
A* Search with Inconsistent Heuristics

Zhifu Zhang, Nathan R. Sturtevant,

Robert Holte, Jonathan Schaeffer

Computing Science Department

University of Alberta

Edmonton, Alberta, Canada T6G 2E8

{zfzhang, nathanst, holte, jonathan}@cs.ualberta.ca

Ariel Felner

Information Systems Engineering

Deutsche Telekom Labs

Ben-Gurion University

Be’er-Sheva, Israel 85104

felner@bgu.ac.il

Abstract

Early research in heuristic search discovered that using

inconsistent heuristics with A* could result in an expo-

nential increase in the number of node expansions. As a

result, the use of inconsistent heuristics has largely dis-

appeared from practice. Recently, inconsistent heuristics

have been shown to be effective in IDA*, especially when

applying the bidirectional pathmax (BPMX) enhance-

ment. This paper presents new worst-case complexity

analysis of A*’s behavior with inconsistent heuristics,

discusses how BPMX can be used with A*, and gives

experimental results justifying the use of inconsistent

heuristics in A* searches.

1 Introduction

A* is a popular heuristic search algorithm that guarantees
finding an optimal cost solution, assuming that one exists
and that the heuristic used is admissible [Hart et al., 1968;
1972]. However, when the heuristic is inconsistent, A* can
perform very poorly as nodes that have already been ex-
panded may need to be re-expanded many times. This re-
sults in a worst case of O(2N) node expansions, where N
is the number of distinct nodes expanded [Martelli, 1977].
This motivated the creation of A* variants B [Martelli, 1977],
C [Bagchi and Mahanti, 1983], and B′ [Mero, 1984] with
a worst-case of O(N2). Even so, these results discouraged
the use of inconsistent heuristics, especially since most ‘natu-
ral’ heuristics seemed to be consistent (p.116, [Pearl, 1984]).
However, recent research shows that there are several ways
to create inconsistent heuristics such as the dual and random
heuristics [Zahavi et al., 2007]. In addition, any memory-
based heuristic that has some values missing or degraded may
be inconsistent. Inconsistency is not a problem for IDA*
because IDA* already re-expands nodes many times and is
only used in domains where the cost of re-expansions is fully
amortized over the cost of the search. Bidirectional pathmax
(BPMX) has been shown to further improve the performance
of inconsistent heuristics in IDA*.

This paper complements this work by studying the appli-
cability of using inconsistent heuristics and BPMX with A*.
The following contributions are made:

• Better worst-case complexity bounds for A* that are
polynomial for a large class of problems.

• Discussion of how BPMX can be integrated into A* and
the resulting best- and worst-case scenarios.

• An experimental comparison of A*, B, C, B′ and
BPMX algorithms using a variety of types of inconsis-
tent heuristics. The results illustrate the potential for
benefit in A* searches.

2 Background

Heuristic search algorithms such as A* are guided by the cost
function f(n) = g(n) + h(n), where g(n) is the best known
distance from the initial state to state n and h(n) is a heuris-
tic function estimating the cost from n to a goal state. An
admissible heuristic never overestimates the path cost of any
node to the goal. In other words h(n) ≤ h∗(n) for any node
n [Hart et al., 1968]. A consistent heuristic is an admissible
heuristic with the property that if there is a path from node
x to node y then h(x) ≤ d(x, y) + h(y), where d(x, y) is
the distance from x to y [Hart et al., 1968]. This is a kind
of triangle inequality: the estimated distance from x to goal
cannot be reduced by moving from x to a different node y and
adding the estimate of the distance to goal from y to the cost
of reaching y from x. Pearl [1984] showed that restricting y
to be a neighbour of x produces an equivalent definition with
an intuitive interpretation: in moving from a node to its neigh-
bour h must not decrease more than g increases. If the edges
in the state space are undirected, the definition of consistency
can be written as |h(x) − h(y)| ≤ d(x, y). A heuristic is
inconsistent if it is not consistent.

A* is the algorithm of choice for many single-agent search
applications. A* maintains a list of nodes to consider to be
expanded (the open list) and a list of nodes that have been
expanded (the closed list). The open list is sorted by in-
creasing f -value, with ties typically being broken in favor of
larger g values. At each step, the best node on the open list
is moved to the closed list, expanded, and its successors are
added to the open list. This continues until an optimal so-
lution is proven. With a consistent heuristic, once a node is
expanded and placed on the closed list, it never moves back
to the open list.

If the heuristic is admissible and consistent, A* is “op-
timal” in terms of the number of node expansions [Pearl,
1984]. However, if the heuristic is admissible but not consis-
tent, nodes can be moved back from the closed list to the open

634

Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09)

23

13

7300

11 9 6
1

19 1 1

1

6

3

4

(n
5
)

(n
4
)

(n
3
)(n

2
)(n

1
)(n

0
)

Figure 1: G5 in Martelli’s family.

list (“reopened”) and A* can do as many as O(2N) node ex-
pansions, where N is the number of distinct expanded nodes.
This was proven by Martelli [1977], who defined a family of
graphs {Gi}∞i=3

such that Gi contains i + 1 nodes and re-
quires A* to do O(2i) node expansions to find the solution.
Graph G5 in Martelli’s family is shown in Figure 1; the num-
ber inside a node is its heuristic value. There are many in-
consistencies in this graph. For example, d(n4, n3) = 1 but
h(n4)− h(n3) = 6. The unique optimal path from start (n5)
to goal (n0) visits the nodes in decreasing order of their in-
dex (n5, n4, ..., n0), but n4 has a large enough heuristic value
(f(n4) = 14) that it will not be expanded by A* until all
possible paths to the goal (with f < 14) involving all the
other nodes have been fully explored. Thus, when n4 is ex-
panded, nodes n3, n2 and n1 are reopened and then expanded
again. Moreover, once n4 is expanded, the same property
holds again of n3, the next node on the optimal path, so it
is not expanded until all paths from n4 to the goal involv-
ing all the other nodes have been fully explored. This patho-
logical pattern of behavior repeats each time one additional
node on the optimal path is expanded for the last time. As
we will show below this worst-case behavior hinges on the
search graph having the properties, clearly seen in the defini-
tion of Martelli’s family, that the edge weights and heuristic
values grow exponentially with the graph size.

Martelli [1977] devised a variant of A*, called B, that im-
proves upon A*’s worst-case time complexity while main-
taining admissibility. Algorithm B maintains a global vari-
able F that keeps track of the maximum f -value of the nodes
expanded so far. When choosing the next node to expand, if
fm, the minimum f -value in the open list, satisfies fm ≥ F ,
then the node with minimum f -value is chosen as in A*, oth-
erwise the node with minimum g-value among those with
f < F is chosen. Because the value of F can only change
(increase) when a node is expanded for the first time, and no
node will be expanded more than once for a given value of F ,
the worst-case time complexity of algorithm B is O(N2).

Bagchi and Mahanti [1983] proposed C, a variant of B, by
changing the condition for the special case from fm < F to
fm ≤ F and altering the tie-breaking rule to prefer smaller
g values. C’s worst-case time complexity is the same as B’s,
O(N2).

Figure 2: BPMX (bidirectional pathmax).

Mero [1984] modified B to create B′ by introducing two
“pathmax” rules that propagate heuristic values between a
parent node n and its successor m during search as follows:

(a) For each successor m of the selected node n, if h(m) <
h(n)− d(n, m), then set h(m) ← h(n)− d(n, m).

(b) Let m be the successor node of n for which h(m) +
d(n, m) is minimal. If h(n) < h(m)+d(n, m), then set
h(n)← h(m) + d(n, m).1

Rule (a) updates the successors’ heuristic values, and (b) up-
dates the parent’s heuristic value. Like B, B′ has a worst-case
time complexity of O(N2).

Bidirectional pathmax (BPMX) [Felner et al., 2005] is
a method that works with inconsistent heuristics and prop-
agates large values to neighboring nodes. It can be seen as
applying Mero’s pathmax rule (a) in both directions when the
edge connecting the two nodes is undirected. This is illus-
trated in Figure 2, where u is the node being expanded, nodes
v1 and v2 are its two neighbors, and the number in a node is its
h value. h(v1) can propagate to u, updating its value to 4 (5 -
d(u, v1) = 4). In turn, h(u) can propagate to v2, updating its
value to 3 (4 - d(u, v2) = 3). All previous research on BPMX
has been in the context of IDA*, not A*. In IDA* BPMX
propagation is essentially “free” computationally, because it
can be done as part of the backtracking that is intrinsic to the
IDA* search. If the IDA* search threshold is, for example,
3 and u is at the root of the search tree then having searched
v1, the backed up value of u becomes 4 causing a cut-off and
child v2 is not explored. Section 4 below points out that only
very limited versions of BPMX can be added to A* for “free”,
and discusses the costs and benefits of using more complete
versions of BPMX in A*.

3 Worst-Case Complexity Analysis

Although Martelli proved that the number of node expan-
sions A* performs may be exponential in the number of dis-
tinct nodes expanded, this behavior has never been reported
in real-world applications of A*. His family of worst-case
graphs have edge weights and heuristic values that grow ex-
ponentially with the graph size. We show here that these are
necessary conditions for A*’s worst-case behavior to occur.

Let V be the set of nodes expanded by A* and N = |V |.
We assume all edge weights are positive integers. The key
quantity in our analysis is Δ, defined to be the greatest com-
mon divisor of all the edge weights. The cost of every path
from the start node to node n is a multiple of Δ, and so too

1This is our version of the second pathmax rule. The version in
[Mero, 1984] is clearly not correct.

635

L

(S)

(B)

(K)

gL(K)

Figure 3: First and last explored path.

is the difference in the costs of any two paths from the start
node to n. Therefore, if during search we reopen n because
a new path to it is found with a smaller cost than our current
g(n) value, we know that g(n) will be reduced by at least Δ.

Theorem 1 If A* performs φ(N) > N node expansions then
there must be a node with heuristic value of at least LB =
Δ ∗ �(φ(N)−N)/N�.
Proof. If there are φ(N) total expansions by A*, then the
number of re-expansions is φ(N) − N . By the pigeon-
hole principle there must be a node, say K , with at least
�(φ(N) − N)/N� re-expansions. Each re-expansion must
decrease g(K) by at least Δ, so after this process the g-value
of K is reduced by at least LB = Δ ∗ �(φ(N) −N)/N�.

In Figure 3, S is the start node, K is any node that is re-
expanded at least �(φ(N) − N)/N� times (as we have just
seen, at least one such node must exist), the lower path to K ,
L, is the path that resulted in the first expansion of K , and
the upper path to K (via node B) is the path that resulted in
the last expansion of K . We denote the f - and g-values along
path L as fL and gL, and the f - and g-values along the upper
path as flast and glast, respectively.

Node B is any node on the upper path, excluding S, with
the maximum flast value. Nodes distinct from S and K must
exist along this path because if it were a direct edge from S
to K , K would be open as soon as S was expanded with a
g-value smaller than gL(K) so K would not be expanded via
L, a contradiction. Node B must be one of these intermedi-
ate nodes — it cannot be S by definition and it cannot be K
because if flast(K) was the largest flast value, the entire up-
per path would be expanded before K would be expanded via
L, again a contradiction. Hence, B is an intermediate node
between S and K .

h(B) must be large enough to make flast(B) ≥ fL(K)
(because K is first expanded via L). We will now use the
following facts to show that h(B) must be at least LB:

flast(B) = glast(B) + h(B) (1)

flast(B) ≥ fL(K) (2)

fL(K) = gL(K) + h(K) (3)

glast(B) < glast(K) (4)

LB ≤ gL(K)− glast(K) (5)

So,

h(B) = flast(B)− glast(B), by Fact 1

≥ fL(K)− glast(B), by Fact 2

= gL(K) + h(K)− glast(B), by Fact 3

> gL(K)− glast(K) + h(K), by Fact 4

≥ gL(K)− glast(K), since h(K) ≥ 0

≥ LB, by Fact 5 �

From Theorem 1 it follows that for A* to expand 2N nodes,
there must be a node with heuristic value of at least Δ∗�(2N−
N)/N�, and for A* to expand N2 nodes, there must be a node
with heuristic value of at least Δ ∗ (N − 1).

Corollary 1 Let g∗(goal) denote the optimal solution cost.
If A* performs φ(N) > N node expansions then g∗(goal) ≥
LB.
Proof. Since A* expanded node B before the goal, g∗(goal)
must be at least f(B), which is at least LB. �

Corollary 2 If g∗(goal) ≤ λ(N), then φ(N) ≤ N + N ∗
λ(N)/Δ.
Proof. Using Corollary 1,

Δ ∗ �(φ(N)−N)/N� = LB ≤ g∗(goal) ≤ λ(N)
which implies

φ(N) ≤ N + N ∗ λ(N)/Δ �

Corollary 3 Let m be a fixed constant and G a graph of ar-
bitrary size (not depending on m) whose edge weights are
all less than or equal to m. If N is the number of nodes
expanded by A* when searching on G then the total num-
ber of node expansions by A* during this search is at most
N + N ∗m ∗ (N − 1)/Δ.
Proof. Because the non-goal nodes on the solution path must
each have been expanded, there are at most N−1 edges in the
solution path and g∗(goal) is therefore at most m ∗ (N − 1).
Using Corollary 2,
φ(N) ≤ N + N ∗ λ(N)/Δ ≤ N + N ∗m ∗ (N − 1)/Δ �

This shows that, when a graph’s edge weights do not de-
pend on its size, A* does not have an asymptotic disadvan-
tage compared to B, C, and B′; all have a worst-case time
complexity of O(N2). Using A* with inconsistent heuris-
tics under these common conditions has a much better time
complexity upper bound than previously thought. For ex-
ample, if the graph is a square L × L grid with unit edge
weights, then N ≤ L2, the optimal solution path cost is at

most 2
√

N , and the worst-case time complexity of A* using

inconsistent heuristics is O(N
3

2). For many problems the op-
timal solution cost grows asymptotically slower than N , such
as ln(N). Here A* has a worst-case complexity that is better
than O(N2/Δ)

4 BPMX in A*

BPMX is easy to implement in IDA* as part of the normal
search procedure. As IDA* does not usually keep all succes-
sors of a state in memory simultaneously; heuristic values are
only propagated by BPMX to unexpanded children and never
back to previously expanded children as they have already
been fully explored. But, in A* all successors are generated
and processed before other expansions occur, which means
that in A* BPMX should be implemented differently.

We parameterize BPMX with the amount of propagation.
BPMX(∞) is at one extreme, propagating h updates as far
as possible. BPMX(1) is at the other extreme, propagating
h updates only between a node and its immediate neighbors.
In general, there are four possible overheads associated with
BPMX within the context of A*:

(a) performing lookups in the open and/or closed lists,

636

� � � �� � �
��	 �
	 ��	��	

��
�	

� �

� ���

�

�

���

��	

�

���

� �

���

�

� ����

��������

��	

��	 ���

� ���

�
	

Figure 4: Good and bad examples for BPMX.

(b) ordering open list nodes based on their new f -value,
(c) moving closed nodes to open (reopening), and
(d) computational overhead.

BPMX(1) with A* works as follows. Assume that a node
p is expanded and that its k children v1, v2, . . . , vk are gener-
ated, which requires a lookup in the open and/or closed lists.
All these nodes are then at hand and are easily manipulated.
Let vmax be the node with the maximum heuristic among all
the children and let hmax = h(vmax). Assuming that each
edge has a unit cost, we can now propagate hmax to the par-
ent node by decreasing hmax by one and then to the other
children by decreasing it by one again. A second update is
required to further propagate any updated values and then to
write them to the open or closed list.

In A* the immediate application of pathmax is ‘free’, as
it only requires an additional ‘max’ calculation, but BPMX
has additional overhead. BPMX(1) can be implemented effi-
ciently if the expansion of successors is broken into genera-
tion and processing stages, with the BPMX computation hap-
pening after all successors have been generated and retrieved
from the open or closed list, but before changes have been
written back out to the relevant data structures. BPMX(d)
with d > 1 requires performing a small search, propagating
heuristic values to nodes that are not initially in memory.

No fixed BPMX propagation policy is optimal for all
graphs. While a particular propagation policy can lead, in
the best case, to large savings, on a different graph it can lead
to a O(N2) increase in the number of nodes expanded.

Figure 4 (top) gives an example of the worst-case behavior
of BPMX(∞) propagation. The heuristic values gradually
increase from nodes A to G. When node B is reached, the
heuristic can be propagated back to node A, increasing the
heuristic value to 1. When node C is reached, the heuristic
update can again be propagated back to nodes B and A. In
general, when the ith node in the chain is generated a BPMX
update can be propagated to all previously expanded nodes.
Overall this will result in 1 + 2 + 3 + · · ·+ N − 1 = O(N2)
propagation steps with no savings in node expansions. This
provides a general worst-case bound. At most, the entire set
of previously expanded nodes can be re-visited during BPMX
propagations, which is what happens here. But, in this exam-
ple BPMX(1) has no asymptotic overhead.

By contrast, Figure 4 (bottom) gives an example of how
full BPMX propagation can be very effective. The start node
is A. The search proceeds to node C which has a child with
heuristic value of 100. After a BPMX(1) update, f(C) = 101

and h(B) = 99, so node expansions will continue at node D,
where an arbitrary large number of nodes can be expanded.
With BPMX(∞), updates will continue until h(D) = 97 and
f(D) = 100. At this point the optimal path to the goal will
be expanded before any children of D. By adding extra nodes
between B and C (with lower edge costs), an arbitrary large
parameter for BPMX can be required to see these savings.

5 Experiments

We now have four algorithms (A*, B, B′, and C) that all
have similar asymptotic worst-case complexity if applied
with inconsistent heuristics to the grid-like search spaces that
are found in computer video game applications as well as
other domains. In addition, we have A* augmented with
BPMX(r), for any propagation distance r. In this section
we compare these algorithms experimentally with a variety
of (in)consistent heuristics. We experimented with BPMX(r)
for r ∈ {1, 2, 3,∞}.

All experiments are performed on Intel P4 computers
(3.4GHz) with 1GB of memory and use search spaces that
are square grids in which each non-border cell has eight
neighbours—4 cardinal (distance = 1) and 4 diagonal (dis-

tance =
√

2). Octile distance is an easy-to-compute consis-
tent heuristic in this domain. If the distances along x and y
coordinates between two points are (dx, dy), then the octile

distance between them is
√

2 ∗min(dx, dy) + |dx− dy|.
Each algorithm is run on the same set of start/goal in-

stances, which are divided into buckets based on their solu-
tion lengths (from 5 to 512). Each bucket contains the same
number of randomly generated start/goal instances.

The experiments differ in how the inconsistent heuristics
were created. The first experiment uses a realistic method to
create inconsistency. The final two experiments use artificial
methods to create inconsistency in a controlled manner.

5.1 Random Selection From Consistent Heuristics

In this experiment our search spaces are a set of 116 maps
from commercial games, all scaled to be 512 by 512 × size.
There are blank spots and obstacles on the maps. There are
128 test instance buckets, each containing 1160 randomly-
generated problem instances. In this section BPMX refers to
BPMX(1) which performed best in this domain.

We generate an inconsistent heuristic similar to [Zahavi et
al., 2007] by maintaining a certain number, H , of differential
heuristics [Sturtevant et al., 2009], each formed by computing
shortest paths to all points in the map from a random point t.
Then, for any two points a and b, h(a, b) = |d(a, t)− d(b, t)|
is a consistent heuristic. To compute a heuristic for node n
we systematically choose just one of the H heuristics to con-
sult. Inconsistency is almost certain to arise because differ-
ent heuristics will be consulted for a node and its children.
We take the maximum of the result with the default octile
heuristic, and call the result the enhanced octile heuristic.
By design, the enhanced octile heuristic dominates the oc-
tile heuristic. The enhanced octile heuristic is higher than the
octile heuristic in roughly 25% of the nodes.

The number of node expansions by algorithms A*, B, C,
B′, and A* with BPMX when using the inconsistent heuris-

637

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14
x 10

4

Solution Length

N
od

e
E

xp
an

si
on

s
B’
A*
B
C
BPMX
A*(Max)

Figure 5: Node expansions with random selection of differ-
ential heuristics.

tic are plotted in Figure 5. A* using the maximum of all the
heuristics (“A*(Max)”) is plotted for reference. The x-axis
is the solution length, the y-axis is the number of node ex-
pansions. The legend is in the same descending order as the
lines for the algorithms. When counting node expansions, a
BPMX propagation from a child to its parent is counted as an
additional expansion (“reverse expansion”).

As can be seen, B′ does the most node expansions, and,
as expected, A*(Max) does the fewest. Among the lines us-
ing the inconsistent heuristic, A* with BPMX is best and is
within a factor of two of A*(Max). As the number of avail-
able heuristics grows, A*(Max) will have increasing running
time, while the inconsistent heuristic will not.

An unexpected result is that B′ expands more nodes than
B. This is contrary to a theoretical claim in [Mero, 1984].
This discrepancy is a result of tie-breaking rules. B′ would
have the same performance as B (or better) if, when faced
with a tie, it could choose the same node to expand as B.
But, in practice this isn’t feasible. The pathmax rules in B′

cause many more nodes to have the same f -cost than when
searching with B. When breaking ties between these nodes,
B′ is unable to infer how B would break these ties, and thus
has different performance. If we had a tie-breaking oracle,
we expect B′ and B would perform similarly.

Detailed analysis of the data for the hardest bucket of prob-
lems is shown in Table 1. Column “First” is the number of
distinct nodes expanded, “Re-Exp” is the number of node re-
expansions, “BMPX” is the number of BPMX reverse expan-
sions, and “Sum” is the sum of those three columns, the total
number of node expansions. “Time” is the average CPU time,
in seconds, needed to solve one instance. A*(Max) is the
best but its time advantage is less because it performs mul-
tiple heuristic lookups per node. Algorithm B uses slightly
more time than A*, despite fewer node expansions. This is
because B occasionally needs to extract the node with min-
imum g value from the open list, which is sorted by f . B′

expands approximately the same number of distinct nodes as
A* and B, but B′ performs many more re-expansions. BPMX

Alg. First Re-Exp BPMX Sum Time

A*(Max) 9341 0 0 9341 0.066

A* 17210 57183 0 74392 0.503

B 17188 50963 0 68151 0.560

B′ 16660 112010 0 129680 0.717

C 21510 24778 0 46288 0.411

BPMX 10195 4065 3108 17368 0.089

BPMX(2) 9979 3462 5545 18986 0.093

BPMX(3) 9997 3467 5854 19317 0.094

BPMX(∞) 10025 3483 6207 19714 0.094

Table 1: Last bucket in differential heuristic experiment.

0 100 200 300 400 500

10
2

10
3

10
4

10
5

Solution Length

N
od

e
E

xp
an

si
on

s

B’
A*
B
C
BPMX

Figure 6: Perfect heuristics (p = 0.5).

is able to dramatically reduce the number of distinct nodes
expanded and re-expansions at the cost of a few reverse ex-
pansions. The number of distinct nodes expanded by BPMX
is close to that of A*(Max). The last four rows show there is
little difference between the BPMX variants in terms of nodes
and average execution time, although increasing the propaga-
tion parameter increases the number of propagations.

5.2 Inconsistency by Degrading Perfect Heuristics

To test the generality of the preceding results, we have created
inconsistent heuristics by degrading exact distances (perfect
heuristic values). We do this not for performance, but in or-
der to compare the algorithms with various types of heuris-
tics. The grids in the two experiments in this section were all
1000× 1000 in size and obstacle free, and the test instances
were divided into 50 buckets, with each bucket containing
1,000 randomly generated start/goal instances.

In the first experiment, each node has a perfect heuris-
tic value (the exact distance to goal) with probability p, and
has a heuristic value of 0 otherwise. We experimented with
p = 0.25 and p = 0.5. This experiment is favorable to
BPMX(1) because with very high probability, either a node or
one its neighbours will have a perfect heuristic value, which
BPMX(1) will then propagate to the other neighbors.

Figure 6 shows the number of node expansions as a func-
tion of solution length (bucket) for p = 0.5; the plot for
p = 0.25 is similar. The y-axis is a log scale. For both values

638

Alg. First Re-Exp BPMX Sum Time

A* 175146 501043 0 676190 2.9634

B 175146 501043 0 676190 4.5587

C 197378 55161 0 252539 2.7401

BPMX(1) 650 0 340 991 0.0048

BPMX(2) 650 0 340 991 0.0035

BPMX(3) 650 0 340 991 0.0034

BPMX(∞) 650 0 340 991 0.0033

Table 2: Perfect heuristics (p = 0.5, hardest cases).

of p the same pattern is seen: B′ does many more expan-
sions than any other algorithm, A*, B, and C do roughly the
same number of node expansions, and A* with BPMX(1), as
expected, does over two orders of magnitude fewer node ex-
pansions. This is an example of best-case performance for
BPMX. B has a larger running time (not shown) due to its
more complicated data structures.

Table 2 examines the algorithms’ performance with p =
0.5 on the instances with the longest solutions in more detail.
B′ is omitted from the table because it could not solve the
largest problems in reasonable amounts of time. The propa-
gation parameter for BPMX does not matter in these exper-
iments, because good heuristic values are always close by.
The same pattern is seen for p = 0.25.

Our second experiment investigated the behavior of the al-
gorithms when the heuristic is locally consistent but glob-
ally inconsistent. We overlay a coarse-grained grid on the
1000 × 1000 search space and imagine the overlay coloured
in a checkerboard fashion. If a node lies in a white section of
the coarse-grained grid, its heuristic is perfect; otherwise its
heuristic value is 0.

We present the results on grid overlays of width 10 (Table
3) and 50 (Table 4). As the grid overlay gets larger, larger
values for BPMX propagation perform better. This is because
BPMX is able to push updates from the borders of the grid
farther back into the OPEN list and therefore avoid additional
expansions. Thus, we see that BPMX shows good promise in
practically reducing node expansions, and that the worst-case
is unlikely to occur in practice.

6 Conclusions

This research makes the case that inconsistent heuristics are
not as bad for A* as previously thought. In particular, for
many problems, the worst-case bound is O(N2) instead of

Alg. First Re-Exp BPMX Sum Time

A* 210271 106289 0 316561 3.0812

B 210271 106289 0 316561 5.2529

C 220920 45482 0 266403 5.5113

BPMX(1) 625 4 286 915 0.0061

BPMX(2) 618 3 287 910 0.0078

BPMX(3) 617 3 287 908 0.0076

BPMX(∞) 616 3 285 905 0.0079

Table 3: Hardest Problems in Perfect Heuristic Checkerboard
Experiment. Gridwidth=10

O(2N). When A* does have poor performance, BPMX is
able to markedly improve the performance of A* search with
inconsistent heuristics. Although BPMX has the same worst-
case as A*, that worst-case does not seem to occur in practice.

As pointed out in [Zahavi et al., 2007] there are several
easy ways to create inconsistent heuristics. Combined with
the case already made for IDA* search, the results in this pa-
per encourage researchers and application developers to ex-
plore inconsistency as a means to further improve the perfor-
mance of search with A* and similar algorithms.

Acknowledgments

We thank Sandra Zilles for her helpful comments. This re-
search was supported by the Israel Science Foundation (ISF)
under grant number 728/06 to Ariel Felner and by research
funding from Alberta’s Informatics Circle of Research Ex-
cellence (iCORE) and Canada’s Natural Sciences and Engi-
neering Research Council (NSERC).

References
[Bagchi and Mahanti, 1983] Amitava Bagchi and Ambuj Mahanti.

Search Algorithms Under Different Kinds of Heuristics-A Com-
parative Study. Journal of the ACM, 30(1):1–21, 1983.

[Felner et al., 2005] Ariel Felner, Uzi Zahavi, Jonathan Schaeffer,
and Robert Holte. Dual Lookups in Pattern Databases. In IJCAI,
pages 103–108, 2005.

[Hart et al., 1968] Peter Hart, Nils Nilsson, and Bertram Raphael.
A Formal Basis for the Heuristic Determination of Minimum-
Cost Paths. IEEE Transactions of Systems Science and Cyber-
netics, SSC-4(2):100–107, 1968.

[Hart et al., 1972] Peter Hart, Nils Nilsson, and Bertram Raphael.
Correction to “A Formal Basis for the Heuristic Determination
of Minimum Cost Paths”. SIGART Newsletter, 37:28–29, 1972.

[Martelli, 1977] Alberto Martelli. On the Complexity of Admissi-
ble Search Algorithms. Artificial Intelligence, 8(1):1–13, 1977.

[Mero, 1984] Laszlo Mero. A Heuristic Search Algorithm with
Modifiable Estimate. Artificial Intelligence, 23(1):13–27, 1984.

[Pearl, 1984] Judea Pearl. Heuristics: Intelligent Search Strategies
for Computer Problem Solving. Addison-Wesley, 1984.

[Sturtevant et al., 2009] Nathan Sturtevant, Ariel Felner, Max
Barer, Jonathan Schaeffer, and Neil Burch. Memory-Based
Heuristics for Explicit State Spaces. In IJCAI, 2009.

[Zahavi et al., 2007] Uzi Zahavi, Ariel Felner, Jonathan Schaeffer,
and Nathan Sturtevant. Inconsistent Heuristics. In AAAI, pages
1211–1216, 2007.

Alg. First Re-Exp BPMX Sum Time

A* 208219 26665 0 234884 2.0505

B 208219 26665 0 234884 4.2371

C 220920 45482 0 266403 5.5113

BPMX(1) 1389 438 810 2638 0.0613

BPMX(2) 1049 122 640 1811 0.0157

BPMX(3) 1046 119 660 1825 0.0165

BPMX(∞) 1023 114 650 1788 0.0151

Table 4: Hardest Problems in Perfect Heuristic Checkerboard
Experiment. Gridwidth=50

639

	IJCAI-09 CD
	Home
	Contents
	Index
	IJCAI Website

