
 1

ScriptEase: A Generative/Adaptive Programming
Paradigm for Game Scripting

Maria Cutumisua, Curtis Onuczkoa, Matthew McNaughtona,
Thomas Roya, Jonathan Schaeffera, Allan Schumachera,

Jeff Siegela, Duane Szafrona, ∗, Kevin Waugha, Mike Carbonarob,
Harvey Duffb, Stephanie Gillisa

a Department of Computing Science, University of Alberta, Edmonton, AB,
T6G2E8, Canada

b Faculty of Education, University of Alberta, Edmonton, AB,
T6G2G5, Canada

Received:

Abstract
The traditional approach to implementing interactions between a player character (PC) and

objects in computer games is to write scripts in a procedural scripting language. These scripts
are usually so complex that they must be written by a computer programmer rather than by the
author of the game story. This interruption in the game story authoring process has two distinct
disadvantages: it increases the cost of game production and it introduces a disconnect between
the author’s intentions and the interactions produced from the programmer’s written scripts.
We introduce a mechanism to solve these problems. We show that game authors (non-
programmers) can generate the necessary scripts for implementing meaningful interactions
between the PC and game objects using a three-step process. In the first step, the author uses a
generative pattern (concept) to create a high-level description of a commonly occurring game
scenario. In the second step, the author uses a standard set of adaptation operations to
customize the high-level description to the particular circumstances of the story that is being
told. In the third step, the author presses a button that automatically generates scripting code
from the adapted pattern. We describe the results of three studies in which a combined total of
56 game story authors used this three-step process to construct Neverwinter Nights game
stories, using a tool called ScriptEase. We believe that this generative/adaptive process is the
key to future game story scripting. More generally, this paper advocates the development of
adaptive programming as an alternative to current constructive programming techniques, as
well as the application of adaptive programming in many domains.

Keywords: Generative pattern, Computer game, Scripting language, Adaptive programming, Game
scripting, Game authoring, Game agent.

∗ Corresponding author. Tel.: 1-780-492-5468; fax: 1-780-492-1071.
E-mail address: duane@cs.ualberta.ca.

Duane Szafron
Text Box
This is a pre-print of a paper that will appear in Science of Computer Programming, Volume 67, Issue 1, 1 June 2007, Pages 32-58. The final version can be obtained from: ScienceDirect.com

 2

1. Introduction
World wide, the annual sales in computer games (hardware and software) is many tens of

billions of dollars (US). The games industry is often compared to the movie industry, based
both on financial aspects (the industries are similar in size) and public attention. Upcoming
game titles are hyped for months in advance of their release and the debut of a major game can
garner massive media attention. This public attention comes with increased consumer
expectations. The technological and creative sophistication required to produce a big seller in
today’s discerning market continues to increase. Game development cycles of three to four
years are quite common and many games have budgets in excess of $25 million (US).

Unlike the movie industry where actors directly affect the commercial success and are
compensated accordingly (A-list actors receive more than $10 million per picture), in the
games industry most of the cost is in content creation: writers to design the game story, artists
to create the visual effects, and computer scientists to build the technology and tools needed to
realize the game. In many ways, it is more difficult and labor-intensive to build a blockbuster
game than a blockbuster movie.

Most of the effort in game development increasingly revolves around content creation. A
major aspect of content is the game story. This is a multi-faceted component, which includes
creating the storyline, sub-plots, characters, and all their interactions. The situation is also
complicated by the interactive nature of games. Unlike movies with their linear story lines, in
state-of-the-art games, the player can influence what happens in the story (to a greater or lesser
extent, depending on the game). Non-linear story lines considerably complicate the content
creation process, since the author must anticipate all possible player actions and handle them in
a meaningful manner. The sophistication of the game stories (in particular in game genres that
depend on a good story, such as role-playing games) and the growing need for non-linearity in
the story lines are increasing the cost of game development (not just in the content creation
side, but also in other aspects, such as quality assurance and playability testing).

Game companies have identified content as a significant bottleneck in game delivery.
Companies construct or buy a set of good tools for creating 3D content, such as artwork, user
interfaces, or game story levels. However, none of these tools automates the process of writing
the scripts that enable these objects to interact with each other and with the PC. For any
complex scripting that cannot be accomplished using available components, the user has to
manually write code. This is done in a custom scripting language such as VSL (Virtools Dev
[41]) or in languages such as Lua [26] (Anark Gameface [3]) or C/C++ (Gamebryo [18] and
3D GameStudio [1]). Even in Alice [2], where the scripting issue is addressed, there are no
higher-level constructs to generate code. As a consequence, if no appropriate methods already
exist, all code must be written manually in Python [31] [14].

Creating game-story-related content and translating this into the program code necessary
to create the desired behaviour at game-play time has always been a bottleneck in the game-
development process. For example, when an author creates some content, it must be specified
precisely to the programmer who then writes code to implement this content in the game. This
process is fraught with errors: the author might make errors in the specifications given to the
programmers and/or the programmers might make errors in implementing the author’s
specifications. Ideally, the programmer should be eliminated to avoid these errors. One of the
dreams of game development is for the creative authors to specify the game content without
having to rely on programmers to implement their vision.

The need to simplify the scripting process has long been known in the games industry.
This has led to the development of a number of tools aimed at simplifying the process. For

 3

example, scripting languages have become ubiquitous in this context. They offer a “higher
level” abstraction over a standard programming language (C++ being the usual default). The
hope is that use of this language would simplify the content implementation processes, thereby
reducing programming time, errors, and quality assurance efforts. Common scripting
languages, such as Python, have been adopted by some companies for AI scripting, such as
Vampire: The Masquerade – Bloodlines by Troika Games [39], Battlefield 2 by Electronic Arts
[15], Civilization 4 by Firaxis Games [17], and Backyard Hockey by Humongous
Entertainment (now Atari) [21]. Other companies use their own in-house language (e.g.
NWScript, developed for BioWare Corp.’s Neverwinter Nights [5], and subsequently used for
other games). Custom languages, of course, are expensive to develop. In contrast, Lua is a
freely-available programming language that is used for extending applications, and is often
used for scripting. Games that use Lua for Artificial Intelligence (AI) scripting include MDK2
by BioWare Corp. [5], FarCry by Ubisoft [40], Painkiller by People Can Fly [30], and
Homeworld 2 by Relic Entertainment [32]. Epic Games [16] built a visual programming
language to overcome the content specification gap. Kismet allows the user to draw and
annotate flowcharts. Unfortunately, the tool is proprietary [23] and its low level focus makes it
difficult to use, especially when a large number of objects is involved. All of these tools
simplify the translation of specifications into code, but do not solve the fundamental problem
of requiring authors to interface with programmers (with the possible exception of Kismet;
public information is scarce). In an ideal world, a tool would allow an author to specify and
test games directly, without using programmers as executors of intentions.

ScriptEase is a tool that attempts to remove programmers from the content specification
process. The goal is that authors (content creators) should be able to create game stories
without knowing how to program and without having to express themselves through
programmers. The tool was inspired by the introduction of design patterns as an effective tool
for general software design [19]. However, a twist is required. Traditional design patterns are
descriptive in nature; the specifications still need to be manually turned into code. Instead, we
use generative design patterns – patterns that can automatically be translated into executable
code [8] [13]. Other researchers have discussed the problems of using generative design
patterns [7], but have not generated code in the context of computer role-playing game
(CRPG) story creation. From an author’s point of view, specifying game content (interactions
between the player character and the game objects) is a simple three-step process:

1. Select an appropriate pattern and create an instance of it. A pattern represents a familiar
concept or idiom in a context (e.g., story). ScriptEase provides a rich set of patterns for
role-playing games. These patterns can be used for specifying the plot, dialogues,
character/object interactions, and character behaviours. For example, when an item is
removed from a magic chest, the author might want to have a creature spawned nearby.
This can be done using the pattern Container disturb – spawn creature. Instantiation of a
pattern generates a high-level natural language description.

2. Adapt the description. Each description must be customized to match the intent of the
author for the specific story being told. The author adapts the description by selecting
appropriate story information using menu selection and dialog boxes. For example, for
the Container disturb – spawn creature pattern, the author can specify the container (the
magic chest), the creature spawned (the monster), and a visual effect displayed when the
creature is spawned near the container. The simplicity of the adaptation process is a key
to success.

 4

3. Generate scripting code. The author presses a button and the scripting code is generated
automatically from the adapted description. Most authors never need to (or want to!) see
the scripting code. However, the generated code is made available (easily readable and
fully commented) and may be customized further by programmers.

Most of the tools designed to aid content development use components, rather than design

patterns, to create content. For example, some tools use 3D components (building blocks) or
libraries of pre-made scripts to help users create worlds quickly by combining these
components. Employing design patterns versus components is similar to employing
frameworks versus libraries. Design patterns and frameworks provide the “most difficult to
write” scripting glue that ties the components or library calls together.

This methodology was first introduced in the context of parallel computing [28]. The
CO2P3S system allows a programmer to convert a sequential program to a parallel one, by
selecting parallel patterns such as meshes and pipelines. After specifying some options to adapt
the patterns to the application at hand, CO2P3S generates a framework of Java code that
encapsulates all of the parallel program control. The user then adapts the framework, mostly by
sub-classing to add the sequential code. The ScriptEase approach is fundamentally the same
except for two differences. First, with ScriptEase, adaptations are done using a very high-level
language. The user selects patterns and pattern components using menus, and a natural
language description of definitions, conditions and actions is created. This is programming, but
not in the traditional sense. With CO2P3S, some of the adaptation is done by adapting program
code, written in a general purpose programming language – Java. Second, with ScriptEase, all
adaptation is done before code generation, using the higher level non-traditional ScriptEase
programming language instead of the NWScript target language. With CO2P3S, some
adaptation is done before code generation that determines which framework is generated from
a pattern. Some adaptation is done after code generation by adding subclasses and Java
methods to the framework that was generated. The key similarity between these approaches is
that in both cases, the generative pattern generates the control flow and complex code and the
user makes small simple adaptations. The user adapts the generated artifacts instead of
constructing artifacts. It is much easier to add actions or conditions to a generated pattern in
ScriptEase than creating the actions and conditions. It is much easier to add small amounts of
sequential Java code in CO2P3S, rather than writing the complex code that implements the
parallel algorithms. Generative design patterns are a hot topic in the software engineering
community today [13]. To the best of our knowledge, ours is the only effort aimed at applying
design pattern technology to the most difficult content creation problem in the computer games
industry – script creation. Design patterns have been used in describing the rules and structure
of games, both computer and traditional, but not to generate content [6]. Descriptive (not
generative) patterns have also been used to build game engines [24].

ScriptEase is only as useful as its pattern catalog. Although we provide a rich set of
patterns to authors, there will always be the need for authors to design their own patterns.
ScriptEase includes a tool for designing new patterns. The Atom Editor is the interface
between the implementation language (NWScript in this case) and the pattern building blocks.
The Pattern Designer allows the user to combine and customize building blocks into new
patterns using the same menu-driven techniques that are used to adapt existing patterns. There
are two secrets to making the generative pattern approach work. First, there must be a rich
enough set of patterns that an author can use to express their ideas in a simple, intuitive
manner. This requires that ScriptEase include three tool components:

1. a story writing tool that allows authors to select and adapt patterns

 5

2. a pattern designer tool for authors that allows them to create new patterns from a set of
simple pattern components;

3. an atom builder tool that allows programmers to create primitive building blocks that can
be used to assemble pattern components, for a specific game engine. In this case, the user
needs to be a programmer, since the atom builder tool constitutes the interface between
the ScriptEase language and the target language. The creation of a new atom is only
needed when a game author identifies a capability that cannot be met by existing patterns.

As shown in Fig. 1, ScriptEase has a modular architecture. Our pattern development has

been targeted at the role-playing game genre and our tool currently generates code for
Neverwinter Nights. However, the tool supports the design of patterns for other genres with no
changes and could be modified to generate scripting code for other target architectures (game
engines). The patterns have to be generative, which means the tool needs to support translation
of pattern components into code for the underlying game scripting language. We implement
this idea using a collection of atomic elements to implement each pattern component. Each
atom is responsible for generating scripting code to represent itself. In our case, we support
NWScript, BioWare Corp.’s scripting language, but there are no impediments to generating
code for other languages/game engines by providing alternate implementations of atoms to
generate code for a different scripting language.

Fig. 1 The ScriptEase architecture

The second requirement is that the pattern adaptation mechanism must be simple enough
for authors (non-programmers) to use. Requiring authors to perform pattern customization by
modifying traditional scripting code (Python, Lua, NWScript, etc.) is not a viable option.

To show that non-programmers can use ScriptEase to create engaging games, we validated
our work with three Grade 10 English classes, a summer camp for high school students [34],
and a group of first year University students. In each case, the students had none or very
limited programming experience. However, they were able to quickly learn the necessary tools
(BioWare Corp.’s Neverwinter Nights game, BioWare Corp.’s Aurora Toolset, and ScriptEase)
and author their own game stories. In this paper we present data from two case studies that
each involved one of the Grade 10 high school classes and a third case study that involved the

 SCRIPTEASE

Genre 1

Patterns

Genre N

Patterns

Code

Target

architectures
Target

architectures

 6

University students. We show that these authors (with no/limited programming experience)
used a broad range of ScriptEase patterns and adaptation operations to produce complex
stories. They were able to do this given only a few days to learn the tools and write a story.
The analysis gives insight into why these students could succeed without traditional
programming skills. The students performed pattern adaptation using operations that could be
viewed as a new type of programming called adaptive programming, rather than using
traditional constructive programming.

This paper makes the following contributions:
1. The concept of adaptive programming is introduced and differentiated from traditional

constructive programming. Adaptive program operations are defined for customizing
patterns and categorized by conceptual level (the difficulty of applying the adaptive
operations).

2. Our case studies show that adaptive programming is simpler than traditional constructive
programming in a specific application domain – game story writing. This is shown by
having non-programmers author complex game stories (from the programming point of
view) with less than a week of total effort – less time than it would take to learn how to
program in a traditional language.

3. Our case studies provide initial evidence to support a preliminary rating of the relative
conceptual difficulties of using our various adaptive program operations.

Section 2 discusses the generative design patterns in ScriptEase. Constructive

programming is contrasted with adaptive programming in Section 3. In Section 4, pattern
adaptation is discussed using ScriptEase. Section 5 presents our case study results. Section 6
provides conclusions and future work. We identified four types of patterns: encounter,
behaviour, plot, and dialogue. All four kinds of patterns are fundamentally event-based, since
that is the nature of the computer role playing games (CRPG) domain.

Programming is undergoing a fundamental change: we envision end-users who can
successfully program without writing code. The novelty of this article is its new perspective on
the future of programming, generative/adaptive, in which users can solve complicated
problems by themselves not by writing code at a higher level of abstraction, but by generating
code from concepts (patterns) and adapting the concepts to their specific context. In the short
term, the practical application of this work will benefit game story authors who must create
and test non-linear stories quickly. However, the consequences of this new approach have the
potential to affect problem-solvers in many domains.

2. Generative Patterns
Game story authors are usually not programmers. Their expertise is in creating and

detailing storylines, and all the intricacies of (non-)linear plots. The level of detail needed
includes creating the story, the (non-)linear lines along which the plot can develop, the scenes,
and the scene outcomes. For each scene in the story, the author must define the characters and
objects that populate that scene, the interactions between characters and their environment,
dialogues, and any side effects that occur. Of course, all this information must be specified
precisely, for subsequent translation into a programmed implementation. The strength of a
game story author is typically in the creative process; the precision needed to translate a story
into a programming specification is both unwelcome and labor intensive. Ideally, one wants to
eliminate the intermediary so that the author can directly specify a story using a tool that can
automatically translate the specifications into code.

 7

Game story authors are story tellers. Hence, any story specification tool must interface
with the story author in a language that they understand (C++ is not appropriate). A natural
paradigm is patterns—frequently occurring themes. A tool that supports a rich pattern library
can be a natural bridge between the “sentences” of a written story and the “statements” of a
programmed implementation.

 ScriptEase supports four categories of patterns:
1. Plot. Stories are rich with frequently occurring themes (e.g., “rescue the heir to the throne

from the clutches of the villains”).
2. Character/object interactions (called encounters in ScriptEase). Game scenes are

populated with characters and objects; their interactions are usually well defined. For
example, consider a trap door pattern. The typical scenario involves the player character
(PC) stepping on a specified place (a trigger), the trap door opens, and the PC falls in.

3. Dialogue. Many types of conversation frequently occur (e.g., asking for directions or
ferreting out clues).

4. Behaviour. Scenes are populated by characters that interact with the PC. These characters
are often called non-player characters (NPCs). These NPCs need to have their behaviour
specified. For example, ascribing the behaviour “guard” or “shopkeeper” to a character
immediately implies their expected behaviour.

ScriptEase patterns are applied to NPCs and other game objects. BioWare Corp.’s Aurora

Toolset is used to define and populate scenes. The Aurora Toolset is a drag-and-drop CAD tool
for creating game worlds. It provides a rich palette of interior and exterior map tiles, objects,
creatures, etc. for creating the environments in which the game story will unfold. The tool is
intuitive and easy to use. ScriptEase makes the scripting of game objects as easy as the Aurora
Toolset makes the creation and placement of game objects. Fig. 2 shows an author placing a
container (named Dresser) into a room; it will be used in the example of this section and it
comes from one of the stories written by a student author in the case study of Section 5.

A story is written by instantiating patterns and adapting the generated descriptions. In the
example story, the author wants the PC to open the Dresser shown in Fig. 2. When the PC
opens it and removes an item from it, the author wants a creature named Avadel to be spawned.
The author created Avadel using the Aurora Toolset (not shown). A similar scenario occurs
frequently in role-playing fantasy games (and stories). However, it involves some other
container rather than the Dresser and some other creature rather than Avadel, since these
objects are specific to this story. Because this scenario occurs so often, ScriptEase has a pattern
for it: Container disturb – spawn creature. To use the pattern in a particular game story, the
author must adapt the pattern by specifying three options (parameters): the container that the
pattern applies to, the creature that gets spawned when an item is removed from the container,
and the visual effect (if any) that occurs during the spawning. Fig. 3 shows the generated
description of this pattern and one of the options being set by the author.

The author has opened a story file (MyShortStory) created using the Aurora Toolset and
has created an instance of an encounter pattern (identified by the stylized E), Container disturb
– spawn creature. The author has selected the pattern and four tabs have appeared. If the
Description tab was selected (it is not), the author would see a summary of the intent of the
pattern. The other three tabs are option tabs (The Container, Creature Blueprint and Spawn
Effect). The author has adapted this pattern to the story by selecting the Creature Blueprint
option using a dialog box to select a particular creature named Avadel. The author has
previously adapted the pattern by setting The Container option to the Dresser and the Spawn
Effect to be a “Pulse, Holy” visual effect, using similar dialogs.

 8

Fig. 2 Creating and placing a container using the Aurora Toolset

 Fig. 3 A generative pattern, its description and a dialog being used to set an option

 9

Every encounter pattern contains one or more situations (stylized S). This encounter
pattern is shown in Fig. 3 and it has been opened to reveal its three situations. One applies
when an item is added to the container, one applies when an item is removed and one applies
when an item is stolen. In Fig. 3, the Remove situation is expanded to show its components.
Every situation contains one Event (stylized V) that describes the circumstances under which
the situation applies. The Remove situation applies when an item is removed from The
Container (Dresser). Every situation contains one or more actions (stylized A) that will be
performed when the situation applies. The Remove situation contains two actions, one to
spawn a creature and the other to show a visual effect. A situation can also contain two other
kinds of components, definitions and conditions, which will be discussed in Section 4. Note
the use of colors in the text to clearly indicate the parts of the natural language description that
are part of the pattern (black), options (blue), conditions (red), and definitions (green).

As the author adapts the pattern by setting options, the description is updated to reflect the
choices. The description in Fig. 3 has been adapted for the author’s story as the pattern options
were set. If the author selects Generate Code from the menu, the NWScript code for the
pattern would be automatically generated and inserted into the story file at the appropriate
place. Fig. 4 shows a portion of the 58 lines of BioWare Corp.’s NWScript code that was
generated for this adapted pattern description. A game author would never need to see the
automatically generated commented code. However, a programmer on the team may choose to
view the generated scripts and to optionally edit the scripts manually.

Fig. 4 A portion of the code generated for the pattern in Fig. 3

In this story, the author wants the actions to occur only when an item is removed from the
Dresser. Although adding and stealing from a container are other possibilities supported by the
(general) pattern, the author does not want to use them. Therefore, in addition to setting the
pattern options, the author can further adapt the pattern description by highlighting the Add and
Steal situations, one at a time, and selecting the Delete option from a pop-up menu, before
generating the scripting code.

 10

Pattern descriptions can be adapted (customized) by setting options, adding, deleting or
replacing pattern components. We have already seen that deleting situations is easy to do.
Adding an action to a situation is also simple in ScriptEase. For example, the author could add
an action to the existing pattern so that the caption “Run for you life!” is displayed above the
spawned creature’s head. The author clicks to highlight the Remove situation, selects add an
action from a pop-up menu and navigates a set of hierarchical menus to find the desired action.
Fig. 5 shows the results of the author’s efforts. Note that the Add and Steal situations have
been deleted. The resulting pattern description would generate 38 lines of NWScript code (not
shown). After generating the scripting code, the author can “test-drive” the story by opening it
in Neverwinter Nights (NWN). This allows the author to incrementally change the story and
immediately test the new story to verify its correctness.

Fig. 5 Adapting a pattern by adding an action

The Container disturb – spawn creature example shows how easy it is for an author (non-
programmer) to use ScriptEase to create an interactive game story. The ScriptEase three-step
approach (instantiate, adapt, generate) provides many benefits for simplifying the creation of
interactive stories:

1. All authoring is done using familiar story-element patterns.
2. The author does not need to know anything about programming or scripting languages.
3. The author sees a natural language description of the story.
4. The author adapts the story using a simple menu-driven interface.
5. Many common programming errors are eliminated. The patterns have been tested and

debugged by the pattern designer, before the author uses them, not by the author during
story writing.

6. Enabling an author to directly generate an interactive story eliminates the programmer as
an intermediary and as a potential source of errors.

7. Since there can be thousands of objects that are scripted in a story, each requires a unique
label at the script level. ScriptEase manages these transparently using natural language
pronouns to refer to objects in context. Hiding these unique labels from the author
reduces complexity and allows the author to work at a higher level of abstraction. By
reducing the effort required to add scripts, the author has more time to add additional
interactive (scripted) NPCs and objects, thereby increasing the richness of the story.

8. Adapted patterns are used to generate scripting code. This code does not have to be
viewed by the author. However, it is available for further adaptation by programmers.

 11

ScriptEase does not provide post-facto validity checks to ensure the generation of a valid
story. Instead, each of these types of patterns is responsible for a different aspect of a story and
ensures that its own correctness responsibilities are met. For example, each encounter pattern
represents a correct solution to a game scenario. A Placeable use/death – toggle door pattern
encapsulates the notion that when the placeable (e.g., a lever) is used (pulled), if the door was
unlocked, it is closed and locked. If the door was locked, it is unlocked and opened. A
common problem that can occur in this situation is for the player to destroy the lever rather
than using it to open the door. In this case, the story is broken, since the door can never be
unlocked. However, our pattern ensures that when the lever (placeable) is destroyed, the door
is unlocked and opened, so that the PC can continue the adventure. Rather than trying to apply
a set of constraints post-facto, after the author makes an error using a free-form constructive
system, our approach implicitly imposes constraints by generating code from patterns that are
already checked for correctness. In the previous example, the author does not have to
independently remember to think about what happens when the lever is destroyed, since the
pattern ensures that such a scenario is considered.

3. Why Adaptation Instead of Construction?
There are two reasons why the generative/adaptive approach allows non-programmers

(game story authors) to write stories that contain complex scripting code. First, our approach is
adaptive rather than constructive; they do not write new descriptions, they adapt generated
ones. Even when a new description is required, the author starts by selecting a basic general
concept and adapts it (specializes it). Second, the language we use to represent our descriptions
is more natural (less formal) than the language used to represent programs. Since our approach
can be applied to application domains other than computer games, in this section we describe
adaptation-construction and the use of natural language in a broader context.

3.1 Adaptation versus Construction
During the history of computer programming languages and environments, there has been

a continual increase in the support for higher levels of abstraction – subroutines, abstract data
types, objects, polymorphism, inheritance, etc. Abstractions allow a problem and its solution to
be expressed in terms that are closer to the application domain and farther from the computer
architecture. Two effects of this progression are increased productivity, as more machine code
is generated from individual program statements, and reduced errors, such as subroutine
parameter-argument mismatches that cannot happen with modern compilers. This increase in
productivity and reduction of errors has enabled software developers to build larger and more
complex systems. A Domain Specific Language (DSL) [42] is an extension of the abstraction
process in which the programming constructs are not only specified at a higher level of
abstraction, but are also specific to the domain of the problems being solved. In fact, our
approach uses a DSL (the ScriptEase Programming Language). However, a DSL is not
enough. Constructing programs with domain specific building-blocks is still constructive
programming and non-programmers find this difficult. Asking game authors to use the
ScriptEase programming language to write scripts is equivalent to asking them to create new
patterns every time they script a new object in their story. The key is to allow an author to
select a pattern and automatically obtain a solution to a problem, expressed in a DSL. The
author can then adapt the DSL by modifying a few DSL components and push a button to
generate low-level code.

 12

 The next major step in the evolution of general software development is to eliminate the
programmer from the construction of application programs. Domain authors will not simply
write code in a higher-level language. Instead, they will select patterns as solutions and adapt
them. Ideally, the programmer should be relegated to building systems software and tools.
Automatic program construction [33] has been the holy grail of many programming language
researchers and designers. Many attempts have been made, with only limited success. For
example, declarative approaches such as logic programming have been attempted under the
assumption that it is easy to write declarative statements using first order-logic. Intentional
programming [13] tries to directly support programmer intentions, rather than focusing on low-
level syntactic language constructs. Program transformation [10] has been used to transform
requirements specifications into executable code. These approaches represent innovative ideas,
but they have failed to achieve widespread success in mainstream commercial software.

The common thread of these approaches, and many others, is that they are constructive –
the programmer must create a program the way one constructs a document, by assembling
syntactic components. Our approach is fundamentally different. It is adaptive rather than
constructive. In the first step of our process, the author selects from the pattern catalog to
produce a descriptive artifact – a pattern instance. For a traditional programmer, this would be
analogous to selecting a solution technique – for example, deciding to sort some information in
ascending order and then display it in a window. It is in the second step of development that
the constructive and adaptive approaches differ. Our second step replaces the traditional
constructive process of writing a program with what we believe is a much simpler adaptive
process. Rather than trying to construct a program from a plethora of syntactic components
that can be assembled in literally billions of different ways, the author simply adapts the
description generated by the pattern using one of a very small set of allowable adaptation
operations. For example, instead of writing sort code from scratch, adaptation would involve
taking an existing sort description and either setting an option or changing a descriptive line
that indicates the information should be sorted into ascending order.

At any point in the constructive programming process, a programmer picks several small
syntactic components from a large number of program components using a mental menu, and
assembles these components into larger program constructs. For example, to compute and
remember a value, a programmer constructs an assignment statement using an assignment
variable, an assignment operator and an expression consisting of operators, constants, other
variables and function calls. Using a DSL instead of a general purpose programming language
increases the level of abstraction that the constructive programmer uses. This does simplify the
construction, but does not fundamentally change the fact that the author is still faced with the
challenge of creating larger constructs out of smaller one. Wile [42] clearly states that DSLs
are not always programming languages: “Moreover, DSLs are not necessarily programming
languages: they are languages tailored to express something about the solution to a problem.”
His paper nicely divides DSLs into four groups (Full language design, Language extensions,
Common Off-The-Shelf approaches, and Interchange representations) and provides a wide
range of examples including an interesting Satellite domain application that uses a PowerPoint
design editor. Although not all DSLs are programming languages in the traditional sense, the
ones constructed to date have been languages that share a constructive approach, rather than an
adaptive one.

In the adaptive process, the author selects a generic solution (pattern) to a problem. Since
this solution is generic, it will not exactly solve the problem being considered. Therefore, the
author selects one of a few adaptation operations from a real menu and then specifies the

 13

details of the adaptation operation using a sub-menu and dialog box. For example, the author
starts with a complete solution to a generic problem that may require an additional action to
become the desired solution. To add an action, the author selects the add action menu item and
then traverses sub-menus to specify what the action should be. For example, Fig. 5 shows an
action that displays a caption above the head of a creature. The author then types what the
caption should be in a field of a dialog box (“Run for your life!”). Adaptive programming
consists of a series of author decisions on how to adapt an existing solution. These decisions
are made by selecting items from menus and dialog boxes, possibly combined with the typing
of some short strings. Adaptive programming, as we have defined it here, is different than the
concept of adaptive programming coined by Lieberherr [25] in the 1990’s. He uses the term to
refer to applications that are easy to maintain and evolve. We use the term to mean an
application that is created by adaptation. Although the ideas are different, our use of the term is
a logical progression of his good idea.

Which process is easier – constructive programming or adaptive programming? The
analogy of document creation provides some evidence that an adaptive process is easier. Most
people would rather adapt a template document or an old version of a document, such as a
reference letter, thank-you note or announcement memo, rather than creating a new one. There
are two fundamental reasons for this. First, it saves time. Second, the template has already
been used one or more times in the past, so common errors have been eliminated.

Traditional constructive programming requires one to learn syntax and semantics.
Programming languages are large artifacts with obscure syntax, complex semantics and subtle
side-effects. Adaptive programming (as we envision it) has no syntax to learn. As described in
the next sub-section, the semantics are expressed in natural language using the vocabulary of
the application domain. There might be some subtle side-effects with adaptive programming,
but, if so, they are probably the fault of the pattern designer, as opposed to the adaptive
methodology. This means that unintentional side effects can be discovered and corrected at the
level of pattern design, not at the level of pattern use. Since patterns are designed once and
used often, this amortizes the cost of error detection over multiple uses.

3.2 Natural versus formal language
In step one of our process, a pattern instance is generated that contains a description of

when the pattern applies and what the pattern does. From a programmer’s point of view, the
description can be seen as statements in a high-level programming language, but the author
just sees them as a description. During step two (adaptation), the designer can manipulate these
descriptions analogously to the way programming language statements are manipulated, but in
a more constrained way. During step three (script generation), ScriptEase uses each pattern
description to generate scripting code in a way similar to how a compiler uses each program
statement to generate machine code.

However, there are three fundamental differences between pattern-generated descriptions
used by authors and programming language statements constructed manually by programmers
that contribute to the success of the generative/adaptive approach. First, generated statements
exhibit less variation than manually-constructed statements since, when there is more than one
way to express the same concept, generation provides a consistent representation. Hence, the
working vocabulary of generated descriptions is smaller than the working vocabulary of
manually-written programs that use the same set of concepts. A smaller working vocabulary
leads to a faster learning curve and less confusion about which representation to choose.

 14

Second, a description can be expressed in a more natural language if it is generated than if
it is constructed. Consider the description from Fig. 3 and the corresponding program
statement from Fig. 4, shown together in Fig. 6. The natural language statement is much easier
for a non-programmer to understand. However, a system that accepted natural language during
constructive programming would require a complex parser and natural language is inherently
ambiguous. That is why we have programming languages to support constructive
programming. Adaptive programming does not need a formal programming language at the
author level, since descriptions are generated from author selections.1 For example, the
constructive approach requires the programmer to create unique labels to reference different
objects and functions. With the adaptive approach, unique labels are generated automatically in
the scripting code, using prefixes and suffixes. This level of detail is not seen by the author.

Spawn Spawned Creature from Creature Blueprint (Avadel) near The Container (Dresser)

SpawnedCreature_SE3=SE_AC_SpawnCreatureNearObject("bandit003", Dresser_SE0);

Fig. 6 A natural language description and the equivalent NWScript program statement

Third, an author can only manipulate descriptions in very structured ways, using a limited
set of adaptation operations. Performing adaptation operations using context-sensitive menus
eliminates errors. With programming language statements, a programmer has a much broader
scope for making changes and therefore more chances for errors as well. Errors must then be
identified and fixed.

4. Pattern Adaptation in ScriptEase
As mentioned previously, ScriptEase supports four kinds of patterns: encounter,

behaviour, dialogue, and plot. The case studies described in this paper focus mainly on
encounter patterns, so in this section we provide details on adapting encounter patterns. The
other three kinds of patterns are currently under development and they will be added to
ScriptEase as first-class patterns in the near future.

Fig. 7 shows a sample encounter pattern, Container disturb (specific item) – toggle door,
expanded to reveal the internal components of its description. The intent of the pattern is to
toggle the status of a door if a specific item in a container is disturbed (added, removed or
stolen). Toggling a door means unlocking it and opening if it is currently locked, and closing it
and locking it if it is unlocked. An author from the study described in Section 5 (a high school
student) was responsible for the adapted pattern shown in Fig. 7. The author created an
instance of this pattern and set the options for it using dialog boxes as illustrated in Fig. 3. This
particular pattern has three options, which the author set to three specific game objects in the
story (The Container set to Bookcasering, Specific Item set to Queen’s Ring, and The Door set
to Statue Door). Since the author did not adapt this pattern any further, it is not actually
necessary to open the pattern to reveal its components. However, we are using this pattern to
illustrate all of the possible components of an encounter pattern, so that we can describe the
adaptation operations that are available to an author. In the next section, we indicate how many
authors performed each adaptation operation and how many times they performed them.

1 Of course, use of a formal programming language is hidden in the implementation of the adaptive
programming process. In step 3 of the adaptive process, patterns are translated into an equivalent code
representation. This level is only visible to the programmer.

 15

Fig. 7 Components of an encounter pattern description: Container disturb (specific item) – toggle door

In Section 2, we indicated that each encounter pattern (stylized E) has one or more
situations (stylized S) and that each situation contains one event (stylized V) and zero or more
actions. We now describe the last two components of situations: definitions and conditions.
The same mechanism is used for adding all encounter components – hierarchical menus.
Examples of these hierarchical menus will be given later.

Each event contains zero or more implicit definitions (stylized D) that refer to objects that
play a role in the event. For example, in Fig. 7, the event has been opened to reveal the label
Container Disturber, referring to whatever creature disturbed the container, and the label
Disturbed Item, referring to the item that was disturbed during this event. Each situation also
has zero or more explicit Definitions that can be used to refer to objects and information in the
game. The pattern description shown in Fig. 7 contains four explicit definitions. The first
definition (Same Tag) defines a label that indicates whether the item that was just disturbed
(Disturbed Item) is the same item as the specific item (Queen’s Ring) that the author wanted to
trigger this situation. This definition will be used in a condition. The second definition (Door
Locked) indicates whether the door is currently locked or not. This definition is used in the
next definition. The third definition (Unlock or Lock) indicates what should be done to the
door, with respect to locking/unlocking it. This definition is needed in the action that will
either unlock or lock the door, to specify the correct version of a lock/unlock. The fourth
definition (Open or Close) indicates what should be done to the door with respect to
opening/closing it. It is needed in the action that will either open or close the door.

Each situation contains zero or more conditions (stylized C) that specify other
circumstances that are necessary for the situation to apply. For the pattern shown in Fig. 7, the
situation should only apply if the disturbed item and the specific item have the Same Tag. As
indicated in Section 2, each situation can contain zero or more actions (stylized A). In Fig. 7,
there are two actions, one to unlock or lock the appropriate door (Statue Door) and one to open
or close it. The other two situations (Add and Steal) consider similar code. The author that used
the specific pattern description shown in Fig. 7 only wanted the pattern to apply for the
Remove situation, so the other two situations were deleted.

Although the components of the pattern in Fig. 7 may look to programmers like familiar
programming language statements, the components are just descriptions. The author did not
construct these descriptions from smaller syntactic components or even write them as natural
language sentences. Most descriptions were generated from a pattern that the author selected.
Some words in the descriptions were generated after the author selected options using dialogs
as shown in Fig. 3. The rest of the descriptions were generated after the author performed
adaptation operations by selecting from menus as explained throughout the remainder of this

 16

section. The description shown in Fig. 7 was generated in a few minutes by a Grade 10 English
student with no programming experience!

When designing a pattern, there is always a tension between generality and specificity
[11]. If a pattern is too general, it will be applicable to many scenarios, but will require many
adaptation operations each time it is used. This will increase the work required to use the
pattern effectively. If a pattern is too specific, it will not be used often enough to justify its
existence. Having a large number of very specific patterns makes the pattern catalog too
difficult to use, since finding appropriate patterns becomes problematic.

The topology of a pattern (the number of components of different types) determines its
generality. More situations make a pattern more general. For example, the Container disturb -
spawn creature pattern has three situations: add an item, remove an item, and steal an item. It
applies whenever the PC adds, removes, or steals an item from a container. This is more
general than a pattern that has only one or two of these situations.

On the other hand, more actions or definitions make a pattern more specialized. For
example, the Container disturb - spawn creature pattern shown in Fig. 3 has two actions in
each of its situations, one action that spawns a creature near the container and another action
that shows a visual effect on the spawned creature. A hypothetical pattern, Container disturb -
spawn creature, lock door, create object that also locks the nearest door and creates an object
near the container is more specialized, since it does more actions. Such a pattern would be
rarely used.

More conditions also make a pattern more specialized, since each condition reduces the
chances that the pattern applies (does something). For example the hypothetical pattern
Container disturb (disturber is female) - spawn creature pattern would only spawn a creature
if the PC that disturbs the container was female. Hence, a second (male) pattern would be
needed. The result is twice as many patterns each with half the utility.

Therefore, to strike a balance between general applicability and the need for too many
adaptations, the patterns in the ScriptEase pattern catalog tend to have many situations and few
actions or conditions. This is an important insight that goes beyond this particular application
domain and pattern tool. We have developed metrics for evaluating the effectiveness of general
pattern catalogs [11] and used them to evaluate the tradeoffs between specialization and
generalization in the ScriptEase pattern catalog.

Since the adaptation process is one of taking a general pattern description and adapting it
by specialization to apply in a particular context, the following adaptation operations are
common: deleting a situation, adding an action/definition, and adding a condition. On the other
hand, the operations of adding a situation, deleting an action/definition, and deleting a
condition are rare, since they generalize a pattern rather than specializing it. Generalization
rarely happens during adaptation of a general pattern to a particular context.

The number of adaptations required to use a pattern is important. However, the difficulty
of applying each desired adaptation must also be taken into account to minimize the work
required by an author to create a game story. Based on our experience (and the data shown in
this paper) it is easier for an author to delete a component or replace a component than to add
one. Deleting a component is a binary decision – one can delete it or not. The location of the
component is known. Adding something requires a location to add it and the identification of
what to add. If there are many choices, each with options, this can be much more challenging.

To reduce the complexity in the case where a component should always be added and
where the specific component cannot be determined when the pattern is created, a placeholder
component is used so that the author knows exactly where to place the component. The author

 17

can replace a placeholder with a specified type of component (adaptive), rather than trying to
figure out what kind of component to add and exactly where to add it (constructive). For
example, it is common for game story authors to want something to happen when the PC
removes a specific item from a container. One author may want a creature to be spawned.
Another author may want the container to explode. There are many possibilities and they can
all be represented by the Container disturb (specific item) pattern shown in Fig. 8. In this case
the author wants to add an action (at the action placeholder) to spawn a creature. Performing
this adaptation is straightforward. The author first selects the action to be added (Spawn a
creature near an object) from the hierarchical menu shown in Fig. 8 and then sets the options
(Creature Blueprint to Slave of Lord Dumont and Target to Gong of Challenge) for this new
action using dialogs similar to the one shown in Fig. 3. The final step is to delete the
placeholder by clicking on the placeholder action to highlight it and selecting Delete from the
pop-up menu as shown in Fig. 9. The technique for deleting other components (situations,
definitions, regular actions, and conditions) is the same.

Fig. 8 The hierarchical menus to add an action – Spawn a creature near an object

Fig. 9 Deleting the Action placeholder in the Container disturb (specific item) pattern

 18

ScriptEase supports twelve pattern adaptation operations that are grouped into nine
categories as shown in Table 1. The number associated with each category is a subjective
ranking of the difficulty associated with each kind of adaptation, with a lower number
indicating a lower difficulty. The difficulty categories are based on our experience and on the
results of the case study described in the next section. For example, adding a definition and
adding an action have the same perceived difficulty. Adding a condition is considered to be a
more difficult operation, hence its higher difficulty ranking. Note that the rare adaptation
operations identified previously (adding a situation, deleting an action/definition, deleting a
condition) are marked with an asterisk in Table 1.

Table 1
Adaptation operations for ScriptEase encounter patterns. Operations that are rarely used are marked with
an asterisk (*)

Difficulty
Category

Adaptations

1 Set options
2 Delete a situation
3 Delete an action*; Delete a definition*
4 Delete a condition*
5 Replace an action placeholder; Replace a definition placeholder
6 Add an action; Add a definition
7 Replace a condition placeholder
8 Add a condition
9 Add a situation*

It should not be surprising that different adaptation operations have different difficulties.

Most people would agree that when writing a traditional program, constructing an assignment
statement is easier than constructing a selection control structure (if), which is easier than
constructing an iteration control structure (loop).

The following sub-sections illustrate the adaptation operations from each of the nine
categories. These examples are based on the game stories produced during the case studies
described in the next section.

4.1 Set options
After the author selects a pattern and creates an instance, the pattern options are set. Every

pattern has at least one option – the object to which the pattern applies. Options are set using a
dialog box for each pattern option. Setting options is the simplest conceptual adaptation that
designers perform on patterns, since it must be performed for each pattern instance created.

4.2 Delete a situation
Deleting a situation is straightforward. Each situation describes a self-contained

circumstance under which the pattern may apply and the actions that should occur under those
circumstances. Since each situation is independent of the others and situations are at the top
level inside an expanded encounter pattern in the GUI, deleting a situation is a simple concept.
Notice that when it is common to delete a particular situation, the situation is marked for the
author as “consider deleting this” (see Fig. 7).

 19

4.3 Delete an action or definition (*- rare adaptation)
Deleting an action or a definition requires the author to understand the context of that

action or definition. Each action is contained in a situation. A definition may be at the top level
of an encounter and apply to all situations in the encounter, or it may be inside a situation and
apply only to that situation. This makes the deletion of an action or definition more complex
than the deletion of a situation. Nevertheless, it is not difficult. For example, Fig. 3 shows the
interior of the Remove item situation of the Container disturb – spawn creature pattern. There
are two actions in this situation, one to spawn a creature and another to show a visual effect.
The second action can be deleted if the author does not want to use the visual effect to draw
attention to the spawned creature.

Since extra actions are not included in patterns, actions are rarely deleted. In game stories,
it is rare for an author to want a creature to be spawned without a visual effect. That is why the
pattern designer included a visual effect in this pattern. In our study, there were very few
occurrences of an action or definition being deleted.

4.4 Delete a condition (*- rare adaptation)
It is possible to delete a condition from a pattern description. It is rare, since deletion of a

condition generalizes a pattern. Here is a hypothetical example that did not occur in the study.
Start with the pattern Container disturb (specific item) – toggle door shown in Fig. 7 and
delete the specific item condition (Same Tag is positive) so that the door is toggled whenever
any item in the container is disturbed. At first glance, it seems like the basic pattern should not
include the specific item condition, making the pattern more general. In practice, few authors
want a door to be unlocked when just any item is disturbed. The author usually has a specific
item in mind (that is critical to the story), so the pattern available is the one that is actually
more useful. In the study, there were only four cases where a condition was removed. In two of
these cases (two instances of the same pattern) the condition should not have been deleted.
Based on the author’s intent, deletion was an error. In the other two cases (again two instances
of the same pattern), the author deleted condition placeholders inside a situation, when the
situations should have been deleted instead.

4.5 Replace an action or definition placeholder
Replacing an action or definition requires the author to understand the context of that

action or definition. Replacement is more complex than deletion, since there are many actions
or definitions that can be used as the replacement. Once the author gains experience about
what actions and definitions are available, it becomes easier. Fig. 9 shows an action
placeholder being replaced by adding an action at the location of the placeholder and then
deleting the placeholder.

4.6 Add an action or definition
Adding an action or a definition is slightly more difficult than replacing one, since the

author must manually decide the appropriate place to add the action in the situation. Fig. 10
shows a Container disturb – spawn creature pattern that has an extra definition and an extra
action added to it. The author would like to a have an item (Blade of the Rashemi) appear at a
particular location. To add this definition, the author first used the Aurora Toolset to create the

 20

item and an object called a waypoint (a flag) with tag (DumontWaypoint) to mark the desired
story location. Then, in ScriptEase, the definition was added by selecting an appropriate kind
of definition (Define location of object) from a set of hierarchical menus, similar to the action
hierarchical menus shown in Fig. 8. The author then set the label of the definition (Location)
and set the waypoint object (DumontWaypoint) as options in the definition, similar to the way
the action options were set in Fig. 3. Finally, a Create item at location action was selected
from hierarchical menus and its two options were set (Item Blueprint to Blade of the Rashemi
and Creation Location to Location) as shown in Fig. 10.

Fig. 10 Adaptation: adding an action or definition

4.7 Replace a condition placeholder
Adapting a condition is more complex than adapting an action or a definition, since each

condition uses a definition. Each ScriptEase condition evaluates a Boolean condition and
performs its actions if the Boolean condition has one of two specific values. Unlike
programming languages, where Booleans have the values false and true or 0 and 1, a Boolean
in the ScriptEase description language can have one of any pair of values. Common examples
are the pairs False/True, No/Yes, Off/On. New pairs can be defined when a pattern is created.
ScriptEase supports only four conditions: always positive, always negative, if positive, and if
negative. An always positive condition always performs its actions and an always negative
condition never performs its actions. These two conditions are used as placeholders and should
be replaced during adaptation. For example, consider Fig. 11 that shows a Trigger enter/exit –
barrier pattern. An author uses this pattern to prevent a PC from entering or exiting a trigger
region (a polygon shaped area drawn on the ground using the Aurora Toolset). By default the
pattern contains four situations, Try to enter trigger, Try to exit trigger, Destroy barrier on
entry and Destroy barrier on exit. In a typical use, an author only wants a region that cannot be
entered or a region that cannot be exited, so two of the situations are usually deleted – in this
case the exit situations were deleted. The Destroy barrier on entry situation contains an action
that destroys the barrier and displays a visual effect. A barrier is useless if it is destroyed as
soon as the player tries to enter the first time, so the Destroy barrier on entry situation is
“guarded” by a placeholder condition that is Always negative. To achieve the intended story
line, the author adapted the pattern by replacing the Always negative condition by some
appropriate condition that should be satisfied to destroy the barrier. In this case, the author
wanted the barrier to be destroyed if the PC was carrying an item whose label was Tomi’s

 21

contract. Fig. 11 shows the pattern after the author has added a definition (Has item) and a
condition (If Has Item is Positive). To complete the condition replacement, the author deletes
the Always negative placeholder condition, as shown in Fig. 11.

Fig. 11 Adaptation: replace a condition placeholder

4.8 Add a condition
Adding a condition to specialize a pattern is a common adaptation operation. It is more

difficult than adding an action or a definition, since adding a condition requires the author to
first add a Boolean definition and then use it to set the definition option in the condition.
Therefore, when a pattern always requires a condition to make sense, a placeholder condition
is provided to simplify the adaptation, as shown in the previous subsection. However, some
patterns can be used with or without a condition. Fig. 12 shows an example where a condition
has been added to the Container disturb – spawn creature pattern. The author has added a
condition that the disturbed item must be a specific item (Thors hammer). It was necessary to
add the definition (Same Tag) to set the definition option of this condition. Note that the author
could have achieved the same intention by starting with a Container disturb (specific item)
pattern and adding the two actions instead. The only way we know that the former was done
rather than the latter is that the description on the encounter pattern shows the pattern that was
selected (Container disturb –spawn creature).

Fig. 12 Adaptation: add a condition

 22

4.9 Add a situation (*- rare adaptation)
Adding a situation is the most complex adaptation operation available in ScriptEase, since

a situation contains other components. Fig. 13 shows a Trigger enter pattern that contains its
original situation (Trigger enter), along with a second situation (Trigger enter) that has been
added by the author. The author has adapted the original situation by adding two definitions, a
condition and an action. The intent is that when a creature enters the trigger, if the creature has
the Orb of Xi’Tah Teleportation, then the creature will be teleported to a different location –
the location of waypoint1a. Since a Trigger enter pattern only has a single situation, the author
wanted to add a second situation so that if a creature enters the trigger, but does not possess the
Orb of Xi’Tah Teleportation, then the creature would be warned by the text, “You need the Orb
of Xi’Tah Teleportation”.

Fig. 13 Adaptation: add a situation

To add a situation, first select the encounter pattern that will contain it and then select a
menu item to add a new situation. There is only one kind of situation so that menu is not
hierarchical. The next step is to set the event for the situation using the hierarchical menu
shown in Fig. 14. Note that a situation will apply only to a particular kind of object (Area,
Creature, Door, Trigger, etc.), so that the event selection depends on the kind of the target
object. In this case, the author wanted the event to be a When a creature enters a trigger event.
After adding this event, the author then adds definitions, actions and conditions as described
previously. Alternatively, instead of manually creating the second situation, the author could
have simply copied the first situation, pasted it into the pattern and then adapted its contents. In
fact, that is what this author actually did during the study.

Fig. 14 Selecting an event for a situation from a hierarchical menu

 23

4.10 Designing new patterns
ScriptEase includes an encounter pattern designer that allows an author (non-programmer)

to create new encounter patterns. In this paper, we provide only a brief explanation of pattern
design, since our case studies did not include pattern design by the authors. The high school
student authors were creating game stories as part of their high school English curriculum.
There was not enough time to spend designing new patterns, when the focus was on creating
stories. However, a high school summer student (non-programmer) demonstrated the
simplicity of pattern design by designing four behaviour patterns to populate our behaviour
pattern catalog. In addition, three other high school students (non-programmers) created
several new patterns in the process of creating a feature interactive story. We are planning to
conduct a full study that includes pattern design in the near future.

Designing a new encounter pattern is similar to adding a situation to an existing pattern.
There are only two more small steps. The author first selects a menu item to create a new
encounter pattern and gives a name and description to this pattern. The author then uses a
menu to create the set of options (parameters) that the pattern will have and assigns a game
object type to each option (Creature, Door, Container, etc.). Fig. 15 shows the dialog used to
create options (parameters). After this, the author adds situations as described in the previous
section. In other words, after an encounter pattern is created, it is adapted using exactly the
same adaptation operations that are used to adapt a pattern instance for a story.

Fig. 15 Creating encounter options (parameters) for a new encounter pattern using the ScriptEase

encounter designer

The definitions and actions that can be selected from hierarchical menus during adaptation
depend on the particular game (e.g., Neverwinter Nights). ScriptEase provides an atom editor
that can be used to create these atomic definitions and actions in terms of the API provided by
the game engine. However, defining a new atom requires programming skills, since the atoms
are defined using the underlying scripting language (NWScript in this case). For example, Fig.
16 shows how the Spawn creature near object action is created in the atom editor.

 24

Fig. 16 Creating an atomic action using the ScriptEase atom editor

Since creating a new pattern requires the same adaptation operations as adapting an
existing pattern, the author does not have to learn a new skill set. This approach provides a
smooth evolution from pattern user to pattern designer. When an author creates a new pattern,
the same basic components, such as basic actions (walk to an object or perform arithmetic
operations) that have been used in adaptation can be used for pattern creation. In addition to
the fixed set of events to which every object responds, the pattern designer may create custom
events. This allows unlimited flexibility for any particular situation a story requires. Using
patterns does not deter an author from creating original stories. On the contrary, since the
existing library of patterns supports rapid story prototyping, the author can use the time saved
to experiment with new patterns that can be used in different ways. The productivity gains that
resulted from using reusable components in 3D content construction to produce more
impressive visual objects (the Gamebryo 3D graphics engine [18] was used to create the
worlds of the award-winning CRPG, Oblivion [4]) should be repeatable by using patterns to
generate scripts for game object interaction in stories.

5. Case Studies

5.1 Description
To obtain evidence that the ScriptEase generative/adaptive approach to game authoring

and interactive fiction writing could be successfully applied by non-programmers, we designed
and conducted case studies for three groups of authors. These case studies were designed to
meet the following criteria:

1. the authors had to be either non-programmers or inexperienced programmers;
2. the stories produced had to rival those that could be produced by more conventional

programming approaches;
3. the time required to learn ScriptEase had to be significantly shorter than the time required

to learn the equivalent scripting language, and
4. the time required to produce stories had to be shorter than the time required to produce

equivalent stories using conventional programming approaches.

 25

We developed these case studies to determine whether ScriptEase’s generative/adaptive
paradigm was robust enough to generate stories of acceptable complexity while still being easy
to learn. In particular, the learning curve had to be small so that ScriptEase could be tested in a
classroom environment. The same case studies were also used to investigate broader
educational goals, which are beyond the scope of this paper.

Each case study had the same four steps. In step one, student authors were taught to play
Neverwinter Nights (NWN). A tutorial provided a guided walkthrough of a player character
(PC) through the Prelude of the NWN game. The Prelude is the game’s training module and is
designed to introduce players to the look and feel of the NWN world and to teach them how to
use the interface. This tutorial was designed to make sure that the students were well aware of
those aspects of the interface and the game world that would be of special importance when
they shifted roles from game players to game story authors. Students typically took one and a
half to two hours to complete this first tutorial on “playing the game”.

In step two, a second tutorial about constructing a story world was used to introduce the
students to NWN’s Aurora Toolset. They were taught how to use the Aurora Toolset to
populate a game setting with the props and the computer-controlled NPCs that the PC would
interact with when the story was “played”. A game module comprises all areas, NPCs, props
and their scripted interactions in a game story. The students were provided with three game
modules produced by a high school teacher. The first module, CastleEmpty, was used in
conjunction with the tutorial. This module contained two areas, the interior (Castle) and the
exterior (Exterior) of a medieval castle, but did not contain any props or creatures. The castle
was composed of several rooms. The students were guided through the process of placing
props (such as furniture, books, weapons, etc.) and NPCs (such as guards and creatures) in
these areas. The second module, CastleFull, was an augmented CastleEmpty with the props
and creatures added and scripted as a consequence of completing the tutorial steps. Together
with this tutorial, students were provided with maps for the CastleEmpty module, whose
annotated rooms facilitated the tutorial instructions. The third game module, MyShortStory,
was used as the basis for their interactive stories.

In step three, the students learned how to use ScriptEase to actually “write” the story
associated with the setting, by completing the ScriptEase part of the second tutorial. In NWN,
stories are a network of possible interactions between the human-controlled PC and the
computer controlled NPCs and props. Accordingly, this tutorial guided the students through a
typical set of NWN interactions. This was done through creating appropriate pattern instances
and adapting them. As they worked through the tutorial, the students learned to select the
pattern that created a general version of the desired interaction and then to adapt that pattern to
obtain the specific interaction desired. As this tutorial was considerably more complex than the
“playing the game” tutorial, the students typically took four hours to work through the tutorial
(Aurora Toolset and ScriptEase).

In step four of the case study, student authors were told to create their own stories in
NWN, using the Aurora Toolset and ScriptEase.

The tutorials were specifically designed for the case studies. A high school teacher and a
high school student developed and tested the tutorials. Since the success of the case studies
was predicated on the presence of clear and effective tutorial materials, the tutorial
development process went through several cycles of writing, testing and revision. For example,
a high school English class used an earlier version of the tutorials as a test run, without any
data being collected, to test the feasibility of the tutorials and techniques. This tutorial material
(split into three tutorials) and the CastleEmpty module are available on-line [34].

 26

After developing and testing the tutorials, the first case study was conducted with a class
of 23 grade 10 English students (referred to as group HB in this paper) enrolled in the
International Baccalaureate program. Students in this program are top academic students [22].
The second case study was with a group of six first year University students (group UA) who
had just completed either their first or second University computer programming course. The
third case study was with a class of 27 grade 10 English students (group HA) enrolled in a
regular academic program.

For the high school students (groups HA and HB), the case studies were packaged as part
of an actual school assignment. The grade 10 English curriculum requires students to develop
their understanding of short stories through one or more writing projects. The interactive
writing assignment that made up the core of the case study was inserted as a part of the
teachers’ regular project work in the short story unit. After writing a traditional (pen-and-
paper) short story in class, the students were introduced to the concept of interactive stories
and given the assignment of using ScriptEase to write an interactive short story, through
participation in the case study. In each case, the high school student authors took part in a two-
day workshop conducted at the University of Alberta. The workshop consisted of the tutorials
described earlier (total time six hours), along with some limited time (two hours) to start their
interactive short story. Students worked under the supervision of their teacher and some of the
ScriptEase researchers who were familiar with both the tools and tutorials so they could
answer student questions. During the day, there were several extended breaks where the
students were exposed to several research projects that were of interest to this age group. At
the end of the workshop, the students returned to their high school classrooms to complete
their stories.

The students' assignment was to create an interactive story in a given setting. The high
school teacher provided the students with a module, MyShortStory, which contained only the
castle areas, the interior and the exterior of a medieval castle, without any props or scripting.
The students were asked to “write” their interactive story using this module by adding their
own props and characters and generating appropriate scripts using ScriptEase. The students
were provided with blank maps of the castle and they were required to annotate the maps
according to their story. These annotated maps were used by the teacher during grading to
make the story easier to navigate. Students were given three class periods of computer lab
access to write their stories. However, they did have additional access to the labs if they
wished to work on their stories outside of class, but no assistance was provided. This allocation
of three periods in the lab corresponded to the amount of time that an English teacher assigned
to an equivalent traditional writing project. At the end of the allotted time, the stories were
submitted to and graded as an English assignment by their teacher, using the same rubric as
was used to grade their traditional stories. In all, the high school authors spent an average of
four hours working on their stories in the high schools, plus two hours at the University, for a
total of six hours.

The University student case study was conducted over a three-day period at the University
of Alberta. Student authors used exactly the same tutorial material, completing it in five to six
hours, followed by thirteen to fourteen hours of story writing time.

As shown in Section 5.2, in all three studies, the students were able to master the use of
the Aurora Toolset and the ScriptEase environment to the point where they were able to
produce meaningful stories. They were able to identify a network of interactions that they
wished to incorporate into their story, select the appropriate ScriptEase generative pattern

 27

needed to produce each interaction, and use a standard set of adaptation operations to
customize the pattern to reflect the particular circumstances of their story.

5.2 Results
Fig. 17 shows a histogram of how many pattern instances were created by the authors in

each of the three groups, HA with 27 authors (left bar), HB with 23 authors (middle bar) and
UA with 6 authors (right bar). The x-axis shows ranges of the number of pattern instances that
were created and the y-axis shows the percentage of authors from each study that created the
number of pattern instances in that range. For example, 26% (7/27) of the HA authors created
1 or 2 pattern instances and 7% (2/27) of HA authors created 11 or 12 pattern instances. For
the UA authors, the numbers on the x-axis represent 10’s of patterns created, so that the
information could be put into a single graph. For example, 67% (4/6) of the UA authors
created 1-29 (not 1-2) pattern instances.

The graph shows that there is a wide variation in the number of pattern instances used by
the authors and only a single author (from HA) out of the 56 involved with the three case
studies did not create any pattern instances. This author created a story using the Aurora
Toolset, but did not script any objects in the game using ScriptEase. The averages of the
number of pattern instances created per author for the three study groups were 5.1 (HA), 5.6
(HB) and 40.2 (UA). The UA authors were more mature, having completed three more years
of formal education, along with one or two programming courses. The UA authors also had
more time to work on their stories. Either or both of these considerations could account for the
fact that these authors used about eight times more pattern instances. Although the two high
school groups were both grade 10 classes, the profile of the two classes was different. The HA
class was a regular English class and the HB class was an International Baccalaureate English
class. This distinction likely contributed to the difference in pattern instances created.

Fig. 17 Number of pattern instances used by students from each school

 28

Fig. 18 shows a histogram of the total number of adaptations that were performed by the
authors in each of the three groups. However, setting pattern options (Section 4.1) was not
included in the counts, since every pattern that is created must have at least one option set. The
x-axis shows ranges of adaptations and the y-axis shows the percentage of authors from each
study that used the number of adaptations in that range. For example, 33% (9/27) of HA
authors used from 1 to 5 adaptations and 4% (1/27) HA authors used 21 to 25 adaptations.
Again, the UA numbers should be multiplied by 10. The graph shows a wide variation in the
number of adaptations used by authors in all groups. It also shows that only six authors (five
from HA and one from HB) out of the 56 authors involved in the study did not perform any
adaptations. Of these six, five used only un-adapted pattern instances (except for setting
options) and the sixth was the single author in the study who did not create any pattern
instances (so no adaptations were possible). The averages of the number of adaptations used
per author for the three study groups were 7.1 (HA), 14.7 (HB) and 156.2 (UA). The average
number of adaptations per pattern instance for each of these three groups is 1.3 (HA), 2.2 (HB)
and 3.9 (UA). It could be argued that the use of more pattern instances is simply due to more
time to write a story. However, an increased number of adaptations per pattern instance
indicates more complex interactions during story scenes. This is more likely attributable to
higher cognitive skills of the UA authors and to a lesser extent the higher cognitive skills of the
International Baccalaureate English class (HA) relative to the regular high school class (HB).

Fig. 18 Number of adaptations used by students from each school

Fig. 19 shows the percentages of authors in each of the three groups that used adaptations
for each difficulty level from Table 1 (excluding the set options adaptation). The adaptations
are arranged from easiest to most difficult (left to right), except that the three rare adaptations
are placed on the far right. For example, 73% of the students from HA used the delete a
situation adaptation, 85% used the replace action/definition placeholder adaptation and only
12% used the replace a condition placeholder adaptation. The number of students who used a
particular kind of adaptation depends on several factors. For example, the adaptations that are
rare because they generalize a pattern instead of specializing it have been placed on the right of
the graph. Other factors that affect the number of authors who use a particular kind of

 29

adaptation are the following: the patterns selected to create the desired kind of story, the
particular way that an author wants to tell that story, and the instructions that the authors
received when learning how to use ScriptEase. The number of students who used a particular
kind of adaptation does not only reflect the difficulty of using a particular kind of adaptation.
However, there appears to be a relationship between categories mastered and category
difficulty for the two high school groups. The bars tend to go down from left to right for both
high school groups indicating that fewer students mastered the adaptation operations on the
right (higher difficulty categories). The slightly higher bars for add a condition compared to
replace a condition placeholder might reflect the fact that there are a limited number of
patterns with condition placeholders, so there is more opportunity to add than to replace.

Fig. 19 Percentage of authors using each kind of adaptation operation

We claim that, since the UA authors have higher cognitive skills and experience from
more formal education and one or two computer programming courses, the greater difficulty of
some pattern adaptation operations was not an impediment – they mastered all of the
adaptation operations. Except for the rare adaptations and the replace a condition placeholder
adaptation, all UA authors used all adaptation operations. None of the stories created by the
UA authors who did not perform any replace a condition placeholder operation contained any
condition placeholders. Therefore, the reason they did not use this operation category was lack
of opportunity rather than lack of cognitive skill.

Notice that a greater percentage of HB authors performed each kind of adaptation than the
HA authors. We think this result is related to higher cognitive ability. To obtain some evidence
for this assertion, we measured IQ scores and creative thinking scores for the authors from
groups HA and HB. The average IQ score was 101 for HA authors and 107 for HB authors.

 30

The average creative thinking score was 101 for HA authors and 114 for HB authors. This
provides some evidence for our assertion.

The IQ scores were computed using the Shipley Institute of Living Scale (SILS) [44].
SILS is a quick accurate measure of general intellectual functioning of adults and adolescents,
ages fourteen and older [43]. The scale consists of two subtests of vocabulary and abstract
concept formation. The administration time is ten minutes for each subtest. The total IQ score
is reported as an estimated WAIS-R IQ score. The multiple correlation of the SILS estimated
total IQ score and WAIS-R IQ score is .87 [44]. The estimated total IQ scores are reported on a
scale with a mean of a 100 and standard deviation of 15 [43].

The creative thinking score was measured using the Torrance Tests of Creative Thinking
(TTCT) [35] (figural form A test). It evaluates divergent thinking, productive thinking,
inventive thinking and imagination, all factors that are commonly thought to be involved with
creative achievements [36]. The figural form A test is appropriate for evaluating students in the
fourth grade through graduate school in a group setting [38] [9]. It requires responses that are
mainly drawn or pictorial in nature, and takes thirty minutes to compete. Artistic quality is not
required to receive credit. Standard scores are reported on a scale with a mean of 100 and
standard deviation of 20 respectively [37] [35].

Fig. 20 shows the number of each category of adaptation operations that were performed
by the authors, aggregated by group. Except for the number of add action adaptations
performed by UA authors, the decreasing number of adaptations performed by each group
across the adaptation categories provides more support for our assertion about the increasing
difficulty levels of the adaptation categories. Once again, lower numbers for replace a
condition placeholder than add a condition could be due to opportunity rather than complexity.

Fig. 20 Number of adaptations from each category that were made by each author group

 31

In this section, we showed empirical evidence that most non-programmers can
successfully use the generative/adaptive approach to generate scripting code for computer
game stories. Students were not graded on their use of patterns or adaptations, so they used
them voluntarily when it made sense to improve their story. All of the students in the high
school study produced an interactive story that “worked”. This means that it was a playable
NWN story. In addition, 73% of the students scored a passing grade (at least 50%) on their
interactive story. This shows that ScriptEase allows non-programmers to create interactive
stories with only six hours of instruction and story writing time. Recall that the same rubric
was used to evaluate the interactive stories as the traditional ones. This rubric was based on
characters, setting, plot, conflict, theme and style, not on numbers of patterns or adaptations.
Of course if a student used the same pattern frequently with the same adaptations, the story
would be boring and it would be penalized based on its resulting literary quality, not based on
actual pattern use. However, using the same pattern/adaptation combination was not a problem
in practice, since the wide range of patterns and adaptations available in ScriptEase encouraged
students to write stories that were not repetitive.

The time spent on learning the approach was six hours for each of the two high school
groups. Since they are non-programmers, it is reasonable to believe that this time is less than
the time they would spend learning the NWScript language if they wanted to do the scripting
manually. One could argue that the University students could learn NWScript in the five to six
hours they used to learn the generative/adaptive tools, but it is unlikely. Finally, the two high
school groups spent about four hours writing their stories. It is highly unlikely they could have
manually written the NWScript code that was generated for their stories in this time. Similarly,
even if the University students could have learned the NWScript language in five to six hours,
it is improbable they could have manually written the scripting code necessary for their stories
in the thirteen and a half to fourteen and a half hours they spent writing their story. The
number of non-comment lines of ScriptEase-generated code for these six stories ranged from
1,211 to 5,249 lines. Therefore, the case-study satisfied all four of the criteria outlined in
Section 5.1.

6. Related Work
We described the related work with respect to scripting languages in Section 1 and other

attempts at automatic programming in Section 3. The work most closely related to generative
patterns with customization was done in the context of parallel programming environments.
Our CO2P3S tool (Correct Object-Oriented Pattern-based Parallel Programming System)
supported a small number of generative patterns that spanned a large number of application
domains [27]. In contrast, ScriptEase has a large number of patterns to span a single
application domain. Both approaches are effective, but are fundamentally different with
regards to customization.

In CO2P3S, the patterns were used to generate Java code that encapsulated the parallel
structure of an application (e.g., communication, synchronization, deadlock avoidance). Some
customization is done before generation, by setting options to values suitable for the
application. The generated code forms an object-oriented framework and further customization
consists of creating subclasses of the framework classes and writing hook (call-back) methods
in these classes. Although creating these sub-classes can be considered adaptation at the
software architecture level (adapting a fixed architecture by providing sub-classes), each class
had to be constructed rather than adapted. This means that the “programming” was
fundamentally constructive rather than adaptive. In addition, the user would have to write a

 32

large amount of application-specific sequential code (but no parallel code) as well. The goal of
the system was to allow experienced sequential programmers to write parallel programs
without having to write any parallel code. It removed the need to write parallel code, but not
the need to write code. For most parallel applications, the most difficult code to write and
debug – the parallel semantics – was generated by the patterns, reducing programming and
debugging time [20].

In contrast, ScriptEase is designed for non-programmers. After generation, the
customization phase consists of true adaptation rather than construction. The emphasis is on
modifying existing descriptions rather than creating them. It is the application-specific nature
of the game-genre-specific pattern library in ScriptEase that eliminates the need for
constructive programming. In effect, the CO2P3S pattern library has application breadth and
the ScriptEase pattern library has application depth. The former requires constructive
customization and the latter supports adaptive customization. We feel that adaptive
customization of pattern-generated descriptions is the “solution” to the automatic programming
problem, but only for specific application domains!

7. Conclusion
The thirst for increased and improved quality of content in games is insatiable, driving up

the time and cost needed to produce a major game title. The current approaches used by the
game industry (manual scripting) do not scale, and game company resources are being
stretched to their limit. There is an urgent need for new tools to simplify the game content
creation process, including specifying, implementing, and testing game content. Given that the
game content is determined by game authors, not by game programmers, the tools used must
change to reflect the intended user community. Of necessity, this demands that the
specification technique must distance itself from the traditional constructive programming
view. Authors are comfortable with natural language. Although a true natural language
interface is not possible with today’s technology (ideally one would write a story in English,
push a button, and create an instant game), one can do more to reduce the conceptual gap. This
paper advocates adaptive programming as a major step in that direction. By building on the
well-established ideas behind design patterns, ScriptEase allows authors to deal with a level of
abstraction that is closer to the language level they normally use for communication. We have
demonstrated the validity of our approach by showing that grade 10 English students can build
game stories using ScriptEase. Adaptive programming allows non-programmers to build
complex programs!

High-school English students participated in two of our case studies to demonstrate that
non-programmers can build interesting stories with little experience. Industry game authors are
usually computer-savvy, university-educated, skilled story writers, despite potentially limited
programming skills. Since high school English students, without programming skills,
productively used ScriptEase after only a short learning period, game industry authors can be
expected to be even more productive. The programmer remains an important part of the
process. As existing pattern libraries evolve and new pattern libraries are created, there may be
an ongoing need for new atoms to support them. However, as the pattern libraries mature, the
interactions between authors and programmer will be reduced significantly. Game story
authors will be able to directly create content without using the programmer as an
intermediary. This will eliminate the disconnect between an author’s intentions and the game
scripts needed to implement them.

 33

There are many directions for future work, but here we highlight two that have generated
the most discussion. The first area of research is in patterns. Encounter patterns are relatively
straightforward to define and implement in ScriptEase. Considerable research is needed to
bring plot, behaviour, and dialogue patterns to a similar state of maturity. For example,
behaviour patterns require an underlying concurrency model, since characters have to
communicate, synchronize, and avoid deadlock (note the CO2P3S connection!). Further, they
have to behave in non-repetitive ways; predictability turns game players off. All of this, of
course, must be “behind the scenes” from the game author’s point of view. Manual sequential
scripting by authors is already too hard. Contemplating a process in which authors do manual
parallel scripting is unrealistic. Although we have made some progress on generative patterns
for behaviours, dialogues and plots, more work needs to be done [12].

The second area of research is in interfaces for authors. ScriptEase uses a textual
representation that reads as verbose English. Several authors who have used ScriptEase have
commented that a more visually descriptive interface would be better. Kismet, for example,
has a visual interface (connect the components in a flow chart). Our experience suggests that a
connect-the-components approach is limited and does not scale well to large applications.
Using generative patterns that generate visual components whose positions and orientations
can be adapted is much more appealing. More work is needed to identify the interface
components that simplify the specification and representation of patterns on the screen and the
adaptive process that will be used to customize them.

Acknowledgement
This research was supported by the Natural Sciences and Engineering Research Council of

Canada (NSERC), the Institute for Robotics and Intelligent Systems (IRIS), and Alberta’s
Informatics Circle of Research Excellence (iCORE). We want to thank BioWare Corp. for the
financial, technical, and administrative support. We would like to thank former ScriptEase
team members, James Redford and Dominique Parker who are now “working on the frontline”
at BioWare Corp. and Electronic Arts. We would also like to thank the student authors who
participated in our study and the teachers at their schools who made these studies possible.

References
[1] 3D GameStudio, Realtime 3D Authoring System, Conitec Datasystems, Inc., 2006,

http://www.3dgamestudio.com.
[2] Alice v2.0, Learn to Program Interactive 3D Graphics, Carnegie Mellon, 2006,

http://www.alice.org.
[3] Anark Gameface, Anark Corporation, 2006,

http://www.anark.com/entertainment/gameface-features.html.
[4] Bethesda Softworks, 2006, http://www.elderscrolls.com/games/oblivion_overview.htm.
[5] BioWare Corp., 2006, http://www.bioware.com.
[6] S. Björk, J. Holopainen, Patterns in Game Design, Charles River Media, 2004.
[7] J. Bosch, Design Patterns as Language Constructs, Journal of Object-Oriented

Programming 11(2) (1998) 18-32.
[8] F. Budinsky, M. A. Finnie, J. M. Vlissides, P. S. Yu, Automatic Code Generation from

Design Patterns, IBM Systems Journal 35 (2) (1996) 151-171.

 34

[9] C. I. Chase, Review of the Torrance Tests of Creative Thinking, in: J. V. Mitchell Jr.
(Ed.), The Ninth Mental Measurements Yearbook, Lincoln: Buros Institute of Mental
Measurements, University of Nebraska, 1985, pp. 1631-1632.

[10] J.R. Cordy, T.R. Dean, A.J. Malton, K.A. Schneider, Source Transformation in Software
Engineering Using the TXL Transformation System, Special Issue on Source Code
Analysis and Manipulation, Journal of Information and Software Technology 44 (13)
(2002) 827-837.

[11] M. Cutumisu, C. Onuczko, D. Szafron, J. Schaeffer, M. McNaughton, T. Roy, J. Siegel,
M. Carbonaro, Evaluating Pattern Catalogs - The Computer Games Experience, in: 28th
International Conference of Software Engineering (ICSE 2006), China, 2006, pp. 132-141.

[12] M. Cutumisu, D. Szafron, J. Schaeffer, M. McNaughton, T. Roy, C. Onuczko, M.
Carbonaro, Generating Ambient Behaviors in Computer Role-Playing Games, IEEE
Journal of Intelligent Systems (IEEE IS) 21(5) (2006) 19-27.

[13] K. Czarnecki, U. Eisenecker, Generative Programming Methods, Tools, and Applications
(Chapter 11 Intentional Programming), Addison-Wesley, Reading, MA, 503-567, 2000.

[14] B. Dawson, Game Scripting in Python, Game Developers Conference (GDC), USA, 2002.
[15] Electronic Arts, 2006, http://www.ea.com.
[16] Epic Games, 2006, http://www.epicgames.com.
[17] Firaxis Games, 2006, http://www.firaxis.com.
[18] Gamebryo Element, 3D Graphics Engine and Tools, Emergent Game Technologies, 2006,

http://www.emergent.net/index.php/homepage/products-and-services/gamebryo.
[19] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software, Reading, MA, Addison-Wesley, 1994.
[20] Z. Guo, J. Schaeffer, D. Szafron, P. Earl, Using Generative Design Patterns to Develop

Network Server Applications, in: 10th International Workshop on High-Level Parallel
Programming Models and Supportive Environments (HIPS'2005) at IPDPS, 2005, pp.
178. On CD-ROM.

[21] Humongous Entertainment (Atari), 2006, http://www.atari.com/atarikids.
[22] International Baccalaureate Program, International Baccalaureate Organization,

http://www.ibo.org/diploma.
[23] Kismet, Visual Scripting System, Unreal Technology, 2006,

http://www.unrealtechnology.com/html/technology/ue30.shtml.
[24] B. Kreimeier, Game Design Patterns, Wordware Publishing Inc., 2004.
[25] K. J. Lieberherr, Adaptive Object-Oriented Software: The Demeter Method with

Propagation Patterns, PWS Publishing Company, Boston, 1996.
[26] Lua, The Programming Language, 2006, http://www.lua.org.
[27] S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer, D. Szafron, K. Tan, From Patterns to

Frameworks to Parallel Programs, Parallel Computing 28(12) (2002) 1663-1683.
[28] S. MacDonald, D. Szafron, J. Schaeffer, J. Anvik, S. Bromling, K. Tan, Generative Design

Patterns, in: 17th IEEE International Conference on Automated Software Engineering
(ASE 2002), UK, 2002, pp. 23-34.

[29] M. McNaughton, M. Cutumisu, D. Szafron, J. Schaeffer, J. Redford, D. Parker.
ScriptEase: Generative Design Patterns for Computer Role-Playing Games, in: 19th IEEE
International Conference on Automated Software Engineering (ASE 2004), Austria, 2004,
pp. 88-99.

[30] People Can Fly, 2006, http://www.peoplecanfly.com.
[31] Python, The Programming Language, 2006, http://www.python.org.

 35

[32] Relic Entertainment, 2006, http://www.relic.com.
[33] C. Rich, R. Waters, Automatic Programming: Myths and Prospects, IEEE Computer 21

(8) (1988) 40-51.
[34] D. Szafron, M. Carbonaro, M. Cutumisu, S. Gillis, M. McNaughton, C. Onuczko, T. Roy,

J. Schaeffer, Writing Interactive Stories in the Classroom, Interactive Multimedia
Electronic Journal of Computer-Enhanced Learning (IMEJ) 7(1) (2005), 13 pages.

[35] E. P. Torrance, Torrance Tests of Creative Thinking – To The Test User, Bensenville, IL:
Scholastic Testing Service, 1990.

[36] E. P. Torrance, Torrance Tests of Creative Thinking – Streamlined Scoring Guide Figural
A and B. Bensenville, IL: Scholastic Testing Service, 1992.

[37] E. P. Torrance, The Torrance Tests of Creative Thinking Norms – Technical Manual
Figural (Streamlined) Forms A & B. Bensenville, IL: Scholastic Testing Service, 1998.

[38] E. P. Torrance, Torrance Tests of Creative Thinking – Directions Manual Figural Forms A
and B, Bensenville, IL: Scholastic Testing Service, 2003.

[39] Troika Games, 2006, http://www.troikagames.com.
[40] Ubisoft, 2006, http://www.ubi.com.
[41] VirtoolsTM 4, Comprehensive Life Platform for Creating Highly Interactive 3D

Applications, Virtools, 2006, http://www.virtools.com.
[42] D. Wile, Supporting the DSL Spectrum, Journal on Computing and Information

Technology (CIT) 9(4) (2001) 263-287.
[43] R. A. Zachary, Shipley Institute of Living Scale – Revised Manual, Los Angeles: Western

Psychological Services, 2003.
[44] R. A. Zachary, M. J. Paulson, and R. L. Gorsuch, Estimating WAIS IQ from the Shipley

Institute of Living Scale Using Continuously Adjusted Age Norms, Journal of Clinical
Psychology 41(6) (1985) 820-831.

