
Generating Ambient Behaviors in Computer
Role-Playing Games

Maria Cutumisu1, Duane Szafron1, Jonathan Schaeffer1, Matthew McNaughton1,
Thomas Roy1, Curtis Onuczko1, and Mike Carbonaro2

1 Department of Computing Science, University of Alberta, Canada
{meric, duane, jonathan, mcnaught, troy,

onuczko}@cs.ualberta.ca
2 Department of Educational Psychology, University of Alberta, Canada

{mike.carbonaro}@ualberta.ca

Abstract. Many computer games use custom scripts to control the ambient
behaviors of non-player characters (NPCs). Therefore, a story writer must write
fragments of computer code for the hundreds or thousands of NPCs in the game
world. The challenge is to create entertaining and non-repetitive behaviors for the
NPCs without investing substantial programming effort to write custom non-trivial
scripts for each NPC. Current computer games have simplistic ambient behaviors for
NPCs; it is rare for NPCs to interact with each other. In this paper, we describe how
generative behavior patterns can be used to quickly and reliably generate ambient
behavior scripts that are more realistic, entertaining and non-repetitive, even for the
more difficult case of interacting NPCs. We demonstrate this approach using
BioWare Corp.'s Neverwinter Nights game.

Keywords: Ambient behavior, non-player character, intelligent agents, scripting
language, generative pattern, collaborative behavior, computer games.

1 Introduction

A computer role-playing game (CRPG) is an interactive story where the game player
controls an avatar called a player character (PC). Quickly and reliably creating engaging
game stories is essential in today’s market. Game companies must create intricate and
interesting storylines cost-effectively and realism that goes beyond graphics has become a
major product differentiator. Using AI to create non-player characters (NPCs) that exhibit
near-realistic ambient behaviors is essential, since a richer background “tapestry” makes
the game more entertaining. However, this requirement must be put in context: the
storyline comes first. NPCs that are not critical to the plot are often added at the end of the
game development cycle, only if development resources are available. Consider the state-
of-the-art for ambient behaviors in recent CRPGs. In Fable (Lionhead Studios), the NPCs

Duane Szafron
Text Box
This is a pre-print of a paper that will appear in IEEE Intelligent Software in 2006. A preliminary version of this paper appeared as: LNAI 3814, Springer-Verlag (Intetain Conference 05), 2005, pp. 34-43

wake at dawn, walk to work, run errands, go home at night, and make random comments
about the disposition and appearance of the PC. However, the behaviors and comments
are “canned” and repetitive and NPCs never interact with each other. The Elder Scrolls 3:
Morrowind (Bethesda Softworks) has a huge immersive world. However, NPCs either
wander around areas on predefined paths or stand still, performing a simple animation,
never interacting with each other and ignoring the simulated day. In The Sims 2
(Electronic Arts), players control the NPCs (Sims) by choosing their behaviors. Each Sim
chooses its own behaviors using a motivational system if it is not told what to do. The
ambient behaviors are impressive, but they hinge on a game model (simulation) that is
integral to this game and not easily transferable to other game genres, including CRPGs.
Halo 2 (Bungie) is a first person shooter with about 50 behaviors, including support for
“joint behaviors” [1]. The Halo 2’s general AI model is described, but no model for joint
behaviors is given. Façade [2] has an excellent collaborative behavior model for NPCs,
but there are only a few NPCs, so it is not clear if it will scale to thousands of ambient
NPCs. They also comment about the amount of manual work that must be done by a
writer when using their framework. Other research includes planning, PaTNets, sensor-
control-action loops [3], and automata controlled by a universal stack-based control
system for both low-level and high-level animation control, but not in the domain of
commercial-scale computer games. However, planning is starting to be used in
commercial computer games in the context of Unreal Tournament [4]. Crowd control
research involves low-level behaviors such as flocking and collisions and has recently
been extended to a higher-level behavioral engine [5]. Group behaviors provide a formal
way to reason about joint plans, intentions and beliefs. Our approach is dictated by the
practical requirements of commercial computer games. Our model is robust, flexible,
extendable, and scalable [6] to thousands of ambient NPCs, while requiring minimal CPU
resources. Moreover, our generative pattern abstraction shields story designers from
manual scripting and the synchronization issues of collaborative behaviors, and allows
them to concentrate on story construction.

In most games, scripts control NPC behaviors. A game engine renders the story world
objects, generates events on the objects, dispatches events to scripts and executes the
scripts. Different stories can be “played” with the same game engine using story-specific
objects and scripts. Programmers create game engines using programming languages such
as C or C++. Writers and artists, who are not usually programmers [7], write game stories
by creating objects and scripts for each story. The goal of our research is to improve the
way game stories, not game engines, are created.

A writer may create thousands of game objects for each story. If a game object must
interact with the PC or another game object, a script must be written. For example,
BioWare Corp.’s popular Neverwinter Nights (NWN) (http://nwn.bioware.com) campaign
story contains 54,300 game objects of which 29,510 are scripted, including 8,992 objects
with custom scripts, while the others share a set of predefined scripts. The scripts consist
of 141,267 lines of code in 7,857 script files. Many games have a toolset that allows a
writer to create game objects and attach scripts to them. Examples are BioWare’s Aurora
toolset that uses NWScript and Epic Game’s UnrealEd that uses UnrealScript.

The difficulties of writing manual scripts are well documented [8]. Writers want to
create custom scripts without adapting predefined scripts or relying on a programmer to
write custom scripts. However, story creation should be more like writing than
programming.

ScriptEase (http://www.cs.ualberta.ca/~script) is a publicly available tool for creating
game stories using a high-level menu-driven “programming” model. ScriptEase solves the
non-programmer problem by letting the writer create scenes at the level of “patterns” [9].
A writer begins by using BioWare’s NWN Aurora toolset to create the physical layout of
a story, without attaching any scripts to objects. The writer then selects appropriate
behavior patterns that generate scripting code for NPCs in the story. For example, in a
tavern scene, behavior patterns for customers, servers and the owner would be used to
generate all the scripting code to make the tavern come alive. Figure 1 shows a NWN
tavern scene in which the ambient behaviors for several customers (“This place is getting
better and better”, “A walk is nice”), two servers (“Good crowd tonight”, “I’m on my
way, Traiani”) and an owner (not shown) have been generated. The PC is at the front of
the scene and determines the camera location. The ScriptEase generative pattern approach
is much easier for non-programmers than manually scripting events, even if a library of
behaviors such as the Memetic AI toolkit (http://www.memeticai.org) is used.

Figure 1. An NWN tavern scene with ScriptEase ambient behaviors.

We already showed that ScriptEase is usable by non-programmers, by integrating it
into an interactive short story creation exercise in the Grade 10 high school English
curriculum [10]. The version of ScriptEase that was used had a rich set of patterns for
supporting interactions between the PC and inanimate objects such as doors, props and
triggers. It also had limited support for plot and dialogue patterns (the subject of on-going
work). We have now extended the generative pattern approach of ScriptEase to support
the ambient behaviors of NPCs [11].

NPC interactions require concurrency control to ensure that neither deadlock nor
indefinite postponement can occur, and to ensure that interactions are realistic. We
constructed an NPC interaction concurrency model and built generative behavior patterns
for it. We used these patterns to generate all of the scripting code for a tavern scene to
illustrate how easy it is to use behavior patterns to create complex NPC interactions. The
ambient background includes customers, servers and an owner going about their business
but, most importantly, interacting with each other in a natural way, based on our novel
approach to NPC ambient behaviors. It is the first time patterns have been used to
generate behavior scripts for computer games. The research makes three key
contributions: 1) rich backgrounds populated with interacting NPCs with realistic ambient
behaviors are easy to create with the right model, 2) pattern-based programming is a
powerful tool and 3) our model and patterns can be used to generate code for a real game
(NWN).

2 Ambient Behavior Patterns

A CRPG tavern scene demonstrates ambient behavior patterns. We define three ambient
behavior patterns for this scene: owner, server, and customer. Each behavior generates
more complex interactions than most NPCs display in most CRPGs.

A behavior pattern is defined by a set of behaviors and two control models that select
the most appropriate behavior at any given time. A behavior can be used proactively (P) in
a spontaneous manner or reactively (R) in response to another behavior. Table 1 lists the
behaviors used in the tavern. Some are used independently by a single NPC. For example,
posing and returning to the original scene location are independent behaviors. This article
addresses only high-level behaviors, since the NWN game engine solves low-level
problems. For example, if the original location is occupied by another creature when an
NPC tries to return, the game engine moves the NPC as close as possible and subsequent
return behaviors may succeed. Behaviors that involve more than one NPC are
collaborative (joint) behaviors. For example, an offer involves two NPCs, one to make the
offer and one to accept/reject it.

The first column of Table 1 indicates whether a proactive behavior is independent or
collaborative. Note that interactions with the PC are not considered ambient so they are
not supported by ambient behavior patterns. The most novel and challenging ambient
behaviors are the ones that use behaviors collaboratively (interacting NPCs). The second
column lists the proactive behaviors. The letters in parentheses indicate which kind of
NPC can initiate the proactive behavior. For a collaborative behavior, the kind of
collaborator is given as part of the behavior name, e.g., the approach random C behavior
can be initiated by a server or customer (S, C) and the collaborator is a random customer
(C).

Table 1. Behaviors in the Server (S), Customer (C), and Owner (O) Patterns.

Behavior Type Proactive Behavior Reactive Chains
pose (S, C, O) pose, done
return (C, O) return, done
approach bar (S, C) approach, done

Independent

fetch (O) fetch, done
approach random C (S, C) approach, done
talk to nearest C (C) speak, speak, converse*
converse with nearest C (C) (speak, speak)+ done
ask-fetch nearest S (C, O) speak, fetch, receive, speak, done
ask-give O (C) speak, give, receive, speak, done
offer-give to nearest C (O) speak, decide, ask-give*; (accept)

speak, decide, speak, done (reject)

Collaborative

offer-fetch to nearest C (S) speak, decide, ask-fetch*; (accept)
speak, decide, speak, done (reject)

The third column of Table 1 shows the reactive chains for each proactive behavior. For

example, the ask-fetch proactive behavior has a reactive chain where the initiator speaks
(selecting an appropriate one-liner randomly from a conversation file), the collaborator
fetches (goes to the supply room while speaking), the initiator receives something, the
collaborator speaks and the done behavior terminates the chain. Each reactive chain ends
in a done behavior, unless another chain is reused (denoted by an asterisk such as
converse* in the talk behavior). Each behavior consists of several actions. For example, a
speak behavior consists of facing a partner, pausing, performing a speech animation and
uttering the text. An entry marked with ()+ indicates that the parenthesized behaviors are
repeated one or more (random) times. For example, the converse proactive behavior starts
a reactive chain with one or more speak behaviors alternating between two NPCs. The
talk proactive behavior starts a reactive chain with a speak behavior (a greeting) for each
interlocutor, followed by a converse behavior. The offer-give (owner offers a drink) and
offer-fetch (server offers to fetch a drink) proactive behaviors each have two different
reactive chains (shown in Table 1) depending on whether the collaborator decides to
accept or reject the offer.

The writer uses a simple process to create these behaviors, with no programming
(script writing) involved. Begin by using the Aurora toolset to construct the tavern area,
populate it with customers, servers and an owner, and save the area in a module. Open the
module in ScriptEase and perform three kinds of actions. First, create one instance of the
server, customer and owner patterns respectively, by selecting the patterns from a menu.
Second, set the options of each pattern instance to game objects and/or values using dialog
boxes. For example, the server has three options that must be set – the Actor, the Bar
and the Customer. Each is set to an object constructed using the Aurora toolset. Note
that one pattern instance can generate code that is used by all game objects with the same
tag (Server), created in the Aurora toolset. The third step is to select the “Save and

Compile” menu command to generate NWScript code (for the entire tavern scene) that
could be edited in the Aurora toolset if desired.

3 Evaluating Ambient Behavior Patterns

The simplicity of the process hides the fact that a large amount of scripting code is
generated to model complex collaborative interactive behaviors. In fact, 889 lines of
NWScript code are generated for the server, while 1087 and 886 lines are generated for
the customer and owner respectively. It takes about 30 minutes to use ScriptEase to
generate this code, whereas it takes several days to write the code manually.

The generated code is efficient, producing ambient behaviors that are crisp and
responsive, with no perceptible effect on response time for PC movement and actions. The
NPCs interact with each other flawlessly with natural movements. A scene with 18
customers, 2 servers and one owner was left to play for hours without any deadlock,
degradation in performance, repetition or indefinite postponement of behaviors for any
actor. There is no limitation on the number of NPCs supported by our model. However,
since NPC behaviors are only active if the NPC is close to the PC, a larger number of
active NPCs would not be necessary in practice.

Since the effectiveness and performance of ambient behaviors is best evaluated
visually, we illustrate our approach using a series of movies captured from actual game-
play (http://www.cs.ualberta.ca/~script/movies/tavern/). These tavern scene patterns are
general enough to generate scripts for other scenes. For example, in a house scene, the
customer pattern can be used for the inhabitants, the server pattern for a butler, and the
owner pattern for a cook. The butler interacts with the inhabitants, fetching for them by
going to the kitchen. The inhabitants talk amongst themselves and the cook occasionally
fetches supplies. Our approach handles group (crowd) behaviors in a natural way. The
customers constitute an example of a crowd – a group of characters with the same
behavior, but each selecting different behaviors based on local context.

To determine the range of CRPG ambient behaviors that can be accommodated by
patterns, we conducted a case study for the Prelude chapter of the NWN official campaign
story. The original code used ad-hoc scripts to simulate collaborative behaviors. We
removed all of the manually scripted ambient NPC behaviors and replaced them with
behaviors generated from patterns. Six new ambient behavior patterns were identified:
Poser, Bystander, Speaker, Expert, Striker, and Duet, although Duet is actually a meta-
pattern, as described later. The simplest ambient behavior is a Poser where the NPC
performs a simple animation. The pattern provides default initial values for the specific
animation and its duration. For example, one Poser in the Prelude is an injured man
whose ambient behavior is an animation to beg for help. A door guard is another Poser. In
the original Prelude module, this door guard character displays a default standing
animation. We improved its behavior by allowing the character to also randomly utter a
sentence from a conversation file.

A Duet is a more complex ambient behavior pattern that expresses collaboration
between two NPCs. A Duet is a meta-pattern that allows game designers to create a series
of collaborative patterns by combining other patterns. In the Prelude, there are three types
of collaborative behaviors that we abstracted using the Duet meta-pattern. Although the
original Prelude does not have collaborative behaviors per se, the story designers
attempted to simulate collaborative behaviors in many scenes. For example, in the original
Prelude, six NPCs grouped in pairs mimic a conversation by facing each other and
performing independent speaking gestures. We replaced the manual scripting code that
controls these six NPCs by code automatically generated from instances of the Duet-
converser-converser ambient behavior pattern. This pattern constitutes a true collaborative
behavior involving two converse behaviors that alternate for the two NPCs so that the
conversation between them seems natural. An NPC waits for its collaborator’s reply
before it provides a response or initiates a new collaboration. The left pane of Figure 2
shows the generated Duet-converser-converser NPCs.

Figure 2. Generated ambient behaviors in the Prelude: Duet-converser-converser and Duet-
spawner-destroyer.

Another example of simulated collaboration in the original Prelude involves a pair of
spellcaster NPCs. Two NPCs successively cast spells on a combat dummy by applying a
delay to one of the NPCs, so that their actions appear to alternate. A third example has a
pair of NPCs performing another type of training: one NPC spawns a skeleton and the
other destroys the spawned skeleton. The right pane of Figure 2 shows the replacement
scene as generated from a Duet-spawner-destroyer behavior pattern. In the original code,
a different ad-hoc technique was used to compensate for not having true collaboration
support: one NPC spawns skeletons and the other destroys any perceived skeletons – no
delay was used. This does not constitute true collaboration and the various ad-hoc
techniques used to compensate for a lack of support for true collaboration make the scripts
hard to understand and maintain. Figure 3 shows the manually written NWScript code for
the spawner and destroyer NPCs.

NWScript code for Ansel (the spawner):
OnPerception:
void main() {
 if(GetIsPC(GetLastPerceived()) && GetLastPerceptionSeen())
 {
 SignalEvent(OBJECT_SELF,EventUserDefined(0));
 }
}
OnUserDefined:
void main() {
 if(IsInConversation(OBJECT_SELF) == FALSE &&
 GetIsDead(OBJECT_SELF) == FALSE)
 {
 location lLoc = GetLocation(GetNearestObjectByTag(
 "WP_Skeleton"));
 ActionCastFakeSpellAtLocation(SPELL_ANIMATE_DEAD,lLoc);
 CreateObject(OBJECT_TYPE_CREATURE,"M1Q0BSUM_SK",lLoc);
 }
 DelayCommand(30.0,SignalEvent(OBJECT_SELF,
 EventUserDefined(0)));
}

NWScript code for Tabitha (the destroyer):
OnPerception:
void main() {
 object oPerceived = GetLastPerceived();
 if(GetRacialType(oPerceived) == RACIAL_TYPE_UNDEAD &&
 GetLastPerceptionSeen() &&
 GetTag(oPerceived) != "M0Q0_SKELETON" &&
 IsInConversation(OBJECT_SELF) == FALSE)
 {
 ActionCastSpellAtObject(SPELLABILITY_TURN_UNDEAD,
 oPerceived,METAMAGIC_ANY,TRUE);
 }
}

Figure 3. Manually written NWScript code for the spawner and destroyer NPCs.

When the spawner NPC (Ansel) perceives the PC, it executes the script code attached
to the OnPerception event, firing a user defined event on itself. This causes the code
attached to its OnUserDefined event to be executed. As a result, Ansel spawns a
skeleton with tag "M1Q0BSUM_SK" at a waypoint "WP_Skeleton" and casts a fake
spell at this waypoint. Then, Ansel fires the same user defined event with a 30 seconds
delay, so that a new skeleton is spawned. The destroyer NPC (Tabitha) casts a spell that
destroys any creature with the racial type undead perceived that is different from a

skeleton with tag “M0Q0_SKELETON” already located in the room. The intent of the
designer is to simulate a collaborative spellcaster training of these two NPCs. However, if
the destroyer NPC takes more time to destroy the spawned skeleton, then the spawner can
create another skeleton, since the spawner generates skeletons every 30 seconds,
regardless of the destroyer’s actions. Their collaboration is achieved not by
communication between the NPCs, but through the common object of their training: the
skeleton. This does not reflect a true NPC collaboration.

The Duet-spawner-destroyer pattern generates true collaborative scripts that ensure
synchronization between the NPCs. The second NPC’s destroy behavior does not start
until the first NPC finishes its spawn behavior. Contrast the complex hand-written code
shown in Figure 3 with Figure 4 that shows how a ScriptEase Duet-spawner-destroyer
pattern can be used to generate code by simply instantiating an instance of the pattern and
selecting three options: the actor (Ansel), the partner (Tabitha) and the target creature
to be spawned-destroyed (Spawned Skeleton).

Figure 4. An instance of the Duet-spawner-destroyer pattern in the NWN Prelude.

Collaborative behaviors are rare in CRPGs because their existence complicates event
synchronization. Each behavior pattern is composed of behaviors that are re-usable and
easy to assemble together. For example, the Duet ambient behavior meta-pattern is used to
generate the behaviors of all interacting pairs of NPCs that take turns, such as the Duet-
converser-converser, Duet-spellcaster-spellcaster, and Duet-spawner-destroyer patterns.

The five simple patterns and one meta-pattern we identified were sufficient to generate
all of the NPC ambient behavior scripts in the Prelude for 45 ambient NPCs. In the
original Prelude, of these 45 ambient NPCs, only 39 had scripts attached to them. We
replaced 265 lines of manual written scripting code in 25 files called 73 times for all the
39 ambient NPCs of the original scripted Prelude. For the other 6 NPCs, including the
door guard mentioned previously, that were not attributed any behaviors in the original
Prelude, we attached a Poser behavior to each of them. Figure 5 shows the number of
instances of each kind of ambient behavior pattern that were used in each of the five areas
in the Prelude chapter. Note that the 32 ambient behavior pattern instances in Figure 5 are
applied to more than 45 NPCs. For example, each instance of the Duet meta-pattern
involves two NPCs. Moreover, only one Poser behavior instance generates the ambient
behaviors of 9 Goblin NPCs that share a common tag.

1

4 1 1

2

3
3

7

4

2

1

1

2

S
e
n
io
r

B
a
rr
a
c
k
s

T
ra
in
in
g

H
a
lls

G
ra
d
u
a
ti
o
n

C
h
a
m
b
e
r

A
c
a
d
e
m
y

S
ta
b
le
s

NWN Prelude Area

P
a
t
t
e
r
n

 I
n

s
t
a
n

c
e
s

Speaker Duet Striker Expert Poser Bystander

Figure 5. Using ScriptEase ambient behavior patterns to generate behavior scripts in the
NWN Prelude.

ScriptEase represents each behavior pattern as a set of reactions to events. Each
reaction is represented by a tree of definitions, conditions, and actions. ScriptEase
generates NWScript code by traversing these tree representations and generating
appropriate NWScript code at each tree node.

To determine whether our patterns were easy to use and to measure the effort required,
we asked a Grade 11 high school student (who did not know how to program) to generate
the Prelude ambient behavior code. She spent less than a day generating the ambient

behaviors of all the NPCs in the Prelude module from these patterns after spending 6
hours learning to play the game, use the Aurora Toolset and using ScriptEase. Further
tests on a large group of high school student authors are scheduled.

Further evidence of the generality of ambient behavior patterns will require a case
study that replaces behaviors in other game genres as well. There is no reason why a
soccer or hockey goaltender could not be provided with entertaining ambient behaviors to
exhibit when the ball (puck) is in the other end of play, such as standing on one leg,
stretching, leaning against a goal post, or trying to quiet the crowd with a gesture. For
example, one of the criticisms for EA FIFA 04 was directed to the goalie’s behavior and
will be addressed in the announced EA FIFA 06.

4 Creating Ambient Behavior Patterns

A pattern designer can compose reusable behaviors to create a new behavior pattern or
add behaviors to existing patterns, without writing any scripts. It is easy to mix/combine
behaviors. Each behavior pattern includes a proactive model and a reactive model. The
proactive model selects a proactive behavior based on probabilities. This simplest
proactive model uses static probabilities assigned by the writer. For example, the server
pattern consists of the proactive behaviors approach a random customer, approach the
bar, offer-fetch a drink to the nearest customer and pose. In this case, a static probability
distribution function [.10, .05, .03, .82] could be used to select one of these behaviors for
each proactive event. The left pane of Figure 6 shows the proactive model for the server.
The reactive model specifies a reactive chain for each proactive behavior. For example,
the right pane of Figure 6 shows the reactive chain for the server’s offer-fetch proactive
behavior listed in Table 1. The completion of each reactive behavior triggers the next
reactive behavior until a done behavior signals the end of the reactive chain. The circle
identifies the actor that performs the behavior (S, server; C, customer). Other options,
such as what is spoken, have been removed from the diagram for clarity. Each of the other
three proactive behaviors for the server (approach bar, approach customer, and pose) has
a reactive chain that consists of a single behavior followed by a done behavior, as listed in
Table 1.

Figure 6. The proactive model and a reactive chain for the Server pattern's offer-fetch
behavior.

A behavior can use selection to choose between multiple possible following behaviors.
For example, the decide behavior can trigger one of two speak behaviors based on the
customer’s drink wishes. A loop can be formed when a behavior later in the chain triggers
a behavior earlier in the chain. Loop termination can result from using selection to exit the
loop. In general, the reactive model could be a cyclic graph, providing complete
expressive power. For ambient behaviors, loops do not appear to be necessary – reactive
chains (with decision points) are sufficient for all behaviors we have required so far. For
non-ambient behaviors, these loops may be necessary. Each proactive behavior that has
reactive components serves as an entry point into the reactive model. The simplicity of the
reactive model hides a necessarily complex concurrency model underneath (described in
Section 5).

The probabilities shown in Figure 6 are used to select from proactive behaviors. These
probabilities can be static or can be dynamic, based on either the context (state of the
world) or the current motivations (state of the NPC). We used static probabilities for the
ambient behavior patterns used in the tavern scene and the Prelude. So far, our experience
indicates that static probabilities are sufficient for ambient behaviors – most NPC “extras”
do not need motivational models to control their ambient behaviors. However, our
proactive model supports dynamic probabilities and we have started using motivational
models for PC-interactive behaviors, where the NPC interacts with the PC. One example
we have developed is a guard who is motivated by duty, tiredness and a sense of threat to
the item being guarded. In this case, our proactive model dynamically generates a
probability vector based on motivation levels, before “spinning” for a proactive behavior.

The proactive (approach creature, approach object, offer-fetch, pose, etc.) and reactive
behaviors (speak, decide, receive etc.) we created for the tavern scene provide sufficient
reusable components to create other ambient behavior patterns. A non-programmer can

construct a new behavior pattern out of existing behaviors in about an hour. For example,
a high-school student was able to create several of her own new patterns from existing
behaviors to use in a new story she wrote. Each new pattern took about an hour to create.

It is also easy to create new reusable behaviors as well. A new behavior does not
require programming and also takes about an hour to complete – validated by our high-
school student. A proactive behavior is a series of reactive behaviors. A reactive behavior
is a series of simple ScriptEase actions, such as move to a location/object or face a
direction. For example, the number of ScriptEase actions required for the reactive
behaviors used to refactor the NWN Prelude varies from 5 (for pose, return, and speak) to
14 (for strike). Once made, behaviors can be reused in many behavior patterns and
behavior patterns can be reused in many stories. ScriptEase already contained a pattern
builder that allowed a pattern designer to create new encounter patterns. We added
support to it for building behaviors and ambient behavior patterns.

5 The Concurrency Control Model

Concurrency models have been studied extensively for general-purpose computing. A
description of the difficulties in building a concurrency model for interacting NPCs is
beyond the scope of this article. However, we raise a few points to indicate the difficulty
of this problem. First, synchronization between actors is essential so that an actor
completes all of the actions for a behavior before the next behavior begins. For example,
the server should not fetch a drink before the customer has decided whether to order a
drink or not. Second, deadlock must be avoided so a pair of actors does not wait forever
for each other to perform a behavior in a reactive chain. Third, indefinite postponement
must be avoided or some behaviors will not be performed.

Our concurrency control mechanism is invisible to the story writer and is only partially
visible to the pattern designer. It has proactive and reactive components that use proactive
and reactive behaviors respectively. The proactive model has a proactive controller. When
the PC enters an area, the controller triggers a register proactive script on each NPC
within a range of the PC. There is no need to control ambient behaviors in areas not
visible to the user, since doing so slows down game response. In games such as Fable,
NPCs uphold their daily routine whether the user can see them or not. Computational
shortcuts are needed to minimize the overhead. On each NPC, the registering proactive
script triggers a spin behavior that, in turn, triggers a single proactive behavior (for
instance, offer-fetch) as a result of a probabilistic choice among all the proactive behaviors
that the actor could initiate. The selected proactive behavior (offer-fetch) triggers the first
reactive behavior (speak) in the reactive chain. For each reactive behavior (except decide
and done), ScriptEase generates code so that when the reactive behavior is completed, the
next reactive behavior in the chain is triggered. The pattern designer creates a reactive
chain by listing the appropriate reactive behaviors in the correct order. For example, to
construct the ask-fetch chain from Table 1, the designer selects the reactive behaviors:

“speak”, “fetch”, “receive”, “speak”, “done”. To use the decide behavior, the pattern
designer lists two tail chains, one that gets selected if a spinner in the decide behavior
spins “yes” and one if it “spins” no.

This reactive control model ensures synchronization in a single chain by preventing an
actor from starting a behavior before the previous behavior is done. However, it does not
prevent synchronization problems due to multiple chains. For example, suppose the server
begins the reactive chain for the offer-fetch proactive behavior shown in Figure 6 by
speaking a drink offer, and suppose the owner starts a proactive ask-fetch behavior to send
the server to the supply room. Reactive behaviors from the server’s own reactive offer-
fetch chain and the owner’s reactive ask-fetch chain may be triggered in an interleaved
manner that violates synchronization.

To ensure synchronization, we introduced an eye-contact protocol that ensures both
actors agree to participate in a collaborative reactive chain before the chain is started.
Actor1 suspends all proactive behaviors and tries to make eye-contact with actor2. If actor2
is involved in a reactive chain, actor2 denies eye-contact and restarts actor1’s proactive
behaviors. If actor2 is not involved in a reactive chain, actor2 triggers a reactive behavior
on actor1 to start the appropriate reactive chain. This protocol cannot be implemented with
behaviors alone, so we use state variables of the actors.

We use another mechanism to eliminate deadlock and indefinite postponement. Either
of these situations can arise in the following way. First, an eye-contact is established with
an actor, so that the proactive controller does not trigger another proactive behavior.
Second, at the conclusion of the reactive chain started by the eye-contact, the actor is not
re-registered to trigger a new proactive behavior. Not only will this actor wait forever, but
the other actor in the collaborative reactive chain can wait forever as well. One way for
this situation to occur is for a script to clear all of the actions in an actor’s action queue,
including an expected action to trigger a behavior in the reactive chain. In this case, the
reactive chain is broken and the proactive controller will never trigger another proactive
behavior for the NPC. For example an NPC’s action queue is cleared if the user clicks on
an NPC to start a conversation between the PC and the NPC. Our solution uses a heartbeat
event to increment a counter for every NPC and to check whether the counter has reached
a specific value. The game engine fires a heartbeat event every 6 seconds. If the counter
reaches a threshold value, that NPC’s ambient proactive controller is restarted. The
counter is reset to zero every time a reactive behavior is performed by the NPC, so as long
as the NPC is performing behaviors (not deadlocked) no restart will occur. Neither the
story writer nor the pattern designer need be aware of these transparent concurrency
control mechanisms.

We have recently added a perceptive model that allows NPCs to be aware of the PC’s
presence and act accordingly. When the perceptive model triggers a perceptive behavior,
the default is to clear all actions on the NPCs action queue, suspend the proactive model
and trigger a reactive chain in response to the perceptive behavior. When the proactive
behavior is complete, the proactive model is restarted. Consider a Bystander ambient
behavior that performs two proactive behaviors, pose (run an animation) and return (to its
original scene location). A perceptive behavior, called challenge can be added so that

when the PC is perceived and within a certain distance of the NPC, the NPC walks to the
PC and starts a conversation. When the conversation is done, the NPC returns to its
ambient behaviors (pose and return). We used this Challenger pattern to completely
replace all of the manual scripting code for two non-ambient NPC behaviors in the
Prelude module. This smooth transition to perceptive behaviors illustrates the robustness
and flexibility of our proactive and reactive models, and of the underlying concurrency
control mechanism.

6 Conclusion

We described a model for representing NPC ambient behaviors using generative patterns
that solves the difficult problem of interacting NPCs. We implemented this model in the
NWN game using ScriptEase generative patterns. We are building a common library of
rich ambient behavior patterns for use and reuse across CRPGs. Our next goals are to
create PC-interactive behavior patterns and to develop patterns that support NPCs that are
more central to the plot of the game, as well as NPCs that act as companions for the PC.
Each of these goals involves escalating challenges, but we have constructed our ambient
behavior model with these challenges in mind. For example, the model supports the non-
deterministic selection of behavior actions based on game state. For ambient behaviors
this approach can be used with a static probability function to eliminate repetitive
behaviors that are boring to the player. For PC-interactive behaviors these probabilities
can be dynamic and motivation-based for more challenging opponents and allies. We have
constructed a synchronization model that is scalable to the more complex interactions that
can take place between major NPCs and between these NPCs and the PC. We
demonstrated our approach using a real commercial application, BioWare Corp.'s
Neverwinter Nights game. However, our model could have a broader application domain
that includes other kinds of computer games, synthetic performance, autonomous agents
in virtual worlds, and animation of interactive objects.

Acknowledgements: This research was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC), the Institute for Robotics and
Intelligent Systems (IRIS), and Alberta’s Informatics Circle of Research Excellence
(iCORE). We would like to thank former ScriptEase team members, James Redford and
Dominique Parker who are now “working on the frontline” at BioWare and Electronic
Arts. We also thank the University of Alberta Women in Scholarship, Engineering,
Science and Technology (WISEST) program for their support and our WISEST summer
student, Danielle Wiebe, for her help with the project. We are grateful to the anonymous
reviewers who provided very valuable feedback on the INTETAIN 2005 conference paper
that served as a preliminary version of this article.

References

1. D. Isla, “Handling Complexity in the Halo 2 AI”, Game Developers Conf. (GDC 05), 2005.
2. M. Mateas and A. Stern, “Façade: An Experiment in Building a Fully-Realized Interactive

Drama”, Game Developers Conf. (GDC 03), Game Design Track, 2003.
3. K. Perlin and A. Goldberg, “Improv: A System for Scripting Interactive Actors in Virtual

Worlds”, Proc. SIGGRAPH 96, vol. 29, no. 3, 1996, pp. 205-216.
4. R.M. Young et al., “An architecture for integrating plan-based behavior generation with

interactive game environments”, Journal of Game Development, vol. 1, no. 1, 2004, pp. 51-70.
5. A. Caicedo and D. Thalmann, “Virtual Humanoids: Let Them Be Autonomous without Losing

Control”, Proc. 4th Conference on Computer Graphics and Artificial Intelligence, 2000.
6. F. Charles and M. Cavazza, “Exploring the Scalability of Character-based Storytelling”, Proc.

ACM Joint Conf. on Autonomous Agents and Multi-Agent Systems, 2004, pp. 872-879.
7. F. Poiker, “Creating Scripting Languages for Non-programmers”, AI Game Programming

Wisdom, Charles River Media, 2002, pp. 520-529.
8. M. McNaughton et al., “ScriptEase: Generative Design Patterns for Computer Role-Playing

Games”, Proc. 19th IEEE Conf. on Automated Software Engineering (ASE 04), pp. 88-99.
9. E. Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software, Reading,

MA, Addison-Wesley, 1994.
10. M. Carbonaro et al., “Interactive Story Writing in the Classroom: Using Computer Games”,

Proc. Int’l Digital Games Research Conf. (DiGRA 05). Vancouver, Canada, 2005, pp. 323-338.
11. M. Cutumisu et al., “Generating Ambient Behaviors in Computer Role-Playing Games”, LNAI

3814, Springer-Verlag (Intetain 05), 2005, pp. 34-43.

