
Solving Checkers
�

J. Schaeffer, Y. Björnsson, N. Burch, A. Kishimoto, M. Müller,
R. Lake, P. Lu and S. Sutphen

Department of Computing Science, University of Alberta
Edmonton, Alberta, Canada T6G 2E8

jonathan@cs.ualberta.ca

Abstract

AI has had notable success in building high-
performance game-playing programs to compete
against the best human players. However, the
availability of fast and plentiful machines with
large memories and disks creates the possibility of�������	��
� a game. This has been done before for
simple or relatively small games. In this paper,
we present new ideas and algorithms for solving
the game of checkers. Checkers is a popular game
of skill with a search space of ���	��� possible posi-
tions. This paper reports on our first result. One of
the most challenging checkers openings has been
solved – the White Doctor opening is a draw. Solv-
ing roughly 50 more openings will result in the
game-theoretic value of checkers being determined.

1 Introduction
High-performance game-playing programs have been a major
success story for AI. In games such as chess, checkers, Oth-
ello, and Scrabble, mankind has been humbled by the ma-
chine. However, although these programs are very strong,
they can still lose a game to a human. They are strong, but
not perfect. Perfection requires one to “solve” a game. Allis
defines three levels of solving [Allis, 1994]:

1. Ultra-weakly solved. The game-theoretic value for the
game has been determined. An ultra-weak solution is
mainly of theoretical interest. For example, Hex is a first
player win, but no one knows the winning strategy.

2. Weakly solved. The game is ultra-weakly solved and a
strategy is known for achieving the game-theoretic value
from the opening position, assuming reasonable com-
puting resources. Several well-known games have been
weakly solved, including Connect Four [Allis, 1988],
Qubic [Allis, 1994], Go Moku [Allis, 1994], and Nine
Men’s Morris [Gasser, 1996].

3. Strongly solved. For all possible positions, a strategy
is known for determining the game-theoretic value for
both players, assuming reasonable computing resources.
�
The support of NSERC, iCORE and the University of Alberta

is acknowledged.

Strongly solved games include 6-piece chess endgames
and Awari [Romein and Bal, 2003].

Note the qualification on resources in the above definitions.
In some sense, games such as chess are solved since the min-
imax algorithm can in principle determine the game-theoretic
value, given a large enough amount of time. Resource con-
straints preclude such impractical “solutions”.

How difficult is it to solve a game? There are two dimen-
sions to the difficulty [Allis et al., 1991]: decision complexity,
the difficulty required to make correct decisions, and space
complexity, the size of the search space. Checkers is consid-
ered to have high decision complexity and moderate space
complexity. All the games solved thus far have either low
decision complexity (Qubic; Go-Moku), low space complex-
ity (Nine Men’s Morris, size ������� ; Awari, size ����� �) or both
(Connect-Four, size ��� ���).

Checkers, or ����� draughts, is popular in the British Com-
monwealth (present and past) and in the United States. The
rules are simple (pieces move one square at a time diago-
nally, and can capture by jumping) and the number of piece
types is small (kings and checkers), yet the game is quite
challenging. Checkers has high decision complexity (more
complex than � �!� Go and the play of bridge hands, on par
with backgammon, but less complex than chess) and moder-
ate space complexity (���	��� positions versus unsolved games
such as backgammon, ��� ��" positions, and chess, ��� �#� posi-
tions). The best checkers programs are stronger than the best
human players (e.g., CHINOOK won the World Man-Machine
Championship [Schaeffer, 1997]).

The number of possible placings of checkers pieces on the
board is roughly $%�&���'��� [Chinook, 1995]. This number
is misleading since it includes positions that are not legally
reachable from the start of the game. For example, although
there are �!�(���	��" possible positions with 24 pieces on the
board, only a small fraction can be reached in a game (e.g.,
12 kings versus 12 kings is not possible).

Our effort to solve the game of checkers began in 1989! Af-
ter almost 16 years of research and development, and count-
less thousands of computer hours, we are pleased to report the
first major milestone in our quest. The White Doctor opening
(shown in Figure 1) has been proven to be a draw.1 This is a

1Tournament checkers is played using the so-called “three-move
ballot”. In competitions, games begin after the first 3 moves (3 ply)

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

Figure 1: The White Doctor: White to play and only draw

difficult opening, as Black begins the game with a huge po-
sitional disadvantage—so large that humans consider Black’s
best play to be to sacrifice a checker early on to relieve the
pressure. Notably, this opening was played in the decisive
game of the 1992 Tinsley–CHINOOK World Championship
match [Schaeffer, 1997].

This paper has the following contributions:

1. A new hybrid combination of best-first and depth-first
search results to the construction of minimax proof trees.
Heuristic value iteration is introduced as a means of con-
centrating search effort where it is most needed.

2. A solution to the White Doctor opening. Achieving
this result took years of computing, involving the pre-
computation of ��� ��� values (endgame databases), and
building the proof tree which took a further roughly ��� ���
positions. This is an important first step towards weakly
solving the game of checkers.

3. The largest game-tree proof to date. This was made pos-
sible not only by our new hybrid search approach, but
also by the integration of several state-of-the-art algo-
rithms and enhancements into one coherent system.

2 Algorithm Overview
A formal proof of a game’s value can be done by depth-first
alpha-beta (���) or best-first proof number search (PNS) [Al-
lis, 1994]. For the large and complex checkers search space,
neither turned out to be effective. Instead we propose a hybrid
approach of the two: heuristically guided proofs.

The proof procedure has four algorithm/data components:

1. Endgame databases (backward search). Computations
from the end of the game backward have resulted in a
database of 	 � ������� positions (
 ��� pieces on the board)
for which the game-theoretic value has been computed
(strongly solved).

2. Proof tree manager (search management). This compo-
nent maintains a tree of the proof in progress, traverses
it, and generates positions that need to be explored to
further the proof’s progress.

3. Proof solver (forward search). Given a position to
search, this component uses two programs, ��� and PNS,
to determine the value of the position.

are randomly selected. Each starting position is played twice, with
sides switched for the second game.

0

1 1
2 2

3 3
4 4

5 5
6 6

7 7
8 8

9 9
10 10

11 11
12 12

13 13
14 14

15 15
16 16

17 17
18 18
19 19
20 20
21 21
22 22
23 23
24 24

Figure 2: The checkers search space (log scale horizontally)

4. Seeding (expert input). From the human literature, a sin-
gle line of “best play” is identified. This is fed to the
proof tree manager as the initial line to explore.

Figure 2 illustrates this approach. It plots the number of
pieces on the board (vertically) versus the logarithm of the
number of positions (using data from [Chinook, 1995]; the
the widest point is with 23 pieces, ��� �!���	��� positions). The
endgame database phase of the proof is the shaded area, all
positions with 10 or fewer pieces.

Seeding the proof process with an initial line of play is
critical to the prover’s performance; it is shown in Figure 2
as a sequence of solid bold lines. The line leads from the
start of the opening into the endgame databases. Seeding is
not necessary to the proof—the prover is capable of doing the
proof with no expert guidance. However, this single line of
play allows the proof process to immediately start doing work
that is likely to be relevant to the proof. Without it, we have
seen the prover spend considerable effort flailing about while
it tries to find the key lines of play.

The inner oval area in Figure 2 illustrates that only a por-
tion of the search space is relevant to the proof. Positions may
be irrelevant because they are unreachable in this opening, or
are not required for the proof. The small circles illustrate po-
sitions with more than 10 pieces for which a value has been
proven. Each of the circles represents the root of a search tree
which has been solved. For clarity, the solved subtree below
that root is not shown in the diagram.

3 Endgame Databases
Endgame databases were pioneered in chess [Thompson,
1986], and were instrumental in the success of the CHINOOK
program [Schaeffer, 1997]. Using retrograde analysis, sub-
sets of a game with a small number of pieces on the board can
be exhaustively enumerated to compute which positions are

wins, losses or draws. Whenever a search reaches a database
position, instead of using an inexact heuristic evaluation func-
tion, the exact value of the position can be retrieved.

We have computed all endgame databases up to 10 pieces
on the board, for any combination of kings and checkers
[van den Herik et al., 2003]. The total database size is 39
trillion positions, roughly 	 � ��� ��� . Although this sounds im-
pressive, it represents a paltry one ten-millionth of the total
search space [Chinook, 1995]!

How valuable are the databases? Unfortunately, because
of the win/loss/draw construction, a good measure of the dif-
ficulty of 10-piece endgames is not available—although it is
presumed to be very high. Anecdotal evidence includes:

1. Perfect play databases for the 7-piece endgames have
been computed, with the longest winning line being 253
ply [Trice and Dodgen, 2003].

2. [Schaeffer et al., 2003] report that some of their database
computations had winning lines in excess of 180 ply—
just to force a checker advance or a piece capture.

3. In the 5-king versus 3-king and 2-checker endgame, the
longest winning line is 279 ply [Gilbert, 2005].

4. Draws are much harder to prove than wins/losses.

This evidence strongly suggests that the databases are remov-
ing hundreds of ply from the search depth of the proof tree.

4 Search Algorithm
The proof search is split into a front-end proof tree manager
and a back-end prover. The front-end manager maintains a
large persistent proof tree, and selects, stores, and organizes
the search results. Proofs of individual positions are done in
parallel by a farm of back-end provers.

4.1 Proof Tree Manager (front end)
The proof tree manager starts off with an empty proof tree.
The proof is “seeded” by being fed an initial line of play.
This line is considered by humans to be best play by both
sides. The proof manager starts at the last position in the line
and solves it, then backs up one ply, solves that sub-tree, and
so on until the root of the line is reached.

The proof is done iteratively, as shown in Figure 3. In
minimax search, we have seen iterative algorithms based on
search depth (iterative deepening) and confidence in the root
value (as in conspiracy numbers [McAllester, 1988]). Our
algorithm is novel in that it iterates on the range of relevant
heuristic values for the proof.

Classical iterative deepening in game-playing programs is
used for several reasons, one of which is to improve search
efficiency by using the � � tree from iteration � as the basis
for starting iteration � +1. The assumption is that increasing
the depth does not cause substantial changes to the tree struc-
ture; each iteration refines the previous iteration’s solution. In
contrast, without iterative deepening, the search can go off in
the wrong direction and waste lots of effort before stumbling
on the best line of play.

Our iterative value solution works for similar reasons. A
position may require considerable effort to formally deter-
mine its proven value. However, the higher/lower the score

of the position, the more likely it is a win/loss. Rather than
invest the effort to prove such a position, this work is post-
poned until it has been shown to be needed. We do this by
introducing two new values to the proof tree. To win, loss,
draw and unknown, we add likely win and likely loss.

All searches are done relative to a heuristic threshold. The
back-end prover returns an assessment of a position. Any po-
sition exceeding the threshold is considered a likely win; any
falling below the negative threshold is a likely loss. The proof
manager repeatedly traverses the proof tree, identifies nodes
to be searched, sends them off for assessment by the prover,
and integrates the results. Any node with a score outside the
threshold has a likely result and is not expanded further within
this threshold; it is effectively treated as if it is proven. The
thresholds can be loosely thought of as imposing a symmetric
��� search window on the best-first proof manager. A value
outside the window in � � means the result is irrelevant; a
value outside the heuristic threshold means that we postpone
the proof until we know the result will be relevant.

Once the proof tree is complete for a given heuristic thresh-
old, the threshold is increased and the search restarted to con-
struct a proof for the new threshold. Any position that was
previously resolved to a real proven value remains proven,
and positions that have a heuristic score that remain outside
the new heuristic threshold remain likely wins/losses. Only
non-proven positions with heuristic values inside the new
threshold are now considered, and they must be re-searched
with the new heuristic limit. This iterative process contin-
ues until the heuristic threshold exceeds the largest possible
heuristic value. At this point all likely wins/losses have been
resolved, and the proof tree is complete.

Ideally, after the first likely proof tree is constructed, the
work would consist solely of trying to prove that the likely
wins/losses are even more likely wins/losses. In practice, the
heuristics we use are occasionally wrong (they are, after all,
only heuristics), and a proof tree for a position may grow
large enough that other previously less desirable positions be-
come a more attractive alternative for expansion.

For the White Doctor, we used settings of MIN = 125 (a
checker is worth 100 points) and INC = 5 in Figure 3. These
might not be the best choices; we are experimenting with dif-
ferent values on other checkers openings.

The proof manager uses PNS, trying to answer two ques-
tions about the value of the proof tree: “is it at least a likely
win”, and “is it at most a likely loss.” A likely win is as-
signed a proof number of 0 for the is-likely-win question, a
likely loss is assigned a proof number of 0 for the is-likely-
loss question, and a draw is assigned a disproof number of
0 for both questions. The prover tries to investigate the two
questions simultaneously by selecting nodes for considera-
tion that (ideally) contribute to answering both.

The proof tree manager traverses the proof tree and iden-
tifies nodes that are needed or likely to be needed in the
proof. While a traditional PNS algorithm expands one node
at a time, our manager expands many promising nodes (possi-
bly hundreds of them), to have enough work to keep multiple
back-end prover processors busy.

When a node is selected for expansion, it is added to
a work-to-do file that is used as input to the prover pro-

ProofManager(Seeding[]) {
// Seeding: seeding line for the proof
// Seeding[1] is the opening position
// MIN: starting proof heuristic threshold
// WIN: ending proof threshold
// INC: heuristic increment between likely proofs

// Iterate on heuristic threshold
for (thresh = MIN; thresh <= WIN; thresh += INC)
// Iterate over the seeded line
for (move = Length(Seeding); move > 0; move -= 1) {

pos = Seeding[move];

// Solve current position to threshold
repeat {

worklist = PNSearch(pos, thresh);
if(NotEmpty(worklist)) {

StartProvers(worklist, results, thresh);
WaitForResults(worklist, results);
UpdateProofTree(pos, results, thresh);

}
} until (IsEmpty(worklist));

}
}

}

Figure 3: Proof manager

cesses. The back-end is given information for the generation
of heuristic proof numbers and any proven information that
is known about the position (e.g., it might already be known
that it is not a loss).

The proof manager saves all back-end search results so that
they can be re-used for searches with a different heuristic
threshold (or from a different opening). A persistent B-tree
is used to store information on every position examined in
every opening, including both the back-end results and the
backed-up values computed by the front end.

In the cases where the back-end proof search does not pro-
vide enough information to answer the front end’s question of
interest, the heuristic score from the back end is used to gen-
erate heuristic proof and disproof numbers. CHINOOK is used
to provide the heuristic scores. If the ��� search result is small
enough to initiate the proof search, then the result is used to
help initialize the proof numbers. The proof number for a win
is a function of: 1) the difference between the heuristic score
and the heuristic threshold (a high score is more likely to be
a win than an even score), and 2) a penalty is added for posi-
tions where both sides have a king, as these tend to be much
harder to prove.

The disproof number for a loss is the same as the proof
number for a win, with one exception. We use one additional
statistic from CHINOOK. If the principal variation of the � �
search result depends on a draw from a database lookup, we
decrease the disproof number. Proof numbers for a loss and
disproof numbers for a win are defined similarly. As a final
modification, the numbers that depend on the minimum of
their child values (as opposed to the sum) are divided by the
average branching factor.

4.2 Proof Solver (back end)
Pseudo-code for the back-end prover is shown in Figure 4. It
is a novel combination of a traditional heuristic � � search and
a proof search. The (cheap) heuristic search value is used to
determine whether the current position is relevant to the cur-

Prover() {
repeat {
GetWork(pos, thresh);

// HeuristicSearch returns alpha-beta heuristic value
heur = HeuristicSearch(pos, thresh);

// If value inside threshold range, do PNSearch
lower = LOSS; upper = WIN;
if(-thresh*2 < heur && heur < 2*thresh) {

// This is a simplified version of the actual code
// Check for WIN, at most DRAW, or UNKNOWN
result = DFPNSearch(pos, IS_WIN);

if(result == PROVEN) { lower = WIN ; }
else if(result == DISPROVEN) { upper = DRAW; }

if(lower != upper && time remaining) {
// Check for LOSS, at least DRAW, or UNKNOWN
result = DFPNSearch(pos, IS_LOSS);

if(result == PROVEN) { upper = LOSS; }
else if(result == DISPROVEN) { lower = DRAW; }

}
}
SaveResult(pos, thresh, heur, lower, upper);

}

Figure 4: Proof solver process

rent proof threshold. The (expensive) proof search attempts
to formally prove the result of the current position. The latter
is only done if the former indicates it is needed.

Each back-end position is first searched by an ��� searcher
using a heuristic evaluation function and the endgame
databases. The search is limited to 25 seconds, reach-
ing a depth of 17 to 23 ply plus search extensions. The
heuristic value returned is compared to the search threshold.
Values outside the threshold range are considered as likely
wins/losses by the proof tree manager. If the heuristic value
is more than twice the size of the threshold, then no further
processing is done; the formal proof search is postponed until
later in the proof when we will have more confidence that we
really need this result.

The prover uses Nagai’s Df-pn
�

algorithm [Nagai, 2002],
a depth-first search variant of best-first PNS. Df-pn

�

was pre-
ferred over PNS, in part, because of memory concerns. The
algorithm’s space requirements are limited by the size of the
transposition table. In contrast, PNS needs to store the entire
tree in memory. This gives Df-pn

�

an important advantage,
since memory is also needed to reduce the frequency of costly
disk I/O caused by endgame database accesses.

The time limit for the Df-pn
�

component is 100 seconds
per search. Most of the search time is spent trying to answer
the “easy” question, the opposite result to that of the heuris-
tic search. For example, if the heuristic result indicates that
the side to move has a large advantage (a possible win), the
prover first tries to prove or disprove the position as a loss.
This was done because this was usually the easier question to
answer and a disproof of a loss or win may be a sufficient an-
swer for the proof manager given that we expect the value of
the proof to be a draw. If a disproof for the question is found
in less than the maximum time allotted, another proof search
is started to answer the other proof question.

Proving the value of a node implies finding a path to the
endgame databases (or a draw by repetition). Clearly, the
fewer pieces on the board, the “closer” one is to a database

position and the easier it should be to (dis)prove. In addition,
it should be much easier to prove a win or disprove a loss if
one side has more pieces than the other side. We combine
these two factors to initialize the proof and disproof numbers,
giving more attention to fewer pieces and favorable positions.
Furthermore, because the standard Df-pn

�

algorithm has a
fundamental problem of computing (dis)proof numbers when
position repetitions are present, the techniques in [Kishimoto
and Müller, 2003] are incorporated into the solver.

4.3 Graph History Interaction
A forward-search-based proof cannot be correct unless the
Graph History Interaction problem (GHI) is properly ad-
dressed. GHI can occur when a search algorithm caches and
re-uses a search result that depends on the move history. In
checkers, repeated positions are scored as a draw. It is pos-
sible that the value of a search is influenced by a draw-by-
repetition score, and this result is saved in the proof tree or in
a transposition table. If this cached result is later reached by a
different move sequence, it might not be correct—we do not
know if the draw-by-repetition scores are correct.

In the back-end prover, GHI is correctly handled by utiliz-
ing the new technique described in [Kishimoto and Müller,
2004]. GHI is avoided in the boundary between the front-
end tree and the back-end searches by not communicating
any move history information to the back-end. Finally, in the
front-end manager, GHI is avoided by not saving any value
in the proof tree that is unsafely influenced by a draw-by-
repetition score somewhere in its subtree. This may cause the
manager to spend extra time searching the tree, but no ex-
tra prover searches need be performed, as the prover results
stored in the tree are path independent.

4.4 Implementation Insights
The effort to turn likely wins and likely losses into proven
values takes the vast majority of search effort. This holds
even for a fairly high initial heuristic threshold, where likely
wins/losses are positions that human checkers experts agree
are “game over”. The major reason for this is postponing
moves; a non-winning side always takes the path of maximum
resistance. For example, the losing side in a position is able
to make terrible moves, such as sacrificing a checker for no
apparent gain, to postpone reaching the endgame databases;
the unknown aspect of a position with more than 10 pieces on
the board (no matter how hopeless the position) is preferable
to a known database loss. These lopsided positions must still
be chased down to reach a proven conclusion.

The proof process is computationally demanding. Some of
the performance issues include:

1. The proof process spends most of its time accessing the
endgame databases. The cost can be reduced by locality
of disk accesses and caching. Smart organization of the
endgame databases and use of a 4GB machine (most of
the memory going to I/O caching), means that 99% of
all endgame database positions do not require I/O.

2. Despite the above performance optimizations, the proof
process is still I/O intensive—keeping the I/O subsystem
at maximum capacity. It is rare to see the CPU usage

beyond 10%. Many machine architectures do not have
the hardware reliability for this sustained I/O demand.

3. The massive I/O means that we can only use local I/O;
network I/O is too slow. That limits the machines that
we can add to the computation to those that have 300
GB of available local disk.

4. I/O errors. Our programs are instrumented to detect and
recover (if possible) from most types of I/O errors.

5 Results
The White Doctor opening was chosen as the first candidate
to solve because of its importance in tournament practice to
the checkers-playing community. The opening is one of the
most difficult of the three-move ballots, with Black starting
off with a large disadvantage. Many decades of human anal-
ysis determined that Black’s desperate situation meant that a
checker had to be sacrificed to relieve the pressure. In a typi-
cal game, Black is down material for most of the game, barely
hanging on to salvage a draw. Is the human analysis correct?

The White Doctor proof began in November 2003 and a
heuristic proof for a threshold of 125 was completed one
month later. For the next eight months, computer cycles were
spent increasing the heuristic threshold to a win and verify-
ing that there were no bugs in the proof.2 In August 2004, we
thought the proof was complete, but an inspection showed
that some trivial positions with an advantage of 7 or more
checkers had been eliminated from the proof (an accidental,
historical error). This was corrected and in January 2005, we
completed the last of the unresolved positions.

Is the proof correct? The endgame databases are being
verified by Ed Gilbert, the author of the KINGSROW check-
ers program. He has independently verified that our 9-piece
databases and 30% of our 10-piece databases are correct (his
computation is ongoing). The front-end White Doctor proof
tree is consistent and correct, assuming that all the back-end
proofs returned the right answer. Many of the back-end val-
ues have been re-verified by a different solver developed as
part of this project, increasing our confidence that the proof
is indeed correct. The proof is available online at http:
//www.cs.ualberta.ca/˜chinook. Several strong play-
ers have looked at the proof lines and found no errors.

Some interesting statistics on the proof include:

1. Number of positions given to the back-end to solve (ex-
cluding work that was used for experiments or shown to
have bugs): 841,810.

2. Number of positions in one minimal proof tree: 223,178.
The minimal proof tree is not a minimum proof tree. We
did not try to maximize the usage of transpositions or
choose the branches leading to the smallest subtree in
generating the proof tree.

3. Longest line searched in the front-end proof tree: 67 ply.

4. Longest line in our minimal proof tree: 46 ply. The leaf
node in the tree is the result of a 100 second proof num-
ber search (to a variable depth, possibly as much as 45

2Several minor problems were found, necessitating re-doing
some of the calculations.

ply deep), terminating in an endgame database position
(possibly worth 100s of plys of search).

5. Number of nodes in a back-end search (25 seconds of
clock time for each CHINOOK search and 100 seconds
for a proof number search): averaging 13,000,000 posi-
tions (slow because of extensive I/O).

6. Average number of processors used: seven (with 1.5 to
4 GB of RAM).

7. Total number of nodes searched in the proof: roughly
� 	 ���#� ��� � � ��#� � �����'� � � � � ��� ��� positions. The num-
ber of unique positions is considerably smaller.

So, how does the computer proof stack up against human
analysis? We used Fortman’s classic Basic Checkers as our
guide and compared its analysis to that of the proof [Fort-
man, 1977]. Of the 428 positions given in the book for this
opening, there were no disagreements in the game-theoretic
result of a position. This is a bit misleading since some of the
positions were not part of the proof, and for others the proof
only had a bound (less than or equal to a draw) whereas the
book had a result (draw). Nevertheless, this result provides
further evidence that the computer proof is correct. More im-
pressive, however, is the quality of the human analysis. The
analysis of this opening evolved over 75 years, had many hu-
man analysts contributing, requires analysis of lines that are
over 50 ply long, and requires extensive insight into the game
to assess positions and identify lines to explore.

The checker sacrifice in the White Doctor is correct ac-
cording to our proof. This line is sufficient to prove that the
opening is a draw. We have not invested computer cycles to
find out if alternate non-sacrifice defences also lead to a draw.

We have made substantial progress on two more checkers
openings. Of interest is that one of these openings appears
to be roughly 10 times more difficult than the White Doctor,
whereas the other one seems to be half as difficult.

6 Solving Checkers
When will checkers be weakly solved? The White Doctor is
solved, and two other proofs are well under way (both appear
to be draws). There are 174 three-move checkers openings
and, ideally, we would like to solve all of them. However, to
solve checkers for the initial starting position, with no moves
made, roughly 50 openings need to be computed (��� cutoffs
eliminate most of the openings). Solving subsequent open-
ings will not take as long as the first one did. The computa-
tions will speed up for several reasons:

1. Algorithm efficiency. We will switch from experimental
mode (trying different performance parameters) to pro-
duction mode (fixed parameters).

2. More endgame databases. A new algorithm will allow us
to compute parts of the 11-piece database, getting 50%
of the benefits for 1% of the computing effort.

3. Data reuse. Openings transpose into each other. Each
additional opening increases the chances for reusing the
results of one opening for another.

The only obstacle remaining is access to computing re-
sources. Computer cycles are easy to obtain; the bottleneck

is large local data storage and I/O speeds. With enough re-
sources, the game could be weakly solved within a year.

References
[Allis et al., 1991] V. Allis, J. van den Herik, and I. Her-

schberg. Which games will survive. In Heuristic Pro-
gramming in Artificial Intelligence 2, pages 232–243. Ellis
Horwood Limited, 1991.

[Allis, 1988] V. Allis. A knowledge-based approach to
Connect-Four. The game is solved: White wins. Master’s
thesis, Vrije Universiteit, Amsterdam, 1988.

[Allis, 1994] V. Allis. Searching for Solutions in Games and
Artificial Intelligence. PhD thesis, Department of Com-
puter Science, University of Limburg, 1994.

[Chinook, 1995] Chinook, 1995. http://www.cs.
ualberta.ca/˜chinook/databases/total.php.

[Fortman, 1977] R. Fortman. Basic checkers, 1977. Pri-
vately published, but online at http://home.clara.
net/davey/basicche.html.

[Gasser, 1996] R. Gasser. Solving Nine Men’s Morris. Com-
putational Intelligence, 12:24–41, 1996.

[Gilbert, 2005] E. Gilbert, 2005. http://pages.
prodigy.net/eyg/Checkers.

[Kishimoto and Müller, 2003] A. Kishimoto and M. Müller.
Df-pn in Go: Application to the one-eye problem. In
van den Herik et al. [2003], pages 125–141.

[Kishimoto and Müller, 2004] A. Kishimoto and M. Müller.
A general solution to the graph history interaction prob-
lem. In AAAI, pages 644–649, 2004.

[McAllester, 1988] D. McAllester. Conspiracy numbers for
min-max search. Artificial Intelligence, 35:287–310, 1988.

[Nagai, 2002] A. Nagai. Df-pn Algorithm for Searching
AND/OR Trees and Its Applications. PhD thesis, Depart-
ment of Information Science, University of Tokyo, 2002.

[Romein and Bal, 2003] J. Romein and H. Bal. Solving the
game of awari using parallel retrograde analysis. IEEE
Computer, 36(10):26–33, 2003.

[Schaeffer et al., 2003] J. Schaeffer, Y. Björnsson, N. Burch,
R. Lake, P. Lu, and S. Sutphen. Building the checkers 10-
piece endgame databases. In van den Herik et al. [2003],
pages 193–210.

[Schaeffer, 1997] J. Schaeffer. One Jump Ahead. Springer-
Verlag, 1997.

[Thompson, 1986] K. Thompson. Retrograde analysis of
certain endgames. Journal of the International Computer
Chess Association, 9(3):131–139, 1986.

[Trice and Dodgen, 2003] E. Trice and G. Dodgen. The 7-
piece perfect play lookup database for the game of check-
ers. In van den Herik et al. [2003], pages 211–230.

[van den Herik et al., 2003] J. van den Herik, H. Iida, and
E. Heinz, editors. Advances in Computer Games 10.
Kluwer Academic Publishers, 2003.

