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Abstract

The pipeline is a simple and intuitive structure to
speed up many problems. Novice parallel programmers
are usually taught this structure early on. However, ex-
pert parallel programmers typically eschew using the
pipeline in coarse–grained applications because it has
three serious problems that make it difficult to implement
efficiently. First, processors are idle when the pipeline
is not full. Second, load balancing is crucial to obtain-
ing good speedup. Third, it is difficult to incrementally
incorporate more processors into an existing pipeline.
Instead, experts recast the problem as a master/slave
structure which does not suffer from these problems.
This paper details a transformation that allows pro-
grams written in a pipeline style to execute using the
master/slave structure. Parallel programmers can bene-
fit from both the intuitive simplicity of the pipeline and
the efficient execution of a master/slave structure. This
is demonstrated by performance results from two appli-
cations.

1. Introduction

Pipelines are common in many real–world problems.
Every modern processor uses it to speed up the decoding
and execution of instructions. Factories use the assem-
bly line to speed up production. It is a simple, general–
purpose way to improve the performance of many tasks.

Parallel programmers are taught the pipeline struc-
ture early on, as an intuitive way of achieving speedup
for many problems. However, the pipeline exhibits three
serious problems that make achieving good performance
difficult for coarse–grained applications. First, when the
pipeline is not full (at the beginning and end of a pro-
gram), stages are idle and wasted. Second, any load im-
balances in the pipeline reduce its performance. Such
imbalances cause work to build up at expensive stages

while less expensive stages sit idle. Third, the concur-
rency in a pipeline is tightly coupled with the set of cho-
sen stages, so using more processors may require the
pipeline structure be changed to rebalance it. Making
these changes can be difficult.

Because of these problems, most parallel program-
ming experts eschew the use of pipelines for coarse–
grained applications. Instead, they restructure the prob-
lem using other parallel structures that do not suffer from
these problems, such as a master/slave. However, novice
parallel programmers find that the pipeline is a natural
and intuitive structure. If the deficiencies of the pipeline
can be fixed, then developers can use it without fear of
performance problems.

This paper describes a transformation that allows
object–oriented parallel programs written as a pipeline
to execute using the master/slave structure. This trans-
formation is based on the State design pattern [2], re-
casting the pipeline as a series of state transitions on a
stream of input objects resulting in a stream of output
objects. The underlying master/slave structure addresses
the load balancing and idle processor problems in tradi-
tional pipelines. Further, the transformation decouples
the concurrency from the pipeline structure, so threads
no longer execute one specific stage. Instead, threads ex-
ecute transitions for any stage, improving load balanc-
ing and reducing (but not eliminating) idle times during
ramp–up and ramp–down. The result is a more efficient
pipeline that is more suitable for coarse–grained applica-
tions. Parallel programmers can take advantage of con-
ceptual simplicity of the pipeline while still benefiting
from the efficient execution of the master/slave.

This paper is organized as follows. Section 2 de-
scribes the traditional implementation of the pipeline,
focusing on its problems. Section 3 describes the State
design pattern on which the new pipeline formulation
is based. Section 4 details the new pipeline and shows
how this solves the problems inherent in the traditional
pipeline. The benefits of the State–based pipeline are
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Figure 1. An example of a pipeline.

demonstrated in Section 5 using two applications. The
first is an animation example that provides an easy–to–
understand example to highlight the differences between
a traditional pipeline and the State–based pipeline. The
second problem is an implementation of JPEG compres-
sion and encoding that is used as a real–world example.
Section 6 discusses other related research, and conclu-
sions are summarized in Section 7.

2. The Pipeline

A pipeline consists of a set of ordered stages, where
each stage accepts input data from its predecessor, trans-
forms that data, then transfers it to the next stage. Nor-
mally this transfer uses some form of buffer placed be-
tween the stages. This organization is shown in Figure 1.

A key characteristic is that the computation of each
stage is independent. The parallelism in the pipeline re-
sults from the ability to be working on different parts
of the data, at different stages of the pipeline, simulta-
neously. Thus, each stage can be assigned to a separate
processor. For example, in the pipeline of Figure 1, each
stage is executing a different work item. This allows a
stream of incoming items to be processed efficiently. In
the ideal case, the speedup of the pipeline is equal to the
number of stages.

2.1. Weaknesses of the Pipeline

Unfortunately, achieving ideal speedup from a pipe-
line is difficult for three reasons. First, there is ramp–up
and ramp–down time for the pipe. When the first few re-
quests arrive and are being processed, the stages at the
end of the pipe are idle. This situation continues until the
pipeline fills. When the input stream of requests emp-
ties, an analogous situation occurs where stages at the
beginning of the pipeline are idle. This idle time limits
the speedup, particularly for deep pipelines with many
stages and large-grained requests.

Second, the stages must be perfectly balanced to
achieve ideal speedup. Any imbalance will cause per-
formance problems. A stage that spends more time on a
request than others will starve later stages. A stage that
spends less time will be idle waiting for work from ear-
lier stages. This problem reduces the number of proces-
sors that are effectively working and thus reduces the

performance benefits of the pipeline. For example, in
Figure 1, assume that the first stage has a short execu-
tion time. It is already executing the sixth work item,
while the second stage is still working on the third item.
The first stage will quickly drain the input requests and
remain idle thereafter. One strategy for solving load im-
balances is to replicate expensive stages to improve their
throughput. To address the case where the first stage
is too short, the remaining stages could be replicated.
However, replication introduces two potential problems.
First, in replicating a stage, we can no longer guaran-
tee that requests are processed in the correct order. In
Figure 1, if the buffers are FIFO then work items flow
through the pipe in the order in which they arrive. If
a stage is replicated then there is a race condition be-
tween the replicas. This problem can be fixed using se-
quence numbers to prevent queues from returning work
items out of order. Second, balancing the pipe is diffi-
cult with replicated stages, particularly if the stages take
a variable amount of time. The programmer must find
the correct ratio of replicas for each stage to balance the
throughput. Finding this ratio will be difficult, particu-
larly with small numbers of processors.

The third weakness with the pipeline is that the con-
currency is tightly coupled with the set of stages. Each
thread can only execute the code for a specific stage.
To add more processors to a pipeline program, a new
stage must be added. This new stage could be a replica
of an existing stage, with the above problems. Alter-
nately, a new stage could be introduced by refactoring
the pipeline computation across a larger set of stages.
This new stage will affect the balance of the entire
pipeline, and it may take considerable effort to construct
a balanced refactoring. Thus, incrementally adding more
processors to a pipeline can be a difficult task.

2.2. Object–Oriented Pipelines

Most object–oriented versions of the pipe replace
stages with Active Objects [6]. An Active Object has its
own thread assigned to it, and all invocations on the Ac-
tive Object are executed using this thread. More complex
pipelines also consider the differences between having a
stagepushdata to its successor and having a stagepull
data from its predecessor [14]. Even in this more com-
plex pipeline, the basic transformation of pipe stages to
objects is the same.

3. The State Design Pattern

The State design pattern deals with entities that can
be in different states [2]. The state of the entity de-
termines the behaviour of operations on it. For exam-
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Figure 2. The State design pattern, using a
socket that can be open or closed.

ple, consider a socket for interprocess communication,
which can be open or closed. Issuing a send operation on
an open socket should forward data through the socket,
where issuing the same operation on a closed socket is a
run–time error.

An object representing such an entity must adapt its
behaviour for the current state. This could be accom-
plished by having the object check the state in each
state–dependent method. However, such code will be
difficult to maintain. Adding new states or transitions re-
quires all methods be checked and (possibly) modified.
A programmer could easily miss a transition and intro-
duce an error into the program.

The State design pattern represents the differ-
ent states of the entity as different classes. The be-
haviour of methods in these classes is determined by
the class, which represents the state. An example of the
State pattern, using a simple socket, is shown in Fig-
ure 2. The socket can be open or closed, represented
by the classesOpenSocket and ClosedSocket .
In OpenSocket , the send() method sends data
through the socket, where the method throws an excep-
tion in ClosedSocket . This State pattern includes
a context object, an instance ofSocket . This con-
text object hides state transitions from classes using the
socket. By representing each state as a class, this pat-
tern obviates the need for methods to check the current
state. This makes it easier to add new states. It also pro-
vides separation of concerns, allowing each state to be
easily examined and changed in isolation.

4. The Pipeline Rethought: The State-
based Pipeline

The State design pattern provides us with a solution
to problems that manipulate entities that can be in one
of several different states. Initially, this appears unre-

lated to pipelines. However, if we carefully consider the
workings of a pipeline, the connection becomes clear.

In the traditional pipe, each stage sends its output data
to the next stage, where it is further transformed before
being sent to the next. This transformation may not be a
simple refinement of the input data structure, but may re-
sult in a change in the size or type of the data. We could
have one data structure with the superset of data needed
by all stages, but this would waste memory. A stage con-
sumes its input type and outputs another, the result of its
transformation.

In an object–oriented pipeline, the request items can
be replaced with request objects. Each stage accepts an
input object and outputs a result object, possibly of dif-
ferent type, and passes it to the next stage. These request
objects passed between stages are the intermediate re-
sults of the pipe. Again, we could use a single request
object that holds the superset of all needed data, but this
will be wasteful.

This idea shows the transformational nature of a
pipeline. We can recast the pipeline as a sequence of
transformations that take an input object and transform it
into an output object. These transformations can be con-
sidered state transitions. Each stage causes its input ob-
ject to transition to the next state. A pipeline is a com-
position of these state transitions that maps its inputs to
the required outputs.

As described, the stages implement the transition op-
erations on input request objects. If we apply the State
pattern, the request objects in the pipeline become re-
sponsible for implementing this transition. This obviates
the need for explicit stage objects. However, these stages
also provided a thread of control or process to execute
the transformation. We still require this concurrency to
get parallelism in our pipeline.

One alternative is to simply use the threads as re-
placements for the stage objects. These threads invoke
the state transition method on their input objects and
send the output to the successor thread. However, this
solution is little more than a refactoring of the original
solution and still has all of the inherent problems with
the pipeline.

Instead, we add the following element to this de-
sign. Each request object in the pipeline implements its
transition using the same polymorphic method, called
transform() . This method causes a state transition
in the current object and returns the next state as its re-
sult. A typical implementation of this method creates the
object for the next state using the current state as a con-
structor argument. Alternately, the method can obtain a
preallocated object for the next stage from a memory
pool and initialize it using the current state. Regardless,
the next state uses accessor methods defined on the cur-
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Figure 3. A pipeline based on the State design pattern.

rent state to obtain and transform the data as needed.
The result of using a single polymorphic method for

state transitions is that the threads no longer need any
special state–specific information to execute the transi-
tion for any object in the pipeline. Each object is a self–
contained request that responds to the same method.
Threads are completely independent of the state tran-
sitions. Given any request object in the pipeline, any
thread can now execute the next stage of the pipeline.

Given this new independence between the concur-
rency and the pipeline transitions, we can internally ex-
ecute the pipeline requests using a master/slave model.
Buffers are introduced for holding the results for each
stage, much like the buffers in Figure 1. Each buffer
holds request objects of a specific type. Threads search
the buffers to locate an outstanding pipeline request in
any input buffer. The request is executed and the result,
the next state object returned by thetransform()
method, is placed into an output buffer based on its run–
time type. The final buffer holds the final output items.
The resulting pipeline is shown in Figure 3.

The major difference between this State–based
pipeline and traditional pipelines is the order in which
requests flow through the pipe. In a traditional pipeline,
assuming no stages are replicated, the queues are usu-
ally FIFO and a stage executes one request at a time.
This preserves the order of requests through the pipe. In
the State–based pipe, threads can find and execute out-
standing requests from any work queue. It is possi-
ble for two threads to take two separate items from the
same queue but enqueue the results in the opposite or-
der. If request order must be maintained, we need to
insert additional mechanisms to enforce it.

However, this ordering is often unnecessary in
coarse–grained pipelines. For example, expensive
stages can be replicated to improve throughput. Repli-
cated stages do not guarantee FIFO ordering without
additional support. Relaxing this unnecessary order-
ing improves the performance of the pipeline. We will
return to this issue in Section 4.2.

4.1. Evaluating the State–based Pipeline

The State–based pipeline addresses the problems
that plague traditional implementations: load balanc-

ing, ramp–up/ramp–down idle time, and incremental
use of additional processors. All of these benefits re-
sult from separating the concurrency in the pipeline
from the stages.

The improvement in load balancing comes from the
ability of a thread to execute any outstanding work
item. The execution of the pipeline is essentially a mas-
ter/slave structure, except that there are multiple work
queues from which a slave can take an item. This par-
allel structure is well–known for its load balancing fea-
tures if there are a large number of (relatively) small re-
quests. Load imbalance in a traditional pipe occurs be-
cause threads are statically assigned to executing a par-
ticular stage. If a stage requires more computation than
others, there is no way to dedicate additional proces-
sors to executing requests. In the State–based pipeline,
threads search through the set of queues executing out-
standing work items. Over time, expensive stages will
build up a large queue of items. The threads will nat-
urally encounter outstanding items for these expensive
stages and execute them more often, balancing the load.
This same ability to find work anywhere in the pipeline
addresses the ramp–up and ramp–down problem.

The improvement in scalability is also the result of
the master/slave execution model. In a traditional pipe,
the number of threads is equal to the number of stages.
To use more processors, a new pipe stage must be in-
troduced. This has an impact on the load balance of the
complete pipeline. In the State–based pipe, the number
of slave threads is independent of the structure of the
pipeline, and can be selected based on available pro-
cessors. If only a small number of processors are avail-
able, the user can use fewer threads than there are stages
in the computation. If a large number of processors is
available, more threads can be added. These threads will
automatically dedicate themselves to expensive stages
because of the load balancing properties of the mas-
ter/slave. Further, the user can create the set of stages
that logically match the application structure rather than
having the decomposition dictated by hardware consid-
erations.

These benefits come at some cost. Executing a work
item creates a new object for the next stage, including in-
stance variables for that object. Instantiating objects can
be slow and may require state to be copied between stage



objects. In a multithreaded environment, object instanti-
ation may cause contention for the heap and the mem-
ory allocator data structures, inhibiting concurrency. The
buffers between stages must be thread–safe, which in-
curs overhead. Finally, if ordering is required, enforcing
it will add run–time overhead.

4.2. Refinements to the State–based Pipeline:
Ordering and Buffer Elimination

We can refine the structure of this State–based
pipeline by introducing ordering of the work items
only where required by the application. Otherwise, en-
forcing ordering inhibits concurrency and should be
avoided. Ordering can be enforced by giving items se-
quence numbers as they enter the pipeline. A work
request can be given to a thread only after its predeces-
sor has completed execution. In some cases, the results
of the predecessor are needed in the computation, so ac-
cess to this item may be necessary.

For stages that do not need ordering, unordered
buffers can be placed between stages. However, the
overhead of these buffers can be reduced by remov-
ing them. Rather than placing the object into a buffer,
the thread that just completed the previous state tran-
sition continues to execute the next transition (by call-
ing the transform() method on the object returned
from the previous transition). This process contin-
ues until either an ordered stage is encountered or
the last transition is executed, at which time the ob-
ject is placed in the appropriate buffer. Thus, buffers are
used only when ordering is needed.

We can reduce the cost of ordered buffers by apply-
ing the same basic idea. If a thread is about to place the
next object to be executed into an ordered buffer, it ex-
ecutes the next stage transition instead. When finished,
it informs the buffer that the next item can be executed.
Thus, items are only placed into ordered buffers if they
arrive out of order, reducing buffer costs.

4.3. Thread Scheduling in the State–based Pipe

An issue we have not considered is how threads look
for outstanding work. The obvious choices are to search
forward from the first buffer or search backward from
the last.

This choice clearly affects the behaviour of the
pipeline. Searching forward from the beginning favours
incoming requests at the expense of those currently be-
ing processed. With a fixed number of input items,
this may be appropriate. However, there can be many
partially–processed requests in the pipeline at any time,
requiring more memory.

Searching backward from the last buffer favours re-
quests already in the pipeline. If the number of items
in the pipe is unbounded (say, an input stream of Web
server requests), then this policy, or one like it, must be
used.

Other scheduling policies are possible. These
could give priority to specific stages, could try to
balance accepting new requests against finishing
partially–processed ones, or could direct threads di-
rectly to bottleneck stages to reduce the cost of search-
ing the buffers for outstanding requests. It may even
prove useful to supply a variety of different poli-
cies to meet the needs of different applications.

5. Example Applications

To show the advantages of the State–based pipe, this
section presents results from an animation program and
parallel JPEG compression and encoding. These appli-
cations are run on a shared–memory multiprocessor us-
ing Java threads. These examples highlight the benefits
of the State–based pipe.

5.1. Graphical Animation

This graphical animation example was first used to
show the programming model of the FrameWorks (not
to be confused with object–oriented frameworks) par-
allel programming system [11], and was later used as
an example in Enterprise [10], DPnDP [12], and Paral-
lel Architectural Skeletons [3]. The application gener-
ates a sequence of frames for a computer animation and
saves them to disk.

The application has three stages. The Generate stage
computes the new location of objects for each frame in
the animation. The Geometry stage uses this informa-
tion to do viewing transformations, clipping, and projec-
tion. Finally, the Display stage uses the Geometry data to
perform hidden surface removal and anti–aliasing, then
saves the image to disk.

This problem can be solved using a pipeline as shown
in Figure 4(a). Each frame is an independent work item
at each stage, and the output of a stage is input to the
next. However, the Display stage has more computation
than other stages, unbalancing the pipe. The parallel pro-
gramming systems above replicate Display, yielding the
solution in Figure 4(b). This section compares the repli-
cated solution to a State–based pipe solution to show our
improvements.

5.1.1. Implementation and ResultsThe anima-
tion example approximates the work for each stage by
doing busy work. Generate and Geometry take 1 sec-
ond and Display takes 2 seconds, and the simulation cre-
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No. of State–based pipe Traditional pipeline
threads Time Time Opt. config(s).

1 241786 N/A N/A
2 120922 N/A N/A
3 80594 122612 1-Gen/1-Geo/1-Dis
4 60447 63612 1-Gen/1-Geo/2-Dis
5 48357 63614 1-Gen/1-Geo/3-Dis

1-Gen/2-Geo/2-Dis
2-Gen/1-Geo/2-Dis

6 40298 63614 1-Gen/1-Geo/4-Dis
1-Gen/2-Geo/3-Dis
1-Gen/3-Geo/2-Dis
2-Gen/1-Geo/3-Dis
3-Gen/1-Geo/2-Dis
2-Gen/2-Geo/2-Dis

7 36265 43226 2-Gen/2-Geo/3-Dis
8 32229 33315 2-Gen/2-Geo/4-Dis

Table 1. Results of the graphical animation
simulation for 60 frames, in milliseconds.

ates 60 frames. This is not intended as a real-world ex-
ample, but shows the benefits of the State-based pipe
where the execution time can be easily verified. The ob-
vious solution is to merge the first two stages to balance
the pipe.

The State–based pipeline used here does not use any
ordered stages. We assume that the frames are stored to
separate files, or the Display stage would need some or-
dering mechanism to assemble the complete animation.

The results are shown in Table 1. The decoupling
of the concurrency from the pipeline structure can be
shown by the ability of the State–based pipe to run with
one and two threads. The traditional pipeline cannot do
this as it assigns a thread to each stage (though such tests
could be done using OS facilities that bind threads to
specific processors). Even with two threads, the State–
based pipe provides performance benefits which are
slightly better than the traditional pipeline without a
replicated Display stage.

As the number of threads increases, the State–based

pipeline provides linear speedup up to six threads. At
seven and eight threads, speedup begins to drop off as
the number of frames is no longer evenly divisible by the
number of threads and idle time results. However, these
results are still optimal for a master/slave with an unbal-
anced workload. Equally important is that the difference
between executions is simply to change the number of
worker threads that are created, which can even be set at
run–time. Changes to the number of threads do not im-
pact the logical structure of the pipeline.

In contrast, the performance of the traditional pipe
is a step function, with large improvements for specific
pipeline configurations. With three threads, the speedup
is just under two. The longer Display stage is a bottle-
neck. With four threads, Display can be replicated so its
throughput matches that of earlier stages, balancing the
pipe. Only ramp–up and ramp–down time overhead re-
mains. Five and six threads cannot further improve per-
formance. If the first two stages are replicated, Display
is again a bottleneck. If Display is replicated, the first
two stages cannot produce work fast enough to keep it
busy. With seven threads, we get an improvement using
two threads for both Generate and Geometry and three
threads for Display. However, Display is still a bottle-
neck as earlier stages have higher throughput. Finally,
with eight threads, the optimal four-threaded pipe can
be replicated, yielding a speedup slightly below linear.

The State–based pipe also has less ramp–up and
ramp–down time. For example, with four threads the
State–based pipe exhibits perfect speedup. Each of the
60 frames requires four seconds of execution time, and
four processors complete the application in 60 seconds.
The optimal traditional pipeline, with the throughput
of all stages balanced, requires an extra three seconds.
The problem is that the last stage, the replicated Dis-
play stage, does not work at full capacity until two re-
quests reach it, which takes three seconds. Until then,
there are idle threads in the pipeline. This problem be-
comes more pronounced as the pipeline gets deeper.

Overall, the State–based pipe provides better CPU us-
age for pipeline problems, using any number of available
processors. The traditional pipe, in coupling the concur-
rency to the structure of the pipeline, offers lower per-
formance.

5.2. JPEG Compression and Encoding

This section presents results of parallel JPEG com-
pression and encoding. This program starts with an input
m × n RGB image (read from a GIF file), compresses
it using baseline JPEG compression [5], and stores the
compressed image using the JPEG File Interchange For-
mat [4]. Details and initial results can be found in [8];
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the results given here were obtained using newer hard-
ware and a newer version of Java.

JPEG compression and encoding has five steps:

1. Convert the RGB image to YCbCr colourspace.
JPEG compression works on a luminance/-
chrominance colourspace.

2. Downsample the chrominance components, Cb and
Cr. The inputm× n components are replaced with
m
2 × n

2 components. This step is optional but com-
monly done in practice.

3. Convert the image from the spatial domain to the
frequency domain using a Discrete Cosine Trans-
form (DCT). For this paper, the DCT has two key
characteristics. First, it is applied to8×8 subimages
for each component. Second, there are two sets of
coefficients for each8× 8 subimage: theDC coef-
ficientand theAC coefficients.

4. Quantize the DCT coefficients. This process filters
out some of the AC coefficients, compressing the
image without sacrificing quality. It also works on
8× 8 subimages.

5. Encode the quantized8 × 8 subimages with
variable-length Huffman encoding. The DC co-
efficient is encoded as the difference of it and
the previous coefficient, while the AC coeffi-
cients are encoded individually.

5.2.1. Implementing the JPEG EncoderThe last
three steps in JPEG compression are executed indepen-
dently on16×16 subimages of the input image. Though
most stages work on8× 8 subimages, recall that down-
sampling halves the chrominance components, so we
need 16 × 16 blocks from the original. The result-
ing pipeline, including all necessary ordering, is given
in Figure 5.

The stages in the JPEG application are the logical
steps in the problem. However, they make poor pipeline
stages as they take a variable amount of processing time.
Table 2 shows the distribution of processing time be-
tween stages. The distribution changes slightly based on
image size.

JPEG stage Percentage of exec. time
RGB to YCbCr conversion 45.1%
Downsampling 2.4%
Discrete Cosine Transform 26.7%
Quantization 17.8%
Encoding 8.0%

Table 2. The percentage of the overall exe-
cution time for each of the JPEG stages.

It is important to understand how ordered buffers
work in Figure 5. These buffers do not prevent stages
from running concurrently. A subimage can be quan-
tized while another is encoded. These buffers have
two key characteristics. First, they ensure items exit
in the order they entered the pipeline, by attaching se-
quence numbers to incoming items. Second, they ensure
mutually-exclusive execution of the stage transition.
This allows an item to access results from the previ-
ous item. Note that the ordering does not affect threads
putting items into a buffer. Threads can put quan-
tized subimages in the buffer out of order. They can
execute other items if no encoding can be done. Order-
ing only affects threads removing items from a buffer.
An item can only be removed if it is next in sequence
and no other request item of that same type is cur-
rently being executed by any thread. If this is not true,
the thread gets no item from the buffer and contin-
ues to search the pipe for more work.

For the JPEG application, two stages must be ordered
to correctly encode the image. The encoding stage must
be ordered because the DC coefficient is encoded as the
difference between successive DC coefficients. This data
dependency cannot be avoided because JPEG encoding
is uses variable–length, so we cannot leave space to in-
sert the necessary bits later without requiring additional,
expensive data copying. It is necessary to process the re-
quests in order. The output stage must also be ordered
to assemble the bitstream for the JPEG file in the cor-
rect sequence. Again, this ordering is necessary as JPEG
uses variable–length encoding.

The ordered stages use a concurrent priority queue
[7], sorted by the sequence numbers attached to input
items. Also, a reference to the last work item processed
by an ordered stage is kept, which the next request can
access. This allows the DC component to be properly en-
coded, but means that a work item cannot be processed
until its predecessor has finished.

The input to this pipeline is contiguous stripes of 16
rows of the input image. It is also possible to partition
the rows provided that the number of columns is a mul-
tiple of 16.

For this example, the threads search for work starting



1024× 896 3212× 3600
Slaves Speedup Time Slaves Speedup Time

1 0.85 2861 1 0.88 34124
2 1.56 1568 2 1.66 18129
3 2.18 1118 3 2.35 12757
4 2.67 914 4 2.99 10049
5 3.05 801 5 3.54 8472
6 3.34 730 6 4.05 7422
7 3.54 690 7 4.44 6756
8 3.53 691 8 4.70 6386

(a) Results from the State–based pipe.

1024× 896 3212× 3600
Speedup Time (ms) Speedup Time (ms)

1.83 1332 1.82 16491
(b) Results from a traditional pipeline, using five threads.

Table 3. Speedup and wall clock times
parallel JPEG encoding with preallocated
memory. Times are in milliseconds.

at the last stage and moving backward. This gives prior-
ity to the encoding stage over processing new input. If
threads search in the opposite direction, parallelism will
be limited at the end of the program. This gives prior-
ity to new work, which will queue up at the encoding
stage. Work will begin on these items only after the in-
put queue is drained. Since the last stage is ordered, only
one request can be processed at a time, reducing paral-
lelism and performance. Thus, the scheduling policy is
key to good performance and must be chosen carefully.

As expected, the number of threads in the State–
based pipe is independent of the logical structure of the
stages. We only have to consider the number of avail-
able processors.

5.2.2. Performance ResultsThe wall–clock time and
speedups for the parallel JPEG program are given in Ta-
ble 3. These results were obtained using Java 1.4.0 on
a Sun V880 server running Solaris 5.8, with eight 900
MHz Sparc v9 processors and 16 GB of memory. Data is
provided for both State–based and traditional pipelines.
These results are from versions of the program that pre-
allocate memory. The performance impact of memory
allocation is discussed later in this section.

The time includes JPEG compression, encoding, and
writing the output JFIF file. The times for reading the in-
put GIF file and memory preallocations are not included.
For fair comparisons, the sequential version also preal-
locates memory. Though the sequential version does not
contend for the heap, the stages store image data in ar-
rays. Java arrays must be initialized when they are cre-
ated, consuming CPU time. Including array initializa-
tion would skew the results.

The State–based pipe outperforms the traditional pipe
when using more than two processors. Given the vary-

1024× 896 3212× 3600
Slaves Speedup Time Slaves Speedup Time

1 0.77 3177 1 0.75 40134
2 1.38 1769 2 1.29 23203
3 1.83 1332 3 1.69 17746
4 2.17 1122 4 2.01 14937
5 2.43 1004 5 2.27 13253
6 2.55 956 6 2.46 12183
7 2.59 943 7 2.61 11494
8 2.54 960 8 2.69 11150

Table 4. Speedup and wall clock times par-
allel JPEG encoding without preallocated
memory for the State–based pipeline.
Times are in milliseconds.

ing computation time among stages, this is not surpris-
ing. The most expensive stage takes almost half of the
processing time, limiting the speedup to just over 2.
The least expensive stage takes 2.4% of the time. Fix-
ing this imbalance requires stages be combined. The
State–based pipe parallelizes JPEG compression with-
out changing the logical structure despite the varying ex-
ecution times.

Also, adding more threads to the State–based pipe
almost always improves performance. We add these
threads by simply creating them; the logical structure of
the stages is unchanged. Thus, finding the optimal num-
ber of threads is straightforward. In contrast, the tradi-
tional pipe would need to reorganize the computation
among more stages to use more processors. Perform-
ing this reorganization while maintaining the balance of
the pipeline is a difficult task. Also, note that when the
State–based pipe uses the same number of threads as the
traditional version (five threads), its performance is bet-
ter. This suggests that threads are being used more effec-
tively in the State–based pipe.

One weakness of the State–based pipeline is the need
to create an object for each request at each stage. Object
creation introduces contention for the heap. Also, in this
application, array initialization for stage data is a prob-
lem.

The results for the JPEG example where memory is
not preallocated in the State–based pipeline are in Ta-
ble 4. Memory allocation overhead grows with image
size. For the small image, the overhead is 39% with eight
workers, but is 75% for the larger image.

6. Related Work

The pipeline can be written as a design pattern [14].
One change to the basic pipe is separating data flow from
control flow. While data flows in the same direction, the
flow of control may have a stagepushdata to the next



or have the next stagepull data from the previous. How-
ever, this pattern is a traditional pipeline that uses ob-
jects as stages.

The State–based pipeline bears a strong resemblance
to SEDA for highly–concurrent, scalable Web services
[15]. Both SEDA and the State–based pipe represent
computations as stages separated by buffers, which de-
couples the concurrency from the stages. Both use this
decoupling to self–tune applications to improve per-
formance. The State–based pipe uses the master/slave
structure to balance the computational load from a set of
uneven stages over a fixed set of threads. SEDA uses
threads to process server calls, hide blocking system
calls, and provide concurrency for computational tasks.
SEDA monitors the conditions at each stage to adjust the
number of threads to improve throughput and response
time. SEDA also allows stages to share a common thread
pool, resulting in an organization like the State–based
pipeline. Unlike this pipeline, SEDA creates and de-
stroys threads as the server load changes. As well, SEDA
batches items in the queue between threads, delivering
several items at once. The State–based pipe provides
global scheduling and control for computational tasks.
However, we may still benefit from the scheduling work
in SEDA.

One of the problems with the State–based pipe is the
need to create new stage objects for each request. In mul-
tithreaded systems, this can lead to contention for the
heap and allocator data structures. Multithreaded mem-
ory allocators like Hoard [1] remove some contention by
using thread–local allocation structures and memory re-
gions. However, these allocators do not remove Java ar-
ray initialization.

7. Conclusions and Future Work

The pipeline is a simple and intuitive parallel struc-
ture that can speed up many problems. Unfortunately, it
is difficult to use for three reasons. First, it is very sen-
sitive to load imbalances. Second, at the beginning and
end of a computation, stages are idle. Third, the stages
define the concurrency, making it difficult to add addi-
tional processors.

This paper introduced a new pipeline formulation,
the State-based pipe. The State-based pipe rethinks the
pipeline in an object-oriented way, and considers the
computation as a series of state transitions using the
State pattern. This allows pipeline computations to be
executed using a master/slave structure that solves or re-
duces the three problems. We showed this improvement
using two example programs.

Future work for the State–based pipe includes in-
vestigating scheduling options, further investigating its

strengths and flexibility, and automating its use with a
design–pattern–based parallel programming system.

Scheduling in this pipeline is simple but still yields
improvements over the traditional pipeline. This is en-
couraging, though scheduling may still be improved
using mechanisms from SEDA or elsewhere. Im-
proved scheduling algorithms may reduce the over-
head of searching the work queues, instead directing
threads immediately to bottleneck stages. One un-
explored option that may help scheduling is to in-
clude some unordered buffers to reduce the granularity
of work in the pipeline, rather than removing all un-
ordered buffers. If multiple scheduling algorithms are
needed to support different application characteris-
tics, then it would be useful to develop some guidelines
for selecting the most appropriate algorithm. Regard-
less, better schedulers will only improve the State–based
pipeline further.

This paper has demonstrated that the State–based
pipeline works well for applications where the stages are
imbalanced. The example applications are imbalanced,
but the imbalance is static over the entire execution of
the problem (though it may vary based on problem in-
put). We also believe that this pipeline will work well
for problems where the execution times of the pipeline
stages varies as the application runs. However, we have
not run any example programs with this characteristic.

As well, the State–based pipe may be more flexible
than some of its counterparts. In most pipelines, requests
can only flow from the start to the end. With the State–
based pipe, each stage creates an object for the next
stage. This is normally the next logical stage in the ap-
plication. However, it is possible to create an object for
any stage. This ability could prove useful for pipeline
problems that use iterative refinement. A stage transfor-
mation could either create an instance of an earlier log-
ical stage to continue refinement or create an instance
of the next logical stage when the data has converged.
Again, we have not implemented any examples that re-
quire this capability.

The State–based pipe is suitable for an object–
oriented framework or for use in a pattern–based par-
allel programming system like CO2P3S [8, 9]. The ba-
sic pipeline structure is application–independent,
with only a small amount of glue code changing be-
tween uses, making it ideal for a framework. The
CO2P3S system can generate frameworks, includ-
ing glue code, based on options specified in a user
interface. The user is exposed only to a set of meth-
ods that must be implemented to complete the appli-
cation, with the parallel structure hidden during initial
development. The latest version of CO2P3S gener-
ates both shared–memory and distributed–memory Java



frameworks for the patterns it supports [13], so a dis-
tributed version of the State–based pipe would also need
to be developed.
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