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Abstract

Sequence alignmentis a fundamental operation for homaeggch in bioinformatics. For two DNA
or protein sequences of length andn, full-matrix (FM), dynamic programming alignment algdmibs
such as Needleman-Wunsch and Smith-Waterman take 0¢) time and use a possibly prohibitive
O(m x n) space. Hirschberg's algorithm reduces the space regairento Ofnin(m, n)), but requires
approximately twice the number of operations required leyRM algorithms.

The Fast Linear Space Alignment (FastLSA) algorithm adapthe amount of space available by
trading space for operations. FastLSA can effectively adapse either linear or quadratic space,
depending on the specific machine. Our experiments show ithatractice, due to memory caching
effects, FastLSA is always as fast or faster than Hirschaedithe FM algorithms.

To further improve the performance of FastLSA, we have pelizéd it using a simple but effec-
tive form of wavefront parallelism. Our experimental résighow that Parallel FastLSA exhibits good
speedups, almost linear for 8 processors or less, and astthefficiency of Parallel FastLSA increases
with the size of the sequences that are aligned. Consegupathllel and sequential FastLSA can be
flexibly and effectively used with high performance in sttaas where space and the number of parallel
processors can vary greatly.

Keywords: sequence alignment, homology search, bioinformatiosalispace, computational biol-
ogy, parallel and sequential algorithms



1 Introduction

Sequence alignment is a fundamental operation in bioirditios. Pairwise sequence alignment is used
to determine homology (i.e., similar structure) in both DMMAd protein sequences to gain insight into
their purpose and function. Given the large DNA sequences, (ns of thousands of bases) that some
researchers wish to study [6, 19, 7], the space and time exihplof a sequence alignment algorithm
become increasingly important.

As the first research contribution of this paper, we estalilist the recently-introduced FastLSA [4]
algorithm is the preferred sequential, dynamic prograngndilgorithm for pairwise sequence alignment.
Given FastLSA's strong analytical and empirical charasties with respect to storage and time complex-
ity, FastLSA is a good candidate for parallelization to i its performance when dealing with large,
whole genome alignments. As the second contribution, we shat FastLSA is nicely parallelizable while
maintaining the strong space and time complexity propedfdhe sequential algorithm.

A recurring theme in this paper, and the third research dwrion in the form of a case study, is
the importance of algorithms (like FastLSA) that can be peterized and tuned (e.g., via parameter
discussed below) to take advantage of cache memory and nmexmorg sizes. Existing algorithms for
sequence alignment cannot be similarly parameterizedth&umore, the selected value for parameier
has a significant impact on the parallel speedups of the idigarwhich results in interesting lessons in

performance trade-offs.

1.1 Background

The primary structure of a protein consists of a sequencenifi@acids, usually represented as a string,
where each amino acid is represented by one of 20 differéierde To align two protein sequences, say

TLDKLLKDand TDVLKAD the sequences can be shifted right or left to align as maawtiichl letters as



| Symbol | Amino Acid Name | DNACodon(s) [A |D |K |[L [T |V |

A alanine GC* (* =any) 16 | - - - - -
D aspartic acid GAT GAC 0 20 | - - - -
K lysine AAA AAG 0 0 20 | - - -
L leusine TTA TTG CT*|| O 0 0 20 | - -
T threonine AC* 0 0 0 0 20 | -
Y, valine GT* 0 0 0 12 | 0 20

Table 1: Part of Modified Dayhoff Scoring Matrix and SimitgriTable, used for some examples in this
paper

possible; in this example, 3 letters can be aligned (not showlowever, by allowing gaps {*) to be
inserted into sequences, we can often obtain more idenéttals; in this example, there are 2 different

ways of obtaining 5 identically aligned letters (highligbitby* ):

TLDKLLK-D TLDKLLK-D
T-DVL-KAD T-D-VLKAD

The different amino acids valine (V) and leucine (L) haveikinfunctional properties so in sequence
alignment we would like to indicate that the letters V and & abetter match than the amino acids lysine (K)
and leucine (L), which have very different functional prdjss. To accommodate such similarity matches,
we create a scoring function based on the numeric entriesiohigarity table. For each pair of letters, the
table gives a similarity score, where higher values ingidagher similarity. The score of an alignment
is obtained by iterating over all pairs of correspondindelet in the aligned sequences and adding up the
entries in the similarity table that is indexed by each pAm. optimal alignment is an alignment with the
highest score for a given scoring function. In fact, therey fo@ several optimal alignments with the same
optimal score.

The similarity table for the scoring function used in thigppais based on the popular Dayhoff scoring
matrix, MDM78 Mutation Data Matrix - 1978 [5]. It is the deflusimilarity table used in the BioTools’

commercial product PepTooWw(vw.biotools.com ). It has been scaled so that each entry is a non-



negative integer. Table 1 shows the part of the scoring tagbel in some of the examples of this paper.
Higher scores denote higher similarity. Note that valing &d leucine (L) have a similarity score of 12,
since they have similar function, while lysine (K) and lexeciL) have a similarity score of O to denote no
similarity. If an amino acid in one sequence lines up with p igethe other sequence, then a negative value,
called agap penaltyis added to the score.

Many algorithms for sequence alignment are based on dynammizamming techniques that are equiv-
alent to the algorithms proposed by Needleman and WunsdtafitbSmith and Waterman [20]. Aligning
two sequences of length andn is equivalent to finding the maximum cost path through a dyoamgram
matrix (DPM) of sizem + 1 by n + 1, where an extra row and column is added to capture leading} §2ip
course, high scores and the maximum cost paths are desivithleespect to the scoring functions in this
paper. Given a DPM of sizex by n, it takes Ofn x n) time to compute the DPM cost entries, and then
O(m + n) time to identify the maximum cost path in the DPM. In this pglgorithms that are based on
storing the complete DPM are called full matrix algorithrizdA).

Unfortunately, calculations requiring @(x n) space can be prohibitive. For instance, aligning two
sequences with 10,000 letters each requires 400 Mbytesmbnyeassuming each DPM entry is a single 4
byte integer. Although main memories in 2005 can be sevenadlted megabytes or gigabytes in size, the
all-important processor caches are still (typically) waibder 128 Mbytes. Furthermore, given that we now
have the capacity to sequence entire genomes, pairwisersggaomparisons involving up to four million
neucleotides at a time are now desirablexO(n) storage of this magnitude would requirel0{®) Mbytes
of memory which is beyond the range of current technology.

Hirschberg [10] was the first to report a way of doing the cotapon using linear space. However, not
storing the entire DPM means that some of the entries need tedmmputed to find the optimal path. It
is a classic space-time trade-off: the number of operatappsoximately doubles, but the space overhead

drops from quadratic to linear in the length of the sequentes$act, Hirschberg's original algorithm was



designed to compute the longest common sub-string of twrmgstrbut Myers and Miller [14] applied it to
sequence alignment.

In summary, there are two extremes for pairwise optimal sege alignment:

1. full matrix, which minimizes the computational compkgxiand

2. linear space, which minimizes the storage requirements.

However, linear-space alignment algorithms, such as Hlirsxg’s algorithm, do not take advantage of
any additional memory that might be available.

This paper examines the FastLSA (Fast Linear-Space Aligtinadgorithm, in both sequential and
parallel versions. We expand on the original FastLSA pagewjth new analytical and empirical results
for the sequential algorithm. We also introduce a new palredirsion of FastLSA [8] and provide substantial
new analytical and empirical results. Compared to a prelyepublished version of this work [9], this paper
provides the full proofs of the theorems (i.e., Appendix Aynore thorough coverage of the background
and related work (i.e., this section and Section 2), and raongirical results (i.e., Section 4 and Section 6).

Unlike Hirschberg’s algorithm, FastLSA can take advantaigextra space to reduce the number of op-
erations. We describe the algorithms and we provide botlytécs and empirical results for the algorithms.
At one extreme, FastLSA uses linear space with approximatéltimes the number of operations required
by the FM algorithms. At the other extreme, FastLSA uses gpimdspace with no extra operations. Our
experiments show that, in practice, due to memory cachifegtsf FastLSA is always as fast or faster than
Hirschberg and the FM algorithms.

Our experimental results show that Parallel FastLSA eihigppod speedups, almost linear for 8 pro-
cessors or less, and also that the efficiency of ParalleLBasincreases with the size of the sequences that
are aligned. Consequently, parallel and sequential Fastz® be flexibly and effectively used with high

performance in situations where space and the number dfgdgmacessors can vary greatly.



| [[- [T Jt b JK JL JL [K [D |
O |-10 |-20 |-30 |40 |-50 |-60 |-70 |-80
10 |20, | 105 |0 10 | -20 |-30 |-40 |-50
20 |10 |20 |30, |20 |10 |O 10 | -20
30 |0 22 |20 |30 |32 |22 |12 |2

40 | -10 |20 |22 |20 |50 |52 |42 |32
50 |20 |10 |20 |42 |40 |50 |72 |62
60 |-30 |0 10 |32 |42 |40 |62 |72
70 | -40 |-10 |20 |22 |32 |42 |52 |82

O > Xr<g-'"

Figure 1: A Dynamic Programming Matrix (using similaritybta from Table 1) and a Gap Penalty of -10.
Subscripts denote an optimal path.

2 Related Work

2.1 Dynamic Programming and Full-Matrix Algorithms

FastLSA is a dynamic programming algorithm, like the FM allidpons and Hirschberg’s algorithm, and it
produces exactly the same optimal alignment for a givensgdunction. The algorithms differ only in the
space and time required.

The sequences from the introduction can be used to illesth&t differences between these algorithms.
The scoring function uses the scoring table of Table 1 andogpgaalty of -10. Consider the sequences:

TLDKLLKDandTDVLKAD The alignment:

TLDKLLK-D

T-D-VLKAD
has an optimal score of (see Table 1, represented as Stylihie[]): SimilarityTable[T,T] + gap + Sim-
ilarityTable[D,D] + gap + SimilarityTable[L,V] + SimilatyTable[L,L] + SimilarityTable[K,K] + gap +
SimilarityTable[D,D] = 20 + (-10) + 20 + (-10) + 12 + 20 + 20 + @JL+ 20 = 82. How is this optimal

alignment obtained?



One sequence is placed along the top of the matrix and the stlq@ence is placed along the left side
and a gap is added to the start of each sequence (Figure 1) dif@cent path from the top left corner to the
bottom right corner of the matrix that goes only right, dowrd@gonal, represents a different alignment.

Any path can be translated to an alignment, but to obtain gitgnal alignment for a given scoring
function, we need to identify the corresponding optimahpdb derive the optimal path in the matrix, each
of the three algorithms can be divided into two phases, whietcall FindScoreand FindPath Figure 1
shows the DPM scores for the example sequences that are tamhguring thé=indScorephase. The entries
with numerical subscripts form the optimal path, that is pated in theFindPathphase.

In the FindScorephase, a 0 is placed in the upper-left corner of the matrixxhEdgorithm propagates
scores from the upper-left corner of the matrix to the lovigit corner. The score that ends up in the
lower-right corner is the optimal score. The score of anyyeis the maximum of the three scores that
can be propagated from the entry on its left, the entry abbaed the entry above-left. A diagonal move
corresponds to a match or mismatch and adds the scoringvalble for the two letters being considered.
A down (right) move corresponds to inserting a gap in thezumtal (vertical) sequence and adds a gap
penalty.

For example, the score @f)y in the ([T, T]) entry near the top left corner is the maximuntlod scores
from its left entry(-10 + -10 = -20), above entry (-10 + -10 ©}2nd above-left entry (0 + SimilarityTable][T,
T] =0+ 20 = 20). The score dfig in the ([T,L]) entry is the maximum of the scores from its lefttry (20
+-10 = 10), its above entry (-20 + -10 = -30) and its abovedetry (-10 + SimilarityTable[T,L] =-10 + 0
=-10).

The FM algorithms, Hirschberg’s algorithm and FastLSA alinpute the score of the alignment in the
same way. However, the FM algorithms store all of the+ 1) x (n + 1) matrix entries, while the other
two algorithms propagate a single row of scoresdntries) as the matrix is computed, overwriting an old

row of scores by a new row of scores.



The FindPath algorithm computes the optimal path(s) backwards. For Frithms, theFindPath
phase is straightforward. Since the FM algorithms storsates in the DPM, they can compute the path by
starting at the lower right corner and computing which ofttiree entries (left, up and diagonal) was used
to compute its score. For example, the lower right ([D,Dijjre is 82;. Since its upper-left entry ([A,K])
has a score d#2, and since (62 + SimilarityTable[D,D] = 62 + 20 = 82), an optirpath goes through its
upper-left (JA,K]) entry. In addition, an optimal path catriead to its above entry ([A,D]) with value2 4
since 72 - 10 = 624 82. Similarly, an optimal path cannot lead to the left enfiy,K]) whose value is
527. Note that in general it is possible for more than one pathetofitimal. However, in our example,
there is a single optimal path and it is denoted by numerigaéaripts as shown in Figure 1. An alternative
approach is to store three bits in each DPM entry to recorddekward path. Each bit corresponds to one
of the directions, diagonal, up or left. This will record riplle optimal paths. If only a single optimal path
is required, two bits can be used to encode the three pathashat each DPM entry.

In the FM algorithms, the optimal path is easy to computeesthe entire dynamic programming matrix
is stored. However, neither Hirschberg’'s algorithm nortE&4 stores the entire dynamic scoring matrix
so the computation of the path is more complicated. In bodegasome of the DPM entries must be

recomputed to find the path.

2.2 Hirschberg’s Algorithm

Hirschberg’s algorithm uses a divide-and-conquer approdicsplits one sequence in half (siz¢2) and
performs theFindScorecomputation on each half against the other original sequésizem). However,

the half-sequences are aligned from opposite ends or deuilya the second half sequence is reversed. The
algorithm does not store the entire DPM in memory. Instedgl one row in each half matrix is stored
and this row is updated as the computation continues. Imessee are using a virtual or logical dynamic

programming matrix without storing it.



After the two half alignments are complete, only the middaie rows of the matrix are known. This
computation determines the split of the full sequence agéie two half sequences. The split point maxi-
mizes the sum of the corresponding pairs of scores from thénadf alignments.

Hirschberg’s algorithm is called recursively to solve théso simpler problems. The size of the sub-
problem isn /2 by approximatelyn /2, depending on where the split occurred. Since the DPM istootd,
parts of it will need to be re-computed.

The recursion terminates when the size of the sub-problsmsd, but it could be terminated sooner by
using a FM algorithm when the problem size is small enouglolieesn memory or cache. Approximately

m X n re-computations need to be done using Hirschberg's atgorii4].

2.3 Parallel Dynamic Programming

In the broader area of the design and analysis of paralletithgns, dynamic programming has been studied
by many of researchers. The spectrum of papers ranges frethéoretical (e.g., [3, 1]) to papers with
applied and empirical results, in addition to theory (1R, 13]).

Dynamic programming solves a large number of diverse agipdias, ranging from, for example, string
edit distance [1] to sequence alignment [13] (i.e., the watitn for FastLSA itself). There are differences
in the allowed operations (e.g., deletion, insertion, argbstution in string editing as opposed to matching,
mismatching, and inserting a gap in sequence alignment). tBere are also similarities between applica-
tions at the level of the dynamic programming paradigm: #sults of partial subproblems are combined
to solve larger problems. Consequently, the concepts elipipg and dependencies between subproblems
(e.g., [12]) and the strategies for combining the resultsubiproblems (e.g., [1]) are re-visited by different
researchers. Furthermore, for each application, therebeadifferent assumptions about the granularity
of the tasks (e.g., modelled as a random variable followiqgadability distribution [12]) and about the

common problem sizes (e.g., sequence lengths less tha® dh@Bacters [12] versus tens or hundreds of
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thousands of characters (Table 3)).

Given the large spectrum of possible analyses, applicgtiand assumptions, direct comparisons be-
tween results are difficult. However, to provide some cantexr work with FastLSA is more towards the
applied and empirical end of the spectrum. The developmeRastLSA was driven by the desire to im-
prove sequence alignment performance in practice. Ourraabpresults come from problem sizes taken
from actual biological data (Table 3) and an implementatioming on contemporary hardware (Section 6).
We used our analytical results to better understand thecimghtation issues related to the algorithm. For
example, the trade-off between time and space lends its#iebretical analysis, but the empirical analysis

is the ultimate validation of this principle.

3 Sequential FastLSA Algorithm

We describe the FastLSA algorithm and show how it is diffefeom both the FM and Hirschberg algo-
rithms. In particular, FastLSA can be tuned to take advantdglifferent cache memory and main memory
sizes. Furthermore, we show that FastLSA is the prefergaati&hm in practice, which also makes it a good
candidate for parallelization.

The basic idea of FastLSA [4, 8] is to use more available mgriworeduce the number of re-computations
that need to be done in Hirschberg’s algorithm. This is aqadmmed by: (1) dividing both sequences instead
of just one, (2) dividing each sequence into k parts instdamhly two and (3) storing some specific rows
and columns of the logical dynamic programming matrix (DRMgrid lines to reduce the re-computations.

Suppose thai[l..m| andb[1..n] are the two biological sequences that must be alignedRIlétdenote
the number of memory units (e.g., words) available for smthe sequence alignment probleR) may
represent either the size of cache memory or main memorgndipg on the specific performance-tuning

goal of the programmer. IRM > m x n, then a full matrix algorithm (e.g., Needleman-Wunsch) ban
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Algorithm FastLSA
input : logical-d.p.-matrix flsaProblem,
cached-values cacheRow and cacheColumn,
solution-path flsaPath
output: optimal path corresponding to flsaProblem prepend ed to flsaPath

/* Figure 3.6 (a) */
1 if flsaProblem fits in allocated buffer then
/I BASE CASE
/* Figure 3.6 (b) */
2 return solveFullMatrix( flsaProblem, cacheRow, cacheCo lumn, flsaPath )
/I GENERAL CASE
3 flsaGrid = allocateGrid( flsaProblem )
4 initializeGrid( flsaGrid, cacheRow, cacheColumn )

/* Figure 3.6 (c) */
5  fillGridCache( flsaProblem, flsaGrid )

6 newCacheRow = CachedRow( flsaGrid, flsaProblem.bottomR ight )
7 newCacheColumn = CachedColumn( flsaGrid, flsaProblem.b ottomRight )

/* Figure 3.6 (d) */

8 flsaPathExt = FastLSA( flsaProblem.bottomRight, newCac heRow, newCacheColumn, flsaPath )
9  while flsaPathExt not fully extended
10 flsaSubProblem = UpLeft( flsaGrid, flsaPathExt )
11 newCacheRow = CachedRow( flsaGrid, flsaSubProblem )
12 newCacheColumn = CachedColumn( flsaGrid, flsaSubProbl em )
/* Figure 3.6 (e) */
13 flsaPathExt = FastLSA( flsaSubProblem, newCacheRow, ne wCacheColumn, flsaPathExt )

14  deallocateGrid( flsaGrid )

/* Figure 3.6 (f) */
15 return flsaPathExt

Figure 2: Pseudo-Code for FastLSA

used to solve the problem because the DPM can be stored indhatde memory.

FastLSA is a recursive algorithm based on the divide-amdyger paradigm. The pseudo-code for the
FastLSA algorithm is shown in Figure 2. A call to FastLSA tsles input a logical DPM corresponding
to a pair of sequences and an optimal solution path that driie &ottom-right entry of this logical DPM.
FastLSA prepends to the input path an optimal path whicletsss the input matrix from the bottom-right
entry to the top or the left boundary. The resulting optimeathpconstitutes the output of FastLSA. A row
and a column of cached DPM entry values are also passed ireadth call to FastLSA.

FastLSA is invoked by the call:

12



solPath = FastLSA(flsaInitial Problem, cache Row, cacheColumn, flsalnitial Path)

which will return a partial optimal path isolPath This partial optimal path can then be extended to the
top-left entry of the logical DPM to form a complete optimaitip.

For the initial call to FastLSA, the logical DPM used as infflgalnitialProblen) corresponds to the
input sequences andb. The attribute “logical” is used because only the shape efrtatrix is known
initially. This initial logical DPM hagm + 1) x (n+ 1) entries whose values must be computed. The initial
optimal path flsalnitialPath is formed from a single poin{;n,n), the bottom-right entry of the original
logical DPM.

Prior to running FastLSABM units of memory are reserved from t&\/ units available. These
reserved units are subsequently referred to aBtse Case buffelf the DPM corresponding to the input
problem can be allocated in the Base Case buffer, then amalgtath for the input problem is built using a
full matrix algorithm. This corresponds to tBASE CASEection of the algorithm (lines 1-2 in Figure 2).

The full matrix algorithm uses the input valuescheRovwandcacheColumras the first row and column
of the DPM it must compute (Figure 3(a)). After all entriestiié DPM have been computed, an optimal
path through the matrix is built. Figure 3(b) shows the cotagwand stored DPM entries of a sample base
case. In this figure, an optimal path is found to extend froenlibttom-right corner entry4, to the top
boundary entryj3.

If the size of the DPM for the input problem is larger th@i/, the General Case of the algorithm is fol-
lowed (line 3 onwards in Figure 2). In this case, FastLSAsplie input problem into smaller subproblems.
These subproblems are solved recursively using calls tih $4s The solution paths for these subproblems,
if concatenated, form a solution path for the input problem.

The general case of FastLSA starts by dividing each dimansidhe logical DPM intok equal seg-
ments,k > 2. As a result, the DPM for the input problem is partitionedikt logical sub-matrice®f size

approximately: x # (Figure 3(c)). These sub-matrices are laid out iows, each row having columns.

13



(a) Layout of the input caches (b) Base case: full matrix (c) General case: grid of
at the start ofFastLSA() algorithmis used to find an  caches (for k = 4) allocated
optimal path but not filled yet
B
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(d) General case: grid of (e) General case: after (f) General case: extend path
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on bottom-right block block, with partial solution recursion on sub-problems
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Figure 3: Execution Stages of FastLSA

The first goal of the general case is to find the values of theesndf the DPM which lie on the left
and upper border of the? logical sub-matrices, and save them. These interestingesdie exactly along
rows andk columns of the logical DPM. The grifisaGrid is allocated in order to store these values once
they are computed (line 3 in Figure Z)saGrid consists ofk rows of sizen andk columns of sizen. The
grid rows and columns can be seen as overlapping the rowschmthic of the DPM.

The uppermost row and the leftmost columnfisGrid will hold the values passed in with the row

cacheRowand the columrcacheColumn This initialization of the grid is done imitializeGrid (line 4 in

14



Figure 2). Figure 3(c) shows this stage of the computation.

In order to fill the remaining: — 1 rows andk — 1 columns of the gridisaGrid all the entries of the
DPM are computed, except for those forming the bottom-rgyli-matrix. This is accomplished with the
call tofillGridCache(line 5 in Figure 2). These entries are saved in the portibfisaGridthat they overlap.
However, there are two exceptions: only the right-most molus saved from the sub-matrices of thid
row of sub-matrices, and only the bottom-most row is savethfthe sub-matrices of thieh column of
sub-matrices. The entries corresponding to the bottoht-ggb-matrix are not yet computed.

Figure 3(d) showdlsaGrid completely filled before the FastLSA is applied recursiviehthe bottom-
right sub-matrix. The portions frorfisaGrid that border the bottom-right sub-matrix are passed with the
recursive call td-astLSAas the new cacheewCacheRowndnewCacheColum(ine 8 in Figure 2). When
this recursive call td-astLSAreturns, the optimal path for the initial problem has beetemded from the
bottom-right entry to the entr€ (Figure 3(e)). Note thal could also have been on the left boundary of the
bottom-right sub-matrix. Naturally, it does not matter Wiex the bottom-right sub-matrix is a base case or
requires its own recursive calls.

The next step of the general case is to extend the optimalffgaththe entryC to an entry on the left or
upper boundary of the initial logical DPM. This step is acgtiished through successive recursive calls to
FastLSAIn thewhile -loop (lines 9-13 in Figure 2).

Note that during this latter step, calls to FastLSA are naessarily applied to entire sub-matrices.
Every time the optimal path extends into a new sub-matrig,rtéxt subproblem to be solved BgstLSA
is identified through a call t&JpLeft (line 10 in Figure 2). The coordinates of this new logical DRk

computed byJpLeftas follows:

¢ the top-left corner of the new logical matrix is given by thedeft corner of the sub-matrix that is to

be entered next by the optimal path;
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¢ the bottom-right corner of the new logical matrix is giventhg head of the current optimal path.

Figure 3(e) shows the logical DPM found bjpLeftwhen first called in thevhile -loop. The top-left
corner of the new logical matrix i€2, with C, the head of the current optimal path, being the bottom-
right corner. Then, the portions froftsaGrid which border this new logical DPM to North and West are
identified. These are the new caches which are passed witkd¢besive call tdFastLSAasnewCacheRow
andnewCacheColumn/hen this recursive call returns, the optimal path for thigiwal problem has been
extended fronC to the entryD (Figure 3(f)). At the end of the second cycle of tlikile -loop, the optimal
path has been further extended to the eBtry

In the remaining cycles of thehile -loop, the optimal path is further extended through themsalrices
of the input matrix until the head of the path intersects tha fiow or the first column of the grid. Figure
3(f) shows the optimal path being extended through enkjés G, andH. Thewhile -loop stops wheit
becomes the head of the current optimal path bechulses on the first row oflsaGrid Next, the grid of
cachedlsaGridis deallocated, and the initial call EastLSAreturns. The optimal path corresponding to the
input logical DPM is returned to the initial caller. The ratad path extends from the bottom-right corner
of the original input matrix to the entiiy.

After the initial invocation of FastLSA returns, the paktaptimal pathsolPathis further extended to
the top-left corner along the first row or the first column af DPM. Figure 3(f) shows the partial optimal
path being extended to the top-left correalong the first row of the DPM. The resulting optimal path
corresponds uniquely to an optimal alignment between thetisequences andb.

It is useful to observe that FastLSA solves a successionctdmgular problems, calleleastLSA sub-
problems using either a Base Case approach for the small subproptamasFill Cache approach for the
subproblems that do not fit in the Base Case buffer. The sblmns solved as Base Cases are referred
to asBase Case subproblem3he subproblems solved in the General Case are referresiRill £ache

subproblems
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FastLSA uses more space than Hirschberg’s algorithm. Tes grastLSA the advantage of recomput-
ing fewer entries in the DPM, thus improving the time perfarmoe of the sequence alignment operation.
The space required by FastLSA is still linear in the size efitiput sequences as will be shown next, based
on the results of Charter, Schaeffer, and Szafron [4]. leantlore, FastLSA can be adjusted to useraW
units of memory that are available.

Let S(m,n, k) be the maximum number of DPM entries that need to be storeddier do align the
sequences[1..m] andb[1..n], using a grid cache of rows andk columns. If the initial call uses the
General Case of the algorithm, ther- 1 rows of lengthn andk — 1 columns of lengthn must be allocated
for the grid cache. The initial cache row and cache columrciwlare passed as arguments to the FastLSA
call are used as the top-most row and the left-most columheofjitid. They have already been allocated by
the caller function, and this is why they are not counted asqiaS(m, n, k). The cache in the first call to
FastLSA usegk — 1) x (m + n) entries in total.

The recursive call to the bottom-right sub-problem uses astrfi(7, 7, k) space. Because all the
subproblems solved inside thehile -loop are equal to or smaller than the bottom-right sub-iemb
S(%, %, k) is a good upper bound for the space used by the recursivetodafastLSA generated by the

initial call. After putting everything together, in the vabicase, we get:

S(m,n,k) = (k — 1) x (m+n) + S(2, 2 k) 1)
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The worst-case recursive relation for space becomes

S(m,n, k) =(k—=1)x (m+n)+(k—-1) x (F + %) + S5z 52, k)

>3

:(k;—l)x(m+n)x(1+%)+5(kﬂ27k%7k)
2)

=(k=1) x (m+n)x (L+ 4+ 1) + S(f%, &, k).

Because the space for Base Case subproblems is allocabecBasge Case buffer, itis true thi#t;z , 7, k) <

BM, and Equation 2 becomes

1
S(m,n, k) < (k—1) ><(m+n)><11;1’“_a—+BM

k

=k x (m+n)x (1 - &) +BM (3)

<k x (m+n)+ BM.

Equation 3 shows that FastLSA uses linear space. It alsada®the means to computeand BM when
the space utilization is to be maximized.

With regard to the time complexity, |1&t(m, n, k) be the number of DPM entries computed by FastLSA
when the sequencesandb are aligned using a grid cache withrows andk columns. It can be proven that,
in the worst case scenario,

T(m,n,k):mxnx%. (4)

It should be noted that the total execution time of FastLS@raportional tol'(m, n, k).
As mentioned throughout this section, FastLSA trades sjpagerformance. For example, when= 5,
T(m,n,5) = 1.5 x m x n. The upper bound provided by FastLSA decreases when the ebluncreases.

Now that we have established reasonable upper bounds opabe €Equation 3) and time (Equation 4)

18



complexity for FastLSA, we can now consider the performasfdée algorithm in practice.

4 Experimental Results for Sequential FastLSA

We compared the empirical performance of the FM algorithinsdtiberg’s algorithm, and FastLSA using
a common software and hardware base. The commercial Chowhsdquence analysis suite developed by
BioTools, Inc. (www.biotools.com ) uses an implementation of FastLSA. For completeness, \pkim
mented an FM algorithm and Hirschberg’s algorithm withia #ame BioTools framework. All algorithms
have been tuned for performance including the removal ohalaan of error checking code segments. Also,
all algorithms share the same input/output code, the saorengdable (Table 1 is a sub-table), and a gap
penalty where creating a new gap has a value of -20 and ertgadi existing gap has a value of -10 (i.e.,
an affine gap penalty). The experiments were performed odvBdz Pentium Il (Coppermine) with 16
Kbytes of Level 1 data cache, 256 Kbytes of Level 2 cache keldat 800 MHz), 133 MHz front side bus
(FSB), 512 MB of main memory and Red Hat Linux 6.1 with the xr#12.16 kernel. Although there are
two CPUs, our application is single-threaded.

We mimic a typical sequence search that takes a new queryaanid or DNA sequence and pairwise
aligns it with each sequence in a database. High alignmentsbetween the query sequence and a specific
database sequence are flagged for further considerationeblyidlogist. Given that these pairwise align-
ments produce optimal matches for the selected scorindifumdhe speed of these pairwise alignments is
the most important consideration.

We randomly selected 5 sequences of lengths 100, 200, 500,1800, and 2000 amino acids, plus or
minus 5% in length, from the Swiss-Prot database [2] to sasveur query sequences. The results of our
first experiment are shown in Table 2. Note that, with one pttor, FastLSA is the fastest algorithm.

Since 5 sequences with the same nominal length are used gadhesequences for the experiment,
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| Query Length | Full Matrix | Hirschberg | FastLSA
100 0.307+ 0.003 0.389+ 0.007 0.262+ 0.004
200 0.621+ 0.008 0.885+ 0.014 0.595+ 0.009
500 1.5944+ 0.016 2.551+ 0.042 1.7134+ 0.028
800 2.594+ 0.049 3.853+0.129 2.580+ 0.081
1000 3.216+ 0.026 4.305+ 0.048 2.882+ 0.030
2000 6.531+ 0.091 9.418+ 0.642 6.136+ 0.415

Table 2: Sequential Search of the Swiss-Prot DatabasesMthHirschberg and FastLSA (times in
seconds x 103, fastest times are in boldface)

there are a total of 30 query sequences from 6 categoried badength. The average time for the 5 query
sequences of similar length is given in the figure and the é&rane standard deviation of the 5 data points.
All of the algorithms used the same query sequences and e warsion of the Swiss-Prot database. We
used Equation 5 to pick a value &f based on the lengths of the two sequences. This formulad®s b

empirically determined to obtain good results.

k = truncate(loglO(m)) + truncate(loglO(n)) + 3 (5)

We used a heuristic function from the ChromaTool code fokipig the buffer size of the recursion-
terminating call to our FM code.

Based on the complexity analysis, one would expect FM to bddktest algorithm in all cases. After
all, FM does not require any re-computation to recover ttih pathe optimal alignment. In contrast, both
Hirschberg's algorithm and the FastLSA reduce their st@regsts at the expense of re-computation. In
fact, FM does 0 re-computations, Hirschberg's algorithresda x n re-computations and FastLSA does
(m x n)/8 re-computations (fok = 8). For example, if the query sequence has size 100 and thieadata
sequences range in size from 100 to 5,000, FM does 0 re-catiimg, FastLSA does 1250 to 62,500

re-computations, and Hirschberg’s algorithms does 10t0@D0,000 re-computations for each alignment.
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Since FastLSA makes fewer re-computations than Hirscfsalgorithm, it is not surprising that it is con-
sistently faster. However, why is FastLSA faster than FMjioery sequences of length 100 and 200, slower
than FM for sequences of size 500 and then faster again fgetsequences?

An inescapable fact of contemporary computer systems ts ith@ractice, the cache behavior of an
algorithm can have a substantial impact on its performakeeh query sequence of size 100 was aligned
against the entire Swiss-Prot database, which containgaeqs ranging from less than 100 amino acids to
over 5,000 amino acids. This means that the DPM ranged irfreime100 x 100 x 4 bytes = 40 Kbytes to
100 x 5000 x 4 bytes = 2 Mbytes. Since the secondary cache has only 256 &lifieeFM DPM would not
fit in secondary cache and a large number of main memory axesyre made. In contrast, the memory
requirements for FastLSA are much smaller. FastLSA With 8 requires only8 x (100 + 1000) x 16
bytes = 140.8 Kbytes for the grid vectors. This easily fitp itie 256 Kbyte secondary cache. Since a main
memory access is more than 10 times slower than an accessaiwdsey cache, the FM DPM not fitting
into cache is sufficient to account for the faster FastLSAgoerance. Hirschberg’'s algorithm also fits into
the secondary cache. However, since it does more re-cotigm#dhan FastLSA, it cannot overtake the FM
algorithm.

However, Table 2 does not present the whole story. There egaesce length for which FM will
exhaust main memory and page to disk. This is a disastrouatisit for the algorithm since disk access
time is more than a million times greater than memory acdess tAt this point, FastLSA and Hirschberg
will again dominate FM and by a significantly larger margirar Ehe main memory configuration used in
our experiments (512Mbytes) this does not occur using thessRrot database, even with a query sequence
of size 5,000 since the longest database target sequenaekehgth 5,000.

From Table 2 we conclude that for shorter sequences, theelobithe best algorithm depends on var-
ious cache effects. However, FastLSA is always better thaschberg’s algorithm. In the typical case

of comparing query sequences against a database, such ssBwi, with sequences of various lengths,
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FastLSA is usually faster than FM due to good caching fortseeguences and no paging for longer se-
guences. However, for a very narrow range of intermediatgttesequences when all three algorithms are
out of cache, but none of the algorithms exhibit paging, FMd BastLSA have very similar performance.

This is illustrated by the 500 and 800 query lengths in Table 2

5 Parallel FastLSA

Sequential FastLSA outperforms other sequential painalggment algorithms (Table 2). This makes
FastLSA a reasonable candidate for parallelization @arallelize the best available sequential algorithm).
Given the large DNA sequences (e.g., tens of thousands egp#sat some researchers wish to study
[6, 19, 7], a parallel FastLSA may be highly desirable. Intipatar, the theoretical time of FastLSA still
has quadratic complexity and the real turnaround time as@e dramatically with the increase in size of
the sequences. In order to alleviate this problem, we havelalged a parallel version of the FastLSA

algorithm, subsequently referred to as the Parallel Fasthi§orithm.

5.1 Description of the Parallel FastLSA Algorithm

Before we provide both theoretical and empirical analys$i®arallel FastLSA, we describe the parallel
algorithm and discuss some implementation issues.
Parallel FastLSA improves the execution time of the origifastLSA algorithm by parallelizing its two

major time-consuming components:

1. Base Case: the full matrix algorithm used for solving Baase subproblems (line 2 of the pseudo-

code from Figure 2), and

2. General Case: the computation of the FastLSA Grid CaatiiaéorFill Cache subproblems (line 5 of

the pseudo-code from Figure 2).
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The pseudo-code for Parallel FastLSA is shown in Figure & dily changes from the sequential version
are the replacement of the sequengiaive FullMatrix) with a parallel versionparallelSolveFullMatriX), in
line 2, and the replacement of the sequeriili@ridCachd) with a parallel versiorparallelFillGridCachg),

in line 5. No other component of the algorithm is executedcoorently.

In our experiments with Parallel FastLSA, we discovered pamallelism benefits only the Fill Cache
subproblems (Section 6.3). In all the experiments we peréor with our choice of parameter values, the
Base Case subproblems took longer to solve in parallel teguentially. For this reason, in the following
section we analyze the performance of an implementationacdllel FastLSA that solves all Base Case
subproblems sequentially. However, we still explain hoe Base Case subproblems can be solved in
parallel, because a different choice of parameter valuegotentially make their parallel implementation
more efficient. In the remainder of this section, we desdnitn@ the parallel work is organized, first for the
Base Case subproblems, and then for the Fill Cache subprsble

As previously explained, FastLSA stops recursing when tipaiti logical DPMflsaProblemcan be
allocated in the Base Case buffer (line 1 in Figure 4). Thénwgdtpath corresponding to this matrix is
determined using a full matrix algorithm (e.g., Needlenvdimrsch). For the parallel version of the full
matrix algorithm, the dynamic programming matrix is allemhin shared memory. As in the sequential
version of FastLSA, the initial values for the DPM are praddoy the calling function. They are passed
in as the cache rowacheRowand the cache columeacheColumn These initial values are also stored
in shared memory, and they are essential for starting thepatation of the DPM. In order to compute
the value of a DPM entry, the values of the adjacent entri@s fNorth, West, and North—West must be
available.

The DPM is logically partitioned irR x C equally sized rectangular regions, with> 1 andC > 1.
Note that in Figure 5R = 8 andC = 12 are just examples. These regions, subsequently refergsdites,

are laid out alongR rows, each row having’ columns. At any moment during the parallel processing of
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Algorithm Parallel FastLSA
input : logical-d.p.-matrix flsaProblem,
cached-values cacheRow and cacheColumn,
solution-path flsaPath
output: optimal path corresponding to flsaProblem prepend

/* Figure 3.6 (a) */
1 if flsaProblem fits in allocated buffer then
/I BASE CASE
/* Figure 3.6 (b) */
2 return parallelSolveFullMatrix( flsaProblem, cacheRow

/I GENERAL CASE
3 flsaGrid = allocateGrid( flsaProblem )
4 initializeGrid( flsaGrid, cacheRow, cacheColumn )

/* Figure 3.6 (c) */
5 parallelFillGridCache( flsaProblem, flsaGrid )

6 newCacheRow = CachedRow( flsaGrid, flsaProblem.bottomR
7 newCacheColumn = CachedColumn( flsaGrid, flsaProblem.b

/* Figure 3.6 (d) */
8 flsaPathExt = ParallelFastLSA( flsaProblem.bottomRigh

9  while flsaPathExt not fully extended

10 flsaSubProblem = UpLeft( flsaGrid, flsaPathExt )
11 newCacheRow = CachedRow( flsaGrid, flsaSubProblem )
12 newCacheColumn = CachedColumn( flsaGrid, flsaSubProbl

/* Figure 3.6 (e) */
13 flsaPathExt = ParallelFastLSA( flsaSubProblem, newCac

14  deallocateGrid( flsaGrid )

/* Figure 3.6 (f) */
15 return flsaPathExt

ed to flsaPath

, cacheColumn, flsaPath )

ight )
ottomRight )

t, newCacheRow, newCacheColumn, flsaPath )

em )

heRow, newCacheColumn, flsaPathExt )

Figure 4: Pseudo-Code for Parallel FastLSA

the DPM, a processor is either idle, or it is working on onlhedite. Furthermore, only one processor can

work on a tile. Once the processing of a tile ends, no procesiovork on that tile again.

The parallel processing starts with one processor congptii@ entries of the top-left tile, using a Full

Matrix algorithm. The top-left tile is labelled 1 in Figure Hhe computation of the top-left tile is possible

because the initial row and column values for this tile agglafle. In fact, the top-left tile is the only tile that

has all its initial values available. These initial valuesne from the entries afacheRovandcacheColumn

which border the top-left tile. All the other processors idte during this first step. After the top-left tile is

processed, all the values of its corresponding entries edaund in shared memory.
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Wavefront parallelism
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Figure 5: Data Patrtitioning for Parallel Base Case Subprobl

After the first step, there is enough information availablstart computing the entries in the tiles which
neighbor the top-left tile to the East and the South. For gienfor the tile placed East from the top-
left tile (i.e., in row 1 and column 2 of the array of tiles)etmitial row values come from the entries of
cacheRowhat border the tile, while the initial column values comafrthe entries of the right-most column
of the top-left tile. The two tiles neighboring the top-léfe can be computed in parallel on two different
processors.

The processing of the tiles advances on a diagonal-like.ftarFFigure 5, each diagonal of tiles labeled
with the same number formsweavefront line. At the P step, all theP processors can work in parallel
because the wavefront line consists of exaétlfles. The parallel computation ends when all the C'tiles
have been computed. More details on how the parallel workgarozed are provided in the next section.

When the parallel phase ends, all the DPM entries are alailialshared memory. As in the sequential
version of the full matrix algorithm, one of the processoundds an optimal path which extends from the
bottom-right corner of the DPM to its left or upper boundary.

For each Fill Cache subproblem, the logical dynamic prognarg matrix is already split it> smaller

matrices, the logical sub-matrices introduced earlienveier, the Fill Cache subproblems are much larger
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Wavefront parallelism
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Figure 6: Data Partitioning for Parallel Fill Cache Subpeniis

than the Base Case subproblems and, in order to control &milgrity of the parallel work, each of the
k% — 1 sub-matrices that need to be computed in this phase is fulivided intou x v equally sized tiles
(Figure 6). The result is a grid of finer granularity than ttastESA grid. This new grid partitions the DPM
in (k? — 1) x u x v tiles that are to be processed in parallel. These tiles acegdlalong? = k x u rows
andC = k x v columns. In Figure 6k = 4, u = 2, andv = 3 are examples of possible values for these
parameters. Because of this choice of parameter valueslehare laid out as an array & = 8 rows and

C = 12 columns.

The parallel processing starts with one processor congptitmentries of the top-left tile. This algorithm
computes the entries of the tile using linear space. Theesadfithe entries forming the right-most column
and the bottom-most row of the tile are saved in a specialgagferred to agile Cache(Figure 7). The
Tile Cache and the Grid Cache are both allocated in sharedonyem

The Tile Cache is needed in order to allow the parallel coatprt to progress. For example, after the
right-most column and the bottom-most row of the top-ldé &re saved in the Tile Cache, step 2 of the

parallel processing can start. At step 2, two processorstahprocessing in parallel the two tiles which
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Wavefront parallelism
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Figure 7: FastLSA Grid Cache and Tile Cache for Parallel@the Subproblems

neighbor the top-left tile (i.e., the tiles labeled with 2Rigure 7). For each of the two tiles, the initial row
values and the initial column values are available from titeQache. At theP" step, all theP processors
can work in parallel because the wavefront line consistxat#y P tiles. The parallel computation ends
when all the(k? — 1) x u x v tiles have been computed. More details on how the parallek iscrganized
are provided in the next section.

Figure 7 shows the Grid Cache delimiting the FastLSA sulrioest and the Tile Cache delimiting the
tiles. The bottom-right sub-matrix is not partitioned itites in this phase because it will be solved through
a recursive call to Parallel FastLSA.

As can be seen in Figure 7, the Grid Cache always overlapssetsabthe Tile Cache, except for the
boundaries of the bottom-right sub-matrix. The left-madtimn and the upper-most row of the two caches
are initialized using the cache values received as inpgasheColumrand cacheRowrespectively. As
mentioned above, the processor that computes the entriessponding to a tile saves the entries from the
right-most column and bottom-most row in the Tile Cache.SEhentries are also saved in the Grid Cache if
they are overlapped by a Grid Cache column or a Grid CacheNote that the tiles in the bottom-most row

(i.e., theR*" row) and those in the right-most column (i.e., th& column) form degenerate cases where
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only the right-most column or the bottom-most row is saved.

After all the tiles have been processed, the FastLSA Grich€&as been filled and the Tile Cache can
be deallocated. Then, Parallel FastLSA is applied receissito the bottom-right sub-matrix (Figure 7).
Note that new caches of each type, FastLSA Grid Cache an€Caibe, are allocated in shared memory for

each Fill Cache subproblem solved.

5.2 Implementation Details

As mentioned in the previous section, tiles cannot be psmtks an arbitrary order. A tile can be processed
only if the entries of the row preceding its top-most row, &nel entries of the column preceding its left-
most column are already in the Tile Cache. This means thailéhdirectly above a tileX, and the one
immediately to the left ofX, must have already been processed beférean be processed. This strict
dependency is present for both the parallel full matrix etm and the parallel computation of the FastLSA
Grid Cache. For this reason, the two types of parallel regised by Parallel FastLSA can be implemented
using the same strategy for the distribution of paralldtdas

We have investigated two solutions to the problem of assithe tiles that are ready to be processed
to the processors that are available. In the first solutios tites that are ready to be processed are placed
in a work queue, and a processor that needs work dynamicatiyelies a tile from the queue. In the
second solution, entire rows of tiles are preassigned tprbeessors, and each tile is processed as soon as

it becomes ready. These two approaches are explained ihidetee following subsections.

5.3 Dynamic Distribution of Work

Initially, only the top-left tile, which is labelled in Figure 7, can be processed because it is the only
tile for which both the initial row and the initial column vas are known. The top-left tile is placed

in the work queue, which is allocated in shared memory. Etieng parallel computation is performed,
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this queue contains references to the tiles that are reatlg fwocessed. InsidearallelFillGridCachg)
and parallelSolveFullMatriX), all processors try to grab a tile from the work queue arecate the task
associated with it. For a Fill Cache subproblem, the task fdlithe cache entries adjacent to the tile and
not known previously. For a Base Case subproblem, the tdaskcismpute the values of the tile entries.

A processor that finds the queue empty is blocked until a #eolmes available for that processor.
A reservation mechanism is used in order to avoid the stiarvatf certain processors, and to reduce the
contention for the queue access. In essence, a monitordsiates] to each queue slot.

After finishing working on its assigned tile, a processorakiseto see if it can place in the queue the
adjacent tile to the right, or the adjacent tile below. Fcaraple, a tileX, neighboring the current tile to
the right, can be placed in the work queue if and only if the #iboveX has also been processed. This
condition ensures that both the initial row and the initialuenn values are known fox .

The condition stated above can be implemented by assagiatoounter to each tile. The counter of a
tile X is incremented by the processor which processed the tileeatwoto the left ofX. The processor
which increments the value of the counter2tes also responsible for placing in the work queue. Note
that the tiles from the first row and the first column have theiinters set ta initially, because some of the
initial values for these tiles are already available. Thenter of the top-left tile is set t@ initially, while
the counters of all the other tiles start0at

After the tile labelledl is computed, the tiles labelledin Figure 7 can be placed in the work queue.
After those tiles have been processed, more tiles (labg)ledn be placed in the queue, in a pattern known
aswavefront parallelismNote that the tiles labelledl need not be placed in the work queue all at the same
time. They become available for processing as soon as ésdaibelled have been computed.

The parallel processing region ends when all the desigridéschave been computed. Filling the Grid

Cache in parallel requires the processing of

(2 — 1) xuxv=RxC —uxuvtiles,
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Figure 8: Parallel FastLSA: Static Distribution of Work

while the parallel full matrix algorithm computes the vedud R x C' tiles. Note that the values & andC
need not be the same for both the full matrix and cache fillongputations. Furthermore, some of the tiles

can be empty whe®R and(' are larger than the dimensions of the input DPM.

5.4 Static Distribution of Work

Static work distribution is another solution to the problefrallocating the tiles, which is dependent in a
wavefront manner, to thé” processors available. As shown in Figure 8, each ofRhews of tiles is
assigned to a processor in a circular or round-robin fashiibe first processor (i.ep,= 0) starts by solving
the top-left tile, which is the only one with initial row vads and initial column values available. After
the top left tile has been solved, the tiles labelkeith Figure 8 can also be computed. The first processor
computes the second tile in the first row, while the secondgssor computes the first tile in the second
row. As soon as the second processor finishes its first tibethiind processor can start working on its first
tile, and so on.

The solution described above is a round-robin mechanismddk distribution, similar to that of Martins
et al. [13]. The static distribution of work solution deals withetdependency between tiles without using

a queue or system locks. Each procegsbusy waits until the tile above its current tile is solved hg t
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processop — 1 (mod P). At this point,p can start working on its current tile. Wherfinishes the last tile
on its current rowy, it moves to the next row that was preassigned toit, P. If r + P > R, the rowr is
the last row on which the processoworked. The entire computation finishes when all the tilesesHzeen
processed.

The busy waiting mechanism relies heavily on coherent catiet support inexpensive spinning for
reads. Each time the procesgofinishes solving a tile, an index is incremented, and thegssarp + 1
(mod P) must be notified of the new value of the index. This is why eaciegssor not working on a tile,

continuously probes the index associated with the previows

5.5 Space and Time Complexity

We argue that Parallel FastLSA still uses linear space aatctlile time complexity of the algorithm is still
guadratic. We prove this claim by finding a linear upper bofandhe space complexity of Parallel FastLSA
and by finding a quadratic upper bound for its time complexityis subsection focuses on the derivation of

the space and time expressions that are upper bounds fqratbe and time complexity of Parallel FastLSA.

5.5.1 FastLSA Recursion Pattern

In order to compute the amount of space and time required tllla-astLSA to align a sequence of size
m against a sequence of sizeusing a FastLSA Grid Cache of siZze one needs to know thieace of

the FastLSA algorithm. A trace of FastLSA is a series of Fastlsubproblems solved by the recursive
calls to FastLSA, and which are listed in the exact order inctvlthey are solved. A typical series for

PFastLSA(m,n, k) is:

PFastLSA(m,n, k) = PFillCache(m,n, k), PFastLSA(, 2, k),
(6)
PFastLSA(mi,n1,k),...,PFastLSA(m,,n,,k);
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where PF'illCache(m,n, k) is the initial Fill Cache subproblemPFastLSA(%:, %, k) is the recursive
call to the bottom-right subproblem, adtlF'ast LS A(m;,n;, k), i = 1,z are the subproblems solved re-
cursively inside thevhile -loop of the algorithm (i.e., the call in line 13 from Figurg Depending on the
configuration of the optimal alignment path that is followedthe FastLSA algorithm; can take values
betweent — 1 and2k — 2. Details about the values ofin the best case and worst case scenarios have been
provided by Charter, Schaeffer, and Szafron [4].

Given a Base Case buffer of siz&\/, the deepest level of recursion reached by FastLSA is aiymsit

integer,a, with

e X e < BM < 2% X 551 (7)
This is equivalent to
log mxn lOg mXn
_ BM BM | —
a—1< 2logk Sas ’7 2logk “ = a. (8)

5.5.2 Space Complexity

Definition 1 LetS(m,n, k) be the maximum number of DPM entries that need to be storedén to align

a sequence of size against a sequence of sizausing a grid cache witl: rows andk columns.
The following result shows théf(m, n, k) is linear inm andn.

Theorem 2 LetS(m,n, k) be defined as in Definition 1. If the tiles for each Fill Cachbmoblem are laid

out in R rows andC columns, then

S(m,n, k) <(Bk—1)x (m+n)+ 5 xn+RxC—uxv+ BM. 9)

Please see Appendix A for the proof.
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5.5.3 Time Complexity

Definition 3 LetW T (m,n, k, P) be the time spent by the slowest of fh¢hreads involved in the parallel

alignment of two sequences of sizeandn, using a grid cache wittk rows andk columns.

The time spent by the slowest thred®,7'(m, n, k, P), is a good upper bound for the time complexity of

Parallel FastLSA. An upper bound for T'(m, n, k, P) itself is established by the following result.

Theorem 4 Let WT'(m,n, k, P) be defined as in Definition 3. For simplicity, assume that tles fro-
cessed in a parallel phase are laid outifirows andC' columns for both the Fill Cache and the Base Case

subproblems. Then

WT(m,n, k, P) < M50 5 (14 D222y o (h)2, (10)

Please see Appendix A for the proof.

The previous discussion provides upper bounds for the spad¢ime complexity of Parallel FastLSA.
Although these results show what type of curve the spaceilaugdréquirements of Parallel FastLSA follow,
they do not show that good speedups can be achieved in gragkien running Parallel FastLSA an
processors.

Because of this drawback of the theoretical analysis, we hava large number of experiments in order
to assess the empirical efficiency of Parallel FastLSA. Gpeements with Parallel FastLSA show good

speedups, especially when long sequences are aligned.

6 Experimental Results for Parallel FastLSA

We present results from the experiments we have performidRairallel FastLSA on an SGI Origin 2400
parallel computer. The Origin 2400 has 64 processors (40@ RE2000 MIPS CPUs), each with a primary

data cache of 32 Kbytes and a unified 8 MB secondary cache. atadld? FastLSA algorithm is imple-
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mented in C using Irix 6.5proc threads with hardware-based shared memory. The sequesitsabn of
the FastLSA algorithm is an independent, non-commerciplémentation based on the original description
[4]. For simplicity, the FastLSA implementations that wenblemark find the globally optimal alignment
of two sequences using a straightforward scoring functibere all identical matches have a score of 2, all
mismatches have a score of -1, and the gap penalty is -2.

We discuss in detail the experimental results correspgntinthe alignment of three pairs of DNA
sequences which are chosen from a test suite suggested fipitifermatics group at Penn State University
[16]. Most of their examples are comparisons of “some regibthe human genome with the synthetic
region from a rodent genome” [18]. We feel that it is impottém apply Parallel FastLSA to real life
examples. These pairs are considered as a test suite, gdvexrduse of their size, but also because their
alignment is biologically meaningful. Although we have eximented with several more pairs of DNA
sequences, we choose to present results for the pairs déshand longest sequences, and another pair of

sequences of medium size.

1. The shortest sequence pair is formed byXRECC1DNA repair gene from human beings and mice.
The XRCC1gene encodes an enzyme involved in the repair of X-ray darfis®8je The human se-

quence is 37,785 bp long, and the mouse sequence is 37,348dp |

2. The medium size sequences are the “cardiac myosin heaity ghnes” (abbreviatebllyosin) [18]
from human beings and hamsters. The human sequence is F§8@0g, and the hamster sequence

is 66,315 bp long.

3. The longest sequence pair consists of the human and miplnsédelta T-cell receptor loci (abbre-
viated TCR). These sequences “show an unusually high level of consemg17]. The human

sequence is 319,030 bp long, and the mouse sequence is @0, &g.

Throughout the benchmarking process discussed in thi@eeatl parameters introduced in Section 5.1
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Parameter Name

Parameter Value

Notes

Constant

u

BM

3

1,600,000

8

10

number of rows of tiles
between consecutive
Grid rows;

number of columns of
tiles between
consecutive Grid
columns;

size of Base Case buffe
in integers;

total number of rows of
tiles for a Base Case
subproblem;

total number of rows of
tiles for a Base Case
subproblem;

Variable

=~

size of DPM

1,2,4,8,16,32
8-12

3xk

4 xk

37,349 x 37,785
55,820 x 66,315
305, 636 x 319,030

number of processors;
number of Grid rows and
columns;

total number of rows of
tiles for a Fill Cache
subproblem;

total number of rows of
tiles for a Fill Cache
subproblem;

XRCC1

Myosin

TCR

Table 3: The Parameters which Influence the FastLSA algosth

are assigned constant, empirical values. We opt for thigtisol because Parallel FastLSA involves eight
parameters that can vary, and tuning all of them is a complictask. Choosing empirical values for the
parameters is justified by the fact that we are interestedtaibishing reasonable performance for Parallel
FastLSA rather than optimal performance. In the future, aygehto further explore the parameter space.
Table 3 summarizes the parameters involved in the FastL8déritims and the values assigned to
them. After running a series of experiments with differeatues foru, v and k we restricted ourselves
to these empirically validated values. These values amndddo provide the FastLSA algorithms with the
opportunity to run reasonably fast. In particular, PatdtkestLSA is run withR = 8, C' = 10 for the Base

Case subproblems, and= 3, v = 4 (i.e., R = 3 x k, C = 4 x k) for the Fill Cache subproblems. These
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preset values are used for each FastLSA subproblem, indepeaf its size or level of the recursion.

The only parameters which vary during the benchmarking gse@re: and the size of the sequences
aligned. The parametériterates from 8 to 12 in order to assess the impact which #eedfithe FastLSA
Grid Cache has on the performance of the algorithm. The Base Guffer sizeB M, is assigned the con-
stant value ofl, 600, 000. Note that these last parameters influence the performdrugtiothe sequential
and the parallel versions of FastLSA.

The parameter values that we have chosen:far, andk are non-optimal for? = 32, and the expla-
nation of this fact follows. The logical DPM is divided Bx k rows and4 x k columns of tiles for each
Fill Cache subproblem. Because the wavefront line can havaare tiles than the shortest dimension of
the array of tiles, the wavefront line can have at n®st k tiles for our parameter values. Whérns less
than1l, the wavefront line consists or less than 32 tiles, whichmadhat 32 processors cannot all work
in parallel. Despite this theoretical disadvantage, weeplesl that, forP = 32, k£ = 8 is the empirical
optimum for the alignment of thKRCC1sequences, while = 9 is the empirical optimum for thi&lyosin
sequences.

The performance results for Parallel FastLSA presenteldisrsection are obtained using an implemen-
tation based on the Dynamic Distribution of Work strateglyisTstrategy of work distribution is introduced
in Section 5.3. We have also benchmarked an implementatisacbon the Static Distribution of Work
strategy, but choose not to present separate results fec#use they are similar to those obtained for the
implementation based on the Dynamic Distribution of Workat&gy.

The version of Parallel FastLSA analyzed in this sectiomesthe Base Case subproblems sequentially.
This modified version of Parallel FastLSA is preferred to dme described in Section 5.1 because of its
better performance. The performance numbers show thangollie Base Case subproblems in parallel
is consistently and considerably slower than solving thequentially. The comparison is made between

the total time spent on solving Base Case subproblems byié@dfastLSA and the sequential FastLSA.
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Our intuition is that the Base Case subproblems are too smb#nefit from parallelism. Section 6.3 gives
a clear picture that the version of Parallel FastLSA thateslthe Base Case subproblems sequentially
outperforms the initial version, which solves the Base Gasdgproblems in parallel.

The SGI machine used to benchmark FastLSA, both sequemithiparallel, can be accessed only
through a batch queueing and workload management systentalfeoBatch System [21]). Although the
SGI Origin is a multiprogrammed computer, the performanamivers are quite stable from one execution
to the other. In order to remove the small, unpredictableengenerated by the operating system, three con-
secutive runs are performed for each set of parameter valbies is benchmarked. The three time samples
obtained for each run are averaged.

The performance of the FastLSA algorithms is optionallyrimeented by recording relevant trace infor-
mation during their execution. The total execution time, thtal time spent on each FastLSA subproblem,
the type of each subproblem and its coordinates in the liddM are saved in a trace file created for every
combination ofP and sequence pairs. In addition to the above informatianevery Fill Cache subprob-
lem, Parallel FastLSA also records per-thread informagiach as the time for computing a tile and the time
spent at the barrier that follows the parallel region. A& graphs and tables presented in this section are
generated by processing the information collected in #eetfiles. Because the trace collecting mechanism

was always on, the total execution times shown here may dpetlslihigher than in reality.

6.1 General Observations

As mentioned in the previous section, the sequential andllphwersions of FastLSA are benchmarked
for each value of from 8 to 12, and for each of the three pairs of sequences.llydes should have

devised a simple, reliable heuristic which produces a basievfor k, given the size of the sequences and
P, the number of processors used. This best value would etizairéhe overall alignment time is close to

the theoretical optimal time. However, the relationshipasen the best value é&f, P, and the size of the
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Figure 9: Best Speedups for XRCC1, Myosin, and TCR

sequences is not straightforward, and this makes the dewelat of such a heuristic challenging. We note
from the results obtained that, in most of the cases, thersrisall number of neighboring values that can be
chosen as empirically best values forThe values outside this small interval, when assigned t@orsen
the time performance of the algorithm. The 8 to 12 intervalifevas chosen after repeated probing for the
best values. This interval includes an empirical best vdué in most of the combinations benchmarked.
In order to simulate the effect of such a heuristic on the fpadormance of Parallel FastLSA and to
provide a quick first look into the results of our experiments have selected for each pair of sequences
and each number of processors the best execution time abmdsiwe values ofc that were considered,
and then computed the speedups. The resulting speedus@re/ehown in Figure 9. Table 4 shows the
execution time for each sequence alignment performed andatiesponding value fdrthat achieved that
performance. Note that the largest problem (T€R requires over 5,040 seconds (i.e., 1.4 hours to align),
which suggests the need for efficient parallel algorithmmetsle even larger sequences [6, 19, 7].

For the pair of short sequence§iRCC1 the speedup is linear for 2 and 4 processors, but starts-dete
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Sequences Number of Time (sec.) Speedup Bestk
Processors

XRCC1 1 71.71 12
2 33.44 2.14 11

4 18.05 3.97 10

8 10.44 6.87 9

16 7.94 9.03 9

32 8.72 8.22 8

Myosin 1 189.71 12
2 85.54 2.22 12

4 44.92 4.22 11

8 24.89 7.62 11

16 17.52 10.83 11

32 17.91 10.59 9

TCR 1 5040.93 12
2 2202.65 2.29 12

4 1128.56 4.47 12

8 597.66 8.43 12

16 370.07 13.62 12

32 292.84 17.21 12

Table 4: Real Times, Speedups, &nd

orating when 8 or more processors are used. The slowdownZXfand 32 processors occurs because the
granularity of the work assigned to each processor desegésading to a situation where the processors
spend more time trying to get a tile on which to work rathenthatually working on it.

The speedup curve for the alignment of Mgosinsequences ascends almost linearly for up to 8 proces-
sors, increases slowly for 16 processors, and almost fiafte32 processors. This noticeable improvement
of the performance of Parallel FastLSA happens becausePRihd é@mputed for thélyosinsequences has
2.6 times more entries than the DPM computed forXRCC1lsequences. The largktyosinDPM provides
better granularity for the parallel tasks, but not enougsetitsfy 32 processors.

The best speedup curve is obtained for the largest sequiitatese aligned. As mentioned above, both
TCRsequences are over 300,000 base pairs in length. Becaulselafde problem, the granularity of work
is reasonable and the speedup becomes slightly super-fime@ processors or less. The super-linearity

of the speedup is due to cache effects, which are a realitppoEe@NUMA architecture, including the SGI
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Origin [11].

The speedup curve foFCRis steeper from 8 to 16 processors than the speedupMyasin and a
reasonable improvement of the performance occurs for 3&peors. The speedup curve increases from 16
to 32 processors with a slope @22 — which is close t®.27, the slope of the speedup curve RCC1
between 8 and 16 processors.

In our experiments, we have also found that the majority efdlignment time is spent solving the
initial Fill Cache subproblem. For each alignment operaperformed by Parallel FastLSA, we computed
the percentage of time spent on the initial Fill Cache sutipra, out of the total execution time. For the
TCRpair, this percentage ranges from 87.86% foe 1 to 77.08% forP = 16, and 67.53% foiP? = 32.

We note that the above defined percentage decreasedwiihit increases with the size of the sequences;
for P = 16, the percentage is 59.03% fAiRCC1land 63.40% foMyosin Because of the design of the
FastLSA algorithms, the time spent on the initial Fill Cachubproblem depends only on the size of the

sequences, and not their particular configuration.

6.2 Case Study: Myosin Dataset

In order to understand how the parameters and the desigrrafdP&astLSA influence its execution time,
we perform a detailed empirical analysis of the performarfdbe algorithm. We select the Myosin dataset,
which is the moderate-sized dataset, for this case study.

The time spent by the FastLSA algorithms computing a pagwiggnment is primarily determined by
the total time spent by the algorithms on filling matricesBaise Case subproblems, or filling Grid Caches
for Fill Cache subproblems. Since there are thousands sethabproblems for each sequence pair, the
statistical distribution of the subproblem execution tivage presented. The subproblems are clustered
together based on the type or size of the subproblem, andx#witon times are accumulated for the

subproblems inside each resulting partition set. The etimg is done by processing the trace files, and the
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graphs obtained are presented in the following three sectio

6.2.1 Subproblem Count Graph

A subproblem count graph (Figure 10) shows how many Fastlubfsreblems are solved during an align-
ment operation, and how large these problems are. NotehbadtdstLSA subproblems which occur for a
FastLSA alignment are determined by the sequences, thefsire Base Case buffer ard and are inde-
pendent of the number of processors used for the alignmdms. graph (Figure 10) consists of two plots:
one for the clustering based on the type of the subproblentsthee other for the clustering based on the
size of the subproblems.

The clustering by size is a further refinement of the typeedadustering. The Base Case subproblems
are distributed into three partition subsets based on #e& (i.e., number of DPM entries). The first
partition holds the smallest subproblems, ué@M in size; the second partition holds those betw?BrM
and%BM; the third holds the biggest ones, sized up to and includidd. For Fill Cache subproblems,

the interval betweerBM and the size of the initial DPM is evenly divided into five sulervals. Each
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subinterval is assigned a partition subset to which a FithH@asubproblem is distributed if its size falls
within that subinterval. The result is a cluster with threegtipion subsets for Base Case and five partition
subsets for Fill Cache. Depending on the specific input dathather system parameters, some of the
subsets (and, thus, bars) may be empty.

The plot for the size-based partitioning shows (up to) eligirs for each value d§. The (up to) three
black bars on the left indicate the number of FastLSA sulprob in the Base Case partitions, while the
(up to) five red bars to the right indicate the number of Fastks8bproblems in the Fill Cache partitions.
The five groups of bars are separated by thin, vertical, lihgéss Which are used only as dividers.

From this empirical analysis (Figure 10), we can see that Base subproblems dominate the run-time
behaviour of the algorithm in terms of themberof problem instances. But, in the next section, we examine
how the Fill Cache subproblems actually dominate in ternth@fime spent in the computation. Of course,
as per Amdahl's Law, the benefits of parallelism come fromalbelizing the Fill Cache subproblems. In
fact, Section 6.3 argues that solving the Base Case sulepnsldequentially (instead of in parallel) results

in better overall speedups because the Base Case problene®amall in their granularity of work.

6.2.2 Execution Time Graph

Trends in execution time are among the most important inglisaof the performance of an algorithm.
Figure 11 presents the execution times for the ParalleLS#stlgorithm. A series of six graphs shows the
changes in execution time as the number of processors viviasn the FastLSA subproblems are clustered
based on their type (Figure 11), the time is added separtielyhe Base Case subproblems and the Fill
Cache subproblems. The results are shown in each plot &sdthars, with each stack corresponding to a
value ofk. The cumulative time spent solving Base Case subproblest®isn as a black bar, and above it,
there is a red bar representing the cumulative time spentlioc@dehe subproblems. The remaining time to

the total time of the alignment is depicted as a blue-filledviaich is stacked at the top.
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Figure 11 exposes a trend in the values of the total exectitio@ across the five values @f the
best value oft shifts from 12 forP = 1 to 9 for P = 32. This phenomenon occurs becauseontrols
the amount of re-computation that must be performed by tisL B algorithms and it also controls the
granularity of the FastLSA subproblems and, indirectlg, gnanularity of the parallel tasks. A larger value
for £ means a larger FastLSA Grid Cache, a larger number of DPM galues stored, and, therefore, less
re-computation. WherP has a small value, larger values fbrtend to produce smaller execution times
because less re-computation is performed than for smallaes ofk. BecauseP is small, the contention
for parallel work is small and the importance of the grarityaof the parallel tasks is reduced. However,
onceP increases, the granularity of the parallel work becomesltiminant performance factor, overtaking
re-computation time in importance. Wheh has a large value, the performance of Parallel FastLSA is
best for small values ot because lower values fdr tend to increase the granularity of the Fill Cache

subproblems and, indirectly, the granularity of the pafdtsks.

6.3 Base Case Subproblems: Sequential Approach versus PHeh Approach

The Parallel FastLSA version that solves the Base Case chleprs sequentially was preferred to the
version which solves the Base Case subproblems in para@éause it exhibits better performance. This
is emphasized in Figure 12, which shows a pairwise compatigbween the overall speedups for the two
versions of Parallel FastLSA. The comparison is done foh gair of sequences and for each valugof
When the Base Case subproblems are solved sequentialbyehal speedup is consistently better than
when they are solved in parallel. The difference betweespleedups for the two versions increases \ith
because of the poor performance of solving small Base Cdgeahlems on an increased number of pro-
cessors. The poor performance is due to the large overhsadiai®d with a large number of processors,
and this overhead cannot be offset by the few opportunibepdrallelism offered by the Base Case sub-

problems. Only a small number of very small tiles can be mlacehe queue when a Base Case subproblem
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is solved in parallel and, consequently, only a few of thepssors get to work on these tiles.

7 Concluding Remarks

Sequence alignment is a fundamental operation for homategych in bioinformatics. For two DNA or
protein sequences of length andn, full-matrix (FM), dynamic programming alignment algdnits such
as Needleman-Wunsch and Smith-Waterman take ®(n) time and use a possibly prohibitive @(x n)
space. Hirschberg’s algorithm reduces the space requitsrt@O (nin(m, n)), but requires approximately
twice the number of operations required by the FM algorithms

The Fast Linear Space Alignment (FastLSA) algorithm adaptthe amount of space available by
trading space for operations. What makes FastLSA unique mrametek, which can be used to tune its
storage requirements for a given amount of cache memory ior mamory. Our experiments show that, in
practice, due to memory caching effects, FastLSA is prefeaver the Hirschberg and the FM algorithms.
To further improve the performance of FastLSA, we have jeiztd it using a simple but effective form of
wavefront parallelism. Our experimental results show Beatllel FastLSA exhibits good speedups, almost
linear for 8 processors or less, and also that the efficiehBamllel FastLSA increases with the size of the
sequences that are aligned.

Again, a recurring theme in this paper is the importance gbrthms that can be parameterized and
tuned to take advantage of cache memory and main memory &xesing algorithms for sequence align-
ment (i.e., FM and Hirschberg) cannot be similarly parametd. Furthermore, the selected value for
parametet has a significant impact on the parallel speedups of theitiigorwhich results in interesting
lessons in performance trade-offs. For example, largeegatif & reduce the amount of re-computation
and increase the performance of FastLSA. Larger valudsrofy also help FastLSA better exploit pro-

cessor caches for greater performance. However, largevalik can also reduce the granularity of work
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in Parallel FastLSA, which is detrimental to performancer fature work, more empirical results are re-
quired to develop better guidelines for selecting a valug thfat best exploits caches, main memory sizes,
and provides good parallel speedups. Another future direasdo modify Parallel FastLSA such that the
granularity of work is independent &t

Given the large DNA sequences (e.g., tens of thousands esp#sat some researchers wish to study
[6, 19, 7], the space and time complexity of a sequence akgmmgorithm become increasingly important.
The combination of FastLSA's parameterized storage caxitplegood analytical time complexity, easy
parallelization, and excellent empirical performance eszakastLSA a good choice for pairwise sequence

alignment.
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A Proofs

The following result shows thetf(m, n, k) is linear inm andn.
Theorem 2 (from Section 5.5.2) et S(m, n, k) be defined as in Definition 1. If the tiles for each Fill Cache

subproblem are laid out i® rows andC' columns, then

S(m,n,k) < (Bk—1)x (m+n)+ 5 xn+RxC—uxv+BM. (11)

Proof. For an algorithm trace such as that in Equation 6,

S(m,n, k) = maxSpacePFastLSA(m,n,k))
= max(maxSpac(aPFz‘llCache(m, n,k)),

GridSpace(m,n, k) + maxSpaceP FastLSA(, %, k)), (12)
GridSpace(m,n, k) + maxSpaceP FastLS A(my,ny,k)),...

GridSpace(m,n, k) + maxSpaceP FastLSA(m,n,, k:))) .

Because% >my and% > ny, Vi, 1 < i < z, the following is true:

maxSpaceP FastLSA(, &, k)) > maxSpaceP FastLSA(m;,n;, k)),Vi,1 <i < 2. (13)
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Equation 12 becomes

S(m,n, k) = maX<maXSpaC(=_‘PFillC'ache(m, n,k)),

GridSpace(m,n, k) + maxSpacePFastLSA(, %, k:))> (14)

= max<maXSpaC(2PFz'llCache(m, n, k)), GridSpace(m,n, k) + S(, &, k)>
For the current implementation of the Parallel FastLSA aigm, PFillCache(m,n, k) uses(k —
1)(m + n) entries to store the local copy of the FastLSA Grid Cac¢ke; 1)(m + n) entries to store the

global, shared copy of the Grid Cache+ n entries to store the Tile CachB,x C' — u x v entries to store

the upper-left corner of each tile, aggdentries on each processor for computing a tile. In summary,

maxSpaceP FillCache(m,n,k)) = A(m,n, k) = (k—1)(m +n) + (k—1)(m +n)+

+(m+n)+RxC—-uxv+ P (15)
:(2k—1)(m—|—n)+RxC’—uxv—|—gn,
and
GridSpace(m,n, k) = (k — 1)(m + n). (16)
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Using the previous two equations, Equation 14 becomes

S(m,n, k) = max(A(m,n, k), (k—1)(m+mn) + S(%2, %, k:)>
- max(A(m,n, k), (k — 1)(m +n)+
- max(A(%, k), (k —1)min 4 g(m, k%k)))
= max(A(m,n, k), max((k: —1)(m+n) + A%, 2, k), (17)
(k—1)(m+n)+ (k — 1)1 4 §(m %k)))
= max(max(A(m,n, k), (k —1)(m +n) + A(%, 2, k:)>,

(k—1)(m+n)(1++)+S(53, k%,k)).

In order to unwind the recursive formula from Equation 1'& thsult of Lemma 5 is used. Note that
the statement and proof of Lemma 5 immediately follows thep Lemma 5 states that #(m, n, k) is

defined as in Equation 15, then
Am,n, k) > (k=1)(m+n) 1+ f+- + o) + A2 o2, k), V4,2 < j < a. (18)
For example, foj = 2, the inequality of Lemma 5,
A(m,n, k) > (k—=1)(m +n)+ A%, %, k), (19)
can be rewritten as

max(A(m, n, k), (k= 1)(m+n) + A(Z, 2, k)) = A(m,n, k). (20)
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By rewriting the inequalities of Lemma 5 for every valuejoiexactly as done fof = 2, and by using

the resulting equalities at every step of the unwinding efrércursive relation, we obtain:

S(m,n, k) = max(A(m,n, k), (k—1)(m+n)(1+3)+ S(7z, ,?—Q,k:)>

(21)

( (m,n, k), 1)(m—|—n)(1—|—%+...+ﬁ)+5(kma’k%7k)>

= ( (m,n, k), m—l—n)(l—k%)—l—S(kma,k%,k)).

BecauseP FastLSA(f, 7=, k) is a Base Case subproblesi:, £, k) < BM; thus,S(m,n, k) is

bounded above by

max(A(m,n, k), k(m+n)(1— &)+ BM> < A(m,n, k) +k(m+n)(1- %)+ BM
< A(m,n, k) + k(m+n)+ BM =

=2k—1)(m+n)+RxC—uxvt+

(22)
+Ln+k(m+n)+BM
:(3k—1)x(m—|—n)+gn—|—
+RxC—uxv+ BM.
Therefore,
S(m,n,k) < (3k—1)x (m+n)+ 5 xn+RxC—uxv+ BM, (23)

which concludes the proof of Theorem A.
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Lemma5 Let A(m,n, k) be defined as in Equation 15. Then

Alm,n k) > (k—=1)(m+n) 1+ 1+ + o) + A2, 2245, k), Vi, 2 < j<a.  (24)

Proof. Let j be such tha?2 < j < a. The inequality becomes

A(m,n, k) 2 (k=) (m+n)(L+ g+ + ) + Al 5t k) &

A(m,n,k) — A(F, g, k) > k(m+n)(1— ) © (25)

2k —1)(m+n)(1 — k]—l,l) + gn(l — kj%l) >k(m+n)(1— kj%l)

BecauseSn(1 — kj—l,l) > 0, it is sufficient to prove that

2k —1)(m+n)(1 - 55) > k(m+n)(1 — =) &

(2k—1)>k < (26)

k> 1,

which is true. Therefore, the inequality of Lemmab5istije2 < j < a. m

Theorem 4 (from Section 5.5.3) et WT'(m,n, k, P) be defined as in Definition 3. For simplicity, assume
that the tiles processed in a parallel phase are laid oftriows andC' columns for both the Fill Cache and
the Base Case subproblems. Then

WT(m,n, k, P) < M50 5 (14 D222y o (h)2, (27)

Proof. Let PFillCacheT (M, N, k, P) be the time spent by the slowest of tRehreads when solving

a Fill Cache subproblem of siz& x N. From the definition of¥'T'(m, n, k, P) and that of a trace of the
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Figure 13: The Three Phases of a Parallel Fill Cache Subgmobl
FastLSA algorithm (i.e., Equation 6), it can be inferredt tha
WT(m,n,k, P) = PFillCacheT (m,n,k, P) 4+ (2k — 1) x WT (¢, %, k, P). (28)

The first step of the proof is to find a good approximation®ariliCacheT (M, N, k, P). As explained
in Section 5.1, the DPM entries that are computed in ordetl thé Grid Cache are partitioned iR x C' —
u x v tiles. Some of the tiles can be empty, so this number is dgtaal upper bound. If the Fill Cache
subproblem had/ rows andN columns, each tile has at mo%t X % entries. Letl" be the time spent by

one processor to compute a tile sequentially. Because gadh $olved using théastRowalgorithm from

Hirschberg, we havé' = O(4222).

As shown in Figure 7, the computation of the tiles advancleviing a diagonal wavefront pattern. In
Figure 7, each diagonal of tiles labeled with the same nurfdsers awavefront line.A wavefront line is
important because the tiles that form it are independentande computed in parallel.

The computation of the tiles for a Fill Cache subproblem aadibided into three distinct phases. Figure
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13 shows the three phases corresponding to a Fill Cachechlepr which is solved o® = 8 processors,
usingk = 6, v = 2, andv = 3. Each wavefront line is labeled with the number of tiles tiein that
particular wavefront line. A good approximation f&¥F'illCacheT (M, N, k, P) can be found using an
upper bound for the time spent in each phase.

In the first phase, the number of tiles in each wavefront limeegases from 1 t@ — 1. In this phase,

@ tiles are computed. In the worst case scenario, each wandine is solved in a parallel

a total of
stage that lasts a time @f; thus, the time spent on the first phase is at niést- 1)7'.

The third phase consists of the wavefront lines that are édrfrom less tharP tiles and that are not
computed in the first phase. An example of wavefront linesfog a third phase is depicted in Figure 13.
Some of the wavefront lines of this phase may not consist ofigaous tiles because the tiles belonging to
the bottom-right FastLSA subproblem are not computed foillaClache subproblem (e.g., the wavefront
line labeled 3 in Figure 13).

The third phase has at most the same number of wavefrontdsé® first phase, i.eF, — 1. Because
each wavefront line can be solved in a parallel stage of fimé¢he third phase cannot last longer than
(P —1)T. The number of tiles that are computed in the third phasédfisuli to estimate for general values
of P, u, andv, but a lower bound for this number%“;;l) —u X,

The second phase is the true parallel phase. Enough tilewaitable so that all processors can work in
parallel. An upper bound for the number of tiles computecdhia phase is the total number of tiles, minus

the number of tiles computed in the first phase and the lowendvdor the number of tiles computed in the

third phase, i.e.,

(RxC—uxv)— 2L (P _ ) = RxC—P>+P. (29)
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Because these tiles are computed in parallel, the time apémt second phase is

w < T (30)
Note that we need a lower bound for the number of tiles congpint¢he third phase in order to compute an
upper bound for the time spent in the second phase.

An approximation forPF'illCacheT (M, N, k, P) is obtained through the summation of the times for

the three phases, which gives

PFillCacheT (M, N, k, P) = (P — 1)T + EXC=PP)p 4 (p_ 1y

_ (RxC+P2—P)
= e O

_ (RxC+P2—P)xMxN (31)
- PxRxC

2_
=M x N x 5(1+L=L)

=M x N X «,

where

o= b0+ 52D, (32)

Let PBaseCaseT' (M, N, P) be the time spent by the slowest of tRethreads when solving a Base

Case subproblem of siz&/ x N. An approximation forP BaseCaseT (M, N, P) is obtained through a
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reasoning process similar to that used RarillCacheT (M, N, k, P). We get

PBaseCaseT(M,N,P) = (P —1)T + (Rx ¢ — 2N _PENT  (p_

C— 2
— (P —1)T 4+ &P (p— )T

(33)
=M x N x P(1—|— R><C)
=M x N X a.
Using the results of Equation 31 and Equation 33, Formulaez®imes
WT(m,n,k,P) =mxnxa+ (2k—1) x WI'(Z, %k, P)

=mna+ 2k — 1)(Rra+ 2k - O)WT(, 75, k, P))

= Bt + 2k = D)*WT(5, 5.k, P)

= mno + mnaiz! ()2 + (26 —1)’WT(%, &k, P)
(34)

= mna( 2k 1 (21;1)2_1_,..4_(%)(1—1)_1_(% D) WT (2, &k, P)

= mna( Qk Ly 4 (%)a_l) + (2k — 1)*PBaseCaseT (3%, 2=, P)

= mna(L+ A5 4 (BT 4 2k - ) e

= mna(l+ 271 .. 4 (Zholyaml y (Zkolya)

e

= mnaﬁ

2k
Becausg Zz1)et1 > 0, we have
(2L
WT(m,n,k, P) = mno—2=k—5—
v (35)
< mna—gpy = mna(gty)®
1_7



By replacinga with its value (Equation 32), it becomes true that

WT(m,n,k, P) < mna(zy)? = 252 x (1 + %) x (#5)%, (36)

which concludes the proof of Theorem M.
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