering Research Coun-cil of Canada for their support. This paper bene�tedfrom interactions with Yngvi Bjornsson, Russ Greiner,Peter van Beek and from the referees' comments.
ReferencesAdelson-Velskiy, G.; Arlazarov, V.; and Donskoy, M.1975. Some methods of controlling the tree search inchess programs. Arti�cial Intelligence 6(4):361{371.Ginsberg, M. 1996. Partition search. In AAAI-96,228{233.Junghanns, A., and Schae�er, J. 1998. Sokoban: Eval-uating standard single-agent search techniques in thepresence of deadlock. In Proceedings AI-98. To ap-pear in Springer-Verlag's Lecture Notes in ComputerScience series.Korf, R. 1985. Depth-�rst iterative-deepening: Anoptimal admissible tree search. Arti�cial Intelligence27(1):97{109.Korf, R. 1997. Finding optimal solutions to Rubik'sCube using pattern databases. In AAAI{97, 700{705.Kuhn, H. 1955. The Hungarian method for the as-signment problem. Naval Res. Logist. Quart. 83{98.

