University of Alberta

Library Release Form

Name of Author: Theodore Tegos
Title of Thesis: Shooting The Last Arrow
Degree: Master of Science

Year this Degree Granted: 2002

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly
or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis, and except as herein before provided, neither the
thesis nor any substantial portion thereof may be printed or otherwise re-
produced in any material form whatever without the author’s prior written
permission.

Theodore Tegos

103 Pembina Hall, UofA
Edmonton, Alberta
Canada, T6G2HS8

Date:

University of Alberta

SHOOTING THE LAST ARROW

by

Theodore Tegos

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2002

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty
of Graduate Studies and Research for acceptance, a thesis entitled Shooting
The Last Arrow submitted by Theodore Tegos in partial fulfillment of the
requirements for the degree of Master of Science.

Jonathan Schaeffer

Martin Miller

Ryan Hayward

Andy Liu

Date:

Abstract

Games provide a fruitful research area for Artificial Intelligence. For years,
chess was considered the most significant field of computer game playing. How-
ever, in recent years the interest has shifted towards games that pose greater
challenges than chess, such as Go and Amazons. The characteristic of such
games is the large number of available moves in each position. Amazons offers
an ideal test bed for existing and new search ideas.

This thesis presents the work behind Antiope, a strong Amazons program.
The strength of Antiope lies in the use of endgame databases. Antiope is the
first program to use endgame databases in Amazons. One type of databases
store values related to Combinatorial Game Theory. This theory has been
almost exclusively the domain of the mathematics community. This thesis
presents the first investigation of adding Combinatorial Game Theory to a

high-performance game-playing program.

Acknowledgements

Special thanks go to ...

Jonathan Schaeffer, for being my supervisor and constantly encouraging me
to get this thesis done.

Martin Miiller, for being my supervisor and constantly encouraging me to
get this thesis done.

The UofA GAMES Group, for their endless fascination with games.

All Amazons programmers, for expanding a small community among games
researchers.

Finally, thanks go to Brad Leith, for putting up with my endless abstractions
during the breaks from my work.

Contents

1 Introduction

1.1 Games e e
1.2 Amazons
1.2.1 History. o
1.22 Rules. e
1.3 Problem Description
1.4 Objective
1.5 Related Work L.
1.6 Summary
2 Combinatorial Game Theory
2.1 Introduction
2.2 Combinatorial Games
2.3 Nimbers
2.4 Thermography Lo
2.4.1 HotStrat
2.4.2 SenteStrat oL
2.4.3 ThermoStrat
3 Endgame Databases
3.1 Empty Areas
3.2 Typesof Databases
3.3 Storage and Retrievalo
4 Active Area Databases
4.1 Introduction
4.2 Related Worko
4.3 Constructing The Databases
4.3.1 Minimax Databases
4.3.2 Combinatorial Databases
4.3.3 Thermographic Databases
4.4 Statistics e
4.5 Limitations of the Databases
5 Territory Databases
5.1 Territories
5.2 Line Segment Graphs L.

5.2.1 Line Segment Graph Isomorphism

© oo o I OY O Tt U i = =

6 Antiope
6.1 Search Algorithm . . .
6.2 Evaluation Function .

6.2.1 Min-distance Heuristic
6.2.2 Antiope’s Evaluation Function

6.3 Endgame Databases .
7 Results

7.1 Interesting Amazons Positions
7.1.1 Combinatorial Values
7.1.2 Zugzwang Positionso
7.1.3 Interesting Thermographs

7.2 Antiope

7.2.1 Tournament Results
7.2.2 Search and Endgame Databases
7.2.3 SenteStrat vs Full Board Search

8 Conclusions and Future Work

8.1 Discussion
8.2 Future Work
8.2.1 More Databases

90 00 00 0o
bo b bo b
(S SOV V)

Selective Search

A Territory Tables

Better Integration of the Databases in the Search
Not Completely Isolated Rooms
Articulation Points oo

Chapter 1

Introduction

1.1 Games

Games are an important part of everyday life. They provide entertainment,
education and mental stimulation. Humans have been aspiring to create me-
chanical players for hundreds of years. Early attempts to do so were proven
to be clever hoaxes, such as the chess automaton The Turk, which was con-
structed by Baron von Kempelen in 1769. The advent of computer technology
in the 1950’s gave researchers the means to develop game-playing programs.

The development of game-playing programs has been associated with the
research area of Artificial Intelligence (AI) from the very beginning. The
words of the Russian mathematician Alexander Kronrod that “chess is the
drosophila® of artificial intelligence” reveal how much interest it has attracted
from AI researchers. The predominant reasons that computer game playing
has attracted so much interest are as follows:

e Researchers use game-playing programs to gain insights into the thought
processes of the human brain. Playing games requires mental activities
that are not understood very well, such as generalizing, pattern match-
ing, searching, learning, and reasoning by analogy.

e Games provide a finite domain with well-defined rules and goals. Success
is easily quantifiable; algorithmic enhancements translate into a higher
winning percentage. Research on computer game playing will provide
insights into the complexity of AI’s ultimate goal, constructing machines
that exhibit the intellectual properties of human beings.

e Games are also fun and a favourite pastime of humans. Programming
computers to play games combines the fun of programming with the fun
of playing games.

A lot of progress has been made beginning with the early ideas of Claude
Shannon [Sha50] and Alan Turing [TSBB53] on chess playing programs and
Christopher Strachey’s draughts program [TSBB53], to the achievement of
world-champion status by programs such as Chinook in checkers [Sch97] and
Deep Blue in chess [SP97].

A lot of research has gone into developing strong game-playing programs.
There are three main elements that make a program a strong player. The first

!The fruit fly is to genetics, as chess is to Al

one is hardware. The faster the underlying machine is, the more calculations
a program will be able to perform within a given time limit. Apart from a
faster CPU, another way to take advantage of hardware is by parallelizing a
program.

The second element is the search algorithm together with the various search
enhancements. Game-playing programs analyze ahead a number of moves in
order to evaluate a position. If the search is efficient then programs will be
able to look more moves ahead, thus evaluating a position better. So a more
efficient search implies improved performance.

The third element is the amount of knowledge incorporated into the pro-
gram. Knowledge can be used extensively to evaluate the positions reached in
a search. It is easy to suppose that the more knowledge that is put into the
search, the better it is. However, knowledge can be difficult to integrate in a
program since sometimes it is hard to specify or quantify its effect, while it
may also be expensive to calculate.

One of the major contributions of games to the field of AI has been the
acceptance of brute-force search as an effective search method. Brute-force
search methods examine all the possible paths that lead to a solution and then
select the best one. They do not use much application-dependent knowledge
to limit the search space.

The belief that brute-force search is dumb because it builds large search
trees has been deeply rooted in Al and researchers have been striving for years
to find effective methods to incorporate more application-dependent knowl-
edge into their programs. Games have proven again and again that search is
knowledge and brute-force search can be effective. The implicit knowledge con-
tained in large search trees can make up for the imprecise heuristic knowledge
that could be explicitly incorporated into a search algorithm.

The search method most often used by computers in games is minimaz
search, in which all the combinations of moves and replies are considered for
the two players, extending to a certain number of moves into the future. A
tree is constructed this way where each level represents the moves of a player,
with players alternating at each level. One player is supposed to be trying to
maximize the score of the game while the opponent tries to minimize it, hence
the name minimax.

The minimax algorithm produces large trees since it takes into account all
the move sequences. It turns out that many branches of the game tree need
not be examined since they cannot alter the final result. Alpha-Beta pruning
is an enhancement to the basic minimax search that takes advantage of this
characteristic and reduces the size of the search tree significantly, allowing
searches up to twice as deep under the best conditions.

Another major enhancement to the minimax algorithm has been iterative
deepening. In iterative deepening the search analysis is performed repeatedly
to an increasingly deeper depth. During each new search the whole of the
previous search tree is retraced, this time extending the search depth (usually
by one). Although this idea seems counterintuitive, in practice it proves to be
very effective, often requiring less time than an equivalent non-iterative search.

Iterative deepening is efficient if it is combined with memory-assisted search,
such as the use of transposition tables. Re-visiting nodes in a game tree is very
common since positions repeat themselves often (there may be multiple ways
to reach a position). Transposition tables are used to store previously ana-
lyzed positions so that when they are encountered again they do not have to
be re-searched.

An important characteristic of games is the average number of moves in
a position (i.e. the average branching factor), since it affects the size of the
search tree that has to be built. Traditional search methods, such as Alpha-

Beta, work well for games like chess and checkers that have a moderate average
branching factor (35 and 8 respectively). However, when it comes to games like
Go and Amazons (see Section 1.2), which have an average branching factor of
several hundred, computer programs face a serious search challenge. The large
number of possible moves makes deep searches impractical, thus rendering
Alpha-Beta ineffective.

So, what can be done in this case? One solution comes in the form of
selective search techniques.

Selective Search. This comes in two flavours. First, instead of
searching all the branches in the search tree, only nodes that look
promising are expanded. Second, a non-uniform search depth is
maintained, which means that promising nodes are searched deeper
than others.

Selective search methods can be applied throughout the whole game. In prac-
tice, however, there is some risk associated with them since some moves that
look bad at shallow search depths may turn out to be very good.

Another solution to the problem of shallow global search in Go and Ama-

zons comes in the form of a mathematical theory, called Combinatorial Game
Theory (CGT).

Combinatorial Game Theory. This is a mathematical theory
for playing a sum of games that have specific properties (see page
9). CGT analyzes each game separately and then combines the
analysis to come up with the overall best playing strategy.

In some cases CGT has proven to be an efficient alternative to minimax meth-
ods, being able to analyze positions that would be intractable by even the
most efficient minimax algorithm.

CGT can be applied to the endgame phase of Go and Amazons, since
the board tends to decompose into independent areas. Each of these areas
can then be considered a separate (sub)game. For relatively small areas, the
results of the CGT analysis can be permanently stored in endgame databases,
so that the analysis does not have to be performed at run-time.

Endgame Databases. Endgame databases are permanent databases
that store the solution for subsets of positions near the end of the
game, when the exact final value can be calculated.

Endgame databases have been used with great success in games such as
checkers and chess. The apotheosis of endgame databases applications has
been their contribution to solving Nine Men’s Morris [Gas95], the first non-
trivial game solved using a combination of Alpha-Beta search and Retrograde
Analysis (it is a draw with perfect play). Retrograde Analysis is the most
popular technique for constructing endgame databases.

Retrograde Analysis. This is a method used for the exhaustive
search of a search space. It works backwards from the final states
enumerating all the predecessor states and computing their final
value, continuing like that in a bottom-up way to generate all the
positions further and further from the end positions and closer to
the start state.

Minimax methods provide the solution for the starting position together
with positions along the best line of play (i.e. the principal variation), assuming
that the search can extend to the end of the game, something which is infeasible
in practice. The advantage of Retrograde Analysis is that the optimal solution
is determined for all the positions that can be enumerated with the available
computing resources, albeit for positions close to the end of the game.

Amazons is a game that appears as an excellent test bed for research in
games. It provides the perfect context to explore what Al can contribute to
games with a large branching factor. Go, which is considered by many the most
intractable game and has received a lot of interest from the games community,
may seem like the obvious choice, but it requires lots of application-dependent
knowledge. This is hardly the case with Amazons, with its simple rules and
elegant strategy. Moreover, Amazons is a nice intermediary between chess and
Go. On one hand, it does not have the strategic complexity of chess but it has
a larger branching factor. On the other hand, it does not exhibit the difficulty
of Go although it poses similar challenges to games researchers because of the
high branching factor.

1.2 Amazons

Amazons is a two-player deterministic board game. It belongs to the cate-
gory of zero-sum games, in which whatever is gained by one player is lost by
the other (i.e. it is impossible for both players to win or lose). It is also a game
of perfect information since at any instance all the state information for the
game is available to both players. The game is a battle for territory allowing
the development of various playing strategies.

1.2.1 History

Amazons was invented by the Argentinian Walter Zamkauskas in 1988. He
was probably inspired by Greek mythology, which refers to Amazons as a
warlike tribe of women who lived somewhere in Asia Minor and were very
adept in archery.

The rules of the game where first published in Spanish in the 4% issue
of the puzzle magazine El Acertijo in December 1992. In 1993, Amazons
was introduced to the postal gaming club “kNights Of the Square Table”
[NOS93] by Michael Keller and started gaining in popularity. One year later a
translation of the original El Acertijo article was published by Michael Keller
in World Game Review, an infrequently appearing games magazine [Kel94].

In the following years, Amazons gained the attention of the games commu-
nity. The first international match was a six-game friendly match played by
fax between a team from Argentina and one from the USA in 1994. The final
score was a 3-3 tie.

In 1997, Amazons was introduced to Richard’s Play-By-eMail Server [Rog96]
by John Williams. A lot of games have since been played on the server, which
is attracting players of different skill levels. The well-known games researcher
Michael Buro has recently created a web server that allows human players to
play Amazons on-line using a graphical Java interface [Bur98].

Recently, Amazons has been included in the program of the annually held
Computer Olympiad. There have been two tournaments so far that have at-
tracted the best Amazons programmers from all over the world, one in Com-
puter Olympiad 2000 and the other in Computer Olympiad 2001.

1.2.2 Rules

Amazons is an elegant board game with very simple rules. It is played on
a 10x10 board and each player has 4 Amazons queens. As can be seen on the
left side of Figure 1.1, initially the white queens are placed on a4, d1, g1, j4
and the black queens are placed on a7, d10, g10, j7.

White moves first. Each move consists of two mandatory parts. First, an
Amazons queen moves one or more squares horizontally, vertically or diago-
nally, just like a chess queen. A queen cannot jump over other queens on the
board. After a queen is moved it has to shoot an arrow, which in turn moves
like an Amazons queen. The square where an arrow lands is blocked for the
rest of the game. This means that a queen or an arrow cannot move to or over
that square. Moreover, an arrow cannot move to or over a square occupied by
a queen of either color.

lg()) e O

8 @)
'(7i () (] O® o

5 O

4 O O

3

2 O ()
1 oL [1O |

abcdefghij

Figure 1.1: Starting Position (left) and Sample Endgame Position (right)

There is no capturing rule in Amazons. Since an arrow must be shot on
each move, more and more squares get blocked off as play progresses. At some
point, all the squares on the board will be occupied by either a queen or an
arrow, so no more moves will be possible. The winner is the last player able
to make a move.

1.3 Problem Description

Since the appearance of computer programs that play games in the 1950’s,
a lot of progress has been made in game playing. Until recently, research had
concentrated mainly on chess, which was considered to be the most significant
field of computer game playing. During the last decade many researchers have
started looking into other games, sometimes with remarkable success. Most
notable are the achievements made in Backgammon [Tes94], checkers [Sch97]
and Othello [Bur97|, where computer programs have equaled or even surpassed
human play.

There is a category of games that do not exhibit the complex strategic
elements of chess but pose a greater challenge for computers. These games
characteristically have a large branching factor. Amazons is such a game.
Playing strength has been found to be directly proportional to search depth for
many games. A large branching factor limits the search depth thus weakening
computer play. This makes Amazons a suitable test bed for existing selective
search methods and new search ideas.

1.4 Objective

The objective of this thesis is to investigate issues in developing a high-
performance Amazons program. The effort is concentrated on the endgame,
focusing on endgame database creation and use.

Towards the end of an Amazons game, the board tends to be divided into
independent areas. The right side of Figure 1.1 shows such a case. This
decomposition into independent sub-games suggests the use of Combinatorial
Game Theory in order to analyze a position. The combinatorial values of small
sub-games with queens of both colors can be stored in permanent databases,
allowing fast and almost perfect play towards the endgame.

Another important characteristic of endgames in Amazons is the creation of
areas that contain only queens of the same color. These areas can be excluded
from the minimax search since they are single-agent (i.e. one-player) problems.
Special endgame databases can be created that allow perfect scoring of these
areas.

Until now CGT has been almost exclusively the domain of the mathematics
community. No one has moved this technology from the realm of theory into
practice. The good of this thesis is the first investigation of adding CGT to a
high-performance game-playing program.

1.5 Related Work

Amazons is a relatively new game and has only recently started attracting
the interest of researchers in the games community. Michael Buro has been
able to prove that Amazons endgames where each sub-game contains queens of
the same color are NP-equivalent [Bur00Ob] (NP-equivalent problems have the
same degree of difficulty as NP-complete problems in terms of polynomial time
solvability). Many ideas about selective search in games have been proposed
throughout the years. Multi-Probcut [Bur0Oa] is a pruning method based
on shallow tree searches that was developed by Michael Buro and has been
successfully used in his Amazons program called amsbot.

Endgame databases are widely used in games and have been especially
successful in some of them. The use of databases allows programs to play
optimally towards the end of the game, when there are a few pieces left on
the board. In 1986, Ken Thompson pioneered Retrograde Analysis to build
databases for chess [Tho86]. The same method has been widely used ever since.
Martin Miiller has incorporated an on-line combinatorial-endgame-database
builder in his Go program (Explorer) and has developed a new search method
called Decomposition Search [Miil99] to take advantage of them. Raymond
Georg Snatzke has also undertaken the construction of combinatorial databases
for Amazons as part of his Ph.D. thesis [Sna01].

Combinatorial Game Theory is a powerful mathematical theory that can
be applied to certain games. The foundations of the theory were laid by John
Conway in his book “On Numbers And Games” [Con76]. Several years later
the theory was presented in “Winning Ways”, which contained a gamut of
games where CGT could be used [BCG82]. David Wolfe has built a useful
toolkit that implements most of CGT and allows users to find the combina-
torial values of complex game positions [Wol96]. Amazons started attracting
the interest of researchers in CGT after Elwyn Berlekamp published an article
about playing Amazons on rectangular boards with only two rows [Ber00].

1.6 Summary

The contributions of this thesis are as follows:

e Antiope. A strong Amazons program.

e Endgame databases. Antiope is the first program to make extensive
use of large endgame databases in Amazons. There are various different
types of databases that enable almost perfect play during the endgame.

e New CGT results. New positions with interesting combinatorial val-
ues were discovered during the construction of the CGT databases.

e Novel way of storing Amazons positions. A new, more space effi-
cient representation of Amazons positions was developed (Line Segment
Graphs). The new representation reduces the size of the databases sig-
nificantly.

The thesis is organized as follows. Chapter 2 is an introduction to Com-
binatorial Game Theory, a mathematical theory for certain two-player games
that can be applied to the game of Amazons. The general framework for con-
structing the endgame databases is presented in Chapter 3. The construction
of endgame databases that store combinatorial game values is described in
Chapter 4. Chapter 5 gives an analysis of territories, completely separated
areas on an Amazons board that contain queens of only one color. Chapter 6
provides a description of Antiope, an Amazons program that implements the
main ideas presented in this thesis. Various experimental results are presented
in Chapter 7 and Chapter 8 contains the conclusions and future work.

Chapter 2

Combinatorial Game Theory

2.1 Introduction

When humans first see a position in a certain game, there are two questions
that immediately come to mind:

e “What is the value of the position (i.e. which player is winning)?”

e “Which move is the best one to make next (i.e. how much is a move
worth)?”

For some games (or subsets of a game), these questions can be answered
by a mathematical theory called Combinatorial Game Theory (CGT). All
these games share a common feature. They either start consisting of indepen-
dent sub-games (Nim) or, as play progresses, they decompose into independent
sub-games (Amazons, Go, Domineering, Konane). The sub-games are consid-
ered independent when a move in one of them does not affect the others.

This is illustrated in Figure 2.1, which shows an Amazons position consist-
ing of three completely separated regions (sub-games). A move in one of the
regions does not affect any of the other regions. CGT analyzes each sub-game
separately trying to determine the overall best playing strategy.

Figure 2.1: Sub-games in Amazons

The notion of sub-games can be generalized so that CGT can be applied
when there are a number of different games to be played. For example, two
players may be playing a game of Amazons together with a game of Go. Players
move alternately and at each turn a player is allowed to move in one of the
two games. The loser is the player who cannot make a move in any of the
component games.

In general, the goal of CGT is to determine how to play the sum of a number
of games [Con76, p. 74]. This is achieved by looking at each separate game
independently and trying to combine this information in order to determine
the outcome of the compound game.

2.2 Combinatorial Games

A game is considered to be combinatorial if it satisfies the following conditions
[BCG82] :

1. There are just two players, often called Left and Right.

2. There are several, usually finitely many, positions, and often a partic-
ular starting position.

3. There are clearly defined rules that specify the moves that either player
can make from a given position to its options.

Left and Right move alternately, in the game as a whole.
Both players know what is going on, i.e. there is complete information.
There are no chance moves such as rolling dice or shuffling cards.

In the normal play convention a player unable to move loses.

e A A

The rules are such that play will always come to an end because some
player will be unable to move. This is called the ending condition. So
there are no games which are drawn by repetition of moves.

The previous rules are general. CGT has been extended to cover games that
violate some of these rules, but rules 5 and 6 must always hold. The original
rules of Amazons satisfy all of the above rules without any modifications.

It should be pointed out that CGT deals primarily with finite games, which
are games that have a finite number of positions [Con76]. However, the theory
is much more general than that and has been extended to cover infinite games
as well.

Games are classified as being impartial or partizan. Impartial games
satisfy the condition that from any position both players have exactly the same
moves. In partizan games, the two players may have different moves from a
given position. Amazons is a partizan game.

According to CGT, each position in a game is assigned a value, which
indicates which player (if any) is favoured by this particular position. A game
G can be classified into one of four categories based on the final outcome:

Positive Left can always win no matter which player starts first (G > 0).

Negative Right can always win no matter which player starts first (G < 0).

Fuzzy The player who starts first can always win (G || 0).

Zero The player who plays second can always win (G = 0).

Following CGT conventions, Left (or Black) tries to maximize the value of
a game and Right (or White) tries to minimize it. So, the larger the value of
a game, the happier Left is, while Right is contented with as small values as
possible.

Consider a game G, where Left has n moves to positions 1,2,...,n and
Right has m moves to positions 1,2,...,m. The value of G can be written
down as the following general expression:

G={Gy,G},G:,....GY | GE,G¥,GE, ..., GEY

GE GL GE, ... GE are the values of the positions that result after moves
made by Left and they are called the Left options. G, GE GE, ... GE are
the values of the positions that result after moves made by Right and they are
called the Right options.

The Left and Right options are separated by a slash |. As a notational
shortcut, curly brackets can be omitted and multiple slashes || can also be
used as a stronger separator. For example:

{{a b} [ct=alb]lc

Figure 2.2 shows a simple Amazons position. If Black starts first it has
only one available move to a position where White owns the last empty square,
so the resulting position has a value of -1. If White starts first the resulting
position will have a value of 1, with Black getting the last empty square. So,
the position is equal to {—1 | 1}.

[[Cel |

Figure 2.2: An Amazons position with CGT value {—1 | 1}

Let G be a game such that:
G={Gl G} G,GE | GE,GE,GE, ..., GE}

The negative of G is produced recursively by interchanging the moves for
Left and Right:

-G = {_Gﬁa _Gga _Gi}’?a SR _sz | - Gf’ _Gg’ _Gg/’ T _Gﬁ}

For example:
G={{11251[{3] —=1},{-2]0}}
—G={{1] =35{0 2} [{-2] -1}, -1}

The sum of a game plus its negative is always a zero game, since the second
player can win by copying the first player’s moves.

The values of the simplest games are numbers. In this context, “numbers”
stands for integers and dyadic rationals (5 m,n: integers), since these are
the only numbers that appear in finite, loop-free games. All the numbers can
be obtained from the following rules:

10

0= {[}
ntl = {n|}
—n—1 = {| -n}

2p+1 _ gp | ptl
2q+1 - {2q| 24

For example:

{61} —-36 = {| —35}
{01} -5 = {-31-2
g = {% %} 3 = {251}

It is important to note that the condition n > 0 must be true in order
for the above rules to work. Suppose there is a game G where Left has only
one move to a position with a value of 1, but Right has no legal moves. So,
G = {1 }. Since 1 is larger than 0, this game corresponds to the second rule:
{n |} =n+1. So, G = 2. However, if in the same game Left had a move to
-2 instead of 1, the condition n > 0 would not hold, making the second rule
inapplicable. In fact, {—2 | } is a zero game. Right wins if Left moves first
(value of -2) and Left wins if Right moves first, for Right cannot make any
move in this game.

If the Left and Right options of a game are numbers then the game is a num-
ber only if all the Left options are less than all the Right options [Con76, p. 4].
For example, the game {0,1 | 3,5,6} is a number, but the game {2 | 0,4} is
not. When the value of a game is a number, this number can be calculated
according to the Simplicity Rule:

I |
I

1. If there is any number that fits,
the answer is the simplest number that fits.

2. A number fits if it is greater than all the Left options and
less than all the Right options.

3. None of the number’s options must fit.

The options of the number referred to by the Simplicity Rule are the ones
that appear in the four rules that produce all the numbers. As an example,

let’s look at the game G = {13 | 2}. Could its value be 1£22? First of all,

512
1% is greater than 1% and smaller than 2, so it fits. The next step is to check

if the options of 1% fit. By applying the fourth rule, it can be seen that

132 = {17 | 22}, Tt is obvious that the right option fits in G so the third
condition of the Simplicity Rule fails.

Can G be equal to 1%? 1% is greater than 1% and less than 2, so it fits.
Also, it is the value of the game {1 | 2}, whose options (1 and 2) do not fit in
G. Finally, by trial and error, it can be seen that 1% is the simplest number
that fits. So, G = 13.

Things get more complicated with games whose value is not a number.
A subset of these games present some interesting properties and were given
special names:

star x = {0 | 0}.

11

up 1t ={0 [«}.

down | ={x|0}=—1.

tiny-x +, ={0[{0| —x}}.
miny-x —, = {{z | 0} | 0} = — +,.

The previous values are called infinitesimals. Surprisingly, it can be
proven that * is less than all positive numbers, greater than all negative num-
bers, but confused with 0 [Con76, p. 100]. Moreover, it can be proven that
1 and +, are strictly positive (Left can always win), but less than all positive
numbers, whereas | and —, are strictly negative (Right can always win), but
greater than all negative numbers. Some Amazons positions whose value is an
infinitesimal can be seen in Figure 2.3.

()
e D@ﬂ] O .

G =« G=1 G =+
Figure 2.3: Infinitesimals in Amazons

Expressions of games can get very complicated. There are two straightfor-
ward ways of simplifying these expressions: deleting dominated options
and bypassing reversible moves.

Let G be a game:

G={AB,C,... | D,E,F,...}
and A < B. Since Left tries to maximize the value of GG, Left will always
prefer to move to B rather than A. In other words, A is dominated by B.
Slmllarly, Right will always prefer a smaller value to a larger one, so if D < F

it is said that E is dominated by D. All the dominated options can be deleted
from a game. In this case G becomes:

G={B,C,... | D,F,..}

For example, if G = {0, 1,2 | 3,4} then the Left options 0, 1 are dominated
by 2 and the Right option 4 is dominated by 3. So, G = {2 | 3} = 2.

A reversible move is a move whose effect can immediately be reversed
by the opponent. Let G' be a game:

G={A,B,C,... | D,E,F,..}

Let’s assume that Left moves to position A and, from A, Right has an
option A%, such that:

={U,V,W,... | X,Y,Z,..}

12

If A® < @G then the move to A by Left is reversible since Right can get to
a position at least as good as G. Left will move to A, Right will move to A%
and then Left will move to one of the U,V, W, ... options. So, the move to
A can be bypassed by replacing it with U, V, W, ... After the substitution GG
becomes:

G={UV,W,...,B,C,... | D,E,F,..}

The same principle can be applied for moves reversible by Left. If there is
a position

DY ={K,L,M,... | P,Q,R,...}
such that DY > G, then D can be replaced by P,Q, R, ... and we have:
G={AB,C,... | PQ,R,...,E,F,...}

Reversible moves can be difficult to analyze. The goal of bypassing re-
versible moves is to simplify a game G, but in order to check for reversible
moves the value of G must be compared to other games. So, at first glance it
might seem like begging the question. However, the value of a game can be
compared to other games even if we do not know its simplest form [BCG82,
p. 64].

There is one important difference between a game tree constructed using
traditional minimax search and a game tree constructed following CGT rules.
The former tree contains branches that are formed only by alternating moves
made by the two players. The latter tree, however, contains branches with
sequences of moves made by the same player, since the opponent is allowed to
play in a different (sub)game.

A CGT game tree is presented in Figure 2.4. In any position, all the moves
by Left are shown with an arrow pointing to the left and all the moves by
Right are shown with an arrow pointing to the right. It can be seen that
some branches in the tree contain successive moves made by the same player.
Not all of the branches have the same length. This is because some positions
decompose into independent sub-games that are numbers, so it is sufficient to
just tally the numbers and the final number indicates who the winner is.

The root position is equivalent to the game:

1
G= {—5, 0,0, 0= —2, 2}
Since Left is trying to increase the value of the game and Right to decrease

it, the Left options are dominated by 0 and the Right options by -2. So G' can
be simplified to:

G={0] -2}

which is actually a fuzzy game since whoever moves first can win.

2.3 Nimbers

Nim is an impartial game. It is played with a number of heaps each one
of which contains a number of tokens, as seen in Figure 2.5. A move consists
of removing a number of tokens from a single heap. The player who can no
longer remove a token loses the game.

13

o |
AL]

Ol 0
A o] d]

N\ °\ S /\ \\

0 @] |
o DO ®
A] | O | A O] O| | A]
—1\ 0 T S T 0 0 /*\ 1

®
@ O
AOX
0 0 0

Figure 2.4: CGT game tree

Since in Nim both players have the same moves from any position, a Nim
game is its own negative. As a result, the sum of two Nim heaps of equal size

is equal to a zero game.

Figure 2.5: The game of Nim

The value of a Nim heap is called a nimber. In particular, a nimber xn
corresponds to a Nim heap with n tokens and is calculated according to the
following formulas:

*n = {x0,x1,%2,....x(n—1) | x0,%x1,%2,...,%(n—1)}
0 = {[}=0
x1 = {x0] x0}={0] 0} =«

14

It turns out that the sum of two nimbers is another nimber. Since Nim
is the sum of a number of heaps and the value of each heap is a nimber, it
follows that the value of every Nim game is a nimber.

The game of Nim is very important because it plays a central role in the
theory of impartial games. It can be proven that every finite, loop-free, im-
partial game is equivalent to a Nim heap [BCG82, p. 56|. So Nim encloses the
theory of impartial games.

2.4 Thermography

When a game consists of many sub-games, it may be difficult for a player
to choose the right sub-game to move in. Knowing how much moving in a
sub-game is worth helps significantly.

If a sub-game is a number, say G = {1 | 2} = 13, both players would like
to avoid moving in it, since it would only worsen their position. Left can move
to 1 therefore giving up half a move and the same holds for Right by moving
to 2. This is true for every sub-game whose value is a number. This leads to
the following simple principle:

Never move in a sub-game that evaluates to a number
unless there is nothing else to do.

Another simple case is when a sub-game G is a switch:
G=A{z|y} z>vy, zy:numbers

In this case we can define the temperature ¢ of (G, which measures the
value of moving in G, as:

1
t:§(«’f—y)

If all the sub-games are switches, then a player should move in the sub-
game with the highest temperature.

Games in which both players are eager to move are called hot games.
Switches are examples of hot games. On the other hand, numbers are examples
of cold games because neither player is willing to move in them. Another
example of cold games are zugzwangs, where both players are unwilling to
move since it will only worsen their position. Zugzwang positions can occur in
Amazons and playing them out well is not trivial [MTO01].

Moving in numbers is bad for both players, since any move by Left will
decrease the value of the game and any move by Right will increase it. So, a
game can stop when all sub-games become numbers and the players can just
add all the numbers to find out who the winner is. The positions of a game G
that are equivalent to numbers are called the stopping positions of G.

The Left stop is the stopping position reached if Left starts first and both
players move alternately in the same sub-game. The Right stop is defined
similarly if Right starts first. Let’s take the game G = {%2 | 1} | 3,5} as an
example. Left can move to {2 | 1} from which Right can then move to 1. So
the Left stop of G is 1. Right can move to 3 or 5, but an intelligent Right
player will choose 3 since it is smaller. So the Right stop of G is 3.

If a hot game is not a switch its temperature cannot be calculated trivially.
In this case the temperature is calculated by repeatedly cooling the game.

15

Cooling involves imposing a tax ¢ on each move and is denoted by G; (G
cooled by t). Since positive values are favourable to Left, the tax on Left’s
moves is imposed by subtracting ¢ from each position, whereas for Right the
tax is added to each position. So, Gy = {GF —t | GE +t}. Cooling stops
when the value of the game is infinitesimally close to a number. This number
is called the mean of the game and the corresponding tax is equal to the
temperature of the game.

It can be shown that if m is the mean value and ¢ the temperature of a
game G then:

m—t<G<m+t

So, the values that G' can take are centered around m, which is why m is
called the mean of G.

When a game is complex, the temperature and the mean value can be found
with the help of a graph, which is called a thermograph. A thermograph plots
the Left and Right stops of the cooled game for all temperatures. Although the
temperature is the independent value, it is traditionally plotted on the vertical
axis and the dependent values are plotted on the horizontal one. Moreover,
increasing positive values are traditionally plotted to the left of the horizontal
axis, while negative values are plotted to the right. Figure 2.6 shows the
thermograph for the game {2 | — 1}, which has a mean value of and a

temperature of 3. .

N[

|
|
|
U/a T 1 0 \

Figure 2.6: Thermograph for {2 | — 1}

If G = {G* | G} is a game then its thermograph is constructed with the
following procedure:

1. Construct the thermographs for G and G®. The thermograph of a
number n is a vertical line crossing the horizontal axis at v = n. In
1982, Elwyn Berlekamp introduced the notion of sub-zero thermography
[Ber96], according to which, a sub-game whose value is a number has a

negative temperature. Rational sub-games (G =) have a temperature

of —2%, while integer sub-games have the lowest possible temperature

(=1).

16

2. Impose the tax on the Left and Right options. This is done by rotat-
ing the Left thermograph clockwise by 45° and the Right thermograph
counter-clockwise by 45°.

3. The two thermographs meet at a point whose x coordinate is the mean
of the game and whose y coordinate is the temperature of the game.

4. The part of the thermograph above the meeting point is just a vertical
line called the mast.

Figure 2.7 shows how the thermograph for the game {2 |—1} is constructed
from the thermographs of the Left and the Right options. It is important to
note that the thermograph of a sum of games cannot always be determined
just by knowing the thermograph of each game [BCG82, p. 163].

Thermographs model the trade-off between making a move locally and
playing first in some other sub-game. The temperature is the point where a
player is indifferent between playing locally and playing elsewhere.

31 0 [1 AT 0 N\

Figure 2.7: Construction of the thermograph for {2 | — 1}

Thermographs are particularly useful when a player has to make a move in
one of several hot sub-games that are not switches. CGT offers three strategies
to handle this situation. All of them are based on thermography and are
heuristic in nature. They do not guarantee optimal play but two of them
guarantee a bounded error.

2.4.1 HotStrat

HotStrat is the simplest strategy. Whenever a move has to be made, Hot-
Strat will choose the hottest sub-game and play the move which is best at the
largest temperature.

2.4.2 SenteStrat

SenteStrat is a more sophisticated strategy [Ber96]. The basic idea is to
decide whether to keep sente (i.e. the initiative to move in any sub-game) or
play in the same sub-game as the opponent did. For this purpose, SenteStrat
keeps track of a temperature called the ambient. The ambient never increases.
An outline of the strategy is as follows:

17

1. If the opponent’s last move raised the temperature of a sub-game G;
above the ambient, then reply with a move in sub-game G; that is best
at the ambient temperature.

2. Otherwise

(a) find the largest temperature ¢ of all sub-games
(b) if ¢ is less than the ambient make the ambient equal to ¢

(c) play in the sub-game with temperature t, selecting the best move
at the ambient temperature.

2.4.3 ThermoStrat

ThermoStrat is the most complex strategy. Like SenteStrat, it also keeps
track of the ambient temperature. Every time a move has to be made, Ther-
moStrat will choose the best move at the ambient temperature at a sub-game
which has the widest thermograph at the ambient temperature.

All three strategies can fail to select the optimal move [Ber96, p. 391].
However, SenteStrat and ThermoStrat guarantee a bounded error whereas
HotStrat does not. In particular, they guarantee that the error for the whole
sum game will be at most equal to the ambient.

18

Chapter 3

Endgame Databases

Towards the end of an Amazons game, the board usually decomposes into
independent areas. Each of these areas can be viewed as a separate Amazons
sub-game. Sub-games that contain only queens of the same color offer an
uncontested number of moves to a player and are called territories. Sub-
games that contain queens of both colors are called active areas. Extensive
endgame databases have been built for both types of these sub-games.

3.1 Empty Areas

Figure 3.1: A 5x4 room of size 7

Before any databases can be computed, all the areas that contain only
empty squares are built. These areas consist of a number of empty squares
that are connected horizontally, vertically or diagonally (8-connected) and they
are called rooms. The number of empty squares in a room is called the size
of the room, while the dimensions of a room are equal to the dimensions of
the smallest rectangle that contains the room. Figure 3.1 shows a 5x4 room
of size 7.

The rooms are built using a variation of Retrograde Analysis [Tho86]. All
the rooms with n + 1 squares are built by adding an empty square to a room
with n empty squares. Of course, all the empty squares must be connected in
the resulting rooms.

The relative position of a room on the board is irrelevant. Only the shape
of a room is important as can be seen in Figure 3.2. Symmetries caused by
translation of the rooms are removed by encoding only the rectangle that
encompasses a room rather than the whole board. Despite that, the databases
built using the method previously described contain a lot of redundancy, since
many rooms are symmetrical to one another (i.e. identical after rotation or

19

reflection). For example, in Figure 3.3 it is clear that half of the rooms of size
2 are redundant.

Figure 3.2: Two rooms that are considered identical

H uﬂ L] m|_|
Vi

Figure 3.3: Construction of all rooms of size 2

A number of symmetry checks are performed on the generated rooms to
remove redundancy. Figure 3.4 shows the 7 symmetry checks, which consist
of 4 reflection and 3 rotation checks. All the rooms of size 2 and 3 after
symmetries have been removed are shown in Figure 3.5. Table 3.1 contains
the number of all different rooms with dimensions 4x5 or smaller.

3.2 Types of Databases

Four different types of databases have been constructed. The first one is the
territory databases. The other three are all active areas databases and differ
in the type of value they store. They are namely the minimaz, combinatorial
and thermographic databases.

All these databases are constructed with the help of the room databases.
Territories are created by taking an empty room and placing one or more same-
colored queens in it, in every possible combination. Active areas are created
by taking an empty room and placing queens of different colors in it, in all
possible combinations. In general, the databases are constructed by doing a
1-ply search. In particular, all possible queen moves are played out and the
resulting positions are looked up in the smaller databases.

The size of the various databases that have been built differs because of
resource limitations for both storage (i.e. memory and disk) and computation
time. The following is an overview for each database.

e Territories. All the territories up to size 4x6 with 1, 2, 3 and 4 queens
in them.

e Minimax. All the sub-games up to size 4x6 with 1 queen of each color.

e Combinatorial. All the sub-games up to size 4x4 with 1 queen of each
color; sub-games up to size 4x5 and 4x6 with 10 empty squares and 1
queen of each color.

20

e Thermographic. All the sub-games up to size 4x5 with 1 queen of each
color.

L]
X reflection Y reflection 45° reflection 135° reflection
| ! | |
] s 0 e N O
e o N\
0] - N
| 90° rotation -

| .

180° rotation 270° rotation

Figure 3.4: Symmetries

i

Figure 3.5: All rooms of size 2 and 3

21

Size | Rooms
1 1
2 2
3 5
4 22
5 93
6 439
7 1725
8 5205
9| 11473

10 | 18904
11 23364
12 22070
13| 15873
14 8841
15 3740
16 1233
17 293
18 56
19 6
20 1

Table 3.1: All 4x5 rooms

3.3 Storage and Retrieval

Each room is represented by a unique index consisting of 64 bits. The
rightmost 56 bits encode the shape of a room as a rectangular bitmap. The
width and the length of a room are encoded in the remaining 8 bits, taking
up 4 bits each. This encoding limits the dimensions and the size of the rooms
that can be stored in the databases. However, it can easily be extended by
allocating more bits for the index.

Each room index is stored once in the databases. For each one there is
a list of all the possible queen combinations in that room. For each entry in
that list, depending on the type of the databases, there are one or more bytes
storing the position of each queen and respective storage for the value stored
in the databases.

The rooms are stored sorted in the databases according to their index
number. The lookup of a room is performed using binary search. In order
to find a particular combination of queens within a room, a binary or linear
search is performed, depending on the type of the databases.

22

Chapter 4

Active Area Databases

4.1 Introduction

Amazons is a combinatorial game. It can be viewed as a sum of independent
sub-games. This decomposition becomes apparent towards the end of a game
when separate areas are formed by arrows on the board. These areas are
independent since a move in one of them does not affect the other areas.

At this point, Combinatorial Game Theory can step in and provide an
analysis of the game. Each local sub-game is analyzed separately and then
the results are combined in order to achieve optimal or heuristic global play.
Instead of doing the analysis of an endgame position anew each time it is
encountered in a game, the values of small endgame positions can be calculated
once and stored in permanent endgame databases.

The use of endgame databases has been widespread in game-playing pro-
grams and a similar idea can be applied to Amazons. Traditional endgame
databases store the minimax value of a position. This can be done in Amazons
too. However, doing a full minimax search on an Amazons board that consists
of several sub-games is possible only when these sub-games are small enough,
since global search does not take into account the decomposition and considers
the board as a whole.

On the other hand, CGT can tackle a much larger number of endgame
positions by doing a local analysis of each sub-game, just like pattern databases
[CS98]. This enables larger sub-games to be analyzed, which can then be
combined to give an endgame position of a much larger size. This is done by
looking up the combinatorial value of each local sub-game in the databases and
then combining those values to determine the global play. In most endgame
situations CGT can provide an analysis faster than minimax approaches since
there is no global search involved.

4.2 Related Work

The databases that have been constructed are pattern databases. They
enumerate all subgoals required by a solution, with certain constraints on the
subgoal size. The subgoals in Amazons are the sub-games formed towards
the endgame. Pattern databases have been used before with great success in
single-agent problems, such as the 15-puzzle [CS98].

There are many games where programs use endgame databases. Chess-
playing programs have been using databases with few pieces on the board for

23

years. Checkers is another game where endgame databases have been used
extensively. Chinook, a checkers program that uses databases with 8 or fewer
pieces, won the World Champion title in 1994 [Sch97], becoming the first
program ever to achieve this in a non-trivial game.

Endgame databases have even enabled programs to solve games. Ralph
Gasser used endgame databases together with Alpha-Beta search and was
able to prove that the game of Nine Men’s Morris is a draw [Gas95]. Awari
is another game where endgame databases have proven very important. The
game has not been solved yet but large endgame databases have already been
built and it is just a matter of time until it is solved [vdG00].

4.3 Constructing The Databases

Three different types of databases have been constructed. They all store
sub-games with 1 queen of each color. Their difference lies in the kind of values
stored in them.

One kind of database stores the minimaz score for each sub-game. The
other two databases store CGT related values. One database stores the com-
binatorial value of a sub-game in canonical form. The other database stores
the corresponding thermograph of a sub-game.

As mentioned in Chapter 3, all the above databases are constructed with
the help of the room databases. A sub-game with opposing queens is created
by taking an empty room and placing queens in it in all possible combinations.

22

Figure 4.1: Symmetrical positions with two opposing queens

The databases are constructed by doing a 1-ply search. In particular, all
the moves available to both players are played out and the value of the resulting
positions is retrieved from the smaller databases. Since a move may result in
a position which contains territories (i.e. sub-games with queens of one color),
the territory databases must already be available and are also used.

Symmetries that appear after queens are placed in the rooms are not re-
moved from the databases. For example, the two positions shown in Figure
4.1 are both present in the databases although they are symmetric.

4.3.1 Minimax Databases

The minimax databases store the minimax value for each player in a certain
position. Currently, the minimax values for all the rooms up to size 4x6 have
been calculated. Figure 4.2 shows a position from the databases with the
corresponding minimax values for White and Black to move.

24

4.3.2 Combinatorial Databases

The combinatorial databases store combinatorial game theoretic values.
When more than one sub-game is created after making a move, the combinato-
rial values of these sub-games must be added according to CGT rules. Because
of this, the databases are calculated using David Wolfe’s ‘Gamesman’s Toolkit’
[Wol96], which provides various functions for computing combinatorial game
values.

The combinatorial databases store three different values. First, they store
the combinatorial value of a game in canonical form. This value is stored as a
string and can be used for optimal play. It is also used during the construction
of the databases in order to restore a game in the toolkit and later on for
verification and data mining purposes.

LIO
®

Figure 4.2: Minimax Score: Black = 1, White =1

The other two values stored in the databases are the mean and the tem-
perature of a sub-game. These values can be used to determine overall play
according to CG'T rules. The mean gives the average value of a sub-game and
this value can be used in the evaluation function. The temperature can be used
by various thermographic strategies to determine which sub-game to play in
(see Chapter 2).

Currently, the combinatorial databases contain all the rooms up to size 4x4
and all the rooms up to sizes 4x5 and 4x6 that contain up to 10 empty squares.
The reason the 4x4 databases are preferred (instead of an alternate size, e.g.
3x5) is because rooms of square shape seem to be more useful in an actual
game. Figure 4.3 shows a position from the databases with the corresponding
combinatorial value in canonical form.

}iO

Figure 4.3: CGT Value: 0,{1 | 0} | -1

4.3.3 Thermographic Databases

The thermographic databases explicitly store the thermograph of a sub-
game. For this purpose, a toolkit that has been developed by Martin Miiller
for his work in Go has been used.

The thermographs are stored in their geometric form as a sequence of
coordinates. CGT values, such as the mean and the temperature, are not

25

explicitly stored. They can be calculated easily from the representation of the
thermograph.

The whole thermograph must be stored because it provides much more
information for CGT methods. For example, thermographic strategies need
the left and right score at various temperatures on a thermograph, so storing
only the temperature at the mast does not provide enough information.

Currently, the combinatorial databases contain all the rooms up to size
4x5. Figure 4.4 shows a position from the databases with the corresponding
thermograph.

/ |

Figure 4.4: Thermograph for 0,{1 | 0} | — %

4.4 Statistics

All the different kinds of databases contain the same number of positions.
Only the values stored in the databases change. Table 4.1 shows the corre-
sponding number of positions for all the rooms up to size 4x5.

The thermographs require a lot of memory to store and this makes calcu-
lating larger databases difficult. However, it turns out that many positions
have the same thermograph, something that enables good compression of the
thermographic databases. Table 4.2 shows the relevant figures for all the rooms
up to size 4x5.

4.5 Limitations of the Databases

The construction of the endgame databases is not problem-free. There are
currently two limitations. One is the size of the sub-games and the other is
the number of queens contained in the sub-games.

Considering enough computer resources, there is no theoretical problem
in constructing larger minimax databases with more than 1 queen of each
color. Problems arise when the CGT databases, the combinatorial and the
thermographic one, are considered.

The main problem with the combinatorial databases has to do with mem-
ory. The toolkit used to calculate the combinatorial values handles memory
itself, so there is a limit to what kind of memory enhancements can be done

26

Size | Total Positions
2 2
3 15
4 132
5 930
6 6585
7 36225
8 145740
9 413028

10 850680
11 1285020
12 1456620
13 1238094
14 804531
15 392700
16 147960
17 39848
18 8568
19 1026
20 190

Table 4.1: Number of positions in rooms up to size 4x5

on the program that builds the databases. This is the reason why the 4x5 and
4x6 databases have not been completed yet. If memory was not an issue then
these databases and even larger ones could be constructed.

The main problem with the thermographic databases involves the number
of queens that can be placed in a sub-game. The databases with n (n < 4)
queens of the same color against 1 opponent queen could be constructed given
the necessary computer resources. However, in the case of n queens against
more than 1 opponent queen, the thermographic databases cannot be built
using the current framework.

The reason is that two thermographs corresponding to active areas cannot
usually be added together. So, the thermographs of the sub-games will not
be possible to add, which means that the 1-ply lookahead into the smaller
databases will not work. The program that builds the databases has to be
re-designed so that it performs a search until the end of the local sub-game
(even if it is split into two or more active areas), when there are no other
moves left for one of the players, and then back the calculated values up to
the initial position in order to calculate the corresponding thermograph.

27

Size | Total TGs | Unique TGs | Reduction (%)
2 2 1 50.00
3 15 3 80.00
4 132 12 90.91
5 930 45 95.16
6 6585 181 97.25
7 36225 656 98.19
8 145740 2546 98.25
9 413028 9459 97.71

10 850680 27491 96.77
11 1285020 62141 95.16
12 1456620 111805 92.32
13 1238094 151896 87.73
14 804531 158503 80.30
15 392700 117586 70.06
16 147960 63201 57.29
17 39848 22030 44.71
18 8568 5244 38.80
19 1026 667 34.99
20 190 56 70.53

Table 4.2: Unique thermographs in rooms up to size 4x5

28

Chapter 5

Territory Databases

5.1 Territories

Areas on an Amazons board that only contain queens of a single color
represent a number of free moves for that player. These areas are called
territories. Territories can be viewed as single-agent puzzles where the goal
is to determine how many squares a player can get.

-

Figure 5.1: A k-defective territory

Usually, a territory can be filled completely allowing the player to get all
the squares. However, there are cases where the number of moves that a player
can make in a territory is less than the number of empty squares. In that case
the territory is called defective [MTO01]:

A k-defective territory provides k less moves than the number of
empty squares in the territory. A k-defective territory is said to
have k defects.

Figure 5.1 shows that there is a k-defective territory for every k. The best
that the queen can do in this situation is move to the left or to the right and
shoot an arrow at A or B respectively. Either way an area containing k empty
squares will be blocked off and lost. A territory can be defective even if it
contains many Amazons as can be seen in Figure 5.2.

Michael Buro has shown that determining whether a territory can be com-
pletely filled or not is an NP-equivalent problem [Bur00b]. However, for small
territories that fit on a 10x10 Amazons board it is possible to do an exhaustive
search and build extensive endgame databases.

29

Figure 5.2: A defective territory with many amazons

b o

Figure 5.3: Symmetries in territories

1600 T T T T T T T T T T T T
1-queen——
2-queen - +--
1400~ 3—queen--3--
4-queen- X% -
1200 T
£
5 1000 -
@]
04
.g 800 [~ -
3
o 600 _
[a]

400 - T

200 - -

0 & =
3 4 5 6 7 8 9 10 11 12 13 14
Room Size

Figure 5.4: 4x5 defective rooms

Such databases have been built using a variation of Retrograde Analysis.
As described in Chapter 3, starting with an empty room taken from the room
databases, one or more queens are placed in it in every possible combination,
creating a territory. Then a 1-ply search is performed, in which all the possible
queen moves are played out and the resulting territories are looked up in
the smaller territory databases giving a perfect score. The maximum score
returned by all the moves, increased by one, represents the score of the initial
position.

All the territories of size up to 4x6, containing up to 4 queens, have been
constructed so far. Symmetries like the one seen in Figure 5.3 are removed by

30

performing the same 7 symmetry checks as the ones applied to the construction
of the room databases.

Defective territories offer a great way to reduce the size of the territory
databases. Instead of storing all the territories, the databases store only the
defective ones. If a search in the databases returns a hit then the territory is
known to be defective and the exact number of obtainable squares is retrieved
from the databases. Otherwise, if it is not found in the databases, a territory
is assumed to be non-defective.

7000 T T T T T T T T T T T T
1-queen——
%—queen--a-
n X —queen- -3 -
6000 4—8ueen- X
» 5000 —
Q9
§ ' .
‘E 4000 ’ N _
e * X
] N
2 3000
(8]
Q
(]
0 2000+
1000
0 A

Room Size

Figure 5.5: 4x5 defective territories

— []
N o [
Figure 5.6: A room that can be defective with 2 but not with 1 queen

A very interesting characteristic can be seen in Figure 5.4 and Figure 5.5.
Rooms are empty areas, while territories are rooms with same-colored queens.
The corresponding numbers for the figures can be seen in Appendix A. Usually,
it is assumed that more queens in a territory are more powerful, meaning that
a larger part of the territory can be filled. However, this is not always true.
There are cases where more queens in a territory are harmful. This is the
case when some of the queens effectively act as arrows and usually block other
queens, thus reducing the territory to a defective one with less squares. For
example, Figure 5.6 shows a room that can never produce a defective territory

31

with only one queen. However, when two queens are placed in it, a 1-defective
territory may be created.

This is very important for both human and computer players to keep in
mind, especially in the endgame. Figure 5.7 shows such a situation. This
territory contains two queens and is not defective. However, the only way to
get all the squares is by moving the queen at b3 to a4 and shooting an arrow
at c¢2, thus blocking off the queen at cl and creating two separate territories
with one queen in each of them. Figure 5.9 shows various defective territories
with up to 4 queens.

5 5
4’_31 4!iDj
om dc

1 ol | 1 ol |
abcde abcde

Figure 5.7: Two queens can be harmful

5.2 Line Segment Graphs

All the rooms and territories are stored in the databases as bitmaps. The
symmetry checks performed on these bitmaps eliminate a lot of redundancy
from the databases. Still, there are rooms that are not geometrically symmet-
rical but are strategically identical as far as the game is concerned (i.e. the

move tree and decomposition behaviour are the same).

]
SR

Figure 5.8: Two strategically identical rooms

Figure 5.8 shows two rooms that are not symmetrical but offer the same
opportunities for playing them out no matter where any queens are placed
in them. By looking at the figure it is clear that what the two rooms have
in common is the number of straight lines formed by adjacent squares. The
orientation of the lines is irrelevant. Only the number, the relative order of
squares in each line, and their incidence relation matters.

Based on this observation, a different structure for representing rooms has
been devised [MTO01]. It is called a Line Segment Graph (LSG) and it is based
on line segments created in a room by squares that are adjacent horizontally,
vertically or diagonally.

Figure 5.10 shows two Amazons rooms and their corresponding LSG. The
main difference between a LSG and an ordinary undirected graph is that a
LSG stores information about line segments. In all the figures that depict
LSG, all consecutive edges that have the same slope belong to the same line
segment. In order to label the vertices, the squares in a room are numbered
going from left to right and from bottom to top.

32

:

L b | o LI LI L L]
k=4 k=2 k=1 k=3 k=2 k=1
(] ()]] [le @ L L

[@]
:
i

k=1 k=2 k=2 k=1 k=1 k=2
® ® ®
8 C% e 8o eel Dl
L] 1] [] 1 e o L[] e [| [@ []
] @
k=3 k=2 k=1 k=2 k=1 k=1
= F%_Jlﬂi.r1 [7i§ [] F% o 1 [[][]
OO0] 4 H N T%_ [] @ ~ e —
L] L] ® | oe [] @ ee |

Figure 5.9: Various k-defective territories

b
o”°

3 lines: 0-1, 1-2, 2-3 2 lines: 0-1, 1-2-3

Figure 5.10: Two rooms and the corresponding LSG

One important property of a LSG is that the points in a line form an
ordered set, which means that the order of the points is important. LSG
created from Amazons positions obey two more properties:

1. Every point is contained in at most four lines.

33

2. No line is longer than the size of the board.

5.2.1 Line Segment Graph Isomorphism

The advantage of storing rooms as LSG is that different rooms that are
not symmetrical may have the same LSG representation, so there can be a
reduction in the number of rooms stored in the databases. This reduction can
be achieved by checking for isomorphic LSG. Figure 5.11 shows an example.

L 4

@II a[b)

oo ? b

Mapping:0 &b, 1 a,2 & ¢, 3&d

Figure 5.11: Two rooms with isomorphic LSG

The distinguishing characteristic of an LSG is the notion of a line. This
leads to a definition of isomorphism between two LSG that is slightly different
from the one pertaining to ordinary undirected graphs:

A LSG G is isomorphic to a LSG H iff we can map (re-label) the
vertices in G to those in H so that the lines in G are identical to
the lines in H.

Checking for graph isomorphism is an NP-complete problem. Richard
Krueger has come up with a polynomial time LSG analysis as part of his
M.Sc. thesis but this approach has not been taken for the problem at hand.
The reason is that for relatively small graphs, graph isomorphism can be done
efficiently using existing algorithms. A very good program that can handle
graph isomorphisms is nauty, written by Brendan McKay [McKO01][McK81].

In order to check for isomorphisms, the LSG must be converted to a format
suitable for nauty. For this reason, a somewhat larger graph, the extended
graph, is built from an LSG according to the following algorithm [McKO0]:

1. The extended graph consists of two parts. The “points” part and the
“lines” part.

2. The “points” part is identical to the LSG.

3. The “lines” part contains an extra vertex for each line in the LSG.

34

4. Each vertex in the “lines” part is connected to the points (vertices in the
LSG) in the line that it represents. For efficiency, only lines with 3 or
more points need to be represented in the “lines” part since lines with
fewer points are already contained in the LSG.

5. The “points” part must be distinguished from the “lines” part. In order
to do that, all the vertices in the “points” part are assigned the same
color and all the vertices in the “lines” part get another color. If there
are any queens in the LSG then the color of the vertices that contain
them is changed to the color of the queen.

An example of an extended LSG is shown in Figure 5.12. This figure
shows two two-node lines at nodes 6 and 9. These nodes could be omitted.
The reason that such an extended graph has to be constructed is to ensure
two important properties of the LSG isomorphism. First, the “points” part
ensures that isomorphisms can only preserve the relative order of all points
on a line. On the other hand, the “lines” part ensures that any isomorphism
between two LSG maps the lines of one to the lines of the other.

Room LSG

4
B
1

0]

Extended Graph

Figure 5.12: Extended LSG

Nauty does canonical labeling rather than isomorphism testing. So, the
test for isomorphism consists of three conditions. First, two simple conditions
are checked to save computation; that the two LSG have the same number of
points and lines. Second, the canonically labeled extended graphs produced
by nauty have to be identical.

Table 5.1 shows the numbers for all 4x5 rooms and their corresponding
LSG. Figure 5.13 shows the ratio between the number of LSG and the number
of bitmap rooms. Although initially there is a significant reduction, gradually
it starts decreasing and after about 13 squares it becomes insignificant. This
can be attributed to the small dimensions of the rooms. All the rooms are
restricted to a 4x5 area which does not allow the presence of long and varied
line segments.

35

Size | Bitmaps | LSG
1 1 1
2 2 1
3 5 3
4 22 11
5 93 42
6 439 191
7 1725 812
8 5205 | 3027
9 11473 | 8348

10 18904 | 16037
11 23364 | 21507
12 22070 | 21242
13 15873 | 15634
14 8841 | 8800
15 3740 | 3737
16 1233 | 1233
17 293 293
18 56 56
19 6 6
20 1 1

Table 5.1: 4x5 room bitmaps and LSG

The reduction is much more promising for rooms of larger dimensions.
Table 5.2 shows the numbers for all rooms and LSG up to size 10 that fit on
a 10x10 board and the product of their dimensions does not exceed 56. The
corresponding ratio is depicted in Figure 5.14. Since the rooms are now more
spread out, the reduction achieved by using the LSG representation appears
fairly good.

36

LSG/Bitmaps Ratio

0.8

0.6

0.4

0.2

Size | Bitmaps LSG
1 1 1
2 2 1
3 5 3
4 22 11
) 94 42
6 524 199
7 3031 960
8 18769 4945
9 118069 | 25786

10 755047 | 137988

Table 5.2: 10x10 room bitmaps and LSG

| | | | | | | | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Room Size

Figure 5.13: 4x5 LSG/Bitmaps ratio

37

LSG/Bitmaps Ratio

0.8

0.6

0.4

0.2

T 1
ratio ——

2 3 4 5 6 7 8
Room Size

Figure 5.14: 10x10 LSG/Bitmaps ratio

38

Chapter 6
Antiope

Antiope is a state-of-the-art computer program that plays the game of Ama-
zons. It has been developed over the course of two years. It provides a test
bed for researching the ideas on evaluation functions, search techniques and
endgame databases presented in this thesis.

6.1 Search Algorithm

The most widely used search algorithm for two-player perfect-information
games (such as Amazons) is the minimaz algorithm. It builds a tree with all
the combinations of moves and replies, extending the branches up to a fixed
number of moves in the future. Each level in the tree represents the moves of
a player and players alternate at consecutive levels. One player is supposed
to try to maximize the score of the game and is called the maximizing player,
while the opponent is the minimizing player and tries to minimize the score of
the game.

Figure 6.1: A Minimax Tree

The minimax algorithm builds the search tree by expanding all the branches
to a fixed depth. All the terminal positions (i.e. leaf nodes) are evaluated us-
ing the static evaluation function and the values are then propagated, through
maximizing and minimizing levels, up to the root node of the search tree. Fig-
ure 6.1 shows a small minimax tree that looks ahead two moves (i.e. plies) in

39

the game. Node A is the maximum of B and C; Node B is the minimum of
D and E; finally, node C' is the minimum of F' and G.
If a tree with a branching factor of b is searched to depth d with the

minimax procedure, then the size of the tree will be O(b%). So, the size of a
minimax tree grows exponentially with the depth of the tree. However, many
of the branches of the search tree may not need to be examined at all since
they cannot alter the final score. This characteristic is exploited by a standard
enhancement to the minimax algorithm called Alpha-Beta pruning.

The Alpha-Beta algorithm keeps track of two values at each node. One
is a lower bound on the score and is called alpha, and the other is an upper
bound and is called beta. If the current value of a node falls outside the alpha
and beta bounds, this node is not expanded further. This is illustrated in a
simple example shown in Figure 6.2. After searching the left subtree of the
root node A, the maximizing player is guaranteed a score of at least 2. When
node F'is expanded at the right subtree, the minimizing player is guaranteed
a score of at most -1 at node C. This means that node GG does not need to be
searched at all since no matter what its score is going to be, the player at C
will have a score of -1 or less. However, the maximizing player at node A will
never choose the move leading to C since node B gives a larger score (2).

Figure 6.2: Alpha-Beta Pruning

Alpha-Beta pruning may reduce the size of the search tree by a large fac-
tor. The best case scenario occurs when at every node the best possible move
appears as the leftmost child of that node. In that case, it has been elegantly

proven [KM75] that Alpha-Beta builds a tree of size O(b%), which is approx-
imately the square root of the size of the full minimax tree. In the worst
case, Alpha-Beta pruning has no effect and produces the same search tree as
a standard minimax algorithm. However, in practice Alpha-Beta will usually
have some kind of payoff and the average case seems to be closer to the best
case than to the worst one.

The search algorithm used in Antiope is a standard Alpha-Beta implemen-
tation, with several search enhancements:

e Negascout variation. The Negascout algorithm [Rei83] resembles
Alpha-Beta pruning. It further incorporates a minimal window search.
In this case, all the moves except for the first one are searched with
an Alpha-Beta window of size 0 (beta = alpha + 1), since they are ex-
pected to be inferior. If these searches return a value higher than the
beta bound, the corresponding subtrees have to be re-searched with a
normal search window.

40

e Transposition Table. A transposition table with 2M of entries is used
in order to avoid re-searching positions that have already been examined.

e Fail-soft condition. This enhancement was introduced by J. Fishburn
[Fis81]. It provides an upper (lower) bound on the minimax score when
it happens to be less (greater) than the alpha (beta) bound. In general,
this enhancement improves search performance by about 5%.

Amazons has a large branching factor, a characteristic that makes deep
exhaustive searches impossible. The average branching factor is around 400
and programs typically reach a search depth of 3-4 plies in the opening phase
of a game, which increases during the midgame. Still, these search depths are
small compared to other games.

Because of the large branching factor, a program that examines all possible
moves at each position will not be able to reach a depth large enough for strong
play. Thus, some type of selective search scheme must be used to reduce
the search effort and Amazons provides the ideal environment for testing the
efficiency of selective search techniques.

One selective search method that has been successfully applied to Amazons
is Michael Buro’s Multi-Probcut [Bur00a]. Multi-Probcut is a forward pruning
method and it is based on the idea of predicting the score of a position at depth
d by doing a shallow search at a much smaller depth d’. This idea is recursively
applied to every node in the search tree. Multi-Probcut is used by Michael
Buro in his Amazons program amsbot, which is one of the strongest Amazons
programs.

Antiope does not use a sophisticated selective search scheme. Since looking
at all the possible moves in a position is impractical, Antiope implements a
beam search. At each position only the k£ best moves are examined and the
rest are ignored, where k£ has a value of around 20. In order to do this, all
the moves in every internal node are sorted according to the static evaluation
function value of the resulting positions. This is a very crude pruning method,
as it is completely dependent on the static evaluation function, however it is
very simple and inexpensive to implement.

6.2 Evaluation Function

Amazons is a territorial board game. The goal of each player is to get
more uncontested empty squares than the opponent. The larger the number
of squares “owned” by a player, the higher the “probability” that this player
will get the last move in the game and therefore win.

In the opening phase of an Amazons game, the number of possible moves
is very large. There are 2176 moves in the start position. It is difficult to
determine what the optimal sequence of moves is at this stage. There are
many good moves that will get a player to the middle game with a reasonable
position. The best strategy seems to be to distribute one’s queens around the
board in such a way that they control (i.e. have access to) as large a part of it
as possible.

The evaluation function used to estimate the score of a position must strike
a balance between overall control of the board and securing exclusive territory
for a player. At the same time, however, it must be mindful of the cost of the
evaluation.

41

6.2.1 Min-distance Heuristic

The most popular evaluation function used in Amazons programs is the
min-distance heuristic. This is a simple heuristic that takes into account only
territory. It is based on the assumption that a player who can reach a square
first with a queen, ignoring arrow shots, owns that square.

The heuristic is based on the following function:

e for each square p, compare db = dist(p,Black) and dw = dist(p,White);
e if db < dw: Black owns the square;

e else if db > dw: White owns the square;

e else the square is neutral.

Figure 6.3 shows an example of the min-distance function. Note that some
squares do not have a min-distance score; the player cannot reach these squares.
Figure 6.4 shows the evaluation of the position in Figure 6.3. Squares marked
with ‘?” are the ones that both players can get to in the same number of moves.
These squares are considered neutral. In a variation of the min-distance heuris-
tic, neutral squares can be assigned to the player whose turn it is to move.

2123 212X 2] 2 1711
1@ 2 12X 1@
L) O% 1l]le O%
212|112[1[X] 2] 2 2ITI[I2IX 1] 1
IX@ I 1X 1@l 2X@ 1 IX 1@ 1
TOTTOTIXOI[T SO I TIO2XO L2
1 IXTI1]1]2 3 2X212[2]2[1
21112]2[1 313[2[2]3
21112[2[1]2 313[3[2[3]2

Figure 6.3: Min-distance Heuristic for White (left) and Black (right)

b]b X bW b]b[b
b b/bX 7@
b/b/bl@ Q7
W
7Ib]7[b]wXb|b
wX@| 77X 7@ 7
wOU 7 7IOIwWXIO 7w
W] wiX W www|b
wiw 77w
www 7w 7

Figure 6.4: Evaluation Using The Min-distance Heuristic

The min-distance heuristic is simple-minded but fast. It can be imple-
mented efficiently and it does a reasonable job of evaluating most endgame
positions [MTO1]. It usually fails in positions where a single queen has to face
many opponent queens, since the heuristic is overly optimistic for the side who
has only one queen.

42

6.2.2 Antiope’s Evaluation Function

The min-distance heuristic is very good for the endgame. However, during
the opening phase the battle is wide open and a territorial heuristic is not going
to be accurate. Antiope uses different evaluation functions for each phase of
a game; opening, middle and end game.

Opening Phase

During the opening stage of a game (first 10 moves, where a move is a pair - one
by each player), Antiope uses an evaluation function that is based on mobility.
The final evaluation function is a weighted sum of four characteristics:

1. Mobility. The mobility of a queen is defined as the number of different
directions in which it can move, multiplied by the actual number of
moves it can make in each direction. A penalty is imposed if there are
at most two directions of movement.

2. Distribution. During the opening, the queens should be distributed
uniformly to the four quadrants of the board so that they can control the
whole board. Distribution measures this factor by taking into account
how many queens are in each quadrant. Ideally, there should be one
queen in each of the four quadrants.

3. Territory. This is a combination of two related factors. First, it takes
into account the number of half-moves that a player can make. A half-
move is defined as a queen move without shooting an arrow. Second,
it uses a simplified version of the min-distance heuristic on the squares
reachable by half-moves. This characteristic is used to have a smoother
transition to the pure territory evaluation later in the game.

4. Board Control. The board is divided into 9 roughly equal rectangular
areas by the 4" and the 7** row and column. A queen is supposed to
have some control of an area if it can get to that area with a half-move.
It is not important for a queen to already be in the area. This is taken
into account by the distribution factor. A player would like to control as
many areas as possible during the opening.

A weighted linear sum of the four features above is calculated for each
player. The final evaluation score is the difference of these two sums. The
most important features are distribution and board control; the goal of the
evaluation function at this stage is to get to the middle game with a balanced
position. In that sense, this evaluation function could be considered defensive.

In practice, the disadvantage of the above evaluation function is that the
weights need a lot of fine tuning in order for the four features to be combined in
the best possible way. The weights could possibly be automatically learned by
applying machine learning techniques, such as TD-learning, but this has not
been tried for Antiope. On the other hand, in many cases Antiope manages
to maintain a reasonable position after the opening phase, which can possibly
be improved using the territory evaluation.

Middle Phase

In the middle game Antiope switches to the min-distance heuristic. This
happens 10-12 moves into the game. The squares that are considered neutral
are not assigned to either player.

43

End Phase

In the endgame (after 20-22 moves), Antiope continues to use the min-
distance heuristic, which gives a fairly good evaluation. However, min-distance
is just a heuristic and as such it can give a bad evaluation in certain situations.
The ideal situation would be to have a perfect evaluation, especially since the
board tends to be split up into separate sub-games of relatively small size. This
is where the endgame databases come into use. If a sub-game is small enough
to be contained in the databases, then instead of calculating a heuristic score
using the min-distance, the exact minimax score for both players is retrieved
from the databases and then combined with the score of the static evaluation
function.

This is done by assuming that the first player will move in the sub-game
where the difference in the minimax scores is the largest; then the opponent
will reply in a sub-game that is favourable for him in the same way and so
on with the players alternating choosing which sub-game to move on. The
differences of the two minimax scores for each sub-game are then summed up,
with sub-games for the opponent having negative differences, and added to
the heuristic score.

Once the board has been fully decomposed into sub-games that are stored
in the databases, then the evaluation of a position is instantaneous and gives
an almost perfect score. In that case, the sub-game in which to move is selected
using a greedy approach. Every sub-game is examined and a move is made in
the one where the difference between the two minimax scores is the maximum.

When a position in the game is reached where the board has not been fully
decomposed into sub-games, a decision has to be made on which part of the
board to make a move. In a local sub-game or in the rest of the board? After
a sub-game is selected using the greedy approach described above, a shallow
global search is performed on the rest of the board. The two moves (the one
returned by the global search and the one in the best sub-game) are both
played out and the static evaluation is used on the resulting positions. The
move that results in the position with the highest evaluation score is the one
that gets selected.

Conclusion

Mobility and territory can be considered to be two opposite sides of the
same coin. Thus, it is not correct to consider an evaluation function based
on mobility as completely ignoring territory and vice versa. A major problem
with using different evaluation functions at different stages in the game is how
to make sure there is a smooth transition from one function to the other.

6.3 Endgame Databases

Antiope makes extensive use of endgame databases. There are currently
two types of databases being used. One is the territory database, which stores
the defective areas for rooms that contain queens of one color only. The other
database contains minimax values for rooms with queens of both colors. The
territory databases contain up to 4 same-colored queens, whereas the minimax
databases contain a single queen of each color. Both databases store rooms of
size 4x6 or smaller.

The databases are used in the evaluation function and give exact values
that are added to the evaluation function score. Towards the end of the game,

44

the board usually decomposes into separate independent areas, as can be seen
in Figure 6.5. It is unusual for a separate room to be formed early in the game
and even if that happens the probability of it being small enough to be in the
databases is rather low. So, the evaluation function starts using the databases
when the game gets into the endgame phase. This typically happens about 20
moves into the game.

o |

O Q‘ O (]

Figure 6.5: Board Decomposition

In every position in the search, the board is scanned so that independent
rooms may be identified. Once such a room is recognized and is found stored
in the databases, all the queens in the room are excluded from the minimax
search. This means that no global minimax search is performed in that room
for the rest of the game and search of that particular line of play. This results
in less moves to consider, which implies a smaller search space and enables
deeper searches. For example, once the position in Figure 6.6 is reached, the
queens in rooms 1, 3, 4 and 5 will never be considered in the search again for
the remainder of the game.

D - @
O@ .O. Oi‘—\ ,_.O.
O @| o] 3
O ® @ O @

Figure 6.6: Excluded Rooms

The exact value of the local game in an identified room is retrieved from
the databases and added to the global evaluation function. Since the room
will always decrease in size if a player moves in it, it will always be found in
the databases for the rest of the game.

The databases only store the score of a position; they contain no informa-
tion about the best move. If a move has to be made in a room that is excluded
from the global search, then a one move lookahead is performed in the local
room. All the moves are generated and played out. The resulting positions
are looked up in the databases and the one that offers the highest minimax
score determines the move to be made.

45

Chapter 7

Results

The purpose of developing Antiope is to create a strong Amazons program.
The strength of Antiope lies in the endgame databases. The experiments
that have been performed aim at evaluating the contribution of the endgame
databases to the program’s overall play. At the same time, some interesting
CGT results were discovered during the construction of the databases, while
mining the minimax databases revealed useful information about the game in
the form of zugzwangs.

7.1 Interesting Amazons Positions

7.1.1 Combinatorial Values

Nimbers play an important role in Combinatorial Game Theory, since every
impartial game can be represented by a Nim heap and thus a nimber. Until
recently, no partizan game had ever been found to contain a position with a
combinatorial value that is a nimber.

O®

Figure 7.1: The smallest %2 position

Amazons was the first partizan game for which a position that is a nimber
was discovered. The first such position was discovered by Raymond Georg
Snatzke [Sna01] and it was a *2 position of size 2x7 with 1 queen of each color
and 8 empty squares.

While constructing the combinatorial databases, many positions were dis-
covered whose combinatorial values are the nimbers %2 and *3. The smallest
currently known %2 position in Amazons, of size 3x4 with 5 empty squares and
1 queen of each color, was discovered this way and it is shown in Figure 7.1.

46

() o o
0@ O O O
o
O@® [] (]
O O O
0@ [) (]
O O @)

Figure 7.2: Various *2 (left) and %3 (right) positions

Figure 7.2 shows more positions with values *2 and *3. Table 7.1 shows
the number of *2 and %3 positions for all the rooms in the 4x4 combinatorial
databases.

Size | *2 | x3
7113 0
8123 | 7
9(138| 0

10 | 21 2
11 | 21 0
1213 3
13| 71 0
14 1 0

Table 7.1: 4x4 small nimbers

According to the rules of nimber addition from Combinatorial Game The-
ory, *3 = %2+ *1. This means that an Amazons position with a combinatorial
value of %3 can be easily constructed by creating a position with two sub-games,
one with a value of x and one with a value of *2. However, the databases re-
vealed positions that have a value of *3 but consist of only one sub-game. The
current challenge is to find an Amazons position whose combinatorial value is
x4, if such a position exists.

7.1.2 Zugzwang Positions

Zugzwang positions occur quite often in Amazons, especially in the endgame.
In some games zugzwangs do not have to be played out. However, in Amazons
they do have to be played out since players cannot pass. What makes the
positions interesting is that it is non-trivial to play them well [MTO01].

47

Definition of zugzwang positions

Zugzwangs were originally identified in the game of chess but subsequently
the definition was extended to cover all games.

Zugzwang: A position in which a player is forced to make a move
that will worsen that player’s position.

The definition can become more precise for Amazons by borrowing some
terminology from Combinatorial Game Theory.

Amazons Zugzwang: A simple zugzwang in Amazons is defined
as a game a | b with a,b integers such that a < b — 2.

Figure 7.3 shows an example of zugzwang in Amazons. It is a room with
one queen of each color. If White is to move, the white queen must shoot back
to its origin square to prevent black from moving in. So, one side or the other
of the territory below the white queen is lost. White would prefer if Black
moved first since Black can only retreat to the territory above and block the
entrance, thereby giving White control over all four squares in the territory
below. The combinatorial game value of this zugzwang position is 3 | 7 = 4.
This means that Black is guaranteed four more moves than White locally, but
can get more if White is forced to move first.

o)

Figure 7.3: Zugzwang in Amazons

In Amazons, the first player to get into zugzwang can still win the overall
game. This happens because a zugzwang occurs in a local sub-game and there
might be other sub-games that will make up for it. Zugzwang positions do
not affect the main question of which player can win a sum game. However,
zugzwangs do matter if we want to determine the exact score with optimal
play. Optimizing the score is important since it is used as the tie-breaking
method in tournaments.

48

Finding Zugzwang Positions

Zugzwang positions can be identified by performing two minimax searches,
one with each player going first. This is exactly how the minimax databases
are built so zugzwang positions were extracted from these databases by finding
cases where moving first leads to a score that is worse by at least 2 than moving

second.

O

Figure 7.4: Zugzwangs of size 6

Size | Zugzwangs Total
6 6 7560
7 16 51240
8 216 281820
9 2233 | 1152612

10 8216 | 3601665
11 18981 | 8616135
12 31223 | 16106574
13 34505 | 23570274
14 28960 | 27298089
15 18843 | 24988740
16 9076 | 18245160
17 2982 | 10564752
18 797 | 4896153
19 119 | 1773099
20 14 509580

Table 7.2: Zugzwangs in 4x6 rooms

Figure 7.4 shows the four smallest zugzwang positions, which have size 6.
Table 7.1 shows the number of zugzwang positions for all rooms up to size
4x6. The numbers under the column called “Zugzwangs” are not exact in
the sense that they exclude positions where the black and white queens are

interchanged.

49

7.1.3 Interesting Thermographs

An examination of the 4x4 thermographic databases revealed some interesting
positions in terms of temperature and the corresponding thermograph.

e The largest positive temperature is 11, for the position shown in Figure
7.5.

O

0
g=11| =11

Figure 7.5: A position with a temperature of 11

e The largest negative temperature is —%,

7.6.

for the position shown in Figure

N

Figure 7.6: A position with a temperature of —%

1

35, for the position shown in Figure

e The smallest positive temperature is
7.7.

N

g=1| 1%

Figure 7.7: A position with a temperature of 31—2

20

e The largest numerator in a game with fractional temperature is 911, for
the position shown in Figure 7.8.

[] | N

T = 911

128
Figure 7.8: A position with a temperature of 3%

e The largest denominator in a game with fractional temperature is 256,
for the position shown in Figure 7.9.

T — 345

256

Figure 7.9: A position with a temperature of 332

7.2 Antiope

This section presents some data on Antiope’s performance. The aim is to
illustrate the value of the endgame databases in comparison to plain Alpha-
Beta search.

7.2.1 Tournament Results

Antiope has participated in two Amazons tournaments so far. The tourna-
ment version of Antiope uses the 4x6 minimax databases and the 4x6 territory
databases.

The first tournament was the Amazons tournament at the Computer Olympiad
2000 in London. This tournament had 6 participants and consisted of two
games against every opponent, with each player starting with White once.
Each program had 30 minutes for all its moves in each game.

o1

Opponent | White | Black
8QP -26 -6
Yamazon -14 -9
Anky -2 -6
ASKA 7 2
Otrere 24 0

Table 7.3: Computer Olympiad 2000

Opponent Score
De Koning 5 (W)
Tanaka 6.5 (B)
Hensgens | -4.5 (W)
Giles | 23.55 (W)
Lerner 8 (B)
Coll | 12,5 (B)

Table 7.4: Jenazon Cup

The second tournament was the Jenazon Cup, a tournament with ar-
bitrary Human+Computer teams organized on Michael Buro’s online GGS
server [Bur98] in November-December 2001. There were 7 participants. Each
team played against each of the other teams once. The total time for each
game was 90 minutes. In this tournament, Antiope formed a team with its
author and would in general play all the moves after about 10 moves into the
game.

Tables 7.3 and 7.4 show the corresponding results. A positive score means
that Antiope won the game by that many squares, whereas a negative score
means that Antiope lost the game by that many squares. The half points
reported in the results of the Jenazon Cup are due to komi bidding. Antiope
finished 4" in the Computer Olympiad and tied for 1** place in the Jenazon
Cup.

There are two reasons that Antiope performed better at the Jenazon Cup
than at Computer Olympiad 2000. The most important one is the correction
of several bugs in the search algorithm and the use of the transposition table,
as well as several other minor enhancements in the code. The second reason
is that Antiope’s author played out the opening of the games, thus allowing
Antiope a very balanced game in the midgame. The use of the min-distance
heuristic during the opening phase would have got Antiope in a contestable
position after the opening but a knowledgeable human can always outperform
current Amazons programs in the opening phase of the game.

7.2.2 Search and Endgame Databases

Self-play games do not illustrate the full potential of the databases, since
most of the time there are few rooms formed in the endgame, at least not

52

ones that are stored in the databases. This is especially true for rooms with
opposing queens. Territories appear much more often. Human games seem to
be even worse in that respect since they do not usually end with close battles
between the two players.

However, practice has shown that the databases can make a difference.
Antiope has participated in two Amazons tournaments so far and there were
games where the databases came into play.

Impact on the search

Figure 7.10 shows a position from a recent game played for the Jenazon
Cup against 8QP, which is one of the strongest programs in the world.

10 |
9 e0

8 O

7 O®

6

9 -
4 O o
3 Q)

2

1

abcdefghij

Figure 7.10: Test endgame position

This position was used in an experiment to illustrate the impact of the
endgame databases in the search. Two different versions of Antiope were
used. One (AB) did not make any use of databases. The other (AB+DB) used
Xle 4x6 minimax and territory databases, just like the tournament version of

ntiope.

At each intermediate position till the end of the game (for a total of 43
one-player moves), the two programs were used to evaluate the position. Each
performed a 6-ply fixed-depth search. All the settings in the two programs
were exactly the same, except for the use of the databases.

Figure 7.11 shows the size of the search tree at each position. When the
board is fully decomposed into sub-games contained in the databases, the
search tree includes only one node since there is no search involved; the score
for each sub-game is retrieved from the databases.

The graph shows that the databases reduce the size of the search tree
considerably. This happens because all the queens contained in sub-games
identified during search are excluded from the rest of the search. Notice that
the program with the databases formed a larger search tree in two positions.
This is expected since the databases can provide more accurate values and
make the program search more nodes to prove the main line of play.

Figure 7.12 shows the score of the evaluation function for the two programs
at each position. The program with the databases finds the final score of the
game 30 one-player moves (i.e. plies) before the end of the game. The plain
Alpha-Beta version though, discovers the true score only 7 plies before the end.
For most of the game, the non-database version of Antiope underestimates
the final score. This happens because towards the end, the board contains
defective territories and plain Alpha-Beta cannot possibly identify them.

93

90000 T T T T T T T T
B ——

A
80000 ABYDB -

T
et

70000

60000

50000

40000

Tree Size

30000

20000

10000

40 35 30 25 20 15 10 5
Number of moves before the end

Figure 7.11: Size of search tree

Example endgame

The same game against 8QP that was used in the previous section contains
an endgame position that provides a good example for analysis of the impact
that the databases can have in a game.

Figure 7.13 shows the endgame position, which occurred 24 moves into the
game. This position contains two interesting rooms. Room A contains the
queens at ¢ and b6, while room B contains the queens at e3 and d1.

Room A is a typical Amazons zugzwang, with a value of {1 | 4}. If Black
moves first, the queen at b6 has to move up to one of the three squares and
shoot back at b6 in order to prevent the white queen from getting more squares.
However, this means Black will lose the square at a5. In that case, the score
of this sub-game is +1 (for Black). If White moves first, then Black will be
able to get all the four remaining squares, for a local score of +4 (for Black).

So, neither player would like to move a queen in room A. Antiope, who
was playing White, could see the room in the databases and would never move
the queen at ¢5 unless there was no other move to make. Since in this position
Black has fewer overall squares than White, Black would eventually be forced
to move the queen at b6 and lose two squares.

Room B, on the other hand, will become a territory for Black. Black has
to block the e2 square to prevent White from entering the room. The only
move that does this, and ensures that Black gets all the remaining squares in
the room, is for the black queen to move to e2 and shoot at f1. Any other
move makes the room a defective territory. In the actual game, the opponent
program made a blunder (e3-f2-e2), which resulted in the room becoming
defective by one square. The reason is that the min-distance heuristic cannot
see that possibility. Antiope would have made the correct move since the
resulting territory can be found in the databases.

In this specific endgame Black eventually scored 1 square less than it could
have achieved. In a close game, this can make the difference between winning

o4

AB —o—
AB+DB -+ |

6 SR .

5+ N = ko b b T S S A S AP S S R S >

Evaluation Score

0 \ \ \ \ \ \ \ \
40 35 30 25 20 15 10 5

Number of moves before the end

Figure 7.12: Evaluation function score

the game and losing it. The databases ensure that in cases like this Antiope’s

play will be better than what any possible heuristic evaluation function can
do.

) Lo A UTOY 1000
@

O
abcdefghij

Figure 7.13: Example endgame - Antiope (White) vs 8QP (Black)

In a game against an opponent without endgame databases, it is quite
likely that the opponent will play into defective areas, since they look better
for them than for us. So, minimax search will tend to select the defective
territories.

7.2.3 SenteStrat vs Full Board Search

SenteStrat is a thermographic strategy used to choose a move when a player
has to select among several hot sub-games. A set of experiments were carried

95

out to compare the performance of SenteStrat against that of Alpha-Beta
search on a set of endgame positions.

O

Figure 7.14: Example setup position

Both programs use the territory databases. In theory, a game can end
when every sub-game has a temperature of -1, (e.g. territories and zugzwangs).
However, for practical purposes a game ends when all the sub-games contain
only one queen and the final score is calculated by subtracting the squares
belonging to White from the squares belonging to Black.

The Alpha-Beta program uses a negascout variation of Alpha-Beta pruning.
The heuristic evaluation used is the min-distance heuristic, where squares that
have the same distance from both players are not assigned to any player. This
program searches for 40 seconds per move, a time allocation that is common
in Amazons tournaments. The typical search depth at the initial position is 5
or 6 plies and it increases to more than 10 plies towards the end.

Position | Empty Squares | Alpha-Beta | SenteStrat
1 36 +0 4
2 34 -3 4
3 38 -1 -0
4 38 -1 4
) 36 -1 6
6 34 +0 4
7 45 +0 1
8 43 -6 1
9 41) 6

10 52 -1 4

Table 7.5: Alpha-Beta vs SenteStrat

The program that implements SenteStrat uses the thermographic endgame
databases. It plays instantaneously since all the sub-games are already con-
tained in the databases. The version used does not have any special knowledge
about zugzwangs. It will consider moving in every sub-game which contains
two opposing queens, even if it has a temperature of -1. However, moves in
territories are ignored since they represent undisputed areas.

o6

In order to get experimental results a set of 10 endgame positions was
constructed. All the positions initially consist of 4 independent sub-games,
each of size up to 4x5. Every sub-game contains one queen of each color.
Figure 7.14 shows one of the positions. For each of the 10 positions two games
were played out, with each of the two programs starting with Black. This
amounts to a total of 20 games, 2 for each position. Table 7.5 shows the
results. A positive value indicates a win for Left (Black) and a negative value
a win for Right (White). The values represent the difference in squares. A win
for Black by 0 squares is indicated as +0 and a respective win for White by
—0. The two columns (Alpha-Beta, SenteStrat) indicate the player who plays
Black.

The results show that SenteStrat outperforms Alpha-Beta. Even when the
two methods share the wins in a position, SenteStrat gets a better score. How-
ever, this should not be surprising. The positions contain too many squares for
Alpha-Beta to search very deep, whereas SenteStrat plays instantly by using
the thermographic databases.

The previous experiment shows the power of Combinatorial Game Theory
in the form of thermographic strategies. In practice though, it is unlikely for
the board to fully decompose into four independent sub-games with opposing
queens in them. The decomposition usually appears late in the endgame and
often consists only of a couple of rooms with opposing queens.

o7

Chapter 8

Conclusions and Future Work

The general conclusion at the current stage in the development of Antiope
is that it is a strong program and tournament games have shown that it is
probably the strongest Amazons program in the endgame. However, the pro-
gram exhibits a weakness in the opening phase of the game, especially against
programs that use a territory heuristic.

8.1 Discussion

Antiope is the first program to use endgame databases in Amazons. During
the construction of the databases several interesting results were discovered by
mining the databases: new Combinatorial Game Theory values and interesting
Amazons positions that provide some insight on the complexity of the game.

However, the important question has to do with the impact of the databases
in the playing strength of the program. Do the databases make a difference in
the search and consequently in the performance of Antiope?

Experiments with the size of the search tree and the score of the evaluation
function have shown that the databases reduce the search space considerably
and provide a more accurate evaluation of the positions. Also, tournament
games have shown that the endgame databases do make a difference. The
territory databases outperform any territory heuristic and often Alpha-Beta
programs miss defective territories. Active areas may not appear very often
but when they do the databases are likely to help.

One possible question is what sub-game size should be stored in the databa-
ses. For territory databases this should not be a problem. The defective terri-
tories are a small fraction of the total number of positions so larger databases
could easily be constructed. This would enable programs to fill territories
optimally.

For the active area databases things are different. There are memory re-
strictions that limit the databases. The current size of 4x6 intuitively seems
good but of course it is not large enough. It is always painful to see a sub-game
formed that is not in the current databases because of one extra square. The
key point probably lies in constructing databases with various room sizes so
that they cover the largest portion of the board possibly.

One problem with the current version of Antiope is the integration of the
databases into the Alpha-Beta search. There is no clear-cut best solution
to this problem; only heuristic approaches and experimentation can provide
insight on the best approach.

o8

Another problem is the evaluation function at the opening phase of the
game. At this stage it considers mostly mobility. Early tournament games
revealed that Antiope performed badly against programs that used a terri-
tory heuristic from the beginning. This was mainly due to the fact that the
evaluation function was very shaky because the weights had not been set prop-
erly. Adjusting the weights is a tedious task to do manually. Instead, practice
showed that the use of the min-distance heuristic from the beginning of the
game was good enough to allow Antiope to enter the midgame with a fairly
balanced position.

In general, considering two Amazons program of comparable strength, the
positions reached in the endgame should be quite balanced. In this case,
the use of the endgame databases is what will give the winning edge to the
programs and this has been verified in practice.

8.2 Future Work

There are many interesting things to do with the game of Amazons. Current
work can always be improved upon. Moreover, many ideas were not imple-
mented as part of this thesis but would make interesting research projects.

8.2.1 More Databases

The current endgame databases are limited in two ways. First, the size of
the sub-games; second, the number of queens in them.

The current size of 4x6 (for the minimax databases) was chosen based on
available memory. These databases take up about 400 MB of RAM. Building
larger rooms is restricted mainly by available memory and not so much by
computation time. As more computer resources become available, building
larger databases should become easier.

Apart from larger room sizes, it is very important to build databases with
rooms of various sizes. For example, a room of size 3x7 would not be found
on the current databases. However, it is feasible to calculate all the databases
with rooms of size up to 3x7 since the total number of squares is less than that
for the 4x6 databases. Rooms of different sizes could be built covering many
portions of the board.

As far as the number of queens is concerned, there is no problem for terri-
tories since the databases already contain rooms with up to 4 queens, which
is the number of queens used in Amazons.

However, the current databases with active areas contain only 1 queen of
each color. Although sub-games with more queens appear considerably less
frequently, they would be useful nonetheless. All the databases with up to 4
queens for each player could possibly be constructed.

This is fairly straightforward for the minimax and the combinatorial databa-
ses. All it requires is extra coding and of course the territory databases.
However, as mentioned in Section 4.5, this is not so easy to do with the ther-
mographic databases. It can be done easily for the nvsl databases, but for
more queens there is a problem. The whole framework of the program that
builds the databases has to be changed and instead of 1-ply lookaheads, an
exhaustive search until there are no more moves left in the sub-game must be
performed.

99

8.2.2 Better Integration of the Databases in the Search

The tournament version of Antiope is using the minimax databases. This
is mainly done because those databases contain larger rooms, although overall
play is not as good as could be achieved by the CGT databases. The CGT
databases are used in the version of Antiope that uses SenteStrat for fully
decomposed rooms. However, there is a lot of work remaining on how to use
the databases efficiently in the global Alpha-Beta search.

The scores from the minimax databases are integrated in the heuristic
evaluation function in a greedy manner. There are other ways of doing it
apart from the one described in Section 6.2.2. One variation is to consider
the players alternating moving in sub-games where their minimax score is the
maximum. Another variation could take the mean of the difference of the
minimax scores in each sub-game and add it to the score reported by the
static evaluation function.

As for the CGT databases, they offer better possibilities. The sum of means
for every sub-game can be calculated and added to the score of the evaluation
function. A variation of this approach would additionally add one half of the
maximum temperature in all sub-games. As for selecting which sub-game to
move in, there are various alternatives. The selected sub-game could be the
one with the maximum temperature; or the one with the largest mean value.

The possible alternatives of integrating the databases in the global search
are numerous. None of them is theoretically optimal. The best one should be
defined through experiments of playing actual games to see which approach
performs the best.

8.2.3 Not Completely Isolated Rooms

The current databases contain rooms that are completely separated. How-
ever, sometimes a queen can be standing on the border of an area as in Figure
8.1.

In this case, the white queen controls all the squares inside area A and can
actually improve its position by moving to area B. So, the squares in area
A are a lower bound on the score for White. However, this position is not
contained in the 4x6 databases, since area A, together with the white queen
on the border, form a 6x5 room.

Figure 8.1: Non-separated room

60

This situation can be handled by expanding the databases so that they
include all the cases with queens on the borders of a room. This should not
be too difficult since the empty rooms are constructed first and the queens
are subsequently placed in them. However, the difficulty lies in scanning the
board for sub-games during a game. Rooms with queens on the border have
to be properly identified.

8.2.4 Articulation Points

The min-distance heuristic is the most popular territory heuristic used in
Amazons programs. In general it gives good evaluations, especially towards
the end of a game. However, this heuristic can be inaccurate even for very
simple positions. Figure 8.2 shows two such examples.

OHN) 0

Figure 8.2: Inaccurate min-distance evaluations

The left side of Figure 8.2 shows a position where ignoring neutral squares
leads to the evaluation of the position as a draw (0 square difference), whereas
the first player to move clearly has the square advantage. The right side
of Figure 8.2 shows a position where assigning neutral squares to the player
whose turn it is to move leads to the position being evaluated as a +2 square
advantage for the first player, whereas the square difference is clearly 0.

One problem with the min-distance heuristic is that it does not take into
account arrows. If arrows were considered, the position on the left side of
Figure 8.2 would be evaluated correctly. One way to take arrows into account
is by considering articulation points.

Articulation points, similar to their definition for graphs, are points whose
blocking with an arrow separates a room into two separate areas. Figure 8.3
shows an example. Assuming that Black is to play first, the ordinary min-
distance heuristic would evaluate the position as a draw. However, square A
is an articulation point. Black can move to square B and shoot at A, thus
completely blocking off White.

B [AQ
0

Figure 8.3: A room that contains articulation points

Once articulation points have been identified, the min-distance heuristic
can be improved by extending the search by one ply for moves that block an
articulation point.

61

8.2.5 Selective Search

Full-width search in Amazons is too expensive (i.e. slow) because of the
large average branching factor. This makes Amazons a good test bed for
selective search techniques.

There is an apparent contradiction though. The wins by Johan de Koning’s
program 8QP in the last two Computer Olympiads have shown that full-width
search can be effective even in Amazons. However, it would be interesting to
see how effective various selective search methods can be and whether they
can produce a stronger program.

One selective search method that has already been applied in Amazons is
Multi-Probcut [Bur00a]. It was first used in Othello and subsequently Michael
Buro implemented it in his Amazons program (see Section 6.1).

Another method that could prove useful is Singular Extensions [ACH90].
This is a search extension technique that tries to identifies a move that is
“much better” than the alternative moves. This means that it returns a score
that is better by a significant margin than the score returned by all the other
moves. Once a move is identified as singular, the search depth for the resulting
position is extended by one ply.

Finally, some programs use beam search as a rough pruning method. A
variation of beam search is tapered search, where k moves are considered at
each node in the search tree but k£ diminishes as the search depth increases.
Although these methods are risky since good moves can be ignored, it remains
to be seen whether the increased search depth provides considerable pay off.

62

Bibliography

[ACHO0]
[BCGS2]

[Ber96]

[Ber00]

[Bur97]

[Bur9s]

[Bur00a]

[Bur00b]

[Con76]
(CS98]
[Fis81]
(Gas95]
[Kel94]

[KM75]

T. Anantharaman, M.S. Campbell, and F. Hsu. Singular Exten-
sions: Adding Selectivity to Brute-Force Searching, 1990.

E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for
Your Mathematical Plays. Academic Press, London, 1982.

E. Berlekamp. The Economist’s View of Combinatorial Games.
In R. Nowakowski, editor, Games of No Chance: Combinatorial
Games at MSRI, pages 365-405. Cambridge University Press, 1996.

E. R. Berlekamp. Sums of N x 2 Amazons. In Institute of Math-
ematics Statistics Lecture Notes, number 35 in Monograph Series,
pages 1-34, 2000.

M. Buro. The Othello Match of the Year: Takeshi Murakami vs.
Logistello. ICCA Journal, 20(3):189-193, 1997.

M. Buro. Generic Game Server. http://www.neci.nj.nec.com/
homepages/mic/ggsa/ggsa.html, 1998.

M. Buro. Experiments with Multi-ProbCut and a New High-
Quality Evaluation Function for Othello. In J. van den Herik and
H. Tida, editors, Games in Al Research, pages 77-96, Maastricht,
2000. Universiteit Maastricht.

M. Buro. Simple Amazons Endgames and their Connection to
Hamilton Circuits in Cubic Subgrid Graphs. In Proceedings of Sec-
ond International Conference on Computers and Games, 2000.

J. H. Conway. On Numbers and Games. Academic Press, London,
1976.

J. Culberson and J. Schaeffer. Pattern Databases. Computational
Intelligence, 14(3):318-334, 1998.

J. Fishburn. Analysis of Speedup in Distributed Algorithms. PhD
thesis, University of Wisconsin, Madison, 1981.

R. Gasser. Harnessing Computational Resources for Efficient Ex-
haustive Search. PhD thesis, ETH Zurich, 1995.

M. Keller. World Game Review. http://members.aol.com/
wgreview/, 1994.

D.E. Knuth and R.W. Moore. An analysis of alpha-beta pruning.
Artificial Intelligence, 6:293-326, 1975.

63

[McK81]

[McKO0]
[McKO01]

[MTO01]

[Miil99]

[NOS93]
[Rei83]
[Rog96]
[Sch97]
[Shas0]
[Sna01]
SPY7]
[Tes94]

[Tho86]

[TSBB53]

[vdGOO0]

[Wol96]

Brendan McKay. Practical graph isomorphism. Congressus Numer-
antium, 30:45-87, 1981.

Brendan McKay. Personal communication, 2000.

Brendan McKay. The nauty page. http://cs.anu.edu.au/bdm/
nauty/, 2001.

M. Miiller and T. Tegos. Experiments in Computer Amazons. In
R. Nowakowski, editor, More Games of No Chance. Cambridge Uni-
versity Press, 2001. To appear.

M. Miiller. Decomposition Search: A Combinatorial Games Ap-
proach to Game Tree Search, with Applications to Solving Go
Endgames. In IJCAI-99, pages 578-583, 1999.

NOST. kNights Of the Square Table. http://www.nostgames.
com/, 1993.

A. Reinefeld. An Improvement of the Scout Tree Search Algorithm.
ICCA Journal, 6(4):4-14, 1983.

R. Rognlie. Richard’s Play-By-eMail server. http://www.gamerz.
net/pbmserv/, 1996.

J. Schaeffer. One Jump Ahead: Challenging Human Supremacy in
Checkers. Springer-Verlag, New York, 1997.

C. E. Shannon. Programming a computer for playing chess. Philo-
sophical Magazine, 41:256-275, 1950.

R. G. Snatzke. Amazons. In R. Nowakowski, editor, More Games
of No Chance. Cambridge University Press, 2001. To appear.

J. Schaeffer and A. Plaat. Kasparov Versus Deep Blue: The Re-
match. ICCA Journal, 20(2):95-101, 1997.

G. Tesauro. TD-Gammon, A Self-teaching Backgammon Program,
Achieves Master-level Play. Neural Computation, 6:215-219, 1994.

K. Thompson. Retrograde Analysis of Certain Endgames. ICCA
Journal, 9(3):131-139, 1986.

A. M. Turing, C. Strachey, M. A. Bates, and B. V. Bowden. Digital
computers applied to games. In B. V. Bowden, editor, Faster Than
Thought, pages 286—310. Pitman, London, 1953.

R. van der Goot. Awari Retrograde Analysis. In Proceedings of
Second International Conference on Computers and Games, 2000.

D. Wolfe. The Gamesman’s Toolkit. In R. Nowakowski, editor,
Games of No Chance: Combinatorial Games at MSRI, pages 93—
98. Cambridge University Press, 1996.

64

Appendix A

Territory Tables

Tables A.1, A.2, A.3 and A.4, show the number of defective rooms, defective
territories and total territories in the 4x5 databases. The difference between a
room and a territory is that the former consists only of empty squares whereas
the latter is a room with same-colored queens placed in it. This explains why
the number of territories in the tables is always larger or equal to the number
of rooms; one or more territories may correspond to the same room. As can
easily be seen in those tables, the number of defective territories is significantly
less than the total number of territories.

Size | Defective Rooms | Defective Territories | Total Territories
3 2 2 15
4 1 3 88
5 21 37 465
6 76 178 2634
7 381 831 12075
8 864 1856 41640
9 1408 2791 103257

10 1374 2423 189040
11 847 1345 257004
12 290 393 264840
13 53 60 206349
14 3 3 123774

Table A.1: 4x5 1-queen territories

Tables A.5, A.6, A.7 and A.8, show the number of k-defective territories
in the 4x5 databases. It is important to notice that there are only territories

65

Size | Defective Rooms | Defective Territories | Total Territories
4 2 3 132
5 39 45 930
6 43 165 6585
7 278 762 36225
8 529 1599 145740
9 639 2084 413028

10 468 1318 850680

11 177 427 1285020

12 27 54 1456620

13 2 2 1238094
Table A.2: 4x5 2-queen territories

Size | Defective Rooms | Defective Territories | Total Territories
5 12 12 930
6 65 202 8780
7 476 1100 60375
8 520 2342 291480
9 761 3066 963732

10 490 1908 2268480
11 191 674 3855060
12 35 7 4855400
13 1 2 4539678

with 4 or less defects. Also, as pointed out in Chapter 4, having more queens
in a territory does not necessarily mean that it is easier to completely fill the
territory. This can easily be seen in some of the tables where the corresponding

Table A.3: 4x5 3-queen territories

number of defective territories is larger when there are more queens.

66

Size | Defective Rooms | Defective Territories | Total Territories
6 57 59 6585
7 325 862 60375
8 712 3849 364350
9 1394 6045 1445598

10 673 3617 3969840
11 275 1207 7710120
12 59 140 10924650
13 6 13 11349195
Table A.4: 4x5 4-queen territories

Size | 1-defective | 2-defective | 3-defective | 4-defective

3 2 - - -

4 2 1 - -

5 37 - - -

6 155 23 - -

7 783 43 5 -

8 1705 151 - -

9 2618 170 3 -

10 2256 161 6 -

11 1238 88 19 -

12 364 24 5 -

13 58 1 - 1

14 3 - - -

Table A.5: 4x5 1-queen Defective Areas

Size | 1-defective | 2-defective | 3-defective
4 3 - -
5 45 - -
6 142 23 -
7 727 31 4
8 1467 132 -
9 2021 60 3

10 1285 33

11 415 12 -
12 53 1 -
13 2 - -

Table A.6: 4x5 2-queen Defective Areas

67

1-defective

2-defective

3-defective

12
202
1076
2191
3016
1889
671
7

2

24
151
47
19
3

Table A.7: 4x5 3-queen Defective Areas

Size | 1-defective | 2-defective
6 59 -

7 862 -

8 3814 35

9 5968 77

10 3575 42
11 1207 -
12 140 -
13 13 -

Table A.8: 4x5 4-queen Defective Areas

68

Index

15-puzzle, 23
8QP, 53, 62

active area databases, see endgame
databases
active areas, 19
Alpha-Beta pruning, 2, 40
Amazons, 4
as a challenge, 5
as a research area, 4
branching factor, 41
example endgame, 54
first international match, 4
history, 4
properties, 4
rules, 5
starting position, 5
ambient temperature, 17
amsbot, 6
Antiope, 7, 39
and endgame databases, 44
evaluation function, 43, 59
performance, 58
search algorithm, 40
tournament results, 51
articulation points, 61
average branching factor
Amazons, 3, 41
checkers, 3
chess, 3
definition, 2
Go, 3
Awari, 24

Backgammon, 5

beam search, 41, 62
Berlekamp, Elwyn, 6

board decomposition, 5, 6, 23
brute-force search, 2

Buro, Michael, 6, 29, 41

CGT, 6, 8
definition, 3
dominated moves, 12
game tree, 13
reversible moves, 12

69

simplicity rule, 11
CGT databases, see endgame databases
checkers, 1, 3, 5, 24
chess, 1, 3-6, 48
as drosophila of Al 1
as prevalent in Al research, 5
Chinook, 1, 24
cold games, 15
combinatorial databases, see endgame
databases
Combinatorial Game Theory, see CGT
combinatorial games
cold, 15
definition, 9
down, 12
fuzzy, 10
hot, 15
infinitesimals, 12
miny-x, 12
negative, 9
numbers, 10
positive, 9
star, 11
switch, 15
tiny-x, 12
up, 12
zero, 10, 11, 14
Computer Olympiad, 4, 51
Conway, John, 6

decomposition search, 6

Deep Blue, 1

defect, 29

defective territories, 29, 32, 65
deterministic games, 4
dominated moves, 12
Domineering, 8

endgame databases, 3, 6, 7, 58
active areas, 20, 23, 58
CGT, 60
combinatorial, 20, 25, 59
construction, 20, 24
integration in search, 44, 53, 58,

60

limitations, 26, 59

minimax, 20, 24, 59

pay-off, 59

retrieval, 22

storage, 22

symmetry checks, 20

territory, 20, 58

thermographic, 20, 25, 59
Explorer, 6

fail-soft condition, 41
Fishburn, J., 41
fuzzy games, 10

game tree, 39

games
contribution to Al 1
deterministic, 4
impartial, 9
partizan, 9
perfect information, 4
two-player, 4
zero-sum, 4

Gasser, Ralph, 3, 24

Go, 3,4, 8

hot games, 15
HotStrat, 17

impartial games, 9
infinitesimals, 12
iterative deepening, 2

Jenazon Cup, 52, 53

Keller, Michael, 4
Konane, 8
Kronrod, Alexander, 1

Line Segment Graphs, see LSG

LSG, 7, 32
example, 33
extended graph, 34, 35
isomorphism, 34, 35
restrictions, 34
statistics, 35, 36

McKay, Brendan, 34
mean, 25
memory assisted search, 2

nauty, 34, 35
Negascout, 40
negative games, 9
Nim, 8, 15
nimbers, 14, 46
*2, 46, 47
*3, 47
*447
new results, 46
Nine Men’s Morris, 3, 24

On Numbers And Games, 6
Othello, 5, 62

partizan games, 9

pattern databases, 23
perfect information games, 4
positive games, 9

principal variation, 4
pruning, 40, 41, 62

retrograde analysis, 3, 6, 19
reversible moves, 12
room, 19

Schaeffer, Jonathan, 5
search
Alpha-Beta, 2, 40
beam, 41, 62
brute-force, 2
decomposition, 6
knowledge, 2
memory assisted, 2
minimal window, 40
minimax, 2, 39
selective, 3, 41, 62
tapered, 62
selective search, 3, 41, 62
sente, 17
SenteStrat, 17, 55
Shannon, Claude, 1
Singular Extensions, 62
Snatzke, Raymond Georg, 6
Strachey, Christopher, 1
sub-games, 6, 8

tapered search, 62
temperature, 25

Nt o territorial heuristic, see min-distance
min-distance heuristic, 42, 59, 61 heuristic

minimal window search, 40 territories, 19, 29, 65

minimax databases, sce endgame databasegq . iyorv databases, see endgame databases
minimax search, 2, 39 Tesauro. Gerald. 5
7 7

mobility, 43, 44 X
Multi-Probeut, 6, 41, 62 thermogggglgg Sdez;tabases, see endgame

Miiller, Martin, 6, 25 thermographs

70

definition, 16

interesting examples, 50
thermography, 15

cooling, 15

HotStrat, 17

Left stop, 15

mast, 17

mean, 16

Right stop, 15

SenteStrat, 17

stopping positions, 15

tax, 16

temperature, 15, 16

ThermoStrat, 18
ThermoStrat, 18
Thompson, Ken, 6
transposition tables, 2
Turing, Alan, 1
two-player games, 4

variation, principal, 4
von Kempelen, Baron, 1

Winning Ways, 6
Wolfe, David, 6, 25

Zamkauskas, Walter, 4
zero games, 10
zero-sum games, 4
zugzwang, 15, 47
Amazons definition, 48
definition, 48
example, 48
smallest positions, 49
statistics, 49

71

