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Abstract. Building a high-performance poker-playing program is a chal-
lenging project. The best program to date, PSOPTI, uses game theory
to solve a simplified version of the game. Although the program plays
reasonably well, it is oblivious to the opponent’s weaknesses and biases.
Modeling the opponent to exploit predictability is critical to success at
poker. This paper introduces VEXBOT, a program that uses a game tree
search algorithm to compute the expected value of each betting option,
and does real-time opponent modeling to improve its evaluation function
estimates. The result is a program that defeats PSOPTI convincingly, and
poses a much tougher challenge for strong human players.

1 Introduction

Modeling the preferences and biases of users is an important topic in recent ar-
tificial intelligence (AI) research. For example, this type of information can be
used to anticipate user program commands [1], predict web buying and access
patterns [2], and automatically generate customized interfaces [3]. It is usually
easy to gather a corpus of data on a user (e.g., web page accesses), but mining
that data to predict future patterns (e.g., the next web page request) is chal-
lenging. Predicting human strategies in a competitive environment is even more
challenging.

The game of poker has become a popular domain for exploring challenging
AT problems. This has led to the development of programs that are competitive
with strong human players. The current best program, PSOPTI [4], is based
on approximating a game-theoretic Nash equilibrium solution. However, there
remains a significant obstacle to overcome before programs can play at a world-
class level: opponent modeling. As the world-class poker player used to test
PsOPTI insightfully recognized [4]:

“You have a very strong program. Once you add opponent modeling to
it, it will kill everyone.”

This issue has been studied in two-player perfect information games (e.g., [5-7]),
but has not played a significant role in developing strong programs. In poker,
however, opponent modeling is a critical facet of strong play. Since a player has



imperfect information (does not know the opponent’s cards), any information
that a player can glean from the opponent’s past history of play can be used to
improve the quality of future decisions. Skillful opponent modeling is often the
differentiating factor among world-class players.

Opponent modeling is a challenging learning problem, and there have been
several attempts to apply standard machine learning techniques to poker. Recent
efforts include: neural nets [8], reinforcement learning [9], and Bayesian nets [10],
which have had only limited success. There are a number of key issues that make
this problem difficult:

1. Learning must be rapid (within 100 games, preferably fewer). Matches with
human players do not last for many thousands of hands, but the information
presented over a short term can provide valuable insights into the opponent’s
strategy.

2. Strong players change their playing style during a session; a fixed style is
predictable and exploitable.

3. There is only partial feedback on opponent decisions. When a player folds (a
common scenario), their cards are not revealed. They might have had little
choice with a very weak hand; or they might have made a very good play by
folding a strong hand that was losing; or they might have made a mistake by
folding the best hand. Moreover, understanding the betting decisions they
made earlier in that game becomes a matter of speculation.

This paper presents a novel technique to automatically compute an exploitive
counter-strategy in stochastic imperfect information domains like poker. The
program searches an imperfect information game tree, consulting an opponent
model at all opponent decision nodes and all leaf nodes. The most challenging
aspects to the computation are determining: 1) the probability that each branch
will be taken at an opponent decision node, and 2) the expected value (EV)
of a leaf node. These difficulties are due to the hidden information and par-
tial observability of the domain, and opponent models are used to estimate the
unknown probabilities. As more hands are played, the opponent modeling infor-
mation used by the tree search generally becomes more accurate, thus improving
the quality of the evaluations. Opponents can and will change their style during
a playing session, so old data needs to be gradually phased out.

This paper makes the following contributions:

1. Mizimax and Mizimiz, applications of the Expectimax search algorithm to
stochastic imperfect information adversarial game domains.

2. Using opponent modeling to refine expected values in an imperfect informa-
tion game tree search.

3. Abstractions for compressing the large set of observable poker situations into
a small number of highly correlated classes.

4. The program VEXBOT, which convincingly defeats strong poker programs
including PsOpTI, and is competitive with strong human players.



2 Texas Hold’em Poker

Texas Hold’em is generally regarded as the most strategically complex poker
variant that is widely played in casinos and card clubs. It is the game used in
the annual World Series of Poker to determine the world champion.

A good introduction to the rules of the game can be found in [8]. The salient
points needed for this paper are that each player has two private cards (hidden
from the opponent), some public cards are revealed that are shared by all players
(community cards), and each player is asked to make numerous betting decisions:
either bet/raise (increase the stakes), check/call (match the current wager and
stay in the game), or fold (quit and lose all money invested thus far). A game
ends when all but one player folds, or when all betting rounds are finished, in
which case each player reveals their private cards and the best poker hand wins
(the showdown). The work discussed in this paper concentrates on two-player
Limit Texas Hold’em.

Computer Poker Programs

The history of computer poker programs goes back more than 30 years to the
initial work by Findler [11]. Some of the mathematical foundations go back to
the dawn of game theory [12,13]. Recently, most of the AI literature has been
produced by the Computer Poker Research Group at the University of Alberta.
Those programs—LoOKI, POKI, and PsOpTi— illustrate an evolution of ideas
that has taken place in the quest to build a program capable of world-class play:

Rule-based [14]: Much of the program’s knowledge is explicit in the form of
expert-defined rules, formulas, and procedures.

Simulations [15, 8]: Betting decisions are determined by simulating the rest of
the game. Likely card holdings are dealt to the opponents and the hand is
played out. A large sample of hands is played, and the betting decision with
the highest expected value is chosen.

Game theory [4]: Two-player Texas Hold’em has a search space size of O(10'%).
This was abstracted down to a structurally similar game of size O(107).
Linear programming was used to find a Nash equilibrium solution to that
game (using techniques described in [16]), and the solution was then mapped
back onto real poker. The resulting solution — in effect, a strategy lookup
table — has the advantage of containing no expert-defined knowledge. The
resulting pseudo-optimal poker program, PsOPTI, plays reasonably strong
poker and is competitive with strong players. However, the technique is only
a crude approximation of equilibrium play. Strong players can eventually
find the seams in the abstraction and exploit the resulting flaws in strategy.
Nevertheless, this represented a large leap forward in the abilities of poker-
playing programs.

As has been seen in many other game-playing domains, progressively stronger
programs have resulted from better algorithms and less explicit knowledge.



3 Optimal versus Maximal Play

In the literature on game theory, a Nash equilibrium solution is often referred to
as an optimal strategy. However, the adjective “optimal” is dangerously mislead-
ing when applied to a poker program, because there is an implication that an
equilibrium strategy will perform better than any other possible solution. “Op-
timal” in the game theory sense has a specific technical meaning that is quite
different.

A Nash equilibrium strategy is one in which no player has an incentive to
deviate from the strategy, because the alternatives could lead to a worse result.
This simply maximizes the minimum outcome (sometimes referred to as the
minimaz solution for two-player zero-sum games). This is essentially a defensive
strategy that implicitly assumes the opponent is perfect in some sense (which is
definitely not the case in real poker, where the opponents are highly fallible).

A Nash equilibrium player will not necessarily defeat a non-optimal oppo-
nent. For example, in the game of rock-paper-scissors, the equilibrium strategy
is to select an action uniformly at random among the three choices. Using that
strategy means that no one can defeat you in the long term, but it also means
that you will not win, since you have an expected value of zero against any other
strategy.

Unlike rock-paper-scissors, poker is a game in which some strategies are dom-
inated, and could potentially lose to an equilibrium player. Nevertheless, even a
relatively weak and simplistic strategy might break even against a Nash equilib-
rium opponent, or not lose by very much over the long term. There are many
concrete examples of this principle, but one of the clearest demonstrations was
seen in the game of Oshi-Zumo [17].

In contrast, a mazimal player can make moves that are non-optimal (in the
game-theoretic sense) when it believes that such a move has a higher expected
value. The best response strategy is one example of a maximal player.

Consider the case of rock-paper-scissors where a opponent has played “rock”
100 times in a row. A Nash equilibrium program is completely oblivious to the
other player’s tendencies, and does not attempt to punish predictable play in
any way. A maximal player, on the other hand, will attempt to exploit perceived
patterns or biases. This always incurs some risk (the opponent might have been
setting a trap with the intention of deviating on the 101st hand). A maximal
player would normally accept this small risk, playing “paper” with a belief of
positive expectation [18].

Similarly, a poker program can profitably deviate from an equilibrium strat-
egy by observing the opponent’s play and biasing its decision-making process to
exploit the perceived weaknesses.

If PsOpTI was based on a true Nash equilibrium solution, then no human or
computer player could expect to defeat it in the long run. However, PSOPTI is
only an approximation of an equilibrium strategy, and it will not be feasible to
compute a true Nash equilibrium solution for Texas Hold’em in the foreseeable
future. There is also an important practical limitation to this approach. Since
PsOPTI uses a fixed strategy, and is oblivious to the opponent’s strategy, a strong



human player can systematically explore various options, probing for weaknesses
without fear of being punished for using a highly predictable style. This kind
of methodical exploration for the most effective counter-strategy is not possible
against a rapidly adapting opponent.

Moreover, the key to defeating all human poker players is to exploit their
highly non-optimal play. This requires a program that can observe an opponent’s
play and adapt to dynamically changing conditions.

4 Miximazxr and Miximixz Search

Ezpectimaz search is the counterpart of minimax search for domains with a
stochastic element [19]. Expectimax combines the minimization and maximiza-
tion nodes of minimax search with the addition of chance nodes, where a stochas-
tic event happens (for example, a dice roll). The value of a chance node is the
sum of the values of each of the children of that node, weighted by the probability
of that event occurring (1/6 for each roll in the case of a die).

For perfect information stochastic games such as backgammon, an opponent
decision node is treated as a normal max (or min) node. However, this cannot
be done for imperfect information games like poker, because the nodes of the
tree are not independent. Several opponent decision nodes belong to the same
information set, and are therefore indistinguishable from each other. In poker, the
information set is comprised of all the possible opponent hands, and our policy
must be the same for all of those cases, since we do not know the opponent’s
cards. Furthermore, a player can, in general, use a randomized mized strategy (a
probability distribution over the possible actions), so taking the maximum (or
minimum) value of the subtrees is not appropriate.

To extend Expectimax for poker, we handle all of the opponent decision
nodes within a particular information set as a single node, implicitly maintaining
a probability distribution over the range of possible hands they might hold. We
cannot treat all possible combinations as having equal probability (for example,
weak hands might be folded early and strong hands played through to the end).
Imperfect information adds an extra challenge in evaluating leaf nodes in the
search, since we can only estimate the relative probabilities for the opponent’s
possible holdings, rather than having exact values.

We have implemented two variants of Expectimax for search on poker trees,
which we call Mizimazx and Mizimiz. These algorithms compute the expected
value (EV) at decision nodes of an imperfect information game tree by modeling
them as chance nodes with probabilities based on the information known or
estimated about the domain, and the specific opponent.

The algorithm performs a full-width depth-first search to the leaf nodes of
the imperfect information game tree. For two-player poker, the leaf nodes are
terminal nodes that end the game — either at a showdown, or when one of
the players folds. The search tree is the set of all possible betting sequences
from the current state to the end of the game, over all possible outcomes of
future chance nodes. At the showdown leaf nodes, the probability of winning is



estimated with a heuristic evaluation function, and the resulting EV is backed-
up the tree. This tree can be a fairly large (millions of nodes), but with efficient
data structures and caching of intermediate calculations, it can be computed
in real-time (about one second). In general, the search can be stopped at any
depth, and the evaluation function used to estimate the EV of that subtree, as
is done in traditional game-playing programs.

The EV calculation is used to decide which action the program should per-
form: bet/raise, check/call, or fold. Given the EV for each of our three possible
actions, one could simply select the option with the maximum value. In that
case, the tree will contain mixed nodes for the opponent’s decisions and max
nodes for our own decisions. Hence we call this algorithm Mizimaz.

However, always taking the maximum EV could lead to predictable play that
might be exploited by an observant opponent. Instead, we could choose to use
a mixed strategy ourselves. Although we (presumably) know the randomized
policy we will use, it can be viewed as both players having mixed nodes, and
we call this more general algorithm Mizimiz. (Thus Mizimaxz is a special case
of Mizimiz in which all of our own decision nodes use a pure strategy, choosing
one action 100% of the time).

There are two unresolved issues:

1. How to determine the relative probabilities of the opponent’s possible actions
at each decision node. This is based on frequency counts of past actions at
corresponding nodes (ie. given the same betting sequence so far).

2. How to determine the expected value of a leaf node. At fold nodes, com-
puting the EV is easy — it is the net amount won or lost during the hand.
At showdown nodes, a probability density function over the strength of the
opponent’s hand is used to estimate our probability of winning. This his-
togram is an empirical model of the opponent, based on the hands shown in
corresponding (identical or similar) situations in the past.

In summary, the search tree consists of four types of nodes, each with different
properties:

Chance nodes: For chance nodes in the game tree, the EV of the node is the
weighted sum of the EVs of the subtrees associated with each possible out-
come. In Texas Hold’em, chance outcomes correspond to the dealing of pub-
lic board cards. To be perfectly precise, the probability of each possible
chance outcome is dependent on the cards that each player will likely hold
at that point in the game tree. However, since that is difficult or impossible
to determine, we currently make the simplifying (but technically incorrect)
assumption that the chance outcomes occur uniformly at random. Thus the
EV of a chance node is simply the average EV over all of the expansions.
Let Pr(C;) be the probability of each branch i of chance node C, and let n
be the number of branches. The EV of node C is:

EV(C) = > Pr(Cy)x EV(C)) (1)



Opponent decision nodes: Let Pr(O;) be the estimated probability of each
branch 7 (one of fold, call, or raise) at an opponent decision node O. The
EV of node O is the weighted sum:

EV(0) = > Pr(0;)x EV(0y) (2)
i e {f,cr}
Program decision nodes: At decision node U, we can use a mixed policy as above
(Mizimiz), or we can always take the maximum EV action for ourselves
(Mizimaz), in which case:

EV(U) = max(EV(Uy),EV(U,.), EV(U,)) (3)

Leaf nodes: Let L be a leaf node, P,;, be the probability of winning the pot,
Lgpo; be the size of the pot, and Lg.,s; be the cost of reaching the leaf node
(normally half of Lgy,;). At terminal nodes resulting from a fold, Py, is
either zero (if we folded) or one (if the opponent folded), so the EV is simply
the amount won or lost during the hand. The net EV of a showdown leaf
node is:

EV(L) = (Pwin X L$pot) - L$cost (4)

5 EV Calculation Example

For each showdown leaf node of the game tree, we store a histogram of the hand
rank (HR, a percentile ranking between 0.0 and 1.0, broken into 20 cells with a
range of 0.05 each) that the opponent has shown in previous games with that
exact betting sequence. We will use 10-cell histograms in this section to simplify
the explanation.

For example, suppose we are Player 1 (P1), the opponent is Player 2 (P2),
and the pot contains four small bets (sb) on the final betting round. We bet
(2 sb) and are faced with a raise from P2. We want to know what distribution of
hands P2 would have in this particular situation. Suppose that a corresponding
10-cell histogram has relative weights of [1 100 0 0 0 4 4 0], like that shown in
Figure 1. This means that based on our past experience, there is a 20% chance
that P2’s raise is a bluff (a hand in the HR range 0.0-0.2), and an 80% chance
that P2 has a hand in the HR range 0.7-0.9 (but not higher).

The histogram for the showdown node after we re-raise and P2 calls (bRrC)
will be related, probably having a shape like [0 0000 0 0 5 5 0], because P2 will
probably fold if he was bluffing, and call with all legitimate hands. The action
frequency data we have on this opponent will be consistent, perhaps indicating
that after we re-raise, P2 will fold 20% of the time, call 80%, and won’t re-raise
(because it is not profitable to do so). The probability triple of action frequencies
is Pr(F,C,R) = {0.2, 0.8, 0.0}.

To decide what action to take in this situation, we compute the expected value
for each choice: EV(fold), EV(call), and EV (raise). EV(fold) is easily determined
from the betting history — the game will have cost us -4 small bets.
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Fig. 1. Betting Tree for the EV Calculation Example

Table 1. Expected Values for call or raise for selected hand ranks.

| HR[Pr(w1 <) [EV(c)[Pr(wIxC) |[EV(r)[Action]
0.70] 0.2 [-3.6 0.0 [-527 cal
0.75] 04 |-12] 025 [-2.0] cal
0.80] 0.6 |[+12] 05 [+I12]corr
0.85] 0.8 |+36] 0.75 |+4.4] raise
0.90 1.0 +6.0 1.0 +7.6 | raise

EV(call) depends on our probability of winning, which depends on the strength
of our hand. If our hand rank is in the range 0.2-0.7, then we can only beat a
bluff, and our chance of winning the showdown is Pr(win|bRc) = 0.20. Since
the final pot will contain 12 sb, of which we have contributed 6 sb, the net
EV(call) = -3.6 sb. Therefore, we would not fold a hand in the range 0.2-0.7,
because we expect to lose less in the long run by calling (0.4 sb less).

If our hand rank is only HR = 0.1 (we were bluffing), then EV(call) = -4.8 sb,
and we would be better off folding. If hand rank is HR = 0.8, then we can also
beat half of P2’s legitimate hands, yielding an expected profit of EV(call) = +1.2
sb. Table 1 gives the EV for calling with selected hand ranks in the range 0.7-0.9.

To calculate the expected value for re-raising, we must compute the weighted
average of all cases in that subtree, namely: bRrF, bRrC, bRrRf, and bRrRc.
Since the probability assigned to a P2 re-raise is zero, the two latter cases will not
affect the overall EV and can be ignored. The share from bRrFis 0.2 x 6 = +1.2
sb, and is independent of our hand strength. The probability of winning after
bRrC is determined by the histogram for that case, as before. Thus, in this



example EV(raise) = 1.2 4+ 0.8 x (16 Pr(win|rC') — 8), as shown in Table 1
for the same selected hand ranks.

As a consequence of this analysis, if we are playing a strictly maximizing
strategy, we would decide to fold if our hand is weaker than HR = 0.167, call
if it is in the range 0.167 to 0.80, and re-raise if it is stronger than HR = 0.80.
Computing the viability of a possible bluff re-raise is done similarly.

6 Abstractions for Opponent Modeling

After each hand is played against a particular opponent, the observations made
during that hand are used to update our opponent model. The action decisions
made by the opponent are used to update the betting frequencies corresponding
to the sequence of actions during the hand. When showdowns occur, the hand
rank (HR) shown by the opponent is used to update a leaf node histogram, as
illustrated in the previous section.

The context tree is an explicit representation of the imperfect information
game tree, having the same skeletal structure with respect to decision nodes.
Chance nodes in the tree are represented implicitly (all possible chance outcomes
are accounted for during the EV calculation).

A leaf node of the context tree corresponds to all of the leaves of the game
tree with the same betting sequence (regardless of the preceding chance nodes).
Associated with this is an efficient data structure for maintaining the empirically
observed action frequencies and showdown histograms for the opponent. For this
we use a trie, based on the natural prefix structure of related betting sequences.
Hash tables are used for low-overhead indexing.

6.1 Motivation for Multiple Abstractions

The Mizimaz and Mizimiz search algorithms perform the type of mathematical
computation that underlies a theoretically correct decision procedure for poker.
For the game of two-player Limit Texas Hold’em, there are 9* = 6561 show-
down nodes for each player, or 13122 leaf-level histograms to be maintained and
considered. This fine level of granularity is desirable for distinguishing different
contexts and ensuring a high correlation within each class of observations.

However, having so many distinct contexts also means that most betting
sequences occur relatively rarely. As a result, many thousands of games may
be required before enough data is collected to ensure reliable conclusions and
effective learning. Moreover, by the time a sufficient number of observations have
been made, the information may no longer be current.

This formulation alone is not adequate for practical poker. It is common
for top human players to radically change their style of play many times over
the course of a match. A worthy adversary will constantly use deception to
disguise the strength of their hand, mask their intentions, and try to confuse our
model of their overall strategy. To be effective, we need to accumulate knowledge
very quickly, and have a preference toward more recent observations. Ideally, we



would like to begin applying our experience (to some degree) immediately, and
be basing decisions primarily on what we have learned over a scope of dozens or
hundreds of recent hands, rather than many thousands. This must be an ongoing
process, since we may need to keep up with a rapidly changing opponent.

Theoretically, this is a more challenging learning task than most of the prob-
lems studied in the machine learning and artificial intelligence literature. Unlike
most Markov decision process (MDP) problems, we are not trying to determine
a static property of the domain, but rather the dynamic characteristics of an
adversarial opponent, where historical perspective is essential.

In order to give a preference toward more recent data, we gradually “forget”
old observations using exponential history decay functions. Each time an obser-
vation is made in a given context, the previously accumulated data is diminished
by a history decay factor, h, and the new data point is then added. Thus for
h = 0.95, the most recent event accounts for 5% of the total weight, the last
1/(1 —h) = 20 observations account for (1 — 1/e) = 0.63 of the total, and
SO om.

6.2 Abstraction

In order to learn faster and base our inferences on more observations, we would
like to combine contexts that we expect to have a high mutual correlation. This
allows us to generalize the observations we have made, and apply that knowledge
to other related situations. There are many possible ways of accomplishing these
abstractions, and we will address only a few basic techniques.

An important consideration is how to handle the zero frequency problem,
when there has yet to be any observations for a given context; and more gener-
ally, how to initialize the trie with good default data. Early versions of the system
employed somewhat simplistic defaults, which resulted in rather unbalanced play
early in a match. More recent implementations use default data based on ratio-
nal play for both players, derived in a manner analogous to Nash equilibrium
strategies.

The finest level of granularity is the context tree itself, where every possi-
ble betting sequence is distinct, and a different histogram is used for each. The
opponent action frequencies are determined from the number of times each ac-
tion was chosen at each decision node (again using a history decay factor to
favour recent events). Unfortunately, having little data in each class will result
in unreliable inferences.

One coarse-grained abstraction groups all betting sequences where the op-
ponent made an equal number of bets and raises throughout the hand, ignoring
what stage of the hand they were made. A finer-grained version of the same idea
maintains an ordered pair for the number of bets and raises by each player.

However, testing reveals that an even courser-grained abstraction may be
desirable. Summing the total number of raises by both players (no longer dis-
tinguishing which player initiated the action) yields only nine distinct classes.
Despite the crudeness of this abstraction, the favorable effects of grouping the



data is often more important than the lower expected correlations between those
lines of play.

Another similar type of coarse-grained abstraction considers only the final
size of the pot, adjusting the resolution (ie. the range of pot sizes) to provide
whatever number of abstraction classes is desired.

An abstraction system can be hierarchical, in which case we also need to
consider how much weight should be assigned to each tier of abstraction. This
is based on the number of actual observations covered at each level, striving for
an effective balance, which will vary depending on the opponent.

Our method of combining different abstraction classes is based on an expo-
nential mixing parameter (say m = 0.95) as follows. Let the lowest-level context
tree (no abstraction) be called A0, a fine-grained abstraction be called Al, a
cruder amalgam of those classes be called A2, and the broadest classification
level be called A3. Suppose the showdown situation in question has five data
points that match the context exactly, in AQ. This data is given a weight of
(1 — m®) = 0.23 of the total. If the next level of abstraction, A1, has 20
data points (including those from A0), it is assigned (1 — m?%) = 0.64 of the
remaining weight, or about 50% of the total. The next abstraction level might
cover 75 data points, and be given (1 — m™) = 0.98 of the remainder, or
26% of the total. The small remaining weight is given to the crudest level of
abstraction. Thus all levels contribute to the overall profile, depending on how
relevant each is to the current situation.

7 Experiments

To evaluate the strength of VEXBOT, we conducted both computer vs human
experiments, and a round-robin tournament of computer vs computer matches.

The field of computer opponents consisted of:

1) SPARBOT, the publicly available version of PSOPTI-4 !, which surpassed
all previous programs for two-player Limit Hold’em by a large margin [4].

2) Poki, a formula-based program that incorporates opponent modeling to
adjust its hand evaluation. Although POKI is the strongest known program for
the ten-player game, it was not designed to play the two-player game, and thus
does not play that variation very well [8].

3) HoBBYBOT, a slowly adapting program written by a hobbyist, specifically
designed to exploit POKTI’s flaws in the two-player game.

4) JAGBOT, a simple static formula-based program that plays a rational, but
unadaptive game.

5) ALwWAYS CALL and 6) ALWAYS RAISE, extreme cases of weak exploitable
players, included as a simple benchmark.

The results of the computer vs computer matches are presented in Table 2.
Each match consisted of at least 40,000 hands of poker. The outcomes are statis-
tically significant, with a standard deviation of approximately +0.03 sb/hand.

! Available at www.cs.ualberta.ca/ games/.



Table 2. Computer vs computer matches (small bets per hand).

|Pr0gram || Vexb0t| Sparbot|H0bbot| Poki | Jagbot| A.Call| A .Raise |
Vexbot +0.052 |4+0.349|+0.601| +0.477 |+1.042| +2.983
Sparbot -0.052 +0.033|4+0.093| +0.059 |+0.474| +1.354
Hobbybot -0.349 | -0.033 +0.287{ +0.099 | +0.044| +0.463
Poki -0.601 | -0.093 | -0.287 +0.149 |4+0.510| +2.139
Jagbot -0.477 | -0.059 | -0.099 |-0.149 +0.597| +1.599
Always Call || -1.042 | -0.474 | -0.044 |-0.510 | -0.597 =0.000
Always Raise|| -2.983 | -1.354 | -0.463 |-2.139 | -1.599 |=0.000

Table 3. VEXBOT vs Human matches.

|[Num|[Rating | sb/h[Hands]
1 |Expert -0.022| 3739
2 |Intermediate|+0.136| 1507
3 |Intermediate|+0.440 821
4 |Intermediate|+0.371 773

VEXBOT won every match it played, and had the largest margin of victory
over each opponent. VEXBOT approaches the theoretical maximum exploitation
against ALWAYS CALL and ALwAYS RAISE. No other programs came close to
this level, despite those opponents being perfectly predictable.

Against SPARBOT, the strongest previous program for the two-player game,
VEXBOT was able to find and exploit flaws in the pseudo-optimal strategy.
The learning phase was much longer against SPARBOT than any other program,
typically requiring several thousand hands. However, once an effective counter-
strategy is discovered, VEXBOT will continue to win at that rate or higher, due
to the oblivious nature of the game-theoretic player.

The testing against humans (Table 3) involves a smaller number of trials,
and should therefore be taken only as anecdotal evidence (the outcomes being
largely dominated by short-term swings in luck). Most humans players available
for testing did not have the patience to play a statistically significant number
of hands (especially when frustrated by losing). However, it is safe to say that
VEXBOT easily exploited weaker players, and was competitive against expert
level players. The results also consistently showed a marked increase in its win
rate after the first 200-400 hands of the match, presumably due to the opponent-
specific modeling coming into effect.

A more recent implementation of the Mizimaz algorithm was able to improve
considerably on the VEXBOT results against computer opponents. That version
defeated SPARBOT by +0.145 small bets per hand — three times the win rate of
the previous version. 2 Moreover, its win rate against SPARBOT is comparable

2 The improved version has not been described in detail in this paper because it is
still in the process of being tested against quality human opposition.



to that of the most successful human player (the first author), and is more than
three times the win rate achieved by the world-class player cited in [4].

Revised versions of both programs competed in the 2003 Computer Olympiad,
with VEXBOT again dominating SPARBOT, winning the gold and silver medals
respectively [20].

8 Conclusions and Future Work

Limit poker is primarily a game of mathematics and opponent modeling. We
have built a program that “does the math” in order to make its decisions. As a
result, many sophisticated poker strategies emerge without any explicit encoding
of expert knowledge. The adaptive and exploitive nature of the program produces
a much more dangerous opponent than is possible with a purely game-theoretic
approach.

One limitation not yet adequately addressed is the need for effective defaults,
to ensure that the program does not lose too much while learning about a new
(unknown) opponent at the beginning of a match. If good default data is not eas-
ily derivable by direct means, there are several ways that existing programs can
be combined to form hybrids that are less exploitable than any of the component
programs in isolation.

With a smoothly adapting program and a good starting point, it may be
possible to use self-play matches and automated machine learning to constantly
refine the default data. In principle, that process could eventually approach a
game-theoretic near-optimal default that is much closer to a true Nash equilib-
rium strategy than has been obtained to date.

The performance of VEXBOT can be improved further in numerous ways.
While we believe that the modeling framework is theoretically sound, the pa-
rameter settings for the program could be improved considerably. Beyond that,
there is a lot of room for improving the context tree abstractions, to obtain
higher correlations among grouped sequences.

Only the two-player variant has been studied so far. Generalization of these
techniques to handle the multi-player game should be more straight-forward than
with other approaches, such as those using approximations for game-theoretic
solutions.

Refinements to the architecture and algorithms described in this paper will
undoubtedly produce increasingly strong computer players. It is our belief that
these programs will have something to teach all human poker players, and that
they will eventually surpass all human players in overall skill.
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