
FastLSA: A Fast, Linear-Space, Parallel and Sequential Algorithm

for Sequence Alignment

A. Driga♦, P. Lu♦, J. Schaeffer♦, D. Szafron♦, K. Charter, and I. Parsons

♦Department of Computing Science

University of Alberta

Edmonton, Alberta, T6G 2E8

Canada

{adrian|paullu|jonathan|duane }@cs.ualberta.ca

August 1, 2005

1

Running Head: Parallel and Sequential FastLSA

Contact Author:

Paul Lu
Associate Professor
Dept. of Computing Science
University of Alberta
Edmonton, Alberta, T6G 2E8
Canada

E-mail: paullu@cs.ualberta.ca
Office: (780) 492-7760
FAX: (780) 492-1071
Web: http://www.cs.ualberta.ca/˜paullu/

Abstract

Sequence alignment is a fundamental operation for homologysearch in bioinformatics. For two DNA

or protein sequences of lengthm andn, full-matrix (FM), dynamic programming alignment algorithms

such as Needleman-Wunsch and Smith-Waterman take O(m × n) time and use a possibly prohibitive

O(m × n) space. Hirschberg’s algorithm reduces the space requirements to O(min(m, n)), but requires

approximately twice the number of operations required by the FM algorithms.

The Fast Linear Space Alignment (FastLSA) algorithm adaptsto the amount of space available by

trading space for operations. FastLSA can effectively adapt to use either linear or quadratic space,

depending on the specific machine. Our experiments show that, in practice, due to memory caching

effects, FastLSA is always as fast or faster than Hirschbergand the FM algorithms.

To further improve the performance of FastLSA, we have parallelized it using a simple but effec-

tive form of wavefront parallelism. Our experimental results show that Parallel FastLSA exhibits good

speedups, almost linear for 8 processors or less, and also that the efficiency of Parallel FastLSA increases

with the size of the sequences that are aligned. Consequently, parallel and sequential FastLSA can be

flexibly and effectively used with high performance in situations where space and the number of parallel

processors can vary greatly.

Keywords: sequence alignment, homology search, bioinformatics, linear space, computational biol-
ogy, parallel and sequential algorithms

2

1 Introduction

Sequence alignment is a fundamental operation in bioinformatics. Pairwise sequence alignment is used

to determine homology (i.e., similar structure) in both DNAand protein sequences to gain insight into

their purpose and function. Given the large DNA sequences (e.g., tens of thousands of bases) that some

researchers wish to study [6, 19, 7], the space and time complexity of a sequence alignment algorithm

become increasingly important.

As the first research contribution of this paper, we establish that the recently-introduced FastLSA [4]

algorithm is the preferred sequential, dynamic programming algorithm for pairwise sequence alignment.

Given FastLSA’s strong analytical and empirical characteristics with respect to storage and time complex-

ity, FastLSA is a good candidate for parallelization to improve its performance when dealing with large,

whole genome alignments. As the second contribution, we show that FastLSA is nicely parallelizable while

maintaining the strong space and time complexity properties of the sequential algorithm.

A recurring theme in this paper, and the third research contribution in the form of a case study, is

the importance of algorithms (like FastLSA) that can be parameterized and tuned (e.g., via parameterk,

discussed below) to take advantage of cache memory and main memory sizes. Existing algorithms for

sequence alignment cannot be similarly parameterized. Furthermore, the selected value for parameterk

has a significant impact on the parallel speedups of the algorithm, which results in interesting lessons in

performance trade-offs.

1.1 Background

The primary structure of a protein consists of a sequence of amino acids, usually represented as a string,

where each amino acid is represented by one of 20 different letters. To align two protein sequences, say

TLDKLLKDandTDVLKAD, the sequences can be shifted right or left to align as many identical letters as

3

Symbol Amino Acid Name DNA Codon(s) A D K L T V

A alanine GC* (* =any) 16 - - - - -
D aspartic acid GAT GAC 0 20 - - - -
K lysine AAA AAG 0 0 20 - - -
L leusine TTA TTG CT* 0 0 0 20 - -
T threonine AC* 0 0 0 0 20 -
V valine GT* 0 0 0 12 0 20

Table 1: Part of Modified Dayhoff Scoring Matrix and Similarity Table, used for some examples in this
paper

possible; in this example, 3 letters can be aligned (not shown). However, by allowing gaps (“- ”) to be

inserted into sequences, we can often obtain more identicalletters; in this example, there are 2 different

ways of obtaining 5 identically aligned letters (highlighted by*):

TLDKLLK-D TLDKLLK-D
T-DVL-KAD T-D-VLKAD
* * * * * * * ** *

The different amino acids valine (V) and leucine (L) have similar functional properties so in sequence

alignment we would like to indicate that the letters V and L are a better match than the amino acids lysine (K)

and leucine (L), which have very different functional properties. To accommodate such similarity matches,

we create a scoring function based on the numeric entries of asimilarity table. For each pair of letters, the

table gives a similarity score, where higher values indicate higher similarity. The score of an alignment

is obtained by iterating over all pairs of corresponding letters in the aligned sequences and adding up the

entries in the similarity table that is indexed by each pair.An optimal alignment is an alignment with the

highest score for a given scoring function. In fact, there may be several optimal alignments with the same

optimal score.

The similarity table for the scoring function used in this paper is based on the popular Dayhoff scoring

matrix, MDM78 Mutation Data Matrix - 1978 [5]. It is the default similarity table used in the BioTools’

commercial product PepTool (www.biotools.com). It has been scaled so that each entry is a non-

4

negative integer. Table 1 shows the part of the scoring tableused in some of the examples of this paper.

Higher scores denote higher similarity. Note that valine (V) and leucine (L) have a similarity score of 12,

since they have similar function, while lysine (K) and leucine (L) have a similarity score of 0 to denote no

similarity. If an amino acid in one sequence lines up with a gap in the other sequence, then a negative value,

called agap penaltyis added to the score.

Many algorithms for sequence alignment are based on dynamicprogramming techniques that are equiv-

alent to the algorithms proposed by Needleman and Wunsch [15] and Smith and Waterman [20]. Aligning

two sequences of lengthm andn is equivalent to finding the maximum cost path through a dynamic program

matrix (DPM) of sizem + 1 by n + 1, where an extra row and column is added to capture leading gaps. Of

course, high scores and the maximum cost paths are desirablewith respect to the scoring functions in this

paper. Given a DPM of sizem by n, it takes O(m × n) time to compute the DPM cost entries, and then

O(m + n) time to identify the maximum cost path in the DPM. In this paper, algorithms that are based on

storing the complete DPM are called full matrix algorithms (FM).

Unfortunately, calculations requiring O(m × n) space can be prohibitive. For instance, aligning two

sequences with 10,000 letters each requires 400 Mbytes of memory, assuming each DPM entry is a single 4

byte integer. Although main memories in 2005 can be several hundred megabytes or gigabytes in size, the

all-important processor caches are still (typically) wellunder 128 Mbytes. Furthermore, given that we now

have the capacity to sequence entire genomes, pairwise sequence comparisons involving up to four million

neucleotides at a time are now desirable. O(m×n) storage of this magnitude would require O(1013) Mbytes

of memory which is beyond the range of current technology.

Hirschberg [10] was the first to report a way of doing the computation using linear space. However, not

storing the entire DPM means that some of the entries need to be recomputed to find the optimal path. It

is a classic space-time trade-off: the number of operationsapproximately doubles, but the space overhead

drops from quadratic to linear in the length of the sequences. In fact, Hirschberg’s original algorithm was

5

designed to compute the longest common sub-string of two strings, but Myers and Miller [14] applied it to

sequence alignment.

In summary, there are two extremes for pairwise optimal sequence alignment:

1. full matrix, which minimizes the computational complexity, and

2. linear space, which minimizes the storage requirements.

However, linear-space alignment algorithms, such as Hirschberg’s algorithm, do not take advantage of

any additional memory that might be available.

This paper examines the FastLSA (Fast Linear-Space Alignment) algorithm, in both sequential and

parallel versions. We expand on the original FastLSA paper [4] with new analytical and empirical results

for the sequential algorithm. We also introduce a new parallel version of FastLSA [8] and provide substantial

new analytical and empirical results. Compared to a previously-published version of this work [9], this paper

provides the full proofs of the theorems (i.e., Appendix A),a more thorough coverage of the background

and related work (i.e., this section and Section 2), and moreempirical results (i.e., Section 4 and Section 6).

Unlike Hirschberg’s algorithm, FastLSA can take advantageof extra space to reduce the number of op-

erations. We describe the algorithms and we provide both analytical and empirical results for the algorithms.

At one extreme, FastLSA uses linear space with approximately 1.5 times the number of operations required

by the FM algorithms. At the other extreme, FastLSA uses quadratic space with no extra operations. Our

experiments show that, in practice, due to memory caching effects, FastLSA is always as fast or faster than

Hirschberg and the FM algorithms.

Our experimental results show that Parallel FastLSA exhibits good speedups, almost linear for 8 pro-

cessors or less, and also that the efficiency of Parallel FastLSA increases with the size of the sequences that

are aligned. Consequently, parallel and sequential FastLSA can be flexibly and effectively used with high

performance in situations where space and the number of parallel processors can vary greatly.

6

- T L D K L L K D

- 010 -10 -20 -30 -40 -50 -60 -70 -80
T -10 209 108 0 -10 -20 -30 -40 -50
D -20 10 20 307 206 10 0 -10 -20
V -30 0 22 20 30 325 22 12 2
L -40 -10 20 22 20 50 524 42 32
K -50 -20 10 20 42 40 50 723 62
A -60 -30 0 10 32 42 40 622 72A

D -70 -40 -10 20 22 32 42 52L 821

Figure 1: A Dynamic Programming Matrix (using similarity table from Table 1) and a Gap Penalty of -10.
Subscripts denote an optimal path.

2 Related Work

2.1 Dynamic Programming and Full-Matrix Algorithms

FastLSA is a dynamic programming algorithm, like the FM algorithms and Hirschberg’s algorithm, and it

produces exactly the same optimal alignment for a given scoring function. The algorithms differ only in the

space and time required.

The sequences from the introduction can be used to illustrate the differences between these algorithms.

The scoring function uses the scoring table of Table 1 and a gap penalty of -10. Consider the sequences:

TLDKLLKDandTDVLKAD. The alignment:

TLDKLLK-D
T-D-VLKAD

has an optimal score of (see Table 1, represented as SimilarityTable[]): SimilarityTable[T,T] + gap + Sim-

ilarityTable[D,D] + gap + SimilarityTable[L,V] + SimilarityTable[L,L] + SimilarityTable[K,K] + gap +

SimilarityTable[D,D] = 20 + (-10) + 20 + (-10) + 12 + 20 + 20 + (-10) + 20 = 82. How is this optimal

alignment obtained?

7

One sequence is placed along the top of the matrix and the other sequence is placed along the left side

and a gap is added to the start of each sequence (Figure 1). Each different path from the top left corner to the

bottom right corner of the matrix that goes only right, down or diagonal, represents a different alignment.

Any path can be translated to an alignment, but to obtain the optimal alignment for a given scoring

function, we need to identify the corresponding optimal path. To derive the optimal path in the matrix, each

of the three algorithms can be divided into two phases, whichwe call FindScoreandFindPath. Figure 1

shows the DPM scores for the example sequences that are computed during theFindScorephase. The entries

with numerical subscripts form the optimal path, that is computed in theFindPathphase.

In theFindScorephase, a 0 is placed in the upper-left corner of the matrix. Each algorithm propagates

scores from the upper-left corner of the matrix to the lower-right corner. The score that ends up in the

lower-right corner is the optimal score. The score of any entry is the maximum of the three scores that

can be propagated from the entry on its left, the entry above it and the entry above-left. A diagonal move

corresponds to a match or mismatch and adds the scoring tablevalue for the two letters being considered.

A down (right) move corresponds to inserting a gap in the horizontal (vertical) sequence and adds a gap

penalty.

For example, the score of209 in the ([T,T]) entry near the top left corner is the maximum ofthe scores

from its left entry(-10 + -10 = -20), above entry (-10 + -10 = -20) and above-left entry (0 + SimilarityTable[T,

T] = 0 + 20 = 20). The score of108 in the ([T,L]) entry is the maximum of the scores from its leftentry (20

+ -10 = 10), its above entry (-20 + -10 = -30) and its above-leftentry (-10 + SimilarityTable[T,L] = -10 + 0

= -10).

The FM algorithms, Hirschberg’s algorithm and FastLSA all compute the score of the alignment in the

same way. However, the FM algorithms store all of the(m + 1) × (n + 1) matrix entries, while the other

two algorithms propagate a single row of scores (m entries) as the matrix is computed, overwriting an old

row of scores by a new row of scores.

8

The FindPath algorithm computes the optimal path(s) backwards. For FM algorithms, theFindPath

phase is straightforward. Since the FM algorithms store allscores in the DPM, they can compute the path by

starting at the lower right corner and computing which of thethree entries (left, up and diagonal) was used

to compute its score. For example, the lower right ([D,D]]) entry is 821. Since its upper-left entry ([A,K])

has a score of622 and since (62 + SimilarityTable[D,D] = 62 + 20 = 82), an optimal path goes through its

upper-left ([A,K]) entry. In addition, an optimal path cannot lead to its above entry ([A,D]) with value72A

since 72 - 10 = 626= 82. Similarly, an optimal path cannot lead to the left entry ([D,K]) whose value is

52L. Note that in general it is possible for more than one path to be optimal. However, in our example,

there is a single optimal path and it is denoted by numerical subscripts as shown in Figure 1. An alternative

approach is to store three bits in each DPM entry to record thebackward path. Each bit corresponds to one

of the directions, diagonal, up or left. This will record multiple optimal paths. If only a single optimal path

is required, two bits can be used to encode the three path choices at each DPM entry.

In the FM algorithms, the optimal path is easy to compute since the entire dynamic programming matrix

is stored. However, neither Hirschberg’s algorithm nor FastLSA stores the entire dynamic scoring matrix

so the computation of the path is more complicated. In both cases, some of the DPM entries must be

recomputed to find the path.

2.2 Hirschberg’s Algorithm

Hirschberg’s algorithm uses a divide-and-conquer approach. It splits one sequence in half (sizen/2) and

performs theFindScorecomputation on each half against the other original sequence (sizem). However,

the half-sequences are aligned from opposite ends or equivalently, the second half sequence is reversed. The

algorithm does not store the entire DPM in memory. Instead only one row in each half matrix is stored

and this row is updated as the computation continues. In essence, we are using a virtual or logical dynamic

programming matrix without storing it.

9

After the two half alignments are complete, only the middle two rows of the matrix are known. This

computation determines the split of the full sequence against the two half sequences. The split point maxi-

mizes the sum of the corresponding pairs of scores from the two half alignments.

Hirschberg’s algorithm is called recursively to solve these two simpler problems. The size of the sub-

problem isn/2 by approximatelym/2, depending on where the split occurred. Since the DPM is not stored,

parts of it will need to be re-computed.

The recursion terminates when the size of the sub-problems is one, but it could be terminated sooner by

using a FM algorithm when the problem size is small enough to solve in memory or cache. Approximately

m × n re-computations need to be done using Hirschberg’s algorithm [14].

2.3 Parallel Dynamic Programming

In the broader area of the design and analysis of parallel algorithms, dynamic programming has been studied

by many of researchers. The spectrum of papers ranges from the theoretical (e.g., [3, 1]) to papers with

applied and empirical results, in addition to theory (e.g.,[12, 13]).

Dynamic programming solves a large number of diverse applications, ranging from, for example, string

edit distance [1] to sequence alignment [13] (i.e., the motivation for FastLSA itself). There are differences

in the allowed operations (e.g., deletion, insertion, and substitution in string editing as opposed to matching,

mismatching, and inserting a gap in sequence alignment). But, there are also similarities between applica-

tions at the level of the dynamic programming paradigm: the results of partial subproblems are combined

to solve larger problems. Consequently, the concepts of pipelining and dependencies between subproblems

(e.g., [12]) and the strategies for combining the results ofsubproblems (e.g., [1]) are re-visited by different

researchers. Furthermore, for each application, there canbe different assumptions about the granularity

of the tasks (e.g., modelled as a random variable following aprobability distribution [12]) and about the

common problem sizes (e.g., sequence lengths less than 1,000 characters [12] versus tens or hundreds of

10

thousands of characters (Table 3)).

Given the large spectrum of possible analyses, applications, and assumptions, direct comparisons be-

tween results are difficult. However, to provide some context, our work with FastLSA is more towards the

applied and empirical end of the spectrum. The development of FastLSA was driven by the desire to im-

prove sequence alignment performance in practice. Our empirical results come from problem sizes taken

from actual biological data (Table 3) and an implementationrunning on contemporary hardware (Section 6).

We used our analytical results to better understand the implementation issues related to the algorithm. For

example, the trade-off between time and space lends itself to theoretical analysis, but the empirical analysis

is the ultimate validation of this principle.

3 Sequential FastLSA Algorithm

We describe the FastLSA algorithm and show how it is different from both the FM and Hirschberg algo-

rithms. In particular, FastLSA can be tuned to take advantage of different cache memory and main memory

sizes. Furthermore, we show that FastLSA is the preferred algorithm in practice, which also makes it a good

candidate for parallelization.

The basic idea of FastLSA [4, 8] is to use more available memory to reduce the number of re-computations

that need to be done in Hirschberg’s algorithm. This is accomplished by: (1) dividing both sequences instead

of just one, (2) dividing each sequence into k parts instead of only two and (3) storing some specific rows

and columns of the logical dynamic programming matrix (DPM)in grid lines to reduce the re-computations.

Suppose thata[1..m] andb[1..n] are the two biological sequences that must be aligned. LetRM denote

the number of memory units (e.g., words) available for solving the sequence alignment problem.RM may

represent either the size of cache memory or main memory, depending on the specific performance-tuning

goal of the programmer. IfRM > m × n, then a full matrix algorithm (e.g., Needleman-Wunsch) canbe

11

Algorithm FastLSA
input : logical-d.p.-matrix flsaProblem,

cached-values cacheRow and cacheColumn,
solution-path flsaPath

output: optimal path corresponding to flsaProblem prepend ed to flsaPath

/* Figure 3.6 (a) */
1 if flsaProblem fits in allocated buffer then

// BASE CASE
/* Figure 3.6 (b) */

2 return solveFullMatrix(flsaProblem, cacheRow, cacheCo lumn, flsaPath)

// GENERAL CASE
3 flsaGrid = allocateGrid(flsaProblem)
4 initializeGrid(flsaGrid, cacheRow, cacheColumn)

/* Figure 3.6 (c) */
5 fillGridCache(flsaProblem, flsaGrid)

6 newCacheRow = CachedRow(flsaGrid, flsaProblem.bottomR ight)
7 newCacheColumn = CachedColumn(flsaGrid, flsaProblem.b ottomRight)

/* Figure 3.6 (d) */
8 flsaPathExt = FastLSA(flsaProblem.bottomRight, newCac heRow, newCacheColumn, flsaPath)

9 while flsaPathExt not fully extended
10 flsaSubProblem = UpLeft(flsaGrid, flsaPathExt)
11 newCacheRow = CachedRow(flsaGrid, flsaSubProblem)
12 newCacheColumn = CachedColumn(flsaGrid, flsaSubProbl em)

/* Figure 3.6 (e) */
13 flsaPathExt = FastLSA(flsaSubProblem, newCacheRow, ne wCacheColumn, flsaPathExt)

14 deallocateGrid(flsaGrid)

/* Figure 3.6 (f) */
15 return flsaPathExt

Figure 2: Pseudo-Code for FastLSA

used to solve the problem because the DPM can be stored in the available memory.

FastLSA is a recursive algorithm based on the divide-and-conquer paradigm. The pseudo-code for the

FastLSA algorithm is shown in Figure 2. A call to FastLSA takes as input a logical DPM corresponding

to a pair of sequences and an optimal solution path that ends at the bottom-right entry of this logical DPM.

FastLSA prepends to the input path an optimal path which traverses the input matrix from the bottom-right

entry to the top or the left boundary. The resulting optimal path constitutes the output of FastLSA. A row

and a column of cached DPM entry values are also passed in witheach call to FastLSA.

FastLSA is invoked by the call:

12

solPath = FastLSA(flsaInitialProblem, cacheRow, cacheColumn, flsaInitialPath)

which will return a partial optimal path insolPath. This partial optimal path can then be extended to the

top-left entry of the logical DPM to form a complete optimal path.

For the initial call to FastLSA, the logical DPM used as input(flsaInitialProblem) corresponds to the

input sequencesa and b. The attribute “logical” is used because only the shape of the matrix is known

initially. This initial logical DPM has(m+1)× (n+1) entries whose values must be computed. The initial

optimal path,flsaInitialPath, is formed from a single point,(m,n), the bottom-right entry of the original

logical DPM.

Prior to running FastLSA,BM units of memory are reserved from theRM units available. These

reserved units are subsequently referred to as theBase Case buffer. If the DPM corresponding to the input

problem can be allocated in the Base Case buffer, then an optimal path for the input problem is built using a

full matrix algorithm. This corresponds to theBASE CASEsection of the algorithm (lines 1–2 in Figure 2).

The full matrix algorithm uses the input valuescacheRowandcacheColumnas the first row and column

of the DPM it must compute (Figure 3(a)). After all entries ofthe DPM have been computed, an optimal

path through the matrix is built. Figure 3(b) shows the computed and stored DPM entries of a sample base

case. In this figure, an optimal path is found to extend from the bottom-right corner entry,A, to the top

boundary entry,B.

If the size of the DPM for the input problem is larger thanBM , the General Case of the algorithm is fol-

lowed (line 3 onwards in Figure 2). In this case, FastLSA splits the input problem into smaller subproblems.

These subproblems are solved recursively using calls to FastLSA. The solution paths for these subproblems,

if concatenated, form a solution path for the input problem.

The general case of FastLSA starts by dividing each dimension of the logical DPM intok equal seg-

ments,k ≥ 2. As a result, the DPM for the input problem is partitioned into k2 logical sub-matricesof size

approximatelym

k
× n

k
(Figure 3(c)). These sub-matrices are laid out ink rows, each row havingk columns.

13

(a) Layout of the input caches
at the start ofFastLSA()

(b) Base case: full matrix
algorithm is used to find an
optimal path

(c) General case: grid of
caches (for k = 4) allocated
but not filled yet

��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
�� � � � � � � � � �� � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � �

A

B

��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
�� � � � � � � � � �	 	 	 	 	 	 	 	 	 	

(d) General case: grid of
caches filled before recursion
on bottom-right block

(e) General case: after
recursion on bottom-right
block, with partial solution
path

(f) General case: extend path
to top boundary via successive
recursion on sub-problems

��
��
��
��
��
��
��
��
��
��
��� � � � � � � � � �� � � � � � � � � �

� � �
� � �
� � �
� � �
� � �
� � �

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

� �

� �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

� �

� �

C2

��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
� ! ! ! ! ! ! ! ! ! ! !

"
"
"
#
#
#

$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$

%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%

C

&&
&&
&&
&&
&&
&&
&&
&&
&&
&&
&

''
''
''
''
''
''
''
''
''
''
'

((((((((((())))))))))

* * * * * * * * * * *+ + + + + + + + + +

, , , , , , , , , , ,- - - - - - - - - -

..

..

..

..

..

..

..

..

..

..

.

//
//
//
//
//
//
//
//
//
//

0 0
0 0
0 0

1
1
1

22
22
22
22
22
22
22
22
22
22

33
33
33
33
33
33
33
33
33
33

44
44
44
44
44
44
44
44
44
44

55
55
55
55
55
55
55
55
55
55

66
66
66
66
66
66
66
66
66
66

77
77
77
77
77
77
77
77
77
77

8 8 8 89 9 9: : : :
: : : :
: : : :

; ; ;
; ; ;
; ; ;< <

< <
< <

=
=
=> > >? ? ?

@ @ @ @ @ @ @ @ @ @A A A A A A A A A A

B B B B B B B B B BB B B B B B B B B BC C C C C C C C C CC C C C C C C C C C
D D D D D D D D D DE E E E E E E E E E

F F F F F F F F F FG G G G G G G G G G

C

F

E D

HI G

Sub-problem
(for recursion)H H HH H HH H HI I II I II I I J J J JJ J J J

K K KK K K
Known score values Unknown score values Solution path

Figure 3: Execution Stages of FastLSA

The first goal of the general case is to find the values of the entries of the DPM which lie on the left

and upper border of thek2 logical sub-matrices, and save them. These interesting values lie exactly alongk

rows andk columns of the logical DPM. The gridflsaGrid is allocated in order to store these values once

they are computed (line 3 in Figure 2).flsaGrid consists ofk rows of sizen andk columns of sizem. The

grid rows and columns can be seen as overlapping the rows and column of the DPM.

The uppermost row and the leftmost column offlsaGrid will hold the values passed in with the row

cacheRowand the columncacheColumn. This initialization of the grid is done ininitializeGrid (line 4 in

14

Figure 2). Figure 3(c) shows this stage of the computation.

In order to fill the remainingk − 1 rows andk − 1 columns of the gridflsaGrid, all the entries of the

DPM are computed, except for those forming the bottom-rightsub-matrix. This is accomplished with the

call tofillGridCache(line 5 in Figure 2). These entries are saved in the portions of flsaGridthat they overlap.

However, there are two exceptions: only the right-most column is saved from the sub-matrices of thekth

row of sub-matrices, and only the bottom-most row is saved from the sub-matrices of thekth column of

sub-matrices. The entries corresponding to the bottom-right sub-matrix are not yet computed.

Figure 3(d) showsflsaGrid completely filled before the FastLSA is applied recursivelyto the bottom-

right sub-matrix. The portions fromflsaGrid that border the bottom-right sub-matrix are passed with the

recursive call toFastLSAas the new cachesnewCacheRowandnewCacheColumn(line 8 in Figure 2). When

this recursive call toFastLSAreturns, the optimal path for the initial problem has been extended from the

bottom-right entry to the entryC (Figure 3(e)). Note thatC could also have been on the left boundary of the

bottom-right sub-matrix. Naturally, it does not matter whether the bottom-right sub-matrix is a base case or

requires its own recursive calls.

The next step of the general case is to extend the optimal pathfrom the entryC to an entry on the left or

upper boundary of the initial logical DPM. This step is accomplished through successive recursive calls to

FastLSAin thewhile -loop (lines 9–13 in Figure 2).

Note that during this latter step, calls to FastLSA are not necessarily applied to entire sub-matrices.

Every time the optimal path extends into a new sub-matrix, the next subproblem to be solved byFastLSA

is identified through a call toUpLeft (line 10 in Figure 2). The coordinates of this new logical DPMare

computed byUpLeftas follows:

• the top-left corner of the new logical matrix is given by the top-left corner of the sub-matrix that is to

be entered next by the optimal path;

15

• the bottom-right corner of the new logical matrix is given bythe head of the current optimal path.

Figure 3(e) shows the logical DPM found byUpLeftwhen first called in thewhile -loop. The top-left

corner of the new logical matrix isC2, with C, the head of the current optimal path, being the bottom-

right corner. Then, the portions fromflsaGrid which border this new logical DPM to North and West are

identified. These are the new caches which are passed with therecursive call toFastLSAasnewCacheRow

andnewCacheColumn. When this recursive call returns, the optimal path for the original problem has been

extended fromC to the entryD (Figure 3(f)). At the end of the second cycle of thewhile -loop, the optimal

path has been further extended to the entryE.

In the remaining cycles of thewhile -loop, the optimal path is further extended through the sub-matrices

of the input matrix until the head of the path intersects the first row or the first column of the grid. Figure

3(f) shows the optimal path being extended through entriesE, F, G, andH. Thewhile -loop stops whenH

becomes the head of the current optimal path becauseH lies on the first row offlsaGrid. Next, the grid of

cachesflsaGrid is deallocated, and the initial call toFastLSAreturns. The optimal path corresponding to the

input logical DPM is returned to the initial caller. The returned path extends from the bottom-right corner

of the original input matrix to the entryH.

After the initial invocation of FastLSA returns, the partial optimal pathsolPathis further extended to

the top-left corner along the first row or the first column of the DPM. Figure 3(f) shows the partial optimal

path being extended to the top-left cornerI along the first row of the DPM. The resulting optimal path

corresponds uniquely to an optimal alignment between the input sequencesa andb.

It is useful to observe that FastLSA solves a succession of rectangular problems, calledFastLSA sub-

problems, using either a Base Case approach for the small subproblems, or a Fill Cache approach for the

subproblems that do not fit in the Base Case buffer. The subproblems solved as Base Cases are referred

to asBase Case subproblems. The subproblems solved in the General Case are referred to as Fill Cache

subproblems.

16

FastLSA uses more space than Hirschberg’s algorithm. This gives FastLSA the advantage of recomput-

ing fewer entries in the DPM, thus improving the time performance of the sequence alignment operation.

The space required by FastLSA is still linear in the size of the input sequences as will be shown next, based

on the results of Charter, Schaeffer, and Szafron [4]. Furthermore, FastLSA can be adjusted to use allRM

units of memory that are available.

Let S(m,n, k) be the maximum number of DPM entries that need to be stored in order to align the

sequencesa[1..m] and b[1..n], using a grid cache ofk rows andk columns. If the initial call uses the

General Case of the algorithm, thenk−1 rows of lengthn andk−1 columns of lengthm must be allocated

for the grid cache. The initial cache row and cache column which are passed as arguments to the FastLSA

call are used as the top-most row and the left-most column of the grid. They have already been allocated by

the caller function, and this is why they are not counted as part of S(m,n, k). The cache in the first call to

FastLSA uses(k − 1) × (m + n) entries in total.

The recursive call to the bottom-right sub-problem uses at most S(m

k
, n

k
, k) space. Because all the

subproblems solved inside thewhile -loop are equal to or smaller than the bottom-right sub-problem,

S(m

k
, n

k
, k) is a good upper bound for the space used by the recursive callsto FastLSA generated by the

initial call. After putting everything together, in the worst case, we get:

S(m,n, k) = (k − 1) × (m + n) + S(m

k
, n

k
, k) (1)

17

The worst-case recursive relation for space becomes

S(m,n, k) = (k − 1) × (m + n) + (k − 1) × (m

k
+ n

k
) + S(m

k2 , n

k2 , k)

= (k − 1) × (m + n) × (1 + 1
k
) + S(m

k2 , n

k2 , k)

= · · ·

= (k − 1) × (m + n) × (1 + 1
k

+ · · · + 1
ka−1) + S(m

ka , n

ka , k).

(2)

Because the space for Base Case subproblems is allocated in the Base Case buffer, it is true thatS(m

ka , n

ka , k) ≤

BM , and Equation 2 becomes

S(m,n, k) ≤ (k − 1) × (m + n) ×
1−

1
ka

1−
1
k

+ BM

= k × (m + n) × (1 − 1
ka) + BM

≤ k × (m + n) + BM.

(3)

Equation 3 shows that FastLSA uses linear space. It also provides the means to computek andBM when

the space utilization is to be maximized.

With regard to the time complexity, letT (m,n, k) be the number of DPM entries computed by FastLSA

when the sequencesa andb are aligned using a grid cache withk rows andk columns. It can be proven that,

in the worst case scenario,

T (m,n, k) = m × n × k+1
k−1 . (4)

It should be noted that the total execution time of FastLSA isproportional toT (m,n, k).

As mentioned throughout this section, FastLSA trades spacefor performance. For example, whenk = 5,

T (m,n, 5) = 1.5×m×n. The upper bound provided by FastLSA decreases when the value ofk increases.

Now that we have established reasonable upper bounds on the space (Equation 3) and time (Equation 4)

18

complexity for FastLSA, we can now consider the performanceof the algorithm in practice.

4 Experimental Results for Sequential FastLSA

We compared the empirical performance of the FM algorithm, Hirschberg’s algorithm, and FastLSA using

a common software and hardware base. The commercial ChromaTool sequence analysis suite developed by

BioTools, Inc. (www.biotools.com) uses an implementation of FastLSA. For completeness, we imple-

mented an FM algorithm and Hirschberg’s algorithm within the same BioTools framework. All algorithms

have been tuned for performance including the removal of a number of error checking code segments. Also,

all algorithms share the same input/output code, the same scoring table (Table 1 is a sub-table), and a gap

penalty where creating a new gap has a value of -20 and extending an existing gap has a value of -10 (i.e.,

an affine gap penalty). The experiments were performed on a 800 MHz Pentium III (Coppermine) with 16

Kbytes of Level 1 data cache, 256 Kbytes of Level 2 cache (clocked at 800 MHz), 133 MHz front side bus

(FSB), 512 MB of main memory and Red Hat Linux 6.1 with the Linux 2.2.16 kernel. Although there are

two CPUs, our application is single-threaded.

We mimic a typical sequence search that takes a new query amino acid or DNA sequence and pairwise

aligns it with each sequence in a database. High alignment scores between the query sequence and a specific

database sequence are flagged for further consideration by the biologist. Given that these pairwise align-

ments produce optimal matches for the selected scoring function, the speed of these pairwise alignments is

the most important consideration.

We randomly selected 5 sequences of lengths 100, 200, 500, 800, 1000, and 2000 amino acids, plus or

minus 5% in length, from the Swiss-Prot database [2] to serveas our query sequences. The results of our

first experiment are shown in Table 2. Note that, with one exception, FastLSA is the fastest algorithm.

Since 5 sequences with the same nominal length are used as thequery sequences for the experiment,

19

Query Length Full Matrix Hirschberg FastLSA

100 0.307± 0.003 0.389± 0.007 0.262± 0.004
200 0.621± 0.008 0.885± 0.014 0.595± 0.009
500 1.594± 0.016 2.551± 0.042 1.713± 0.028
800 2.594± 0.049 3.853± 0.129 2.580± 0.081
1000 3.216± 0.026 4.305± 0.048 2.882± 0.030
2000 6.531± 0.091 9.418± 0.642 6.136± 0.415

Table 2: Sequential Search of the Swiss-Prot Databases withFM, Hirschberg and FastLSA (times in
seconds × 103, fastest times are in boldface)

there are a total of 30 query sequences from 6 categories based on length. The average time for the 5 query

sequences of similar length is given in the figure and the error is one standard deviation of the 5 data points.

All of the algorithms used the same query sequences and the same version of the Swiss-Prot database. We

used Equation 5 to pick a value ofk, based on the lengths of the two sequences. This formula has been

empirically determined to obtain good results.

k = truncate(log10(m)) + truncate(log10(n)) + 3 (5)

We used a heuristic function from the ChromaTool code for picking the buffer size of the recursion-

terminating call to our FM code.

Based on the complexity analysis, one would expect FM to be the fastest algorithm in all cases. After

all, FM does not require any re-computation to recover the path of the optimal alignment. In contrast, both

Hirschberg’s algorithm and the FastLSA reduce their storage costs at the expense of re-computation. In

fact, FM does 0 re-computations, Hirschberg’s algorithm doesm × n re-computations and FastLSA does

(m × n)/8 re-computations (fork = 8). For example, if the query sequence has size 100 and the database

sequences range in size from 100 to 5,000, FM does 0 re-computations, FastLSA does 1250 to 62,500

re-computations, and Hirschberg’s algorithms does 10,000to 500,000 re-computations for each alignment.

20

Since FastLSA makes fewer re-computations than Hirschberg’s algorithm, it is not surprising that it is con-

sistently faster. However, why is FastLSA faster than FM forquery sequences of length 100 and 200, slower

than FM for sequences of size 500 and then faster again for longer sequences?

An inescapable fact of contemporary computer systems is that, in practice, the cache behavior of an

algorithm can have a substantial impact on its performance.Each query sequence of size 100 was aligned

against the entire Swiss-Prot database, which contains sequences ranging from less than 100 amino acids to

over 5,000 amino acids. This means that the DPM ranged in sizefrom 100 × 100 × 4 bytes = 40 Kbytes to

100× 5000× 4 bytes = 2 Mbytes. Since the secondary cache has only 256 Kbytes, the FM DPM would not

fit in secondary cache and a large number of main memory accesses were made. In contrast, the memory

requirements for FastLSA are much smaller. FastLSA withk = 8 requires only8 × (100 + 1000) × 16

bytes = 140.8 Kbytes for the grid vectors. This easily fits into the 256 Kbyte secondary cache. Since a main

memory access is more than 10 times slower than an access to secondary cache, the FM DPM not fitting

into cache is sufficient to account for the faster FastLSA performance. Hirschberg’s algorithm also fits into

the secondary cache. However, since it does more re-computations than FastLSA, it cannot overtake the FM

algorithm.

However, Table 2 does not present the whole story. There is a sequence length for which FM will

exhaust main memory and page to disk. This is a disastrous situation for the algorithm since disk access

time is more than a million times greater than memory access time. At this point, FastLSA and Hirschberg

will again dominate FM and by a significantly larger margin. For the main memory configuration used in

our experiments (512Mbytes) this does not occur using the Swiss-Prot database, even with a query sequence

of size 5,000 since the longest database target sequences have length 5,000.

From Table 2 we conclude that for shorter sequences, the choice of the best algorithm depends on var-

ious cache effects. However, FastLSA is always better than Hirschberg’s algorithm. In the typical case

of comparing query sequences against a database, such as Swiss-Prot, with sequences of various lengths,

21

FastLSA is usually faster than FM due to good caching for short sequences and no paging for longer se-

quences. However, for a very narrow range of intermediate length sequences when all three algorithms are

out of cache, but none of the algorithms exhibit paging, FM and FastLSA have very similar performance.

This is illustrated by the 500 and 800 query lengths in Table 2.

5 Parallel FastLSA

Sequential FastLSA outperforms other sequential pairwisealignment algorithms (Table 2). This makes

FastLSA a reasonable candidate for parallelization (i.e.,parallelize the best available sequential algorithm).

Given the large DNA sequences (e.g., tens of thousands of bases) that some researchers wish to study

[6, 19, 7], a parallel FastLSA may be highly desirable. In particular, the theoretical time of FastLSA still

has quadratic complexity and the real turnaround time increases dramatically with the increase in size of

the sequences. In order to alleviate this problem, we have developed a parallel version of the FastLSA

algorithm, subsequently referred to as the Parallel FastLSA algorithm.

5.1 Description of the Parallel FastLSA Algorithm

Before we provide both theoretical and empirical analysis of Parallel FastLSA, we describe the parallel

algorithm and discuss some implementation issues.

Parallel FastLSA improves the execution time of the original FastLSA algorithm by parallelizing its two

major time-consuming components:

1. Base Case: the full matrix algorithm used for solving BaseCase subproblems (line 2 of the pseudo-

code from Figure 2), and

2. General Case: the computation of the FastLSA Grid Cache for the Fill Cache subproblems (line 5 of

the pseudo-code from Figure 2).

22

The pseudo-code for Parallel FastLSA is shown in Figure 4. The only changes from the sequential version

are the replacement of the sequentialsolveFullMatrix() with a parallel version,parallelSolveFullMatrix(), in

line 2, and the replacement of the sequentialfillGridCache() with a parallel version,parallelFillGridCache(),

in line 5. No other component of the algorithm is executed concurrently.

In our experiments with Parallel FastLSA, we discovered that parallelism benefits only the Fill Cache

subproblems (Section 6.3). In all the experiments we performed with our choice of parameter values, the

Base Case subproblems took longer to solve in parallel than sequentially. For this reason, in the following

section we analyze the performance of an implementation of Parallel FastLSA that solves all Base Case

subproblems sequentially. However, we still explain how the Base Case subproblems can be solved in

parallel, because a different choice of parameter values can potentially make their parallel implementation

more efficient. In the remainder of this section, we describehow the parallel work is organized, first for the

Base Case subproblems, and then for the Fill Cache subproblems.

As previously explained, FastLSA stops recursing when the input logical DPMflsaProblemcan be

allocated in the Base Case buffer (line 1 in Figure 4). The optimal path corresponding to this matrix is

determined using a full matrix algorithm (e.g., Needleman-Wunsch). For the parallel version of the full

matrix algorithm, the dynamic programming matrix is allocated in shared memory. As in the sequential

version of FastLSA, the initial values for the DPM are provided by the calling function. They are passed

in as the cache rowcacheRowand the cache columncacheColumn. These initial values are also stored

in shared memory, and they are essential for starting the computation of the DPM. In order to compute

the value of a DPM entry, the values of the adjacent entries from North, West, and North–West must be

available.

The DPM is logically partitioned inR × C equally sized rectangular regions, withR ≥ 1 andC ≥ 1.

Note that in Figure 5,R = 8 andC = 12 are just examples. These regions, subsequently referred toastiles,

are laid out alongR rows, each row havingC columns. At any moment during the parallel processing of

23

Algorithm Parallel FastLSA
input : logical-d.p.-matrix flsaProblem,

cached-values cacheRow and cacheColumn,
solution-path flsaPath

output: optimal path corresponding to flsaProblem prepend ed to flsaPath

/* Figure 3.6 (a) */
1 if flsaProblem fits in allocated buffer then

// BASE CASE
/* Figure 3.6 (b) */

2 return parallelSolveFullMatrix(flsaProblem, cacheRow , cacheColumn, flsaPath)

// GENERAL CASE
3 flsaGrid = allocateGrid(flsaProblem)
4 initializeGrid(flsaGrid, cacheRow, cacheColumn)

/* Figure 3.6 (c) */
5 parallelFillGridCache(flsaProblem, flsaGrid)

6 newCacheRow = CachedRow(flsaGrid, flsaProblem.bottomR ight)
7 newCacheColumn = CachedColumn(flsaGrid, flsaProblem.b ottomRight)

/* Figure 3.6 (d) */
8 flsaPathExt = ParallelFastLSA(flsaProblem.bottomRigh t, newCacheRow, newCacheColumn, flsaPath)

9 while flsaPathExt not fully extended
10 flsaSubProblem = UpLeft(flsaGrid, flsaPathExt)
11 newCacheRow = CachedRow(flsaGrid, flsaSubProblem)
12 newCacheColumn = CachedColumn(flsaGrid, flsaSubProbl em)

/* Figure 3.6 (e) */
13 flsaPathExt = ParallelFastLSA(flsaSubProblem, newCac heRow, newCacheColumn, flsaPathExt)

14 deallocateGrid(flsaGrid)

/* Figure 3.6 (f) */
15 return flsaPathExt

Figure 4: Pseudo-Code for Parallel FastLSA

the DPM, a processor is either idle, or it is working on only one tile. Furthermore, only one processor can

work on a tile. Once the processing of a tile ends, no processor will work on that tile again.

The parallel processing starts with one processor computing the entries of the top-left tile, using a Full

Matrix algorithm. The top-left tile is labelled 1 in Figure 5. The computation of the top-left tile is possible

because the initial row and column values for this tile are available. In fact, the top-left tile is the only tile that

has all its initial values available. These initial values come from the entries ofcacheRowandcacheColumn

which border the top-left tile. All the other processors areidle during this first step. After the top-left tile is

processed, all the values of its corresponding entries can be found in shared memory.

24

� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

21 3

2 3

3

Wavefront parallelism

cacheRow

cacheColumn C = 12

R
 =

 8

Tiles

Figure 5: Data Partitioning for Parallel Base Case Subproblems

After the first step, there is enough information available to start computing the entries in the tiles which

neighbor the top-left tile to the East and the South. For example, for the tile placed East from the top-

left tile (i.e., in row 1 and column 2 of the array of tiles), the initial row values come from the entries of

cacheRowthat border the tile, while the initial column values come from the entries of the right-most column

of the top-left tile. The two tiles neighboring the top-lefttile can be computed in parallel on two different

processors.

The processing of the tiles advances on a diagonal-like front. In Figure 5, each diagonal of tiles labeled

with the same number forms awavefront line.At the P th step, all theP processors can work in parallel

because the wavefront line consists of exactlyP tiles. The parallel computation ends when all theR×C tiles

have been computed. More details on how the parallel work is organized are provided in the next section.

When the parallel phase ends, all the DPM entries are available in shared memory. As in the sequential

version of the full matrix algorithm, one of the processors builds an optimal path which extends from the

bottom-right corner of the DPM to its left or upper boundary.

For each Fill Cache subproblem, the logical dynamic programming matrix is already split ink2 smaller

matrices, the logical sub-matrices introduced earlier. However, the Fill Cache subproblems are much larger

25

� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

21 3

2 3

3

Wavefront parallelism

k = 4

C = 12

R
 =

 8

cacheRow

v = 3

u
=

 2

cacheColumn

Tiles

Figure 6: Data Partitioning for Parallel Fill Cache Subproblems

than the Base Case subproblems and, in order to control the granularity of the parallel work, each of the

k2 − 1 sub-matrices that need to be computed in this phase is further divided intou × v equally sized tiles

(Figure 6). The result is a grid of finer granularity than the FastLSA grid. This new grid partitions the DPM

in (k2 − 1) × u × v tiles that are to be processed in parallel. These tiles are placed alongR = k × u rows

andC = k × v columns. In Figure 6,k = 4, u = 2, andv = 3 are examples of possible values for these

parameters. Because of this choice of parameter values, thetiles are laid out as an array ofR = 8 rows and

C = 12 columns.

The parallel processing starts with one processor computing the entries of the top-left tile. This algorithm

computes the entries of the tile using linear space. The values of the entries forming the right-most column

and the bottom-most row of the tile are saved in a special cache, referred to asTile Cache(Figure 7). The

Tile Cache and the Grid Cache are both allocated in shared memory.

The Tile Cache is needed in order to allow the parallel computation to progress. For example, after the

right-most column and the bottom-most row of the top-left tile are saved in the Tile Cache, step 2 of the

parallel processing can start. At step 2, two processors canstart processing in parallel the two tiles which

26

� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �

� �

��
��
��
��
��
��
��
��
��
��
�

� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �

� �

��
��
��
��
��
��
��
��
��
��
�

� � � � � � � � � � � � � � � �	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

� � � � � � � � � � � � � � � �

� �

��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
�

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

21 3

2 3

3

Wavefront parallelism

Recursion

Grid Cache

Tile Cache

Figure 7: FastLSA Grid Cache and Tile Cache for Parallel FillCache Subproblems

neighbor the top-left tile (i.e., the tiles labeled with 2 inFigure 7). For each of the two tiles, the initial row

values and the initial column values are available from the Tile Cache. At theP th step, all theP processors

can work in parallel because the wavefront line consists of exactly P tiles. The parallel computation ends

when all the(k2 − 1)× u× v tiles have been computed. More details on how the parallel work is organized

are provided in the next section.

Figure 7 shows the Grid Cache delimiting the FastLSA sub-matrices and the Tile Cache delimiting the

tiles. The bottom-right sub-matrix is not partitioned intotiles in this phase because it will be solved through

a recursive call to Parallel FastLSA.

As can be seen in Figure 7, the Grid Cache always overlaps a subset of the Tile Cache, except for the

boundaries of the bottom-right sub-matrix. The left-most column and the upper-most row of the two caches

are initialized using the cache values received as input incacheColumnandcacheRow, respectively. As

mentioned above, the processor that computes the entries corresponding to a tile saves the entries from the

right-most column and bottom-most row in the Tile Cache. These entries are also saved in the Grid Cache if

they are overlapped by a Grid Cache column or a Grid Cache row.Note that the tiles in the bottom-most row

(i.e., theRth row) and those in the right-most column (i.e., theCth column) form degenerate cases where

27

only the right-most column or the bottom-most row is saved.

After all the tiles have been processed, the FastLSA Grid Cache has been filled and the Tile Cache can

be deallocated. Then, Parallel FastLSA is applied recursively to the bottom-right sub-matrix (Figure 7).

Note that new caches of each type, FastLSA Grid Cache and TileCache, are allocated in shared memory for

each Fill Cache subproblem solved.

5.2 Implementation Details

As mentioned in the previous section, tiles cannot be processed in an arbitrary order. A tile can be processed

only if the entries of the row preceding its top-most row, andthe entries of the column preceding its left-

most column are already in the Tile Cache. This means that thetile directly above a tileX, and the one

immediately to the left ofX, must have already been processed beforeX can be processed. This strict

dependency is present for both the parallel full matrix algorithm and the parallel computation of the FastLSA

Grid Cache. For this reason, the two types of parallel regions used by Parallel FastLSA can be implemented

using the same strategy for the distribution of parallel tasks.

We have investigated two solutions to the problem of assigning the tiles that are ready to be processed

to the processors that are available. In the first solution, the tiles that are ready to be processed are placed

in a work queue, and a processor that needs work dynamically dequeues a tile from the queue. In the

second solution, entire rows of tiles are preassigned to theprocessors, and each tile is processed as soon as

it becomes ready. These two approaches are explained in detail in the following subsections.

5.3 Dynamic Distribution of Work

Initially, only the top-left tile, which is labelled1 in Figure 7, can be processed because it is the only

tile for which both the initial row and the initial column values are known. The top-left tile is placed

in the work queue, which is allocated in shared memory. Everytime parallel computation is performed,

28

this queue contains references to the tiles that are ready tobe processed. InsideparallelFillGridCache()

andparallelSolveFullMatrix(), all processors try to grab a tile from the work queue and execute the task

associated with it. For a Fill Cache subproblem, the task is to fill the cache entries adjacent to the tile and

not known previously. For a Base Case subproblem, the task isto compute the values of the tile entries.

A processor that finds the queue empty is blocked until a tile becomes available for that processor.

A reservation mechanism is used in order to avoid the starvation of certain processors, and to reduce the

contention for the queue access. In essence, a monitor is associated to each queue slot.

After finishing working on its assigned tile, a processor checks to see if it can place in the queue the

adjacent tile to the right, or the adjacent tile below. For example, a tileX, neighboring the current tile to

the right, can be placed in the work queue if and only if the tile aboveX has also been processed. This

condition ensures that both the initial row and the initial column values are known forX.

The condition stated above can be implemented by associating a counter to each tile. The counter of a

tile X is incremented by the processor which processed the tile above or to the left ofX. The processor

which increments the value of the counter to2 is also responsible for placingX in the work queue. Note

that the tiles from the first row and the first column have theircounters set to1 initially, because some of the

initial values for these tiles are already available. The counter of the top-left tile is set to2 initially, while

the counters of all the other tiles start at0.

After the tile labelled1 is computed, the tiles labelled2 in Figure 7 can be placed in the work queue.

After those tiles have been processed, more tiles (labelled3) can be placed in the queue, in a pattern known

aswavefront parallelism.Note that the tiles labelled3 need not be placed in the work queue all at the same

time. They become available for processing as soon as the tiles labelled2 have been computed.

The parallel processing region ends when all the designatedtiles have been computed. Filling the Grid

Cache in parallel requires the processing of

(k2 − 1) × u × v = R × C − u × v tiles,

29

� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

21 3

2 3

3

p=0

p=1

:
:

:

p=P-1

p=0

p=1
:

:

Wavefront parallelism

Tile Cache

Grid Cache

Tiles

Figure 8: Parallel FastLSA: Static Distribution of Work

while the parallel full matrix algorithm computes the values ofR×C tiles. Note that the values ofR andC

need not be the same for both the full matrix and cache filling computations. Furthermore, some of the tiles

can be empty whenR andC are larger than the dimensions of the input DPM.

5.4 Static Distribution of Work

Static work distribution is another solution to the problemof allocating the tiles, which is dependent in a

wavefront manner, to theP processors available. As shown in Figure 8, each of theR rows of tiles is

assigned to a processor in a circular or round-robin fashion. The first processor (i.e.,p = 0) starts by solving

the top-left tile, which is the only one with initial row values and initial column values available. After

the top left tile has been solved, the tiles labelled2 in Figure 8 can also be computed. The first processor

computes the second tile in the first row, while the second processor computes the first tile in the second

row. As soon as the second processor finishes its first tile, the third processor can start working on its first

tile, and so on.

The solution described above is a round-robin mechanism forwork distribution, similar to that of Martins

et al. [13]. The static distribution of work solution deals with the dependency between tiles without using

a queue or system locks. Each processorp busy waits until the tile above its current tile is solved by the

30

processorp− 1 (mod P). At this point,p can start working on its current tile. Whenp finishes the last tile

on its current row,r, it moves to the next row that was preassigned to it,r + P . If r + P > R, the rowr is

the last row on which the processorp worked. The entire computation finishes when all the tiles have been

processed.

The busy waiting mechanism relies heavily on coherent caches that support inexpensive spinning for

reads. Each time the processorp finishes solving a tile, an index is incremented, and the processorp + 1

(mod P) must be notified of the new value of the index. This is why each processor not working on a tile,

continuously probes the index associated with the previousrow.

5.5 Space and Time Complexity

We argue that Parallel FastLSA still uses linear space and that the time complexity of the algorithm is still

quadratic. We prove this claim by finding a linear upper boundfor the space complexity of Parallel FastLSA

and by finding a quadratic upper bound for its time complexity. This subsection focuses on the derivation of

the space and time expressions that are upper bounds for the space and time complexity of Parallel FastLSA.

5.5.1 FastLSA Recursion Pattern

In order to compute the amount of space and time required by Parallel FastLSA to align a sequence of size

m against a sequence of sizen using a FastLSA Grid Cache of sizek, one needs to know thetrace of

the FastLSA algorithm. A trace of FastLSA is a series of FastLSA subproblems solved by the recursive

calls to FastLSA, and which are listed in the exact order in which they are solved. A typical series for

PFastLSA(m,n, k) is:

PFastLSA(m,n, k) = PFillCache(m,n, k), PFastLSA(m

k
, n

k
, k),

PFastLSA(m1, n1, k), . . . , PFastLSA(mz, nz, k);

(6)

31

wherePFillCache(m,n, k) is the initial Fill Cache subproblem,PFastLSA(m

k
, n

k
, k) is the recursive

call to the bottom-right subproblem, andPFastLSA(mi, ni, k), i = 1, z are the subproblems solved re-

cursively inside thewhile -loop of the algorithm (i.e., the call in line 13 from Figure 4). Depending on the

configuration of the optimal alignment path that is followedby the FastLSA algorithm,z can take values

betweenk − 1 and2k − 2. Details about the values ofz in the best case and worst case scenarios have been

provided by Charter, Schaeffer, and Szafron [4].

Given a Base Case buffer of sizeBM , the deepest level of recursion reached by FastLSA is a positive

integer,a, with

m

ka × n

ka ≤ BM < m

ka−1 × n

ka−1 . (7)

This is equivalent to

a − 1 <
log

m×n

BM
2 log k

≤ a ⇔

⌈

log
m×n

BM
2 log k

⌉

= a. (8)

5.5.2 Space Complexity

Definition 1 LetS(m,n, k) be the maximum number of DPM entries that need to be stored in order to align

a sequence of sizem against a sequence of sizen using a grid cache withk rows andk columns.

The following result shows thatS(m,n, k) is linear inm andn.

Theorem 2 LetS(m,n, k) be defined as in Definition 1. If the tiles for each Fill Cache subproblem are laid

out inR rows andC columns, then

S(m,n, k) ≤ (3k − 1) × (m + n) + P

C
× n + R × C − u × v + BM. (9)

Please see Appendix A for the proof.

32

5.5.3 Time Complexity

Definition 3 LetWT (m,n, k, P) be the time spent by the slowest of theP threads involved in the parallel

alignment of two sequences of sizem andn, using a grid cache withk rows andk columns.

The time spent by the slowest thread,WT (m,n, k, P), is a good upper bound for the time complexity of

Parallel FastLSA. An upper bound forWT (m,n, k, P) itself is established by the following result.

Theorem 4 Let WT (m,n, k, P) be defined as in Definition 3. For simplicity, assume that the tiles pro-

cessed in a parallel phase are laid out inR rows andC columns for both the Fill Cache and the Base Case

subproblems. Then

WT (m,n, k, P) ≤ m×n

P
× (1 + P 2−P

R×C
) × (k

k−1)2. (10)

Please see Appendix A for the proof.

The previous discussion provides upper bounds for the spaceand time complexity of Parallel FastLSA.

Although these results show what type of curve the space and time requirements of Parallel FastLSA follow,

they do not show that good speedups can be achieved in practice when running Parallel FastLSA onP

processors.

Because of this drawback of the theoretical analysis, we have run a large number of experiments in order

to assess the empirical efficiency of Parallel FastLSA. Our experiments with Parallel FastLSA show good

speedups, especially when long sequences are aligned.

6 Experimental Results for Parallel FastLSA

We present results from the experiments we have performed with Parallel FastLSA on an SGI Origin 2400

parallel computer. The Origin 2400 has 64 processors (400 MHz R12000 MIPS CPUs), each with a primary

data cache of 32 Kbytes and a unified 8 MB secondary cache. The Parallel FastLSA algorithm is imple-

33

mented in C using Irix 6.5sproc threads with hardware-based shared memory. The sequentialversion of

the FastLSA algorithm is an independent, non-commercial implementation based on the original description

[4]. For simplicity, the FastLSA implementations that we benchmark find the globally optimal alignment

of two sequences using a straightforward scoring function where all identical matches have a score of 2, all

mismatches have a score of -1, and the gap penalty is -2.

We discuss in detail the experimental results corresponding to the alignment of three pairs of DNA

sequences which are chosen from a test suite suggested by thebioinformatics group at Penn State University

[16]. Most of their examples are comparisons of “some regionof the human genome with the synthetic

region from a rodent genome” [18]. We feel that it is important to apply Parallel FastLSA to real life

examples. These pairs are considered as a test suite, not only because of their size, but also because their

alignment is biologically meaningful. Although we have experimented with several more pairs of DNA

sequences, we choose to present results for the pairs of shortest and longest sequences, and another pair of

sequences of medium size.

1. The shortest sequence pair is formed by theXRCC1DNA repair gene from human beings and mice.

The XRCC1gene encodes an enzyme involved in the repair of X-ray damage[18]. The human se-

quence is 37,785 bp long, and the mouse sequence is 37,349 bp long.

2. The medium size sequences are the “cardiac myosin heavy chain genes” (abbreviatedMyosin) [18]

from human beings and hamsters. The human sequence is 55,820bp long, and the hamster sequence

is 66,315 bp long.

3. The longest sequence pair consists of the human and mouse alpha/delta T-cell receptor loci (abbre-

viated TCR). These sequences “show an unusually high level of conservation” [17]. The human

sequence is 319,030 bp long, and the mouse sequence is 305,636 bp long.

Throughout the benchmarking process discussed in this section, all parameters introduced in Section 5.1

34

Parameter Name Parameter Value Notes
Constant u 3 number of rows of tiles

between consecutive
Grid rows;

v 4 number of columns of
tiles between
consecutive Grid
columns;

BM 1,600,000 size of Base Case buffer
in integers;

R 8 total number of rows of
tiles for a Base Case
subproblem;

C 10 total number of rows of
tiles for a Base Case
subproblem;

Variable P 1, 2, 4, 8, 16, 32 number of processors;
k 8–12 number of Grid rows and

columns;
R 3 × k total number of rows of

tiles for a Fill Cache
subproblem;

C 4 × k total number of rows of
tiles for a Fill Cache
subproblem;

size of DPM 37, 349× 37, 785 XRCC1;
55, 820× 66, 315 Myosin;

305, 636× 319, 030 TCR.

Table 3: The Parameters which Influence the FastLSA algorithms

are assigned constant, empirical values. We opt for this solution because Parallel FastLSA involves eight

parameters that can vary, and tuning all of them is a complicated task. Choosing empirical values for the

parameters is justified by the fact that we are interested in establishing reasonable performance for Parallel

FastLSA rather than optimal performance. In the future, we hope to further explore the parameter space.

Table 3 summarizes the parameters involved in the FastLSA algorithms and the values assigned to

them. After running a series of experiments with different values foru, v andk we restricted ourselves

to these empirically validated values. These values are deemed to provide the FastLSA algorithms with the

opportunity to run reasonably fast. In particular, Parallel FastLSA is run withR = 8, C = 10 for the Base

Case subproblems, andu = 3, v = 4 (i.e.,R = 3 × k, C = 4 × k) for the Fill Cache subproblems. These

35

preset values are used for each FastLSA subproblem, independent of its size or level of the recursion.

The only parameters which vary during the benchmarking process arek and the size of the sequences

aligned. The parameterk iterates from 8 to 12 in order to assess the impact which the size of the FastLSA

Grid Cache has on the performance of the algorithm. The Base Case buffer size,BM , is assigned the con-

stant value of1, 600, 000. Note that these last parameters influence the performance of both the sequential

and the parallel versions of FastLSA.

The parameter values that we have chosen foru, v, andk are non-optimal forP = 32, and the expla-

nation of this fact follows. The logical DPM is divided in3 × k rows and4 × k columns of tiles for each

Fill Cache subproblem. Because the wavefront line can have no more tiles than the shortest dimension of

the array of tiles, the wavefront line can have at most3 × k tiles for our parameter values. Whenk is less

than11, the wavefront line consists or less than 32 tiles, which means that 32 processors cannot all work

in parallel. Despite this theoretical disadvantage, we observed that, forP = 32, k = 8 is the empirical

optimum for the alignment of theXRCC1sequences, whilek = 9 is the empirical optimum for theMyosin

sequences.

The performance results for Parallel FastLSA presented in this section are obtained using an implemen-

tation based on the Dynamic Distribution of Work strategy. This strategy of work distribution is introduced

in Section 5.3. We have also benchmarked an implementation based on the Static Distribution of Work

strategy, but choose not to present separate results for it because they are similar to those obtained for the

implementation based on the Dynamic Distribution of Work strategy.

The version of Parallel FastLSA analyzed in this section solves the Base Case subproblems sequentially.

This modified version of Parallel FastLSA is preferred to theone described in Section 5.1 because of its

better performance. The performance numbers show that solving the Base Case subproblems in parallel

is consistently and considerably slower than solving them sequentially. The comparison is made between

the total time spent on solving Base Case subproblems by Parallel FastLSA and the sequential FastLSA.

36

Our intuition is that the Base Case subproblems are too smallto benefit from parallelism. Section 6.3 gives

a clear picture that the version of Parallel FastLSA that solves the Base Case subproblems sequentially

outperforms the initial version, which solves the Base Casesubproblems in parallel.

The SGI machine used to benchmark FastLSA, both sequential and parallel, can be accessed only

through a batch queueing and workload management system (Portable Batch System [21]). Although the

SGI Origin is a multiprogrammed computer, the performance numbers are quite stable from one execution

to the other. In order to remove the small, unpredictable noise generated by the operating system, three con-

secutive runs are performed for each set of parameter valueswhich is benchmarked. The three time samples

obtained for each run are averaged.

The performance of the FastLSA algorithms is optionally instrumented by recording relevant trace infor-

mation during their execution. The total execution time, the total time spent on each FastLSA subproblem,

the type of each subproblem and its coordinates in the initial DPM are saved in a trace file created for every

combination ofP and sequence pairs. In addition to the above information, for every Fill Cache subprob-

lem, Parallel FastLSA also records per-thread informationsuch as the time for computing a tile and the time

spent at the barrier that follows the parallel region. All the graphs and tables presented in this section are

generated by processing the information collected in the trace files. Because the trace collecting mechanism

was always on, the total execution times shown here may be slightly higher than in reality.

6.1 General Observations

As mentioned in the previous section, the sequential and parallel versions of FastLSA are benchmarked

for each value ofk from 8 to 12, and for each of the three pairs of sequences. Ideally, we should have

devised a simple, reliable heuristic which produces a best value fork, given the size of the sequences and

P , the number of processors used. This best value would ensurethat the overall alignment time is close to

the theoretical optimal time. However, the relationship between the best value ofk, P , and the size of the

37

1
2

4

8

16

32

1 2 4 8 16 32

S
pe

ed
up

Processors

XRCC1
Myosin

TCR
Linear

Figure 9: Best Speedups for XRCC1, Myosin, and TCR

sequences is not straightforward, and this makes the development of such a heuristic challenging. We note

from the results obtained that, in most of the cases, there isa small number of neighboring values that can be

chosen as empirically best values fork. The values outside this small interval, when assigned tok, worsen

the time performance of the algorithm. The 8 to 12 interval for k was chosen after repeated probing for the

best values. This interval includes an empirical best valuefor k in most of the combinations benchmarked.

In order to simulate the effect of such a heuristic on the timeperformance of Parallel FastLSA and to

provide a quick first look into the results of our experiments, we have selected for each pair of sequences

and each number of processors the best execution time acrossthe five values ofk that were considered,

and then computed the speedups. The resulting speedup curves are shown in Figure 9. Table 4 shows the

execution time for each sequence alignment performed and the corresponding value fork that achieved that

performance. Note that the largest problem (i.e.,TCR) requires over 5,040 seconds (i.e., 1.4 hours to align),

which suggests the need for efficient parallel algorithms totackle even larger sequences [6, 19, 7].

For the pair of short sequences,XRCC1, the speedup is linear for 2 and 4 processors, but starts deteri-

38

Sequences Number of
Processors

Time (sec.) Speedup Bestk

XRCC1 1 71.71 12
2 33.44 2.14 11
4 18.05 3.97 10
8 10.44 6.87 9

16 7.94 9.03 9
32 8.72 8.22 8

Myosin 1 189.71 12
2 85.54 2.22 12
4 44.92 4.22 11
8 24.89 7.62 11

16 17.52 10.83 11
32 17.91 10.59 9

TCR 1 5040.93 12
2 2202.65 2.29 12
4 1128.56 4.47 12
8 597.66 8.43 12

16 370.07 13.62 12
32 292.84 17.21 12

Table 4: Real Times, Speedups, andk

orating when 8 or more processors are used. The slowdown from16 and 32 processors occurs because the

granularity of the work assigned to each processor decreases, leading to a situation where the processors

spend more time trying to get a tile on which to work rather than actually working on it.

The speedup curve for the alignment of theMyosinsequences ascends almost linearly for up to 8 proces-

sors, increases slowly for 16 processors, and almost flattens for 32 processors. This noticeable improvement

of the performance of Parallel FastLSA happens because the DPM computed for theMyosinsequences has

2.6 times more entries than the DPM computed for theXRCC1sequences. The largerMyosinDPM provides

better granularity for the parallel tasks, but not enough tosatisfy 32 processors.

The best speedup curve is obtained for the largest sequencesthat are aligned. As mentioned above, both

TCRsequences are over 300,000 base pairs in length. Because of the large problem, the granularity of work

is reasonable and the speedup becomes slightly super-linear for 8 processors or less. The super-linearity

of the speedup is due to cache effects, which are a reality of any ccNUMA architecture, including the SGI

39

Origin [11].

The speedup curve forTCR is steeper from 8 to 16 processors than the speedup forMyosin, and a

reasonable improvement of the performance occurs for 32 processors. The speedup curve increases from 16

to 32 processors with a slope of0.22 – which is close to0.27, the slope of the speedup curve forXRCC1

between 8 and 16 processors.

In our experiments, we have also found that the majority of the alignment time is spent solving the

initial Fill Cache subproblem. For each alignment operation performed by Parallel FastLSA, we computed

the percentage of time spent on the initial Fill Cache subproblem, out of the total execution time. For the

TCRpair, this percentage ranges from 87.86% forP = 1 to 77.08% forP = 16, and 67.53% forP = 32.

We note that the above defined percentage decreases withP , but increases with the size of the sequences;

for P = 16, the percentage is 59.03% forXRCC1and 63.40% forMyosin. Because of the design of the

FastLSA algorithms, the time spent on the initial Fill Cachesubproblem depends only on the size of the

sequences, and not their particular configuration.

6.2 Case Study: Myosin Dataset

In order to understand how the parameters and the design of Parallel FastLSA influence its execution time,

we perform a detailed empirical analysis of the performanceof the algorithm. We select the Myosin dataset,

which is the moderate-sized dataset, for this case study.

The time spent by the FastLSA algorithms computing a pairwise alignment is primarily determined by

the total time spent by the algorithms on filling matrices forBase Case subproblems, or filling Grid Caches

for Fill Cache subproblems. Since there are thousands of these subproblems for each sequence pair, the

statistical distribution of the subproblem execution times are presented. The subproblems are clustered

together based on the type or size of the subproblem, and the execution times are accumulated for the

subproblems inside each resulting partition set. The clustering is done by processing the trace files, and the

40

0

50

100

150

200

250

300

350

400

8 9 10 11 12

C
um

ul
at

iv
e

N
um

be
r

k

Base Case
Fill Cache

0

50

100

150

200

250

300

350

400

450

8 9 10 11 12

C
um

ul
at

iv
e

N
um

be
r

k

Base Case (3 bars)
Fill Cache (5 bars)

By Type By Size

Figure 10: FastLSA Subproblem Count: Parallel FastLSA Alignment for HumanMyosinversus Hamster
Myosin(Breakdown Based on the Type/Size of the FastLSA Subproblems)

graphs obtained are presented in the following three sections.

6.2.1 Subproblem Count Graph

A subproblem count graph (Figure 10) shows how many FastLSA subproblems are solved during an align-

ment operation, and how large these problems are. Note that the FastLSA subproblems which occur for a

FastLSA alignment are determined by the sequences, the sizeof the Base Case buffer andk, and are inde-

pendent of the number of processors used for the alignment. This graph (Figure 10) consists of two plots:

one for the clustering based on the type of the subproblems, and the other for the clustering based on the

size of the subproblems.

The clustering by size is a further refinement of the type-based clustering. The Base Case subproblems

are distributed into three partition subsets based on theirsize (i.e., number of DPM entries). The first

partition holds the smallest subproblems, up to1
3BM in size; the second partition holds those between1

3BM

and 2
3BM ; the third holds the biggest ones, sized up to and includingBM . For Fill Cache subproblems,

the interval betweenBM and the size of the initial DPM is evenly divided into five subintervals. Each

41

subinterval is assigned a partition subset to which a Fill Cache subproblem is distributed if its size falls

within that subinterval. The result is a cluster with three partition subsets for Base Case and five partition

subsets for Fill Cache. Depending on the specific input data and other system parameters, some of the

subsets (and, thus, bars) may be empty.

The plot for the size-based partitioning shows (up to) eightbars for each value ofk. The (up to) three

black bars on the left indicate the number of FastLSA subproblems in the Base Case partitions, while the

(up to) five red bars to the right indicate the number of FastLSA subproblems in the Fill Cache partitions.

The five groups of bars are separated by thin, vertical, blue lines which are used only as dividers.

From this empirical analysis (Figure 10), we can see that Base Case subproblems dominate the run-time

behaviour of the algorithm in terms of thenumberof problem instances. But, in the next section, we examine

how the Fill Cache subproblems actually dominate in terms ofthetimespent in the computation. Of course,

as per Amdahl’s Law, the benefits of parallelism come from parallelizing the Fill Cache subproblems. In

fact, Section 6.3 argues that solving the Base Case subproblems sequentially (instead of in parallel) results

in better overall speedups because the Base Case problems are too small in their granularity of work.

6.2.2 Execution Time Graph

Trends in execution time are among the most important indicators of the performance of an algorithm.

Figure 11 presents the execution times for the Parallel FastLSA algorithm. A series of six graphs shows the

changes in execution time as the number of processors varies. When the FastLSA subproblems are clustered

based on their type (Figure 11), the time is added separatelyfor the Base Case subproblems and the Fill

Cache subproblems. The results are shown in each plot as stacked bars, with each stack corresponding to a

value ofk. The cumulative time spent solving Base Case subproblems isshown as a black bar, and above it,

there is a red bar representing the cumulative time spent on Fill Cache subproblems. The remaining time to

the total time of the alignment is depicted as a blue-filled bar which is stacked at the top.

42

� � � �� � � �

� � � �� � � �

� � � �� � � �
Base Case

Other

Fill Cache

0

20

40

60

80

100

120

140

160

180

200

8 9 10 11 12

C
um

ul
at

iv
e

T
im

e
(S

ec
)

k

0

10

20

30

40

50

60

70

80

90

8 9 10 11 12

C
um

ul
at

iv
e

T
im

e
(S

ec
)

k

P = 1 P = 2

0

5

10

15

20

25

30

35

40

45

50

8 9 10 11 12

C
um

ul
at

iv
e

T
im

e
(S

ec
)

k

0

5

10

15

20

25

30

8 9 10 11 12

C
um

ul
at

iv
e

T
im

e
(S

ec
)

k

P = 4 P = 8

0

2

4

6

8

10

12

14

16

18

20

8 9 10 11 12

C
um

ul
at

iv
e

T
im

e
(S

ec
)

k

0

2

4

6

8

10

12

14

16

18

20

8 9 10 11 12

C
um

ul
at

iv
e

T
im

e
(S

ec
)

k

P = 16 P = 32

Figure 11: Execution Time: Parallel FastLSA Alignment for HumanMyosinversus HamsterMyosin(Break-
down Based on the Type of the FastLSA Subproblems)

43

1
2

4

8

16

2 4 8 16 32

S
pe

ed
up

P

parallel Base Case
sequential Base Case

XRCC1

1
2

4

8

16

2 4 8 16 32

S
pe

ed
up

P

parallel Base Case
sequential Base Case

Myosin

1
2

4

8

16

2 4 8 16 32

S
pe

ed
up

P

parallel Base Case
sequential Base Case

TCR

Figure 12: Comparison of the overall speedups for the two versions of Parallel FastLSA
44

Figure 11 exposes a trend in the values of the total executiontime across the five values ofk: the

best value ofk shifts from 12 forP = 1 to 9 for P = 32. This phenomenon occurs becausek controls

the amount of re-computation that must be performed by the FastLSA algorithms and it also controls the

granularity of the FastLSA subproblems and, indirectly, the granularity of the parallel tasks. A larger value

for k means a larger FastLSA Grid Cache, a larger number of DPM entry values stored, and, therefore, less

re-computation. WhenP has a small value, larger values fork tend to produce smaller execution times

because less re-computation is performed than for smaller values ofk. BecauseP is small, the contention

for parallel work is small and the importance of the granularity of the parallel tasks is reduced. However,

onceP increases, the granularity of the parallel work becomes thedominant performance factor, overtaking

re-computation time in importance. WhenP has a large value, the performance of Parallel FastLSA is

best for small values ofk because lower values fork tend to increase the granularity of the Fill Cache

subproblems and, indirectly, the granularity of the parallel tasks.

6.3 Base Case Subproblems: Sequential Approach versus Parallel Approach

The Parallel FastLSA version that solves the Base Case subproblems sequentially was preferred to the

version which solves the Base Case subproblems in parallel because it exhibits better performance. This

is emphasized in Figure 12, which shows a pairwise comparison between the overall speedups for the two

versions of Parallel FastLSA. The comparison is done for each pair of sequences and for each value ofP .

When the Base Case subproblems are solved sequentially, theoverall speedup is consistently better than

when they are solved in parallel. The difference between thespeedups for the two versions increases withP

because of the poor performance of solving small Base Case subproblems on an increased number of pro-

cessors. The poor performance is due to the large overhead associated with a large number of processors,

and this overhead cannot be offset by the few opportunities for parallelism offered by the Base Case sub-

problems. Only a small number of very small tiles can be placed in the queue when a Base Case subproblem

45

is solved in parallel and, consequently, only a few of the processors get to work on these tiles.

7 Concluding Remarks

Sequence alignment is a fundamental operation for homologysearch in bioinformatics. For two DNA or

protein sequences of lengthm andn, full-matrix (FM), dynamic programming alignment algorithms such

as Needleman-Wunsch and Smith-Waterman take O(m × n) time and use a possibly prohibitive O(m × n)

space. Hirschberg’s algorithm reduces the space requirements to O(min(m,n)), but requires approximately

twice the number of operations required by the FM algorithms.

The Fast Linear Space Alignment (FastLSA) algorithm adaptsto the amount of space available by

trading space for operations. What makes FastLSA unique is its parameterk, which can be used to tune its

storage requirements for a given amount of cache memory or main memory. Our experiments show that, in

practice, due to memory caching effects, FastLSA is preferred over the Hirschberg and the FM algorithms.

To further improve the performance of FastLSA, we have parallelized it using a simple but effective form of

wavefront parallelism. Our experimental results show thatParallel FastLSA exhibits good speedups, almost

linear for 8 processors or less, and also that the efficiency of Parallel FastLSA increases with the size of the

sequences that are aligned.

Again, a recurring theme in this paper is the importance of algorithms that can be parameterized and

tuned to take advantage of cache memory and main memory sizes. Existing algorithms for sequence align-

ment (i.e., FM and Hirschberg) cannot be similarly parameterized. Furthermore, the selected value for

parameterk has a significant impact on the parallel speedups of the algorithm, which results in interesting

lessons in performance trade-offs. For example, large values ofk reduce the amount of re-computation

and increase the performance of FastLSA. Larger values ofk may also help FastLSA better exploit pro-

cessor caches for greater performance. However, large values ofk can also reduce the granularity of work

46

in Parallel FastLSA, which is detrimental to performance. For future work, more empirical results are re-

quired to develop better guidelines for selecting a value ofk that best exploits caches, main memory sizes,

and provides good parallel speedups. Another future directionis to modify Parallel FastLSA such that the

granularity of work is independent ofk.

Given the large DNA sequences (e.g., tens of thousands of bases) that some researchers wish to study

[6, 19, 7], the space and time complexity of a sequence alignment algorithm become increasingly important.

The combination of FastLSA’s parameterized storage complexity, good analytical time complexity, easy

parallelization, and excellent empirical performance makes FastLSA a good choice for pairwise sequence

alignment.

8 Acknowledgments

We would like to acknowledge Scott Fortin at BioTools for several helpful discussions and making their

source code available to us. This research was partially funded by research grants from the Protein Engi-

neering Network of Centres of Excellence (PENCE), the Natural Sciences and Engineering Research Coun-

cil of Canada (NSERC), the Alberta Informatics Circle of Research Excellence (iCORE) and the Canada

Foundation for Innovation (CFI).

References

[1] C.E.R. Alves, E.N. Cáceres, F. Dehne, and S.W. Song. Parallel Dynamic Programming for Solving the

String Editing Problem on a CGM/BSP. InProc. 14th ACM Symposium on Parallel Algorithms and

Architectures (SPAA), pages 275–281, Winnipeg, Manitoba, Canada, August 10–13,2003.

[2] R. D. Appel, A. Bairoch, and D. F. Hochstrasser. A new generation of information retrieval tools for

biologists: the example of the ExPASy WWW server.Trends in Biochem. Sci., 19:258–260, 1994.

47

http://ca.expasy.org/sprot/.

[3] P.G. Bradford.Parallel Dyanmic Programming. PhD thesis, Department of Computer Science, Indiana

University, 1994.

[4] K. Charter, J. Schaeffer, and D. Szafron. Sequence alignment using FastLSA. InProceedings of the

2000 International Conference on Mathematics and Engineering Techniques in Medicine and Biolog-

ical Sciences (METMBS 2000), pages 239–245, Las Vegas, Nevada, June 2000.

[5] M. O. Dayhoff, W. C. Barker, and L. T. Hunt. Establishing homologies in protein sequences.Methods

in Enzymology, 91:524–545, 1983.

[6] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L. Salzberg. Alignment of

whole genomes.Nucleic Acids Research, 27(11):2369–2376, 1999.

[7] A. L. Delcher, A. Phillippy, J. Carlton, and S. L. Salzberg. Fast algorithms for large-scale genome

alignment and comparison.Nucleic Acids Research, 30(11):2478–2483, 2002.

[8] A. Driga. Parallel FastLSA: A parallel algorithm for pairwise sequence alignment. Master’s thesis,

University of Alberta, 2002.

[9] A. Driga, P. Lu, J. Schaeffer, D. Szafron, K. Charter, andI. Parsons. FastLSA: A Fast, Linear-Space,

Parallel and Sequential Algorithm for Sequence Alignment.In Proc. 32nd International Conference

on Parallel Processing (ICPP), pages 48–57, Kaohsiung, Taiwan, October 6–9, 2003. Available at

http://www.cs.ualberta.ca/˜paullu/.

[10] D. S. Hirschberg. A linear space algorithm for computing longest common subsequences.Communi-

cations of the ACM, 18:341–343, 1975.

48

[11] J. Laudon and D. E. Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server. InProceedings of

the 24th International Symposium on Computer Architecture, pages 241–51, Denver, Colorado, June

1997.

[12] G. Lewandowski, A. Condon, and E. Bach. Asynchronous Analysis of Parallel Dynamic Programming

Algorithms. IEEE Transactions on Parallel and Distributed Systems, 7(4):425–438, 1996.

[13] W.S. Martins, J.B. del Cuvillo, F.J. Useche, K.B. Theobald, and G.R. Gao. A multithreaded parallel

implementation of a dynamic programming algorithm for sequence comparison. InPacific Symposium

on Biocomputing 2001, January 2001.

[14] E. Myers and W. Miller. Optimal alignments in linear space. CABIOS, 4:11–17, 1988.

[15] S. B. Needleman and C. D. Wunsch. A general method applicable to the search of similarities in the

amino acid sequence of two proteins.Journal of Molecular Biology, 48:443–453, 1970.

[16] Penn State University. Bioinformatics Group. http://bio.cse.psu.edu, 2001.

[17] Bioinformatics Group Penn State University. TCR sequences.

http://bio.cse.psu.edu/pipmaker/examples.html, 2001.

[18] Bioinformatics Group Penn State University. XRCC1 andMyosin sequences.

http://globin.cse.psu.edu/globin/html/pip/examples.html, 2001.

[19] N. T. Perna and et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature,

409(6819):529–533, 2001.

[20] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.Journal of

Molecular Biology, 147:195–197, 1981.

[21] Veridian Systems. PBS. http://www.pbspro.com, 2001.

49

Contents

1 Introduction 3
1.1 Background 3

2 Related Work 7
2.1 Dynamic Programming and Full-Matrix Algorithms 7
2.2 Hirschberg’s Algorithm 9
2.3 Parallel Dynamic Programming 10

3 Sequential FastLSA Algorithm 11

4 Experimental Results for Sequential FastLSA 19

5 Parallel FastLSA 22
5.1 Description of the Parallel FastLSA Algorithm 22
5.2 Implementation Details 28
5.3 Dynamic Distribution of Work 28
5.4 Static Distribution of Work 30
5.5 Space and Time Complexity 31

5.5.1 FastLSA Recursion Pattern 31
5.5.2 Space Complexity 32
5.5.3 Time Complexity 33

6 Experimental Results for Parallel FastLSA 33
6.1 General Observations 37
6.2 Case Study: Myosin Dataset 40

6.2.1 Subproblem Count Graph 41
6.2.2 Execution Time Graph 42

6.3 Base Case Subproblems: Sequential Approach versus Parallel Approach 45

7 Concluding Remarks 46

8 Acknowledgments 47

A Proofs 51

50

A Proofs

The following result shows thatS(m,n, k) is linear inm andn.

Theorem 2 (from Section 5.5.2)LetS(m,n, k) be defined as in Definition 1. If the tiles for each Fill Cache

subproblem are laid out inR rows andC columns, then

S(m,n, k) ≤ (3k − 1) × (m + n) + P

C
× n + R × C − u × v + BM. (11)

Proof. For an algorithm trace such as that in Equation 6,

S(m,n, k) = maxSpace(PFastLSA(m,n, k))

= max

(

maxSpace(PFillCache(m,n, k)),

GridSpace(m,n, k) + maxSpace(PFastLSA(m

k
, n

k
, k)),

GridSpace(m,n, k) + maxSpace(PFastLSA(m1, n1, k)), . . . ,

GridSpace(m,n, k) + maxSpace(PFastLSA(mz, nz, k))

)

.

(12)

Becausem

k
≥ mi and n

k
≥ ni, ∀i, 1 ≤ i ≤ z, the following is true:

maxSpace(PFastLSA(m

k
, n

k
, k)) ≥ maxSpace(PFastLSA(mi, ni, k)),∀i, 1 ≤ i ≤ z. (13)

51

Equation 12 becomes

S(m,n, k) = max

(

maxSpace(PFillCache(m,n, k)),

GridSpace(m,n, k) + maxSpace(PFastLSA(m

k
, n

k
, k))

)

= max

(

maxSpace(PFillCache(m,n, k)), GridSpace(m,n, k) + S(m

k
, n

k
, k)

)

.

(14)

For the current implementation of the Parallel FastLSA algorithm, PFillCache(m,n, k) uses(k −

1)(m + n) entries to store the local copy of the FastLSA Grid Cache,(k − 1)(m + n) entries to store the

global, shared copy of the Grid Cache,m + n entries to store the Tile Cache,R×C −u× v entries to store

the upper-left corner of each tile, andn
C

entries on each processor for computing a tile. In summary,

maxSpace(PFillCache(m,n, k)) = A(m,n, k) = (k − 1)(m + n) + (k − 1)(m + n)+

+ (m + n) + R × C − u × v + P n

C

= (2k − 1)(m + n) + R × C − u × v + P

C
n,

(15)

and

GridSpace(m,n, k) = (k − 1)(m + n). (16)

52

Using the previous two equations, Equation 14 becomes

S(m,n, k) = max

(

A(m,n, k), (k − 1)(m + n) + S(m

k
, n

k
, k)

)

= max

(

A(m,n, k), (k − 1)(m + n)+

+ max

(

A(m

k
, n

k
, k), (k − 1)m+n

k
+ S(m

k2 , n

k2 , k)

))

= max

(

A(m,n, k), max

(

(k − 1)(m + n) + A(m

k
, n

k
, k),

(k − 1)(m + n) + (k − 1)m+n

k
+ S(m

k2 , n

k2 , k)

))

= max

(

max

(

A(m,n, k), (k − 1)(m + n) + A(m

k
, n

k
, k)

)

,

(k − 1)(m + n)(1 + 1
k
) + S(m

k2 , n

k2 , k)

)

.

(17)

In order to unwind the recursive formula from Equation 17, the result of Lemma 5 is used. Note that

the statement and proof of Lemma 5 immediately follows this proof. Lemma 5 states that ifA(m,n, k) is

defined as in Equation 15, then

A(m,n, k) ≥ (k − 1)(m + n)(1 + 1
k

+ · · · + 1
kj−2) + A(m

kj−1 , n

kj−1 , k),∀j, 2 ≤ j ≤ a. (18)

For example, forj = 2, the inequality of Lemma 5,

A(m,n, k) ≥ (k − 1)(m + n) + A(m

k
, n

k
, k), (19)

can be rewritten as

max

(

A(m,n, k), (k − 1)(m + n) + A(m

k
, n

k
, k)

)

= A(m,n, k). (20)

53

By rewriting the inequalities of Lemma 5 for every value ofj, exactly as done forj = 2, and by using

the resulting equalities at every step of the unwinding of the recursive relation, we obtain:

S(m,n, k) = max

(

A(m,n, k), (k − 1)(m + n)(1 + 1
k
) + S(m

k2 , n

k2 , k)

)

= · · · =

= max

(

A(m,n, k), (k − 1)(m + n)(1 + 1
k

+ · · · + 1
ka−1) + S(m

ka , n

ka , k)

)

= max

(

A(m,n, k), k(m + n)(1 − 1
ka) + S(m

ka , n

ka , k)

)

.

(21)

BecausePFastLSA(m

ka , n

ka , k) is a Base Case subproblem,S(m

ka , n

ka , k) ≤ BM ; thus,S(m,n, k) is

bounded above by

max

(

A(m,n, k), k(m + n)(1 − 1
ka) + BM

)

≤ A(m,n, k) + k(m + n)(1 − 1
ka) + BM

≤ A(m,n, k) + k(m + n) + BM =

= (2k − 1)(m + n) + R × C − u × v+

+ P

C
n + k(m + n) + BM

= (3k − 1) × (m + n) + P

C
n+

+ R × C − u × v + BM.

(22)

Therefore,

S(m,n, k) ≤ (3k − 1) × (m + n) + P

C
× n + R × C − u × v + BM, (23)

which concludes the proof of Theorem 2.

54

Lemma 5 LetA(m,n, k) be defined as in Equation 15. Then

A(m,n, k) ≥ (k − 1)(m + n)(1 + 1
k

+ · · · + 1
kj−2) + A(m

kj−1 , n

kj−1 , k),∀j, 2 ≤ j ≤ a. (24)

Proof. Let j be such that2 ≤ j ≤ a. The inequality becomes

A(m,n, k) ≥ (k − 1)(m + n)(1 + 1
k

+ · · · + 1
kj−2) + A(m

kj−1 , n

kj−1 , k) ⇔

A(m,n, k) − A(m

kj−1 , n

kj−1 , k) ≥ k(m + n)(1 − 1
kj−1) ⇔

(2k − 1)(m + n)(1 − 1
kj−1) + P

C
n(1 − 1

kj−1) ≥ k(m + n)(1 − 1
kj−1).

(25)

BecauseP

C
n(1 − 1

kj−1) ≥ 0, it is sufficient to prove that

(2k − 1)(m + n)(1 − 1
kj−1) ≥ k(m + n)(1 − 1

kj−1) ⇔

(2k − 1) ≥ k ⇔

k ≥ 1,

(26)

which is true. Therefore, the inequality of Lemma 5 is true∀j, 2 ≤ j ≤ a.

Theorem 4 (from Section 5.5.3)Let WT (m,n, k, P) be defined as in Definition 3. For simplicity, assume

that the tiles processed in a parallel phase are laid out inR rows andC columns for both the Fill Cache and

the Base Case subproblems. Then

WT (m,n, k, P) ≤ m×n

P
× (1 + P 2−P

R×C
) × (k

k−1)2. (27)

Proof. Let PFillCacheT (M,N, k, P) be the time spent by the slowest of theP threads when solving

a Fill Cache subproblem of sizeM × N . From the definition ofWT (m,n, k, P) and that of a trace of the

55

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �
� �
� �
� �

� �� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� �
� �

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

� �
� �

� �

� �� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�

� �� �

� �� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

- - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - -

.

/ / / / / / / // / / / / / / // / / / / / / // / / / / / / // / / / / / / // / / / / / / // / / / / / / // / / / / / / // / / / / / / // / / / / / / // / / / / / / // / / / / / / // / / / / / / // / / / / / / /

0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0

1 1 11 1 11 1 11 1 11 1 11 1 1

2 2 22 2 22 2 22 2 22 2 22 2 2

3 3 33 3 33 3 33 3 33 3 3

4 44 44 44 44 4

5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 6

7 7 7 7 7 77 7 7 7 7 77 7 7 7 7 77 7 7 7 7 77 7 7 7 7 77 7 7 7 7 77 7 7 7 7 77 7 7 7 7 77 7 7 7 7 77 7 7 7 7 77 7 7 7 7 77 7 7 7 7 7

8 8 8 8 8 88 8 8 8 8 88 8 8 8 8 88 8 8 8 8 88 8 8 8 8 88 8 8 8 8 88 8 8 8 8 88 8 8 8 8 88 8 8 8 8 88 8 8 8 8 88 8 8 8 8 88 8 8 8 8 8

9 99 99 99 9

: :: :: :: :

; ; ; ; ; ; ;; ; ; ; ; ; ;; ; ; ; ; ; ;; ; ; ; ; ; ;; ; ; ; ; ; ;; ; ; ; ; ; ;; ; ; ; ; ; ;; ; ; ; ; ; ;; ; ; ; ; ; ;; ; ; ; ; ; ;; ; ; ; ; ; ;; ; ; ; ; ; ;; ; ; ; ; ; ;; ; ; ; ; ; ;

< < < < < < << < < < < < << < < < < < << < < < < < << < < < < < << < < < < < << < < < < < << < < < < < << < < < < < << < < < < < << < < < < < << < < < < < << < < < < < << < < < < < <

= = = = = = = = == = = = = = = = == = = = = = = = == = = = = = = = == = = = = = = = == = = = = = = = == = = = = = = = == = = = = = = = == = = = = = = = == = = = = = = = == = = = = = = = == = = = = = = = == = = = = = = = == = = = = = = = == = = = = = = = == = = = = = = = == = = = = = = = == = = = = = = = == = = = = = = = =

> > > > > > > > >> > > > > > > > >> > > > > > > > >> > > > > > > > >> > > > > > > > >> > > > > > > > >> > > > > > > > >> > > > > > > > >> > > > > > > > >> > > > > > > > >> > > > > > > > >> > > > > > > > >> > > > > > > > >> > > > > > > > >> > > > > > > > >> > > > > > > > >> > > > > > > > >> > > > > > > > >> > > > > > > > >

? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?

@ @ @ @ @ @ @ @@ @ @ @ @ @ @ @@ @ @ @ @ @ @ @@ @ @ @ @ @ @ @@ @ @ @ @ @ @ @@ @ @ @ @ @ @ @@ @ @ @ @ @ @ @@ @ @ @ @ @ @ @@ @ @ @ @ @ @ @@ @ @ @ @ @ @ @@ @ @ @ @ @ @ @@ @ @ @ @ @ @ @@ @ @ @ @ @ @ @@ @ @ @ @ @ @ @@ @ @ @ @ @ @ @@ @ @ @ @ @ @ @@ @ @ @ @ @ @ @

A A A A A A A A A A A

B B B B B B B B B B B

C C C CC C C CC C C CC C C CC C C CC C C CC C C CC C C CC C C C

D D D DD D D DD D D DD D D DD D D DD D D DD D D DD D D DD D D D

E E EE E EE E EE E EE E EE E EE E E

F F FF F FF F FF F FF F FF F FF F F

G G G G G G G G G G G G

H H H H H H H H H H H H

I I I I I I I I I I I I I

J J J J J J J J J J J J J

K K K K K K K K K K K K K K

L L L L L L L L L L L L L L

M M M M M M M M M M M M M M M

N N N N N N N N N N N N N N N

O O O O O O O O O O O O O O O O

P P P P P P P P P P P P P P P P

Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

R R R R R R R R R R R R R R R R

S S S S S S S S S S S S

T T T T T T T T T T T T

U U U U U U U U U U U U U

V V V V V V V V V V V V

W W W W W W W W W W W W W W W

X X X X X X X X X X X X X X X

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z

[[[[[[[[[[[[[[[[[

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

]]]]]]]]]]]]]]]]]

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

a a a a a a a a a a a a a a a a a

b b b b b b b b b b b b b b b b

c c c c c c c c c c c c c c c c

d d d d d d d d d d d d d d d dFirst Phase Wavefront Lines

Third Phase Wavefront Lines

3

2

1

4

5

6

P - 1 = 7

Second Phase Wavefront Lines

v = 3

u = 2

7 = P - 1

6

5 = u + v

3

1

Figure 13: The Three Phases of a Parallel Fill Cache Subproblem

FastLSA algorithm (i.e., Equation 6), it can be inferred that

WT (m,n, k, P) = PFillCacheT (m,n, k, P) + (2k − 1) × WT (m

k
, n

k
, k, P). (28)

The first step of the proof is to find a good approximation forPFillCacheT (M,N, k, P). As explained

in Section 5.1, the DPM entries that are computed in order to fill the Grid Cache are partitioned inR×C −

u × v tiles. Some of the tiles can be empty, so this number is actually an upper bound. If the Fill Cache

subproblem hasM rows andN columns, each tile has at mostM

R
× N

C
entries. LetT be the time spent by

one processor to compute a tile sequentially. Because each tile is solved using theLastRowalgorithm from

Hirschberg, we haveT = O(M×N

R×C
).

As shown in Figure 7, the computation of the tiles advances following a diagonal wavefront pattern. In

Figure 7, each diagonal of tiles labeled with the same numberforms awavefront line.A wavefront line is

important because the tiles that form it are independent andcan be computed in parallel.

The computation of the tiles for a Fill Cache subproblem can be divided into three distinct phases. Figure

56

13 shows the three phases corresponding to a Fill Cache subproblem which is solved onP = 8 processors,

usingk = 6, u = 2, andv = 3. Each wavefront line is labeled with the number of tiles thatform that

particular wavefront line. A good approximation forPFillCacheT (M,N, k, P) can be found using an

upper bound for the time spent in each phase.

In the first phase, the number of tiles in each wavefront line increases from 1 toP − 1. In this phase,

a total of P (P−1)
2 tiles are computed. In the worst case scenario, each wavefront line is solved in a parallel

stage that lasts a time ofT ; thus, the time spent on the first phase is at most(P − 1)T .

The third phase consists of the wavefront lines that are formed from less thanP tiles and that are not

computed in the first phase. An example of wavefront lines forming a third phase is depicted in Figure 13.

Some of the wavefront lines of this phase may not consist of contiguous tiles because the tiles belonging to

the bottom-right FastLSA subproblem are not computed for a Fill Cache subproblem (e.g., the wavefront

line labeled 3 in Figure 13).

The third phase has at most the same number of wavefront linesas the first phase, i.e.,P − 1. Because

each wavefront line can be solved in a parallel stage of timeT , the third phase cannot last longer than

(P − 1)T . The number of tiles that are computed in the third phase is difficult to estimate for general values

of P , u, andv, but a lower bound for this number isP (P−1)
2 − u × v.

The second phase is the true parallel phase. Enough tiles areavailable so that all processors can work in

parallel. An upper bound for the number of tiles computed in this phase is the total number of tiles, minus

the number of tiles computed in the first phase and the lower bound for the number of tiles computed in the

third phase, i.e.,

(R × C − u × v) − P (P−1)
2 − (P (P−1)

2 − u × v) = R × C − P 2 + P. (29)

57

Because these tiles are computed in parallel, the time spentin the second phase is

(R×C−P 2+P)
P

× T. (30)

Note that we need a lower bound for the number of tiles computed in the third phase in order to compute an

upper bound for the time spent in the second phase.

An approximation forPFillCacheT (M,N, k, P) is obtained through the summation of the times for

the three phases, which gives

PFillCacheT (M,N, k, P) = (P − 1)T + (R×C−P 2+P)
P

T + (P − 1)T

= (R×C+P 2−P)
P

T

= (R×C+P 2−P)×M×N

P×R×C

= M × N × 1
P

(1 + P 2−P

R×C
)

= M × N × α,

(31)

where

α = 1
P

(1 + P 2−P

R×C
). (32)

Let PBaseCaseT (M,N,P) be the time spent by the slowest of theP threads when solving a Base

Case subproblem of sizeM × N . An approximation forPBaseCaseT (M,N,P) is obtained through a

58

reasoning process similar to that used forPFillCacheT (M,N, k, P). We get

PBaseCaseT (M,N,P) = (P − 1)T + (R × C − P (P−1)
2 − P (P−1)

2)T

P
+ (P − 1)T

= (P − 1)T + (R×C−P 2+P)
P

T + (P − 1)T

= M × N × 1
P

(1 + P 2−P

R×C
)

= M × N × α.

(33)

Using the results of Equation 31 and Equation 33, Formula 28 becomes

WT (m,n, k, P) = m × n × α + (2k − 1) × WT (m

k
, n

k
, k, P)

= mnα + (2k − 1)(m

k

n

k
α + (2k − 1)WT (m

k2 , n

k2 , k, P))

= mnα + mnα2k−1
k2 + (2k − 1)2WT (m

k2 , n

k2 , k, P)

= mnα + mnα2k−1
k2 + mnα(2k−1

k2)2 + (2k − 1)3WT (m

k3 , n

k3 , k, P)

= · · · =

= mnα(1 + 2k−1
k2 + (2k−1

k2)2 + · · · + (2k−1
k2)a−1) + (2k − 1)aWT (m

ka , n

ka , k, P)

= mnα(1 + 2k−1
k2 + · · · + (2k−1

k2)a−1) + (2k − 1)aPBaseCaseT (m

ka , n

ka , P)

= mnα(1 + 2k−1
k2 + · · · + (2k−1

k2)a−1) + (2k − 1)a m

ka
n

ka α

= mnα(1 + 2k−1
k2 + · · · + (2k−1

k2)a−1 + (2k−1
k2)a)

= mnα
1−(

2k−1
k2)a+1

1−
2k−1

k2

.

(34)

Because(2k−1
k2)a+1 > 0, we have

WT (m,n, k, P) = mnα
1−(

2k−1
k2)a+1

1−
2k−1

k2

≤ mnα 1

1−
2k−1

k2

= mnα(k

k−1)2.

(35)

59

By replacingα with its value (Equation 32), it becomes true that

WT (m,n, k, P) ≤ mnα(k

k−1)2 = m×n

P
× (1 + P 2−P

R×C
) × (k

k−1)2, (36)

which concludes the proof of Theorem 4.

60

