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Abstract— Design patterns are generic solutions to recurring
software design problems. The Correct Object-Oriented Pattern-
based Parallel Programming System (CO2P3S) uses design
pattern templates to generate code for design patterns. CO2P3S
has been used to generate small parallel and sequential
applications. This research evaluates the utility and
performance of CO2P3S on larger network server applications.
The Network Server design pattern template is introduced,
which significantly eases the complexities involved in network
server application development. The Network Server is highly
configurable and suitable for the construction of a large
variety of network server applications, with a diverse range of
functionality and performance requirements. In this paper we
highlight a generated Web server with performance comparable
to Apache.

Index Terms—network servers, parallel programming,
programming environments.

I. INTRODUCTION

Network server applications are essential to networked
computation, as they support sharing of critical system
resources and provide services to multiple clients concurrently.
Web servers, FTP servers, and e-mail servers are three
examples of these applications. The continuing growth and
usage of computer networks has put more demand on various
new network server applications. However, their construction
remains a difficult task, due partly to the limitations of
conventional tools and techniques. In this research, we
experimented with an innovative approach: using generative
design patterns to construct network server applications.

Design patterns are proven solutions to recurring software
design problems [16]. They capture experts’ design knowledge
and experiences. With design patterns, junior developers can
learn from their seniors’ best practices rather than reinventing
the wheel. Although they provide many benefits, design
patterns often exist in the form of documents and fail to
address one important application development aspect: code
reuse. The CO2P3S (Correct Object-Oriented Pattern-based
Parallel Programming System) system overcomes this
problem by using design pattern templates, a generative
pattern form that generates correct object-oriented framework
code for design patterns [19]. Each template consists of a set
of options for adapting the generated code to the specific
application context of the corresponding design pattern. To
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implement a design pattern, a programmer only needs to select
a pattern template, customize it by setting template options,
and provide a few application-specific hook methods.

Prior to the research reported in this paper, CO2P3S had
been used to generate simple parallel/distributed applications
from basic concurrent design patterns such as mesh,
wavefront, pipeline, search-tree, etc. It had also been used to
generate simple sequential applications from basic sequential
design patterns such as decorator, observer, composite, etc.
Experiments showed that CO2P3S can greatly ease the
complexity of parallel application development, and that the
generated parallel applications have comparable performance to
their handcrafted counterparts [3]. Although these are all small
applications, the success of CO2P3S has motivated current
research efforts to apply it to the generation of larger and more
complex applications. In this paper we describe a design
pattern template called the Network Server (N-Server) that was
created for the construction of network server applications.

The N-Server employs an event-driven concurrency model
and uses the Reactor [22] pattern as the fundamental
mechanism for event demultiplexing and dispatching. I/O
operations must be non-blocking for event-driven concurrency.
To meet this requirement, Java NIO [12] is employed for non-
blocking socket I/O, and non-blocking file I/O operations are
emulated using a pool of threads (because they are not yet
available in the Java API). Many design pattern options have
been created, some of which exist purely to address
performance issues, while others deal with features demanded
by many network server applications. These options include
event logging, performance profiling, event scheduling, file
caching, and overload control. The options make the N-Server
highly customizable and suitable for the construction of a
large variety of network server applications with dramatically
different functionality and performance requirements, ranging
from trivial applications (e.g., Time server) to those as
sophisticated and performance-sensitive as Web servers.

To evaluate the N-Server, a Web server (COPS-HTTP) and
an FTP server (COPS-FTP) were constructed. Only a small
amount of code needs to be manually programmed for each
server, while the rest of the code is either generated from the
N-Server or reused from existing application libraries. More
importantly, the generated code contains all of the complex
concurrency control code and the manually written code is
simpler server-specific sequential code. An experiment was
conducted to compare the performance of COPS-HTTP against
Apache, a widely used Web server, and we found that
comparable levels of performance were achieved. Two
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additional experiments were conducted to demonstrate the
effectiveness and the ease-of-use of the event scheduling and
automatic overload control features of the N-Server.

The major contributions of this research include: (1) the
introduction of the N-Server pattern template to support
construction of network server applications, (2) evidence that
the generative pattern template approach can be used to
construct larger and more complex applications, and (3) a
configurable Web server with a clean framework-based
architecture that enables the rapid deployment of significantly
different network server applications, with performance that
scales well with multiple processors and is comparable to that
of Apache. Section 2 of this paper describes relevant
background issues. Section 3 gives a brief overview of related
work. Section 4 describes the design of the N-Server. Section
5 presents the results of several performance experiments.
Finally, Section 6 outlines our conclusions and future work.

II. BACKGROUND

A network server application needs a concurrency strategy
to handle multiple requests simultaneously and to scale well
when run using multiple processors. Based on how
concurrency is achieved, concurrency models used by server
applications can be grouped into two broad categories:
multiprogramming and event-driven. Multi-programming
concurrency models use multiple operating system
processes/threads to achieve concurrency. When the execution
of one process/thread is paused when performing a blocking
operation, the CPU can switch to another one, so that client
requests are served simultaneously. Although
multiprogramming concurrency models are straightforward to
implement, they do not scale very well. When the number of
processes/threads is large, the overheads associated with
multiprogrammingincluding context switching and
scheduling, cache misses, and lock contentioncan cause
serious performance degradation [28], [13]. In addition, it is
hard to support different quality of service levels using
multiprogramming concurrency models, because they have a
limited capacity for resource management and request
scheduling [27], [2]. This is essentially caused by the focus of
most OS schedulers on supporting the concurrent execution of
multiple time-sliced processes/threads. There are no
scheduling mechanisms for the usage of other important
system resources, such as disk I/O and network bandwidth.

To overcome the limitations of the multiprogramming
concurrency models, event-driven models have become more
popular. In these models, application behaviors are triggered
by internal or external events. A small number of
processes/threads (typically one per CPU) loop continuously
to process eventsthis avoids the process/thread
switching/scheduling overheads. On the other hand, since
event-driven applications can manipulate events directly, they
can more easily alter the order of event processing, and hence,
provide better support for multiple quality of service levels.
Event-driven concurrency models have many advantages over
multiprogramming concurrency models and have become more
pervasive. However, several challenges exist for their design

and implementation. It is hard to implement an event-driven
concurrency model correctly. The lack of OS support for non-
blocking I/O mechanisms negates the performance advantage
of event-driven concurrency models. Therefore, a poorly
designed event-driven model can fail to achieve good
performance. In general, we believe that employing event-
driven concurrency models in a server design is an effective
approach, if complexity and correctness issues can be solved.

Unlike other design pattern templates in CO2P3S that are
based on a single design pattern, the N-Server pattern
synthesizes the ideas of four concurrent and networked design
patterns: Reactor [22], Proactor [10], Acceptor-Connector [21],
and Asynchronous Completion Tokens [11]. Both the Reactor
and Proactor address the problem of how an event-driven
application demultiplexes and dispatches events. In the
Reactor, different kinds of Event Handlers encapsulate
application-specific logic for processing different kinds of
events. Each Event Handler has a different implementation of
a common hook method. Each Event Handler registers with
the Event Dispatcher. The Event Dispatcher repeatedly polls
for ready events and dispatches a registered Event Handler to
process each one. Unlike the Reactor, which waits passively
for events to occur and react, the Proactor associates a
Completion Handler with an asynchronous operation. The
Completion Handler encapsulates application-specific
functionalities to handle a client request. Upon completion of
the asynchronous operation, the associated Completion
Handler is dispatched to process the result. The Acceptor-
Connector helps to reduce the development complexity by
separating two independent aspects of network communication
applications: data communication and connection
establishment. An event-driven application often issues
asynchronous operations to acquire one or more services (e.g.
disk I/O), and a service indicates its completion by sending
back a response. The Asynchronous Completion Token
provides an effective mechanism to associate service responses
with actions to be performed. In the N-Server, the Acceptor-
Connector is applied to automate connection establishment,
and the ideas of the Proactor and Asynchronous Completion
Tokens are used to emulate non-blocking operations.

III. RELATED WORK

Many attempts have been made to improve the quality and
the performance of network server applications. The Zeus Web
server [30] and the Harvest Web cache [7] employ a single-
process event-driven (SPED) architecture, which uses only a
single process to handle multiple requests. This process
performs asynchronous I/O operations and uses the UNIX
select or System V poll to check for I/O operation completion.
Pai, Druschel, and Zwaenepoel proposed the multi-process
event-driven architecture (MPED) that enhances the SPED by
using multiple helper processes to handle blocking I/O
operations [20]. Both of these two architectures can be
emulated using the N-Server. Hu and Schmidt constructed a
high performance Web server using a collection of concurrent
and networked design patterns as the basic building block
[14]. In their work, design patterns are represented as an API
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in the form of a class library. However, to build a server,
programmers still need to write code to assemble different
design patterns together. In contrast, the N-Server requires less
development effort since it generates a code framework that
handles all of the complex interactions and the programmer
need only write simple sequential “call-back” or “hook”
methods. The advantages of using a framework instead of a
function library are well documented in the software
engineering literature [9]. Welsh, Culler, and Brewer proposed
the staged-event-driven-architecture (SEDA) and implemented
it using an object-oriented framework [28]. In SEDA, an
application is modeled as a finite state machine and each FSM
stage is embodied as a self-contained component, which
consists of an event handler, an incoming event queue, and a
pool of threads. Each thread in a stage concurrently performs
the operation of pulling events off the incoming event queue
and processing them using the event handler. It is fairly easy
to program with SEDA, since only a few event handlers that
encapsulate the application-specific functionalities need to be
provided. SEDA’s staged design has a modeling advantage.
However, this design suffers from additional thread
switching/scheduling overheads, which negate the performance
advantage of event-driven concurrency models. This happens
when there are more stages used than available processors, so
that threads belonging to different stages contend for
processors. Unfortunately, it is very likely for an application
to be modeled using more stages than processors. Compared
to SEDA, the N-Sever is more powerful. It provides more
features that are desirable to many network server applications,
including file caching and event scheduling. The generative
design pattern approach is more configurable than a static
framework, since application code underlying each feature can
be included or excluded at code generation time, based on the
corresponding option settings [6]. To achieve the same effect
in a static framework, a large amount of indirection code
would be needed to dynamically decide whether to execute the
code for each feature (e.g., executing if or case statements to
check which features are enabled, as opposed to using
conditional compilation flags). Dynamic checks reduce
application maintainability and add performance overheads.
The benefits of implementing the N-Server as a template
become more significant for features that crosscut [17]
multiple application components. This occurs when a single
feature requires checks throughout the code-base. Logging and
event scheduling are examples of such crosscutting features.

Table 1 shows all of the options for the N-Server design
pattern in the first column and the legal values for these
options in the second column. The next two columns show
the values for these options in the two N-Server applications
described in the next section (COPS-FTP and COPS-HTTP).
Table 2 shows each of the main classes that implement the N-
Server design pattern as a row and each option supported by
the pattern as a column. The entries in Table 2 indicate which
classes have code that is affected by each option. Table 2
serves as a graphic illustration that a static framework that
supports all the options is infeasible and supports our decision
to generate a custom framework after option selection.

TABLE  I
N-SERVER OPTIONS AND THEIR VALUES

Option Name Legal Values COPS-FTP COPS-HTTP
O1: # of dispatcher

threads
1 or 2..N 1 1

O2: Separate thread pool
for event handling

Yes/No Yes Yes

O3: Encoding/Decoding
required

Yes/No Yes Yes

O4: Completion events Asynchronous
/Synchronous

Synchronous Asynchronous

O5: Event thread
allocation

Dynamic/Static Dynamic Static

O6: File cache Yes1/No No Yes: LRU
O7: Shutdown long idle Yes/No Yes No
O8: Event scheduling Yes/No No No, Yes2, No
O9: Overload control Yes/No No No, No, Yes3

O10: Mode Production/
Debug

Production4 Production4

O11: Performance
profiling

Yes/No No5 No5

O12: Logging Yes/No No No

O61: cache replacement policies: LRU, LFU, LRU-MIN, LRU-Threshold,
Hyper-G or Custom. O82: Event scheduling was turned on only for the
second of the three HTTP sever experiments. O93: Overload control was
turned on only for the third of the three HTTP sever experiments. O104:
Debugging was used during development. O115: Profiling was used during
tuning.

IV. NETWORK SERVER PATTERN TEMPLATE

The N-Server is designed to significantly ease the
complexity of network server application development, while
satisfying a diverse range of performance and functionality
requirements. It employs an event-driven concurrency model
to achieve high performance, provides good support for
resource management, and offers various levels of service
quality. The Reactor pattern is used as the fundamental
mechanism for event demultiplexing and dispatching. Thus,
the basic structure of the N-Server is based on the Reactor
pattern. However, the N-Server is not equivalent to the
Reactor pattern. In one way, it specializes the Reactor pattern
by limiting it to a network communication server. In another
way, it extends the Reactor pattern by providing support for
multiple event sources and multiple processors. In an event-
driven network server application, events may arise from
multiple sources, such as I/O ports, timers, or other
application components. Different event sources have different
characteristics, and therefore, they should be managed
separately. Because it’s not possible to anticipate and include
all the event sources, there should be an effective mechanism
for new event sources to be added. In view of these problems,
an Event Source component that complies with the Decorator
[16] pattern is added. Besides managing multiple event
sources, it is also responsible for registering and deregistering
Event Handlers and polling ready events.

One drawback of the Reactor pattern is that it does not scale
up very well, because all events are processed by one thread
contained in the Event Dispatcher. This prevents it from
making use of multiple processors when they are available. A
new participant, called the Event Processor, is added to solve
this problem. An Event Processor contains an event queue and
a pool of threads that operate collaboratively to process ready
events. In this case, the Event Dispatcher is only responsible
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for querying the Event Source for ready events and then
passing those ready events to the Event Processor for
processing. The N-server pattern has an option to include an
Event Processor or use a standard Reactor. Event-driven
concurrency models require events to be non-blocking.
However, non-blocking OS mechanisms are difficult to use so
they are often not fully exploited for many types of events,
such as File I/O, database access, and synchronization. In
particular, there is no non-blocking File I/O in Java JDK1.3,
although non-blocking socket I/O is supported in Java JDK1.4
and higher. Another usage of the Event Processor is to
emulate the existence of non-blocking events.

Even with the addition of these two concepts (a thread pool
and non-blocking events), a network server application
generated from such an extended Reactor pattern template
would require programmers to explicitly write code to deal
with network communication, which is a difficult
programming task. In addition, a great deal of user code
would need to be written for frequent registration and
deregistration of different Event Handlers and the queuing of
user-defined Events. This situation arises due to the
inadequacy of the Reactor pattern to exploit the similarities
between network server applications. Other abstractions are
necessary to reduce the manual coding effort.

Most network server applications are similar in the way
they establish network communication with peers and in the
way they handle requests. To establish network
communication, they create a server socket listening to a
certain network port for new connections. After a connection
arrives, they accept it and iteratively carry out a five-step
process to handle requests. These five steps are: Read Request,
Decode Request, Handle Request, Encode Reply, and Send
Reply (Fig. 1). The Read Request step reads the raw data of a
request sent from the remote peer over the socket connection.

The Decode Request step parses the request. The Handle
Request step provides services by handling the request. The
Encode Reply step encodes the result of the request in a form
understood by the remote peer. The Send Reply step sends out
the raw data of the result to the remote peer. Among the five
steps, the Read Request and Send Reply are almost the same
across different network server applications, while the other
steps are application-dependent.

Therefore, to develop a network server application using the
N-Server pattern, a programmer only has to write code
corresponding to the three application-dependent steps, while
the N-Server generates code for the other two common steps.
This reduces coding effort and improves the chances for the
correctness of the network server application. In addition, for
simple server applications, there is no need to have an explicit
Decode and Encode Request step. When using the N-Server
pattern, a programmer has the freedom of generating this
structural variation (Fig. 2) by setting a template option.

There exists a trade-off between generality and efficiency in
the N-Server. Without the inclusion of the network server
application specific code (Read Request, Send Reply, and
establishing a connection), the N-Server would be a template
that instantiates the Reactor design pattern. Thus, it would be
more generic and could be used for many types of
applications, such as event-driven simulations and graphical
user interface frameworks. With the inclusion of the network
specific code, the N-Server becomes more specialized and
more efficient for the automatic generation of network server
applications. The N-Server sacrifices generality in favor of
improving efficiency. This choice is inevitable, because it is
mandated by the design goal of the N-Server.

TABLE 2
AN ILLUSTRATION THAT THE N-SERVER OPTIONS CROSSCUT THE CODE. FOR OPTION NAMES, SEE TABLE 1. AN O INDICATES THE OPTION DETERMINES WHETHER THE CLASS

EXISTS IN THE GENERATED FRAMEWORK. A + INDICATES THAT THE CODE GENERATED FOR THE CLASS DEPENDS ON THE OPTION VALUE.

Class                       Option O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12

Event + +
Completion Event O
File Open Event O +
File Read Event O +
Handle +
File Handle O +
Read Request Event Handler + + + +
Send Reply Event Handler + + + +
Decode Request Event Handler O + + + +
Encode Reply Event Handler O + + + +
Compute Request Event Handler + + + + + +
Event Processor + + + +
Processor Controller O
Event Dispatcher + + + + +
Cache O +
Reactor + + + + + + + + + +
Communicator Component + + + +
Server Component + + + +
Client Component + + + +
Server Event Handler + + +
Connector Event Handler + + + +
Acceptor Event Handler + + + + +
Container Component + + + +
Application Event Handler + + +
Client Configuration + +
Server Configuration +
Server +
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Fig. 1. The five basic steps for server request handling.

Fig. 2. Server request handling when no encoding/decoding is required.

Other functionalities that are often needed by many network
server applications are also provided by the N-Server,
including file caching, event scheduling, and automatic
overload control. These are selected by setting pattern options.

Many network server applications need to access disk files
to provide services. However, disk I/O is slower by several
orders of magnitude than memory access. To boost application
performance, network servers often implement a file cache that
keeps the disk file in memory for fast access. To relieve users
from the burden of implementing a file cache, the N-Server
can be configured to generate code that automatically caches
disk files in memory. The caching capability provided by the
N-Server is transparent to the programmer. This means that
programmers have no extra development effort, unless
specialized cache replacement policies are required. Five cache
replacement policies are provided by the N-Server: LRU,
LFU, LRU-MIN [1], LRU-Threshold [1], and Hyper-G [29].
When necessary, a programmer can implement a different
cache replacement policy by simply adding code to a hook
method that is called automatically at the appropriate time.
Whether to use file caching, and which cache replacement
policy to use, are controlled by one template option.

Many network server applications can benefit from the
capability of altering the order in which requests from different
concurrent connections are serviced. At least two kinds of
benefits can be gained by this capability. They are: (1)
improving the overall quality of service for all and (2)
providing differentiated levels of services. In an event-driven
network server application, such a capability requires the
support of Event Scheduling. The N-Server can be configured
to support an efficient Event Scheduling mechanism to
implement whatever event scheduling policy an application
needs. In this mechanism, events of higher priority are
processed first. However, each priority level is given a quota.
When the quota is exhausted, events of lower priority are
processed, so that starvation is avoided. When event
scheduling is enabled, structural variations are introduced that
crosscut several components in the generated code. These
include the addition of a priority field and access methods in
the Event class and Communicator Component class (whose
instances represents network connections), and replacing a
normal event queue in an Event Processor by a priority queue.
This example illustrates a strength of the generative pattern
template approach of CO2P3S. Application code is only
generated when necessary, without adding extraneous code.
Similar crosscutting changes occur for other template options.

Overload in a network server application can cause increased

response times, decreased throughput, and even service
rejection. Event-driven concurrent server applications are
extremely vulnerable to overload conditions, since they
usually do not limit the number of connections accepted. This
is not the case in server applications based on a
multiprogramming concurrency model [25], where connection
limits are common. The N-Server provides two mechanisms
to control overload. The first one is trivial: that is to limit the
maximal number of simultaneous connections in the server. In
the second approach, the N-Server is configured to generate
code that queries the length of multiple queues. Each queue
stores events of certain types. If there is a queue whose length
exceeds its specified high watermark, then new connection
requests are postponed until the length drops below a specified
low watermark. The second mechanism is effective in
handling overload situations that can be caused by multiple
bottlenecks, such as CPU and disk [26].

There is no single “best way” to build a network server.
The N-Server must be configured based on the type of traffic
expected, quality of service, fault tolerance, etc. Other
supported features include performance profiling, debugging,
logging, and termination of long-idle connections. Important
statistical information of the server application can be
automatically gathered, if the N-Server is configured to enable
performance profiling. This information includes: the number
of connections accepted, the number of bytes read, the number
of bytes sent, the file cache hit rate, etc. The N-Server can
generate network server applications in two modes: debug and
production. If the server is generated in debug mode, then all
internal events that are triggered in the server are written into a
file. The user can trace this file to get a snapshot of what
happened during the time an error condition occurred. Such a
debug mechanism is far from being perfect, but it is useful.
The N-Server can also be configured to generate applications
with a logging capability. Long-idle connections may
consume unnecessary resources and degrade the performance of
network server applications. The N-Server generates code that
is able to automatically terminate these connections.

V. EVALUATION

Two moderate-sized network server applications were
developed to evaluate the N-Server: an FTP server (COPS-
FTP) and a high-performance Web server (COPS-HTTP). The
N-Server has wider use beyond the two applications described
in this paper. For example, the pattern can be used to generate
a mail server, time server, or any other network-based server.

A. COPS-FTP
COPS-FTP was developed to 1) demonstrate the flexibility

and expressiveness of the N-Server to generate network server
applications with complex architectures and 2) to show how
the N-Server can make extensive use of existing code by
adapting it to a new server architecture. The nature of FTP has
made an FTP server relatively harder to implement using the
N-Server than a Web server. In FTP, a client establishes a
control connection to a server. This control connection carries
commands that tell the server which service to provide.
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However, unlike HTTP, FTP uses a separate data transfer
connection for file transfer [8]. A server can establish this data
transfer connection either passively or actively. For example,
COPS-FTP can passively open a data transfer connection to
store a file transferred from a client. COPS-FTP is a full-
featured FTP server. Rather than building it from scratch, we
modified the Apache FTPServer, a Java-based multithreaded
FTP server that is part of the Apache Avalon project [4].

Table 3 summarizes the code distribution of COPS-FTP. A
large fraction of code, 8,141 lines of non-comment source
code (NCSS), is reused from Apache FTPServer. This code
supports many functions, including a GUI, a database for
LDAP access, and user activity monitoring. A total of 1,897
lines of NCSS are added, replacing 1,186 lines. Only 711
lines of extra code have to be programmed, to transform the
Apache FTPServer to an event-driven FTP server, even though
an event-based server has a much more complex architecture.

B. COPS-HTTP
COPS-HTTP demonstrates that the N-Server is capable of

constructing high performance applications. COPS-HTTP is
not yet a full-featured Web server; it only handles static Web
page requests. The same pattern can be used to generate a
server for dynamic content, except that more application-
dependent code would be required to support the additional
protocols.

The N-Server uses an Event Dispatcher to dispatch ready
Reactive Events to an Event Processor for processing. Another
Event Processor is used to emulate non-blocking disk I/O.
COPS-HTTP is generated with the caching capability and
enforced LRU cache replacement policy specified.

The code base of COPS-HTTP is composed of two parts:
automatically generated code and handcrafted code. The
handcrafted code can be further divided into code that
constitutes an HTTP protocol library and code that
implements the HTTP server-specific logic. Table 4 shows the
code distribution. In total, there are 3,931 lines of non-
comment source statements (NCSS) in COPS-HTTP, of
which 2,697 lines of NCSS are automatically generated by the
N-Server. If an existing HTTP protocol library were used for
the development of COPS-HTTP, only 785 lines of NCSS
would need to be programmed, which accounts for 20% of the
total code of COPS-HTTP.

An experiment was conducted to measure COPS-HTTP
performance against Apache (version 1.3.27) under workloads
of the form “get me a file”. Apache is the most widely used
Web server on the Internet. A survey shows that more than
60% of Web sites run Apache [5]. Apache implements the
process-per-connection concurrency model and uses a bounded
worker process pool of 150 processes to serve simultaneous
client connections. COPS-HTTP is written in Java with most
of the code generated using CO2P3S; Apache is handcrafted C.

The hardware environment for the experiment is two web
servers connected to 16 clients. Both web servers run on a Sun
Enterprise 420R server  (4 450-MHz Sparc9 processors, 4 GB
of RAM, SunOS 5.9). The clients are Sun Ultra 10 machines
(440-MHz UltraSparc processor, 256 MB of RAM, and
SunOS 5.8). A switched Gigabit Ethernet connects the clients

and servers. The maximal packet size of the Ethernet Switch is
1500 bytes. This complies with the SpecWeb99 benchmark
rules; however, the actual network bandwidth is limited to
something slightly higher than 100 MBits/sec. Although
network bandwidth is clearly the bottleneck resource, this
network configuration is quite close to the real-world situation
that a high-performance Web server often faces.

The client workload generators repeatedly perform the
following actions: establish a connection to the Web server,
issue 5 HTTP requests (to simulate HTTP 1.1 persistent
connections), and then terminate the connection. To simulate
the wide-area transfer delay, there is a 20 milliseconds pause
after receiving each page, before the next page is requested.
The file size and access frequency distribution follows the
SpecWeb99 benchmark [23]. A file set of size 204.8 MB is
created using the SpecWeb99 suite, with an average file size of
16 KB. The file cache of COPS-HTTP is limited to 20 MB,
and the file system has a memory buffer of size 80 MB. Both
Web servers were warmed up before the experiment. The
number of Web clients simulated in the experiment is up to
1024. Each measurement ran for 5 minutes.

TABLE 3
THE CODE DISTRIBUTION OF COPS-FTP. THE NCSS COLUMN CONTAINS THE

NUMBER OF LINES OF CODE THAT WERE NOT COMMENT STATEMENTS.

Classes Methods NCSS
Reused code 124 945 8,141
Removed code 18 199 1,186
Added code 23 150 1,897
Generated code 84 480 2,937

TABLE 4
THE CODE DISTRIBUTION OF COPS-HTTP. THE NCSS COLUMN CONTAINS THE

NUMBER OF LINES OF CODE THAT WERE NOT COMMENT STATEMENTS.

Classes Methods NCSS
Generated code 79 474 2,697
HTTP protocol code 10 50 449
Other application code 16 89 785
Total code 105 613 3,931

Fig. 3 shows the throughput of COPS-HTTP and Apache
(note the logarithmic horizontal scale). Apache achieves
slightly better throughput than COPS-HTTP under light
workloads (less than 32 Web clients). However, under heavier
workloads (32 clients to 256), the throughput of COPS-HTTP
is higher than that of Apache. This result confirms that the
advantage of event-driven concurrency models lies in its
superior performance and scalability to handle a large number
of simultaneous requests. With more than 256 Web clients,
both applications get saturated because the network becomes
the performance bottleneck. The throughput of Apache is
better than COPS-HTTP at 1024 clients, but Apache exhibits
extreme service unfairness.

Fairness is an important performance metric that is
concerned with the equal allocation of resources. Fig. 4 shows
the service fairness metric that is based on the Jain fairness
index [15] of the number of responses received by each Web
client. This metric is computed from:



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

( ) ( ) ∑∑= 22

ii xNxxf ,

where xi is the number of responses received by Web client i,
and N is the total number of Web clients. If all the Web
clients receive an equal number of responses, the fairness
index is 1. If k Web clients receive equal number of responses,
and the other Web clients receive no responses at all, the
fairness index is k/N. Under heavy loads, the fairness index of
COPS-HTTP remains high, while Apache’s fairness index
drops significantly. With 1024 Web clients, the fairness index
of Apache is a mere 0.51. The extreme unfairness of Apache is
caused by the exponential backoff scheme of the TCP
protocol. Apache only handles 150 simultaneous connections
at any time. For a lucky Web client, its connection is
accepted, and a single process handles all its requests quickly.
Unfortunately, some Web clients are very unlucky, in that
their TCP SYN packets for establishing connections are
dropped by Apache. In this case, they may wait for a
significant amount of time before doing a retransmit. The
maximal retransmission timeout under Solaris is 1 minute.
Therefore, Apache achieves higher throughput than COPS-
HTTP under very heavy workloads (1024 clients), at the
expense of fairness.
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Fig. 3. Throughput for the COPS-HTTP/Apache Web server experiment.
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Fig. 4. Service fairness for the COPS-HTTP/Apache web server experiment.

The second experiment demonstrates the utility of the N-
server’s event-scheduling mechanism to support multiple
levels of service on the same Web server. This facility is
absent from Apache, but can be activated in the N-server by
selecting a single pattern option. As a simple example of this
feature, we consider a scenario where an Internet Service
Provider (ISP) hosts two types of Web content: a corporate
portal and personal homepages. Since the corporation pays a
higher service charge, Web accesses to the corporate portal are
prioritized by allocating more system resources (for example,
network bandwidth, disks, processors, memory, etc). In this
experiment, two 933 MHz Pentium III systems with 256 MB
of RAM and Linux 2.4.9 are used as client machines to

generate workloads. A dual-processor 600 MHz Pentium III
machine with 512 MB of RAM and Linux 2.4.9,
interconnected with the two client machines over a 100
MBits/sec Ethernet, is used to host COPS-HTTP. The IP
address is used to determine whether a request sent from each
client machine is considered as an access to the corporate
portal or as an access a to personal homepage. Only 13 lines
of code are added to COPS-HTTP to implement this
scheduling policy. In addition, the file caching capability is
disabled to make the workload heavier.

Fig. 5 shows the throughput of requests for the two types
of content under various priority level settings. A priority
level setting is specified as a ratio x/y, where x gives the quota
allocated for homepages and y for the corporate portal. The
rightmost column shows the maximal throughput for
corporate portal requests, when no homepage request is
generated. There is a small gap between the ratio of priority
levels and the actual throughput ratio of requests for the two
types of Web contents. However, such a gap is quite
acceptable, because the COPS-HTTP variant exerts no control
over the management and scheduling of many operating
system resources, such as the order in which the network
socket buffers are drained.
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Fig. 5. Service throughput for differentiated service levels supported by
COPS-HTTP.

Fig. 6. Response time with and without automatic overload control, for the
COPS-HTTP server. Combined times include connection establishment times.

The third experiment demonstrates the automatic overload
control mechanism of the N-Server. In this experiment, CPUs
are considered as the bottleneck resource. To make the
workload more CPU-intensive, each thread is forced to sleep
for 50 milliseconds when decoding an HTTP request. The
high watermark and low watermark for the Reactive Event
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Processor queue length are set to 20 and 5 respectively. The
number of Web clients in this experiment varies from 1 to
128. Fig. 6 shows that COPS-HTTP with the automatic
overload control capability has a significantly lower average
response time. Notably, this is achieved without degrading the
server throughput. The combined response time also counts
the time a Web client waits to establish a connection when
calculating the response time. The response time alone better
describes what Web clients with established connections
experience when a Web server gets overloaded. When
overloaded, a server should concentrate on preventing the QoS
of established connections from dropping rather than taking on
more tasks. In this sense, the response time is more
meaningful than the combined response time. However, the
average combined response time is also presented, because it
describes the experiences of all the Web clients (including
those with and without established connections) as a whole.

VI. CONCLUSION

In this research, we applied the generative design patterns of
the CO2P3S system to the construction of larger and more
realistic applications that belong to a difficult problem domain
(network server applications), and demonstrated the
effectiveness of this approach. CO2P3S enables the rapid
deployment of custom network server applications with
significantly smaller programmer effort than required by
manual creation of server applications. The hard parts of the
application—such as the concurrency control—are
automatically generated, leaving the programmer to only
supply the sequential application-specific code.

The most interesting extension of this work is to support
the generation of distributed N-servers that will serve from a
network of workstations. As was the case with previous
CO2P3S patterns, the distributed version of this pattern would
require the programmer to write identical hook methods, for
an application whether the application was generated for a
shared memory machine or a network of workstations [24].
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