
Searching with Pattern DatabasesJoseph C. Culberson and Jonathan Schae�erDepartment of Computing Science, University of Alberta,Edmonton, Alberta, Canada, T6G 2H1.Abstract. The e�ciency of A* searching depends on the quality of thelower bound estimates of the solution cost. Pattern databases enumerateall possible subgoals required by any solution, subject to constraints onthe subgoal size. Each subgoal in the database provides a tight lowerbound on the cost of achieving it. For a given state in the search space,all possible subgoals are looked up, with the maximum cost over alllookups being the lower bound. For sliding tile puzzles, the databaseenumerates all possible patterns containing N tiles and, for each one,contains a lower bound on the distance to correctly move all N tilesinto their correct �nal location. For the 15-Puzzle, iterative-deepeningA* with pattern databases (N=8) reduces the total number of nodessearched on a standard problem set of 100 positions by over 1000-fold.1 IntroductionThe A* search algorithm for single-agent search is of fundamental importance inarti�cial intelligence. Improvements to the search e�ciency can take the rangefrom general algorithm enhancements (application independent) to problem-speci�c heuristics (application dependent):{ General A* search improvements that are applicable to a wide class of prob-lems. For example, iterative deepening can be used to reduce storage require-ments [6].{ General search space properties. Many search domains can be representedas directed graphs rather than as trees. The removal of duplicate nodes fromthe search can result in potentially large savings [14, 16].{ Branch selection. Given a search tree node with several descendants, searche�ciency can be inuenced by the order in which the descendants are consid-ered [14]. Although the idea of considering the branch most likely to succeed�rst is a general principle, the techniques used to make that decision areoften application-dependent.{ Symmetry reduction. Many problems have inherent symmetries which can beremoved. Recognizing and eliminating the symmetries can have an enormousimpact on the search space, but it is an application-dependent property.{ Solution databases. In many problems, the states near to the goal nodescan be pre-computed by a backwards search. In two-player games, such aschess and checkers, the backwards searches are saved in endgame databases



and are used to stop the search early, improving search e�ciency and accu-racy [15]. Recently, in single-agent search new bidirectional search methodsare creating so-called perimeters around that goal node and using that toimprove lower bound cost estimates [10].{ Problem-speci�c properties. Problem domains may have constraints that canpreclude parts of the search space. For example, although the 15-Puzzle has16! � 1013 positions, only one half of them can be reached from the goal (aparity test can detect this [5]).Completely general, application-independent search enhancements are of greatinterest but are rare, while problem-speci�c tricks are plentiful and usually notof general interest. More often, an idea is presented that has applicability over aclass of problems (has partial problem independence) but needs problem-speci�cinformation (has partial problem dependence). Often, the more problem-speci�cthe search enhancement, the greater the search savings that are possible.This paper introduces pattern databases as a new approach for enhancingsingle-agent search. Planning involves deciding on a series of subgoals that aredirected towards the solution [7]. Typically, extensive application-dependentknowledge is required to make the appropriate subgoal choices. Instead, we adopta \brute force" approach by taking a problem and enumerating all possible sub-goals (partial solutions) that satisfy some constraints. At each state in the search,the program can compare its progress towards achieving all possible valid sub-goals, and make its next decision based on some or all of this information. Wecall the set of subgoals a pattern database, because each subgoal is representedas a pattern that can be matched to a search state.In this paper, pattern databases are applied to permutation problems (al-though, as shown in Section 6, it generalizes to a wider class of problems). In apermutation problem, we have a set of operators that convert one permutationinto another. We start with an initial permutation and a speci�ed goal(s). Theobject is to convert the initial permutation into the goal using the operators. Inthe optimization version, the object is to minimize the number of applicationsof the operator during the conversion.The 15-Puzzle, Rubik's Cube, and other similar combinatorial puzzles areexamples of permutation problems. A human-like approach to solving such prob-lems non-optimally is to move some of the elements into their correct locations,thereby reducing the complexity of the remaining problem to be solved. This typeof \divide-and-conquer" behavior is commonplace in human problem solving. Asimilar approach is also evident in human play in many multi-player games, forexample chess, where the player establishes a plan consisting of a series of in-termediate goals. Although the sequence of goals may be non-optimal, the endresult is all that matters.We adapt this idea to the problem of �nding optimal solution paths in single-agent search by noting that knowing the minimum distance from a permutationto the nearest other permutation partially matching the goal is a lower boundon reaching the goal. To de�ne a pattern database we designate N elements ofthe goal permutation. Given an arbitrary initial permutation, the locations of


