
Monte Carlo Planning in RTS Games
Michael Chung, Michael Buro, and Jonathan Schaeffer
Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada T6G 2E8
{mchung,mburo,jonathan}@cs.ualberta.ca

Abstract- Monte Carlo simulations have been success-
fully used in classic turn–based games such as backgam-
mon, bridge, poker, and Scrabble. In this paper, we ap-
ply the ideas to the problem of planning in games with
imperfect information, stochasticity, and simultaneous
moves. The domain we consider is real–time strategy
games. We present a framework — MCPlan — for Monte
Carlo planning, identify its performance parameters, and
analyze the results of an implementation in a capture–
the–flag game.

1 Introduction

Real–time strategy (RTS) games are popular commercial
computer games involving a fight for domination between
opposing armies. In these games, there is no notion of
whose turn it is to move. Both players move at their own
pace, even simultaneously; delays in moving will be quickly
punished. Each side tries to acquire resources, use them
to gain information and armaments, engage the enemy, and
battle for victory. The games are typically fast–paced and
involve both short–term and long–term strategies. The games
are well–suited to Internet play. Many players prefer to play
against human opponents over the Internet, rather than play
against the usually limited abilities of the computer artificial
intelligence (AI). Popular examples of RTS games include
WarCraft [1] and Age of Empires [2].

The AI in RTS games is usually achieved using script-
ing. Over the past few years, scripting has become the
most popular representation used for expressing character
behaviours. Scripting, however, has serious limitations. It
requires human experts to define, write, and test the scripts
comprised of 10s, even 100s, of thousands of lines of code.
Further, the AI can only do what it is scripted to do, result-
ing in predictable and inflexible play. The general level of
play of RTS AI players is weak. To enable the AI to be com-
petitive, game designers often give AI access to information
that it should not have or increase its resource flow.

Success in RTS games revolves around planning in var-
ious areas such as resource allocation, force deployment,
and battle tactics. The planning tasks in an RTS game can
be divided into three areas, representing different levels of
abstraction:

1. Unit control (unit micromanagement). At the low-
est level is the individual unit. It has a default be-
haviour, but the player can override it. For example, a
player may micromanage units to improve their per-
formance in battle by focusing fire to kill off individ-
ual enemy units.

2. Tactical planning (mid–level combat planning). At
this level, the player decides how to conduct an at-
tack on an enemy position. For example, it may be

possible to gain an advantage by splitting up into two
groups and simultaneously attacking from two sides.

3. Strategic planning (high–level planning). This in-
cludes common high–level decisions such as when to
build up the army, what units to build, when to attack,
what to upgrade, and how to expand into areas with
more resources.

In addition, there are other non–strategic planning issues
that need to be addressed, such as pathfinding.

Unit control problems can often be handled by simple re-
active systems implemented as list of rules, finite state ma-
chines, neural networks, etc. Tactical and strategic planning
problems are more complicated. They are real–time plan-
ning problems with many states to consider in the absence
of perfect information. It is apparent that current commer-
cial RTS games deal with this in a simple manner. All of the
AI’s strategies in the major RTS games are scripted. While
the scripts can be quite complex, with many random events
and conditional statements, all the strategies are still prede-
fined beforehand. This limitation results in AI players that
are predictable and thus easily beaten. For casual players,
this might be fun at first, but there is no re–playability. It is
just no fun to beat an AI player the same way over and over
again.

In RTS games, there are often hundreds of units that can
all move at the same time. RTS games are fast–paced, and
the computer player must be able to make decisions at the
same speed as a human player. At any point in time, there
are many possible actions that can be taken. Human play-
ers are able to quickly decide which actions are reasonable,
but current state–of–the–art AI players cannot. In addition,
players are faced with imperfect information, i.e. partial ob-
servability of the game state. For instance, the location of
enemy forces is initially unknown. It is up to the players
to scout to gather intelligence, and act accordingly based
on their available information. This is unlike the classical
games such as chess, where the state is always completely
known to both players. For these reasons, heuristic search
by itself is not enough to reason effectively in an RTS game.
For planning purposes, it is simply infeasible for the AI to
think in terms of individual actions. Is there a better way?

Monte Carlo simulations have the advantage of simplic-
ity, reducing the amount of expert knowledge required to
achieve high performance. They have been successfully
used in games with imperfect information and/or stochastic
elements such as backgammon [14], bridge [9], poker [5],
and Scrabble [11]. Recently, this approach has been tried
in two-player perfect-information games with some success
(Go [6]). A framework for using simulations in a game–
playing program is discussed in [10], and the subtleties of
getting the best results with the smallest sample sizes is dis-
cussed in [12].1



Can Monte Carlo simulations be used for planning in
RTS games? If so, then the advantages are obvious. Using
simulations would reduce the reliance on scripting, result-
ing in substantial savings in program development time. As
well, the simulations will have no or limited expert bias, al-
lowing the simulations to explore possibilities not covered
by expert scripting. The result could be a stronger AI for
RTS games and a richer gaming experience.

The contributions in this work are as follows:
1. Design of a Monte Carlo search engine for planning

(MCPlan) in domains with imperfect information, sto-
chasticity, and simultaneous moves.

2. Implementation of the MCPlan algorithm for decision
making in a real–time capture–the–flag game.

3. Characterization of MCPlan performance parameters.

Section 2 describes the MCPlan algorithm and the param-
eters that influence its performance. Section 3 discusses
the implementation of MCPlan in a real–time strategy game
built on top of the free ORTS RTS game engine [7]. Sec-
tion 4 presents experimental results. We finish the paper by
conclusions and remarks on future work in this area.

2 Monte Carlo Planning

Adversarial planning in imperfect information games with a
large number of move alternatives, stochasticity, and many
hidden state attributes is very challenging. Further compli-
cating the issue is that many games are played with more
than two players. As a result, applying traditional game–
tree search algorithms designed for perfect information games
that act on the raw state representation is infeasible. One
way to make look–ahead search work is to abstract the state
space. An approach to deal with imperfect information sce-
narios is sampling. The technique we present here combines
both ideas.

Monte Carlo sampling has been effective in stochastic
and imperfect information games with alternating moves,
such as bridge, poker, and Scrabble. Here, we want to apply
this technique to the problem of high–level strategic plan-
ning in RTS games. Applying it to lower level planning is
possible as well. The impact of individual moves — such
as a unit moving one square — requires a very deep search
to see the consequences of the moves. Doing the search at a
higher level of abstraction, where the execution of plan be-
comes a single “move”, allows the program to envision the
consequences of actions much further into the future (see
Section 2.2).

Monte Carlo planning (MCPlan) does a stochastic sam-
ple of the possible plans for a player and selects the plan to
execute that has the highest statistical outcome. The advan-
tage of this approach is that it reduces the amount of expert–
defined knowledge required. For example, Full Spectrum
Command [3] requires extensive military–strategist–defined
plans that the program uses — essentially forming an expert
system. Each plan has to be fully specified, including iden-
tifying the scenarios when the plan is applicable, anticipat-
ing all possible opponent reactions, and the consequences

of those reactions. It is difficult to get an expert’s time to
define the plans in precise detail, and more difficult to in-
vest the time to analyze them to identify weaknesses, omis-
sions, exceptions, etc. MCPlan assumes the existence of a
few basic plans (e.g. explore, attack, move towards a goal)
which are application dependent, and then uses sampling to
evaluate them. The search can sample the plans with differ-
ent parameters (e.g. where to attack, where to explore) and
sequences of plans—for both sides. In this section, we de-
scribe MCPlan in an application–independent manner, leav-
ing the application–dependent nuances of the algorithm to
Section 3.

2.1 Top–Level Search

The basic high–level view of MCPlan is as follows, with a
more formal description given in Figure 1:

1. Randomly generate a plan for the AI player.
2. Simulate randomly–generated plans for both players

and execute them, evaluate the game state at the end
of the sequence, and compute how well the selected
plan seems to be doing (evaluate plan , Section
2.3).

3. Record the result of executing the plan for the AI
player.

4. Repeat the above as often as possible given the re-
source constraints.

5. Choose the plan for the AI player that has the best
statistical result.

The variables and routines used in Figure 1 are described in
subsequent subsections.

The top–level of the algorithm is a search through the
generated plans, looking for the one with the highest evalu-
ation. The problem then becomes how best to generate and
evaluate the plans.

2.2 Abstraction

Abstraction is necessary to produce a useful result and main-
tain an acceptable run–time. Although this work is dis-
cussed in the context of high–level plans, the implementor
is free to choose an appropriate level of abstraction, even
at the level of unit control, if desired. However, since MC-
Plan relies on the power of statistical sampling, many data
points are usually needed to get a valid result. For best per-
formance, it is important that the abstraction level be chosen
to make the searches fast and useful.

In Figure 1, State represents an abstraction of the cur-
rent game state. The level of abstraction is arbitrary, and in
simple domains it may even be the full state.

2.3 Evaluation Function

As in traditional game–playing algorithms, at the end of a
move sequence an evaluation function is called to assess
how good or bad the state is for the side to move. This
typically requires expert knowledge although the weight or

2



// Plan: contains details about the plan
// For example, a list of actions to take
class Plan {

// returns true if no actions remaining in the plan
bool is_completed();
// [...] (domain specific)

};

// State: AI’s knowledge of the state of the world
class State {

// return evaluation of the current state
// (domain specific implementation)
float eval();
// [...] (domain specific)

};

// MCPlan Top-Level
Plan MCPlan(

State state, // current state of the world
int num_plans, // number of plans to evaluate
int num_sims, // simulations per evaluation
int max_t) // max time steps per simulation

{
float best_val = -infinity;
Plan best_plan;

for (int i = 0; i < num_plans; i++) {
// generate plan using (domain-specific) plan generator
Plan plan = generate_plan(state);
// evaluate using the number of simulations specified
float val = evaluate_plan(plan, state, num_sims, max_t);
// keep plan with the best evaluation
if (val > best_val) {

best_plan = plan;
best_val = val;

}
}
return best_plan;

}

Figure 1: MCPlan: top–level search

importance of each piece of expert knowledge can be eval-
uated automatically, for example by using temporal differ-
ence learning [13]. For most application domains, including
RTS games, there is no easy way around this dependence
on an expert. Note that, unlike scripted AI which requires a
precise specification and extensive testing to identify omis-
sions, evaluation functions need only give a heuristic value.

2.4 Plan Evaluation

Before we describe the search algorithm in more detail, let
us define the key search parameters. These are variables that
may be adjusted to modify the quality of the search, as well
as the run–time required. The meaning of these parameters
will become more clear as the search algorithm is described.

1. max t : the maximum time, in steps or moves, to look
ahead when performing the simulation–based evalua-
tion.

2. num plans : the total number of plans to randomly
generate and evaluate at the top–level.

3. num sims : the number of move sequences to be con-
sidered for each plan.

The evaluate plan() function is shown in Figure 2.
Each plan is evaluated num sims times. A plan is eval-
uated using simulate plan() by executing a series of
plans for both sides and then using an evaluation function
to assess the resulting state. In the pseudo–code given, the
value of a plan is the minimum of the sample values (a pes-
simistic assessment). Other metrics are possible, such as

// Evaluate Plan Function. Takes minimum of num_sims
// plan simulations (pessimistic)
float evaluate_plan(Plan plan, State state,

int num_sims, int max_t)
{
float min = infinity;
for (int i = 0; i < num_sims; i++) {

float val = simulate_plan(plan, state, max_t);
if (val < min) min = val;

}
return min;

}

Figure 2: MCPlan: plan evaluation

// Simulate Plan. Perform a single simulation with the given
// plan and return the resulting state’s evaluation.
float simulate_plan(Plan plan, State state, int max_t)
{
State bd_think = state;
Plan plan_think = plan;

// generate a plan for the opponent (domain specific)
Plan opponent_plan = generate_opponent_plan(state);

while (true) {
// simulate a single time step in the world
// (domain specific)
simulate_plan_step(plan_think, opponent_plan, bd_think);

// check if maximum time steps has been simulated
if (--max_t <= 0) break;

// check if plan has been completed
if (plan_think.is_completed()) break;

// check if the opponent’s plan has been completed
if (opponent_plan.is_completed()) {

// if so, generate a new opponent plan
opponent_plan = generate_opponent_plan(bd_think);

}
}
return bd_think.eval();

}

Figure 3: MCPlan: plan simulation

taking the maximum over all samples, the average of the
samples, or a function of the distribution of values. Also, in
the presented formulation of MCPlan information about the
plan chosen by the player is implicitly leaking to the oppo-
nent. This turns a possible imperfect information scenario
into one of perfect information leading to known problems
[8]. We will address this problem in future work. Here,
we restrict ourselves to a simple form which nevertheless
may be adequate for many applications. Each data point
for a plan evaluation is done using simulate plan() .
Both sides select a plan and then executes it. This is re-
peated until time runs out. The resulting state of the game
is assessed using the evaluation function. Note that oppo-
nent plans can cause interaction; how this is handled is ap-
plication dependent and it is discussed in Section 3. The
evaluate plan() function calls simulate plan()
num sims times, and takes the minimum value. Figure 3
shows the simulate plan() function.

2.5 Comments

MCPlan is similar to the stochastic sampling techniques used
for other games. The fundamental difference — besides
obvious semantic ones such as not requiring players to al-
ternate moves — is that the “moves” can be executed at
an abstract level. Abstraction is key to getting the depths
of search needed to have long–range vision in RTS games.

3



MCPlan lessens the dependence on expert–defined knowl-
edge and scripts. Expert knowledge is needed in two places:
1. Plan definitions. A plan can be as simple or as detailed
as one wants. In our experience, using plan building blocks
is an effective technique. Detailed plans are usually com-
posed of a series of repeated high–level actions. By giving
MCPlan these actions and allowing it to combine them in
random ways, the program can exhibit subtle and creative
behaviour.
2. Evaluation function. Constructing accurate evaluation
functions for non–trivial domains requires expert knowl-
edge. In the presence of look–ahead search, however, the
quality requirements can often be lessened by considering
the well–known trade–off between search and knowledge.
A good example is chess evaluation functions, which —
combined with deep search — lead to World–class perfor-
mance, in spite of the fact that the used features have been
created by programmers rather than chess grandmasters. Be-
cause RTS games have much in common with classical games,
we expect a similar relationship between evaluation quality
and search effort in this domain, thus mitigating the depen-
dency on domain experts.

3 Capture the Flag

Commercial RTS games are complex. There are many dif-
ferent variations, some involving many RTS game elements
such as resource gathering, technology trees, and more. To
more thoroughly evaluate our RTS planners, we limit our
tests to a single RTS scenario, capture–the–flag (CTF). Our
CTF game takes place on a symmetric map, with vertical
and horizontal walls. The two forces start at opposing ends
of the map. Initially the enemy locations are unknown. The
enemy flag’s location is known — otherwise much initial
exploration would be required. This is consistent with most
commercial RTS games, where the same maps are used re-
peatedly, and the possible enemy locations are known in ad-
vance.

The rules of our CTF game are relatively simple. Each
side starts with a small fixed number of units, located near
a home base (post), and a flag. Units have a range in which
they can attack an opponent. A successful attack reduces the
nearby enemy unit’s hit–points. When a unit’s hit–points
drops to zero, the unit is “dead” and removed from the game.

The objective of CTF is to capture the opponent’s flag.
Each unit has the ability to pick–up or drop the enemy flag.
To win the game, the flag must be picked up, carried, and
dropped at the friendly home base. If a unit is killed while
carrying the flag, the flag is dropped at the unit’s location,
and can later be picked up by another unit. A unit cannot
pick up its own side’s flag at any time.

Terrain is very important to CTF. For most of our tests
we keep it simple and symmetric to avoid bias towards ei-
ther side. However, even with more complex terrains, while
there may be a bias towards one side, it is expected that
planners that perform better on symmetric maps will also
perform better on complex maps. While CTF does not cap-
ture all the elements involved in a full RTS game — such

as economy and army–building — it is a good scenario for
testing planning algorithms. Many of the features of full
RTS games are present in CTF — including scouting and
base defense.

Before we discuss how we applied MCPlan to a CTF
game we first describe the simulation software we used.

3.1 ORTS

ORTS (Open RTS) is a free software RTS game engine which
is being developed at the University of Alberta and licensed
under the GNU General Public License. The goal of the
project is to provide AI researchers and hobbyists with an
RTS game engine that simplifies the development of AI sys-
tems in the popular commercial RTS game domain. ORTS
implements a server–client architecture that makes it im-
mune to map–revealing client hacks which are a widespread
plague in commercial RTS games. ORTS allows users to
connect whatever client software they wish — ranging from
distributed RTS game AI to feature–rich graphics clients.
The CTF game which we use for studying MCPlan per-
formance has been implemented within the ORTS frame-
work. For more information on the status and development
of ORTS we refer readers to [4][7].

3.2 CTF Game State Abstraction

In the state representation, the map is broken up into tiles
(representing a set of possible unit locations). Units are lo-
cated on these tiles, and their positions are reasoned about
in terms of tiles, rather than exact game coordinates. The
state also contains information about the units’ hit–points,
as well as locations of walls and flags.

3.3 Evaluation Function

We tried to keep our evaluation function simple and ob-
vious, without relying on a lot of expert knowledge. The
evaluation function for our CTF AI has three primary com-
ponents: material, exploration/visibility, and capture/safety.
The first two components are standard to any RTS game.
The third component is specific to our CTF scenario. With-
out it, the AI would have no way to know that it was actually
playing a CTF game, and it would behave as if it was a reg-
ular battle. In each component the difference of the values
for both players is computed. In the following we briefly
give details of the evaluation function.
Material
The most important part of any RTS game is material. In
most cases, the side with the most resources — including
military units, buildings, etc. — is the victor. Thus, maxi-
mizing material advantage is a good sub–goal for any plan-
ning AI. This material can later be converted into a decisive
advantage such as having a big enough army to eliminate the
enemy base. There is a question of how to compare healthy
units to those with low hit–points. For example, while it
may be clear that two units each with 50% health are better
than one unit with 100% health, which would be better, one
unit with 100% health, or two units with 25% health? While
the two units could provide more firepower, they could also4



be more quickly killed by the enemy. There are different
situations where the values of these units may be different.
For our tests, we provide a simple solution: each unit pro-
vides a bonus of

√
0.01× hp. The maximum hp (hit–point)

value is 100. Thus, each live unit has a value of between
0.1 and 1. The value for friendly units is added to our eval-
uation, and enemy units values are subtracted. Taking the
square root prefers states which — for a constant hit–point
total — have a more balanced hit–point distribution.
Exploration and Visibility
When not doing something of immediate importance, such
as fighting, exploring the map is very important. The side
with more information has a definite advantage. Keeping
tabs on the enemy, finding out the lay of the land, and dis-
covering the location of obstacles are all important. The
planner cannot accurately evaluate its plans unless it has a
good knowledge of the terrain and of enemy forces and their
locations. The value of information is reflected by these
evaluation function sub–components:

• Exploration bonus: 0.001× # of explored tiles, and
• Vision bonus: 0.0001× # visible tiles.

Note that the bonus values can be changed or even learned.
Flag Capture and Safety
To win a CTF game, the opponent’s flag has to be captured.
It is important to encourage the program to go after the en-
emy’s flag, while at the same time ensuring that the pro-
gram’s flag remains safe:

• Bonus for being close to enemy flag: +0.1 per tile,
• Bonus for possession of enemy flag: +1.0,
• Bonus for bringing enemy flag closer to our base:

+0.2 per tile, and
• Similar penalties apply if the enemy meets these con-

ditions.
Note that all these heuristic values have been manually tuned.
Machine learning would be a way to more reliably set these
values.
Combining the Components
The simplest thing to do, and what we do right now, is have
constant factors for adding the three components together.
There are exceptions where this is not the best approach.
For example, if we are really close to capturing the enemy
flag, we may choose to ignore the other components, such
as exploration. Such enhancements are left as future work.
In our experiments we give each component equal weight.
Evaluation Function Quality
We can perform experiments to test the effectiveness of our
evaluation function. For example, we could measure the
time it takes to capture the flag if there are no enemy units.
This removes all tactical situations and focuses on testing
that the evaluation function is correctly geared towards cap-
turing the enemy flag. Playing the MCPlan AI against a
completely random AI also provides a good initial test of the
evaluation function. A random evaluation function would
perform on the same level as the random AI, whereas a bet-
ter evaluation function would win more often.

3.4 Plan Generation

There are two types of plan generation used in this project:
random and scripted. The random plans are simple and are
described below. The scripted plans are slightly more so-
phisticated, but still quite simple. Only the random plans
are used in this implementation, as we do not have many
scripted plans implemented.
Random Plans
A random plan consists of assigning a random nearby des-
tination for each unit to move to. That is, for each unit, a
nearby unoccupied destination tile is selected. The maxi-
mum distance to the destination is determined by the max -
dist variable. The A* pathfinding algorithm is then used
to find a path for each unit. Note that collisions are pos-
sible between the units, but are ignored for planning pur-
poses. We did not implement any group–based pathfinding,
although it is a possible enhancement.
Scripted Plans
We have implemented a small number of action scripts which
provide test opponents for the MCPlan algorithm. As pre-
viously mentioned, scripted plans have many disadvantages
— most notably, the need to have an expert define, refine
and test them. However, there is the possibility that given
a set of scripted plans, applying the search and simulation
algorithms described in this paper can result in a stronger
player.

3.5 Plan Step Simulation

Simulation must be used because when the planner evalu-
ates an action, the result of that action cannot be perfectly
determined because of hidden enemy units, unknown en-
emy actions, randomized action effects, etc. Also, as our
simulation acts on an abstracted state description, the com-
putation should be much faster. The plan step simulation
function takes the given plans for the friend and enemy sides
and executes one–tile moves for each side. Unit attacks are
then simulated by selecting the nearest opposing unit for
each unit, and reducing its hit–points. The attacks may not
match what would happen in the actual game, due to many
reasons. For example, units may seem to be in range but
actually they are not, due to the abstracted distances. Also,
in some games, the attack damage is random, so the damage
results may not be exactly the same as what will happen in
the game. However, it is expected that with a large enough
value of num evals , the final result should be more statis-
tically accurate.

3.6 Other Issues

In this subsection we discuss some implementation issues
related to developing and testing a search/simulation based
RTS planning algorithm such as MCPlan.
Map Generation
It is clear that in performing the tests, map generation is a
hard problem. To produce an unbiased map, the map should
be completely symmetric. A more complex asymmetric
map could favor one side. In addition, it is possible that

5



different types of maps could favour different AI’s. For our
tests we use a simple symmetric map, to avoid most of these
issues. It is expected — and to be confirmed — that on more
complex and on randomly generated maps, the conclusions
we draw from our experiments should still hold.
Server Synchronization
The tests should be run with server synchronization turned
on. This option tells the ORTS server to wait for replies
from both clients before continuing on to the next turn. In
the default mode with synchronization off, the first player to
connect may possibly have an advantage, due to being able
to move while the second player’s process is still initializing
its GUI, etc. The server synchronization option eliminates
this possible source of bias, as well as reducing the random-
ness caused by random network lag.
Interactions and Replanning
As players interact previous planning may quickly become
irrelevant. In many cases, replanning must occur. Not every
interaction should result in replanning. This would result in
too frequent replanning, which would slow down the com-
putation while perhaps not improving the decision quality
much. Instead, only important interactions should result in
replanning. Possible such interactions are: “a unit is de-
stroyed,” “a unit is discovered,” or “a flag is picked up.”
Note that attacks, while important, happen too frequently
and thus should not trigger replanning.

4 Experiments

In this section, we investigate the performance issues of
MCPlan on our CTF game.

4.1 Experimental Design

Each experimental data point consisted of a series of games
between two CTF programs. The experiments were per-
formed on 1.2 GHz PCs with 1 GB of RAM. Note that
because the experiments were synchronized by the ORTS
server the speed of the computer does not affect the results.
Each data point is based on the results of matching two pro-
grams against each other for 200 games. For a given map,
two games are played with the programs playing each side
once. A game ends when a flag is captured, or one side has
all their men eliminated. A point is awarded to the winning
side. Draws are handled depending on the type of draw. If
the game times out and there is no winner, then neither side
gets a point. If both sides achieve victory at exactly the same
time, then both sides get a point. The reported win percent-
age is one side’s points divided by the total points awarded
in that match. In a match with no draws the total points is
equal to the number of games (200).
Maps
Figure 4 shows the maps that have been used in the experi-
ments. Their dimensions are 20 by 20 tiles. By default each
side starts with five men.
Search Parameters
The max dist parameter is the maximum distance that a
unit can move from its current position in a randomly gen-

Figure 4: Maps and unit starting positions used in the ex-
periments: map 1 (upper left): empty terrain (this is the de-
fault), map 2: simple terrain with a couple of walls, map 3:
complex terrain, map 4: complex terrain with dead–ends,
map 5: simple terrain with a bottleneck, map 6: intermedi-
ate complexity.

erated plan. In all these experiments, the max dist pa-
rameter is set to 6 tiles, unless otherwise stated. The unit’s
sight radius is set to 10 tiles, and unit’s attack range is set
to 5 tiles. To reduce the number of experiments needed, the
number of simulations (num sims ) is set to be equal to the
number of plans (num plans ). This makes sense as the
number of simulations is also the number of opponent plans
considered.
Players
There are two opponents tested in these experiments other
than the MCPlan player: Random and Rush–the–Flag. Ran-
dom is equivalent to MCPlan running with num plans =
1. It simply generates and executes a random plan, using the
same plan generator as the MCPlan player. Rush–the–Flag
is a scripted opponent which behaves as follows:

1. If the enemy flag is not yet captured, send all units
towards the enemy flag and attempt to capture it.

2. If the enemy flag is captured, have the flag carrier re-
turn home. All other units follow the flag carrier.

While simple in design, the Rush–the–Flag opponent proves
to be a strong adversary.

4.2 Results

We now investigate the performance of MCPlan against a
variety of opponents and using different combinations of
search parameters.
Increasing Number of Plans
In Figure 5, the performance of the MCPlan algorithm on
the default map is evaluated as a function of the number of
plans considered. Each data point represents the result of
a player considering p plans playing against one that con-
siders 2p plans. This results show that the program’s play
improves as the number of plans increases, but with dimin-
ishing returns. Eventually, the sample size is large enough
that adding more plans results in marginal performance im-
provements, as expected.6



0

10

20

30

40

50

60

70

80

90

100

2 vs. 1 4 vs. 2 8 vs. 4 16 vs. 8 32 vs. 16 64 vs. 32

Match-Up (No. Plans)

W
in

 %
 fo

r 
H

ig
he

r 
N

o.
 P

la
ns

Figure 5: Increasing Number of Plans

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32

No. Plans

W
in

 %

3v3
5v5
7v7

Figure 6: Different Number of Units. MCPlan vs. Random

Number of Units
Figure 6 shows the results when the number of units is var-
ied. The results in the figure are for MCPlan against Ran-
dom on the default map. As expected, regardless of the
number of units aside, increasing the number of plans im-
proves the performance of the MCPlan player. With a larger
number of units per side, MCPlan wins more often. This is
reasonable, as the number of decisions increases with the
number of units, and there is more opportunity to make
“smarter” moves.
Different Maps
The previous results were obtained using the same map. Do
the results change significantly with different terrain? In
this experiment, we repeat the previous matches using a va-
riety of maps. Figure 7 shows the results. Note that one
map has 7 men aside. The results indicate that MCPlan is
a consistent winner, but the winning percentage depends on
the map. The more complex the map, the better the ran-
dom player performs. This is reasonable, since with more
walls, there is more uncertainty as to where enemy units are
located. This reduces the accuracy of the MCPlan player’s
simulations. In the tests using the map with a bottleneck
(map 5), the performance was similar to the tests with sim-
ple maps without the bottleneck. This shows that the sim-
ulation is capable of dealing with bottlenecks, at least in
simple cases.
Unbalanced Number of Units
Figure 8 illustrates the relative performance between MC-

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32

Number of Plans

W
in

 %

Map1 (5 men)
Map2 (5 men)
Map3 (5 men)
Map4 (5 men)
Map3 (7 men)
Map5 (5 men)
Map6 (5 men)

Figure 7: Different Maps. MCPlan vs. Random

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 128

Number of Plans

W
in

 %

4 vs. 5
5 vs. 6
5 vs. 7

Figure 8: Less Men and Stronger AI vs. Random

Plan and Random when Random is given more men. The
results show that given a sufficient number of plans to eval-
uate, MCPlan with less men and better AI can overcome
Random with more men but a poorer AI. The results suggest
that using MCPlan is strong enough to overcome a signifi-
cant material advantage possessed by the weaker AI (Ran-
dom). The figure shows the impressive result that 5 units
with smart AI defeat 7 units with dumb AI 60% of the time
when choosing between 128 plans.
Optimizing Max–Dist
A higher max dist value results in longer plans, which
allows more look–ahead, as well as a higher number of pos-
sible plans. The higher number of possible plans may in-
crease the number of plans required to find a good plan.

More look–ahead should help performance. However,
with too much look–ahead, noise may become a problem.
The noise is due to errors in the simulation — which uses
an abstracted game state — and incorrect predictions of the
opponent plan. The longer we need to guess what the oppo-
nent will do, the more likely we are to make an error. So,
more simulations are required to have a good chance of pre-
dicting the opponent’s plan or something close enough to
it.

In this experiment we vary the max dist parameter to
optimize the win percentage against the Random opponent
on map 1 and the Rush–the–Flag opponent on map 2 (see
Figure 9). The planner playing against random achieves
its best performance of 94% at dist=6. Note that although
one may expect MCPlan to score 100% against Random, in

7



0

10

20

30

40

50

60

70

80

90

100

1 3 5 7

max-dist

W
in

 % vs. random, map 1
vs. flag, map 2

Figure 9: Optimizing Max–Dist Parameter

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32

Number of Plans

W
in

 %

Map 1
Map 2
Map 3

Figure 10: MCPlan vs. Rush–the–Flag Opponent

practice this will not happen. A lone unit may unexpectedly
encounter a group of enemy units. Once engaged in a los-
ing battle, it is difficult to retreat, since all units move at the
same speed.
Rush–the–Flag Opponent
Figure 10 shows MCPlan playing against Rush–the–Flag.
The playing strength of Rush–the–Flag is very map depen-
dent, as it has a fixed strategy. On the first map, Rush–the–
Flag wins nearly every game. Rushing is a near–optimal
strategy on an empty map. On map 2, where the direct
path to the other side is blocked, Rush–the–Flag is much
weaker. MCPlan wins more than 60% of the time even with
num plans =1. With num plans =32, MCPlan wins more
than 80% of the time. However, on map 3, where the map is
more complex and all paths to the other side are long, Rush–
the–Flag again becomes a challenging opponent. However,
with num plans =32, MCPlan wins more than 55% of the
games.
Run–Time for Experiments
In order to get more statistically valid results, the exper-
iments were not run in real–time. Rather, they were run
much faster than real–time, about 100 times faster.

While the run–time depends on the parameters, using
typical parameters (map 1, 16 plans, 5 men per side) a 200–
game match runs in about 80 minutes on our test machines.
The average time per game is less than 30 seconds. As the
planner re–plans hundreds of times per game, this results in
planning times of a fraction of a second.

5 Conclusions and Future Work
This paper has presented preliminary work in the area of
sampling–based planning in RTS games. We have described
a plan selection algorithm – MCPlan – which is based on
Monte Carlo sampling, simulations, and replanning. Ap-
plied to simple CTF scenarios MCPlan has shown promis-
ing initial results. To gauge the true potential of MCPlan
we need to compare it against a highly tuned scripted AI,
which was not available at the time of writing. We intend
to extend MCPlan in various dimensions and apply it to
more complex RTS games. For instance, it is natural to
add knowledge about opponents in form of plans that can
be incorporated in the simulation process to exploit possi-
ble weaknesses. Also, the top–level move decision routine
of MCPlan should be enhanced to generate move distribu-
tions rather than single moves which is especially important
in imperfect information games. Lastly, applying MCPlan
to bigger RTS game scenarios requires us to consider more
efficient sampling and abstraction methods.

Acknowledgments
We thank Markus Enzenberger and Nathan Sturtevant for
valuable feedback on this paper. Financial support was pro-
vided by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and Alberta’s Informatics Cir-
cle of Research Excellence (iCORE).

Bibliography
[1] http://www.blizzard.com .
[2] http://www.ensemblestudios.com .
[3] http://www.ict.usc.edu/disp.php?bd=proj_

games_fsc1 .
[4] http://www.cs.ualberta.ca/˜mburo/orts .
[5] D. Billings, L. Pena, J. Schaeffer, and D. Szafron. Using probabilistic

knowledge and simulation to play poker. In AAAI National Confer-
ence, pages 697–703, 1999.

[6] B. Bouzy and B. Helmstetter. Monte Carlo go developments. In
Advances in Computer Games X, pages 159–174. Kluwer Academic
Press, 2003.

[7] M. Buro and T. Furtak. RTS games and real-time AI research. In Pro-
ceedings of the Behavior Representation in Modeling and Simulation
Conference (BRIMS), Arlington VA 2004, pages 51–58, 2004.

[8] I. Frank and D.A. Basin. Search in games with incomplete informa-
tion: A case study using bridge card play. AI Journal, 100(1-2):87–
123, 1998.

[9] M. Ginsberg. GIB: Steps toward an expert-level bridge-playing pro-
gram. In International Joint Conference on Artificial Intelligence,
pages 584–589, 1999.

[10] Jonathan Schaeffer, Darse Billings, Lourdes Peña, and Duane
Szafron. Learning to Play Strong Poker. In J. Fürnkranz and M. Ku-
bat, editors, Machines That Learn To Play Games, pages 225–242.
Nova Science Publishers, 2001.

[11] B. Sheppard. Towards Perfect Play in Scrabble. PhD thesis, 2002.
[12] B. Sheppard. Efficient control of selective simulations. Journal of

the international Computer Games Association, 27(2):67–80, 2004.
[13] R. Sutton and A. Barto. Reinforcement Learning. MIT Press, 1998.
[14] G. Tesauro. Temporal difference learning and TD-Gammon. Com-

munications of the ACM, 38(3):58–68, 1995.

8


