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ABSTRACT

This paper introduces the idea ofpre-searchinga position—searching it beforeαβ determines that
it needs to be searched. Consider the case where an iteration ofαβ search comes across a position
p that needs to be searched to depthd1, and the transposition table reveals thatp will likely need to
be searched later in that iteration to depthd2 greater thand1. Pre-searching involves speculatively
searchingp to depthd2, even though it has not been demonstrated that search to this depth is needed.
If the gamble is successful, then additional accuracy is introduced to the search (using a result with
extra search depthd2− d1). While any search extension scheme is not without some risk, empirical
results indicate that the impact on theαβ search tree size is small, but the additional accuracy that is
introduced improves program performance.

1. INTRODUCTION

As part of a project to better understand the nature of game-tree search, theαβ search algorithm was instrumented
to generate numerous informative statistics that can be used to characterize two-player search trees. These char-
acterizations will form part of the data provided to learning algorithms. These learners will in turn be designed
to further enhanceαβ search through self-exploration, learning, and acquired knowledge.

A better understanding of the dynamics of a search tree can lead to the development of new search enhancements,
as seen, for example, with the development of Enhanced Transposition Table cutoffs (Plaatet al., 1996). One
search characteristic that statistics were gathered on was the prevalence of cycles and transpositions in a tree. The
experimental data suggested that the search trees were bigger than they had to be—some positions were being
searched several times on the same iteration. This can occur for several reasons. Consider coming across position
p twice in the same iteration. The first timep is encountered, it needs to be searched to depthd1; the second time
to depthd2. The repeated position is detected using the transposition table and one of three situations arises:

• d1 == d2: The first search ofp should be sufficient for the second search ofp. However, the search
windows used for the two searches may be different. Consequently, the value returned by the first search
may not be sufficient to cause a transposition table cutoff for the second search.

• d1 > d2: The first occurrence ofp will be searched deep enough that its value can be reused for the second
search (modulo the search window bounds on the value from the transposition table).

• d1 < d2: Positionp is searched to depthd1, only to discover later on in the iteration thatp needs to be
re-searched to the deeper depthd2.

This paper addresses the case whered1 < d2. We introduce the notion of searching a position to a depth greater
than is required in anticipation that the deeper search depth will be needed later in the iteration. The idea is to
reduce the frequency of duplicate search effort, while at the same time introducing greater heuristic accuracy into
the search (replacing the depthd1 result with the more accurate depthd2 result).
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The idea ofpre-searchinga position is captured in our pre-search enhancement to theαβ algorithm. We show that
pre-search might introduce a small overhead to the search, but can improve the number of problems solved. Pre-
searching is evaluated in a chess and a checkers program. Although the performance improvements are modest,
the major contribution of this paper is a new way of looking atαβ search. In much the same way as other novel
αβ enhancements showed only modest initial promise (e.g. uncertainty cutoffs (Björnsson, 2002)), looking at the
tree search from a different point of view can be the stepping stone for new creative ways of getting the maximum
search value from given search resources.

2. PRE-SEARCHING

Consider anαβ search, where the same position is reached in different parts of the search tree. In Figure 1, we
see the search tree represented by the large triangle. By convention, search proceeds from top to bottom, left to
right (depth-first search). When the search reaches the node markedA, it will explore the subtree underneath this
node represented by the triangle with its apex atA. Suppose this subtree has a height ofd2 and the search returns
a value ofv2. PositionA and the search informationd2 andv2 will be saved in the transposition table and the
search continues. Later in the search, positionB is encountered, andB is a transposition ofA. The transposition
table is consulted, and the repeated position detected. SinceB’s search depthd1 is <= d2, the search result of
A can be used (depending on the valuev2 and its relation to the search window ofB). In this scenario, the deep
search occurs before the shallow search.

A

B

Figure 1: Deep search first

A

B

Figure 2: Shallow search first

Figure 1 is the ideal situation—the deep search precedes the shallow search. However, the situation in Figure 2
can just as easily occur. NowB is encountered first and is searched to depthd1. WhenA is reached, the
transposition table discovers that the position needs to be re-searched sinced1 < d2. In this scenario, the search
of B was redundant3.

3There may be a benefit to searchingB, such as an improved search window. However, the search must be repeated to a greater depth
which will give both a better search windowandgreater probability of a cut later on. It is in this light that we use the term redundant.
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The pre-search enhancement recognizes when the situation shown in Figure 2 occurs. Pre-search will specula-
tively searchB to depthd2 (not d1 asαβ would normally do) in the expectation that this search result will be
re-used when it comes time to searchA.

We will refer to the node requiring the shallow search (B in Figure 2) as the shallow node, and the node requiring
the deeper search (A in Figure 2) as the deep node.

There are several benefits to pre-searching shallow nodes:

1. Search efficiency might be improved by the elimination of redundant shallow-node searches. In Figure 2
pre-searchingB to depthd2 means that the shallow search to depthd1 is not done.

2. Search accuracy will improve since shallow nodes are searched to the depth of deep nodes. In Figure 2,
B’s search value will be the result of ad2 > d1 search, improving the quality of the backed-up heuristic
score for this subtree.

One important case where pre-searching can make a qualitative difference is by helping to alleviate some horizon
effect (Berliner, 1974) problems. Analysis of a line of play may have the win pushed beyond the search horizon
by the interjection of postponing moves by the opponent. In some cases, these postponing moves are merely a
diversion, and the program’s analysis eventually leads back to the main line of play. In this case, pre-search is of
great assistance. Positions in the main line of play will have been analyzed without the effects of the postponing
moves. In the line of play with the postponing moves, pre-search will search these positions to at least the same
depth as in the main line of play. Hence, in some cases, the postponing moves have no/little effect.

Unfortunately, pre-searching is speculative and, hence, there are risks associated with doing additional search
before it is actually proven to be needed. Pre-search anticipates that a deeper search is needed, and so it does
the search now rather than later. But the use of the pre-search result may not happen; theαβ search may end up
cutting off the second search. In Figure 2, there is no guarantee that theαβ search will reachA; a cut-off may
occur, or the move ordering might change. In this case,B has been searched deeper than was necessary, without
achieving the immediate savings expected by reusing it atA (savings may still occur, as the deeper result may be
useful on the next iteration of an iterative-deepening search).

Nevertheless, the potential to enhance the search in this speculative manner is alluring, and with careful tuning
the benefits may range from smaller search trees to more accurate results.

2.1 The Pre-searchαβ Enhancement

Figure 3 gives the pseudo-code for adding the pre-search enhancement to theαβ algorithm. The assumption is
that αβ has been enhanced with both iterative deepening and transposition tables. For simplicity, fixed-depth
searches are assumed, but the code can be easily extended to handle variable-depth searches.

The code illustrates how pre-search works. Transposition tables are used to identify when a pre-search is possible.
The table is augmented to record the iteration (IDDepth) at which a position is encountered. This is used by pre-
search to know whether a position has been seen in the current iteration. When a position is encountered in the
search with:

1. a transposition table entry from the previous iteration, and

2. a search depth less than that of what is in the transposition table,

then a shallow node has been found and is a candidate for a pre-search.

Adding search extensions toαβ is always a dangerous proposition. Unless the extensions are kept in check, the
search effort could increase unreasonably. Hence, in our implementation, we use four conditions to limit when
pre-searching is initiated. These conditions are detailed in Figure 4 (presearchFilter() routine):

• Recursive: Conceptually, there is nothing wrong with using pre-searches within pre-searches. In our expe-
rience, however, allowing recursive pre-searching frequently resulted in searches being extended to unrea-
sonable search depths (increasing the cost of the speculative search).



4 ICGA Journal Submitted

// Assumptions:
// * search depth counts down to 0 (leaf node)
// * IDDepth is the iterative deepening search depth
// * searches are to a fixed depth
int AlphaBeta( state, depth, alpha, beta, presearch ) {

if( TerminalNode( state ) || depth == 0 )
return( Evaluate( state ) );

save_alpha = alpha;
save_beta = beta;
tt_found = TTLook( state, &tt_depth, &tt_value,

&tt_bound, &tt_iteration );
if( tt_found == TRUE && tt_depth >= depth ) {

if( tt_bound == LOWER ) alpha = MAX( alpha, tt_score );
if( tt_bound == UPPER ) beta = MIN( beta, tt_score );
if( tt_bound == ACCURATE ) alpha = beta = tt_bound;
if( alpha >= beta ) return( alpha );

}

// Check for pre-search conditions
if( tt_found == TRUE && // node is in TT

tt_iteration != IDDepth && // not updated this iteration
// Check that entry has deeper search needs
tt_depth + ( IDDepth - tt_iteration) >= depth ) {

// Found a shallow node
new_depth = tt_depth + ( IDDepth - tt_iteration );
if( presearchFilter( newdepth, depth, tt_depth,

tt_iteration, presearch ) == YES ) {
presearch = TRUE;
depth = new_depth;

}
}

score = -INFINITY;
num_moves = Generate( state, moves[] );
for( i = 1; i <= num_moves; i++ ) {

result = -AlphaBeta( state.moves[i], depth-1,
-beta, -alpha, presearch );

score = MAX( score, result );
alpha = MAX( alpha, score );
if( alpha >= beta )

break;
}
// Normal TT update, but need to also save IDDepth
TTUpdate( state, score, save_alpha, save_beta, depth, IDDepth );
return( score );

}

Figure 3: Pre-search pseudo-code.
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presearchFilter( new_depth, depth, tt_depth, tt_iteration, presearch ) {
// Do not allow a pre-search in a pre-search
if( presearch == YES ) return( NO );

// Ensure that we are searching deeper
if( new_depth <= depth ) return( NO );

// Limit the amount of the search extension
if( new_depth - depth > Risk ) return( NO );

// Prefer deep nodes close to the root
if( tt_iteration - tt_depth > NearRoot ) return( NO );

// Prefer shallow nodes that are not close to the leaves
if( depth < NearLeaf ) return( NO );

// Pre-search
return( YES );

}

Figure 4: Pre-search filter.

• NearRoot : Having the deep node close to the root of the search tree is desirable. The further the deep
node is from the root, the greater the risk that it will be cut-off byαβ (meaning that the shallow node’s
search was possibly extended unnecessarily).

• NearLeaf : Having the shallow node be a comfortable distance from the leaves of the search tree is
desirable. The closer the shallow node is to the leaves, the more frequent pre-searching will apply and the
increased risk that deep searches will be done for little benefit.

• Risk : The increase in search depth for a pre-search search can be limited. Consider having to do a 2-ply
shallow search that gets extended to 10-ply to meet the needs of the deep search. This is a huge investment
of search effort. If pre-searching fails, then a substantial amount of work has been invested in improving
the accuracy of a subtree that has a low chance of impacting the search result.

The decision to use or not use these restrictions is application dependent.

3. EXPERIMENTAL RESULTS

The pre-search enhancement was added to THE TURK, a chess program developed at the University of Alberta
by Yngvi Björnsson and Andreas Junghanns4 (Björnsson, 2002). THE TURK has all the standardαβ search
enhancements. To better measure the impact of pre-searching, search extensions and reductions were disabled.

Two data sets were chosen for testing the effectiveness of pre-searching: The Encyclopedia of Chess Endgames
Volume 3 (Informant, 2005a) (1,797 positions) and The Encyclopedia of Chess Midgames (Informant, 2005b)
(879 positions). These databases will be referred to as the ‘endgames’ and ‘midgames’ test sets, respectively

Pre-experiment predictions were that pre-searching would be much more effective in the endgame than in the
middle game. Endgame positions typically have more transpositions than middle games. As well, endgame
searches often search considerably deeper than middlegame searches.

Experiments were performed on a 2.0 GHz dual processor AMD Athlon running Red Hat Linux release 9, kernel
2.4.20-13. Our first experiments had all positions searched to a fixed depth. This did not give us meaningful data,
since there was a huge variation in the time taken to complete these searches (varying from a second to several
hours). Instead we tried to approximate the searches done by tournament programs. All searches were performed
to at least 4,000,000 nodes (unless a forced mate was found). When 4,000,000 nodes were reached, the current
search iteration was allowed to complete. This methodology simplified the comparison of two implementations
by eliminating partially completed iterations.

We experimented with numerous combinations of parameter settings. We report one set of experiments in detail,5

as they give a good indication of the potential for pre-searching. The experiments reported in this paper used the
following parameter settings: no recursive pre-searches,NearRoot =∞, NearLeaf = 3, andRisk = 2.

4The program competed in the 1995 World Micro-Computer Chess Championship.
5A few examples of the effect of parameter changes are given at the end of this section.
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Our first result was disappointing: the midgame tests showed no benefit to pre-searching. Search tree size with
pre-searching enabled was comparable to that without pre-searching, but there was no difference in the number of
problems solved by each program. This result is not too surprising since the middlegame positions are generally
complex, limiting the depth of search achievable (to an average of 9) given the experiment’s resource limitations.

The endgame experiments, however, were more interesting. Here the search depths are larger (13 on average)
and the frequency of transpositions considerably greater. On the endgame test set, pre-search resulted in reducing
the search 26.4% of the time (by an average of 8.2% nodes), while increasing it 73.6% of the time (by an average
of 4.5%).

For some depths, pre-searching results in as many as 8 more problems being solved. In many cases, the extra
heuristic search accuracy introduced by pre-searching results in the correct move being found an iteration (or
more) before the non-pre-searching version. In a particularly spectacular example, pre-search found a correct
answer at a search depth of 13, having expanded roughly 1.3 million nodes, while the non-pre-search version did
not find the solution at that depth (but expanded 6.4 million nodes).

A difference of 8 out of 1,797 positions may not initially sound encouraging. However, this improved accuracy
comes almost for free. Further, the results reported here are for a very restricted version of pre-searching. The
benefits are more dramatic if, for example, one increases the risk threshold. Increasing the risk threshold to 3,
for example, results in a peak of 12 more problems solved, leveling off at 8 at the maximum depth. However,
parameter tuning is finicky. Increasing the risk to 4 results in presearch solving fewer problems. However, in
such cases the additional search effort thus induced requires tuning of thepresearchFilter parameters to
keep the search extensions in line. This tuning is application specific, and we did not feel comfortable reporting
a result that was tuned to a specific program.

Pre-searching has been implemented in the checkers program CHINOOK (Schaeffer, 1997). A test set of 535
positions were used, randomly chosen from a set of positions that had been solved using proof-number search
(part of the effort to solve the game of checkers). Two experiments were performed, varying theNearLeaf
parameter. Searches were done usingαβ to 21 ply with no search extensions. The first experiment resulted in a
1% reduction in search nodes examined, while the second experiment saved 4%. Obviously the node reductions
are small, but the very fact that they are reductions is very encouraging. With a 21-ply alpha-beta search, only
123 of the positions could be solved. Of these, experiment 1 was able to solve 6 of them at an earlier iteration,
while experiment 2 solved 1 earlier. Clearly, there are trade-offs to be had in the setting of the filter parameters,
and this is application dependent.

An experiment was performed with search extensions enabled. The results have to be taken in context, since the
search extensions strongly depend on factors that are difficult to control, including move ordering and the search
window. The number of problems solved within the depth limit almost doubled to 232 (out of 535), clearly
showing the value of the search extensions. On the test set, 13 positions were solved in an earlier iteration while
one position was solved in a later iteration. In this experiment, presearch ended up examining 10% additional
nodes.

4. CONCLUSIONS

A new method has been presented for speculatively searching a node in advance of when the search result is
required. While performing such a pre-search is a gamble, results show that generally pre-search adds little
overhead to a high-performanceαβ search algorithm. Future work should include a more systematic test of
the pre-search parameters and how they are influenced by theαβ enhancements (especially search extensions).
With the proper tuning of the pre-search parameters, this new enhancement can outperform ordinaryαβ search,
sometimes by a significant margin.
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