
University of Alberta

Library Release Form

Name of Author: Kai Tan

Title of Thesis: Pattern-based Parallel Programming in a Distributed Memory
Environment

Degree: Master of Science

Year this Degree Granted: 2003

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis
nor any substantial portion thereof may be printed or otherwise reproduced in any
material form whatever without the author’s prior written permission.

Kai Tan
Apt 103, 10621 80 Avenue
Edmonton, AB
Canada, T6E 1V6

Date:

University of Alberta

Pattern-based Parallel Programming in a Distributed Memory

Environment

by

Kai Tan

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2003

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled Pattern-based
Parallel Programming in a Distributed Memory Environment submitted
by Kai Tan in partial fulfillment of the requirements for the degree of Master of
Science.

Duane Szafron
Co-Supervisor

Jonathan Schaeffer
Co-Supervisor

Robert Hayes

Paul Lu

Date:

Abstract

Design patterns document general sequential algorithmic solutions to recurring prob-

lems; parallel design patterns extend design patterns into the area of parallel pro-

gramming. CO2P3S (Correct Object-Oriented Pattern-based Parallel Programming

System) uses parallel design pattern templates to support the fast and reliable design

of parallel applications in a shared-memory environment.

This dissertation describes enhancements made to CO2P3S to use parallel design

pattern templates for parallel programming in a distributed-memory environment.

Jini was chosen to be the underlying infrastructure for the Distributed CO2P3S

environment (DCO2P3S), and RMI was used as the inter-process communication

mechanism. A distributed synchronization mechanism, a process manager and a

performance monitor have also been designed for the environment.

A new version of RMI was devised and a new serialization scheme was im-

plemented. They support high performance and low overhead communication in

distributed memory parallel computing. The new designs maintain the ease of use

of the original RMI and JDK-serialization without putting any additional burdens

on the programmer.

This dissertation describes the design and implementation of DCO2P3S as a Jini

distributed system. The usability and applicability of CO2P3S are extended by this

work.

Acknowledgements

First of all, I would like to thank my wife, Ji Jia, for her love, care and patience.

I also want to thank my parents for all of their support and understanding. My

thank you also goes to my supervisor Jonathan Schaeffer and Duane Szafron for

their guidance and funding. Thanks also to other members in the CO2P3S research

group: Steve Macdonald, Steve Bromling and John Anvik. Their research efforts

and advices greatly improved my work. I am also grateful to Dr. Paul Lu and Dr.

Robert Hayes, who took precious time to read and comment on this dissertation,

and to Dr. Herb Yang who chaired my thesis defense.

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 The scope of this dissertation . 3

1.3 Dissertation organization . 4

2 CO2P3S Introduction 5
2.1 Introduction to CO2P3S . 5

2.2 An Introduction to the Parallel Design Pattern Process 7
2.3 Design patterns and frameworks . 9

2.3.1 Design patterns . 9

2.3.2 Frameworks . 9
2.3.3 Generative design patterns 10

2.3.4 Parallel design patterns . 10

2.3.5 From parallel design patterns to frameworks to programs . . 11
2.4 MetaCO2P3S introduction . 13

3 Jini overview 20

3.1 Introduction . 20
3.2 Applications . 21

3.3 How Jini works . 21
3.3.1 The Jini architecture . 21

3.3.2 The key concepts of Jini . 23

3.3.3 An advanced Jini system architecture 31
3.3.4 Launching and shutting down the Jini system 31

3.4 Conclusion . 32

4 Remote Method Invocation 33
4.1 Introduction to RMI . 33

4.2 The RMI programming model . 33
4.2.1 The programming API . 35

4.2.2 Remote object stubs and skeletons 36

4.2.3 RMI registry . 37
4.2.4 RMI activation . 37

4.3 RMI architecture . 38

4.4 Conclusion . 40

5 Serialization 41

5.1 The purpose of serialization . 41

5.2 The programming API . 42
5.3 The serialization process . 43

5.4 The de-serialization process . 46

5.5 The layout of the serialized data . 47
5.6 Discussion . 49

6 The Architecture and Infrastructure of Distributed CO2P3S 50
6.1 Introduction . 50

6.2 The DCO2P3S architecture . 51

6.3 Communication scheme . 54
6.3.1 Design choices . 54

6.4 Distributed synchronization mechanisms 56

6.4.1 Synchronization . 57
6.4.2 The distributed synchronization implementation 57

6.4.3 Discussion . 60
6.5 Performance monitoring and process management 61

6.6 Distributed parallel design patterns 64

6.7 Conclusion . 64

7 RMI and JDK-serialization Modifications 65

7.1 Motivation . 65

7.2 Related work . 67
7.3 Design of DCO2P3S-serialization . 68

7.3.1 The CLASSPATH approach 68
7.3.2 Implementation details . 69

7.4 Performance comparison . 74

7.5 Conclusion . 76

8 Distributed Design Pattern Templates in DCO2P3S 77

8.1 Introduction . 77

8.2 The DM Mesh pattern . 77
8.2.1 Intent . 77

8.2.2 Motivation . 78
8.2.3 Structure . 79

8.2.4 Pseudo code . 80

8.2.5 DM Mesh pattern template parameters 80
8.2.6 Use of the template . 82

8.2.7 Implementation details . 82

8.2.8 An example DM Mesh application 83
8.2.9 Application performance . 86

8.3 The Phases pattern . 88

8.3.1 Intent . 88
8.3.2 Motivation . 88

8.3.3 Using the template . 89
8.4 The DM Distributor pattern . 91

8.4.1 Intent . 91

8.4.2 Motivation . 91

8.4.3 Structure . 92

8.4.4 Parameters . 92
8.4.5 Use of the template . 93

8.4.6 Example application . 95

8.5 The DM Wavefront pattern . 98
8.5.1 Intent . 98

8.5.2 Motivation . 99
8.5.3 Structure . 100

8.5.4 Pseudo code . 101

8.5.5 Parameters . 102
8.5.6 Use of the pattern template 103

8.5.7 Applications . 104

8.5.8 Example application . 104
8.6 Conclusions . 107

9 Summary and Conclusions 108
9.1 Contributions of this research . 108

9.2 Future work . 108

Bibliography 110

List of Tables

6.1 Comparisons between RMI, Java TCP sockets and C sockets (in mi-

croseconds) . 57

7.1 The RMI time split-up (in microseconds) 66
7.2 Performance comparison for an array of TransportableTree (in mi-

croseconds) . 74
7.3 Performance comparison for a TransportableTree (in microseconds) . 74

7.4 Performance comparison for an array of TestClass (in microseconds) 74

7.5 Performance comparison for a TestClass (in microseconds) 75
7.6 Performance comparison between Java RMI and CO2P3S-RMI (in

microseconds) . 75

8.1 Hook methods of the DM Mesh Pattern 85
8.2 The Reaction-Diffusion application performance (in seconds) 86

8.3 The Reaction-Diffusion application performance (in seconds) 87

8.4 The PSRS application performance (in seconds) 99
8.5 The sequence alignment application performance (in milliseconds) . 107

List of Figures

2.1 The template GUI . 6

2.2 The framework from the user’s point of view 6
2.3 Choosing the right pattern template 11

2.4 Parameter instantiation . 12

2.5 Framework generation . 12
2.6 Displaying hook methods . 13

2.7 Editing hook methods . 14

2.8 The MetaCO2P3S GUI . 15
2.9 The constants of the DM Mesh pattern in MetaCO2P3S 16

2.10 The GUI configuration of the DM Mesh pattern in MetaCO2P3S . . 17

2.11 The structure of the DM Mesh pattern in MetaCO2P3S 18
2.12 Pattern parameters in MetaCO2P3S 19

3.1 A basic Jini system . 22

3.2 The JiniPrinterInterface . 23
3.3 Source code for the proxy implementation 25

3.4 Source code for the service backend implementation 26
3.5 Source code for the service backend implementation (continued) . . . 27

3.6 The LUS registration code . 28

3.7 The LUS lookup code . 29
3.8 An advanced Jini system . 30

3.9 Jini launching and shutting down scripts 31

4.1 The RMI programming model . 34
4.2 An example of building an RMI server 36

4.3 RMI stub and skeleton . 37

4.4 RMI registry . 38
4.5 RMI architecture . 39

5.1 The serialization interfaces . 43
5.2 An example of using serialization . 44

5.3 The serialized data of an instance of class Integer 48

6.1 The overall structure of DCO2P3S 52
6.2 Menu options to start up the environment 53

6.3 The window to configure the DCO2P3S environment 53

6.4 The interface of this service . 56
6.5 Class hierarchy of distributed synchronization mechanism 58

6.6 The distributed monitor . 59

6.7 The distributed barrier . 60

6.8 Java Native Interface . 62

6.9 The menu item to start up performance monitoring 62
6.10 The CPU usage of the machines in the environment 62

6.11 The memory usage of the machines in the environment 63

6.12 The run dialog of DCO2P3S . 64

7.1 The stream format of the 1000-element integer array 70

7.2 The enhanced stream format of the Integer array using compact
reference scheme . 72

7.3 The stream format for a final array 73

8.1 Two examples of a general mesh and a rectangular mesh [24] 78
8.2 Neighbour stencils . 78

8.3 Boundary exchange scheme . 79

8.4 The class diagram of DM Mesh . 79
8.5 The graphical display of the DM Mesh pattern template 81

8.6 The boundary conditions of DM Mesh 82

8.7 The zebra strips generated by Reaction-Diffusion 83
8.8 The DM Mesh template with instantiated parameters 84

8.9 Code fragment of meshMethod . 84
8.10 Code fragment of mainMethod . 86

8.11 Code fragment of the modified meshMethod 87

8.12 The class diagram of the Phases pattern [23] 88
8.13 The template GUI of the Phases pattern 90

8.14 The code template of the Phases pattern 90

8.15 The object diagram of DM Distributor 91
8.16 The class diagram of DM Distributor 92

8.17 Distribution strategies . 93

8.18 The template gui of DM Distributor 94
8.19 The method dialog of DM Distributor 94

8.20 Editing one parallel method . 95
8.21 The four phases of the PSRS algorithm [25] 96

8.22 The PSRSPhases pattern template 97

8.23 The PSRSDistributor pattern template 98
8.24 The MergePhases pattern template 98

8.25 The Wavefront pattern [3] . 99

8.26 The DM Wavefront pattern structure 101
8.27 Three matrix shapes supported in DM Wavefront 102

8.28 The DM Wavefront template GUI 103

8.29 The dependency dialog . 104
8.30 The code template with all hook methods 105

8.31 The hook method instantiation dialog 106
8.32 The sequence alignment application 106

Glossary

• API Application Program Interface.

• COM Component Object Model. A Microsoft standard defining the inter-
raction mechanism between components designed by Microsoft development

tools.

• CO2P3S Correct Object-Oriented Pattern-based Parallel Programming Sys-

tem. CO2P3S is a parallel programming system designed by the systems
group of the University of Alberta.

• CORBA Common Object Request Broker Architecture. A platform inde-
pendent infrastructure technology defined by Object Management Group

• DCO2P3S Distributed CO2P3S. DCO2P3S is the system that was developed
in the thesis research.

• DSM Distributed Shared Memory. A design approach of distributed systems.

• GUI Graphical User Interface.

• HPC High Performance Computing.

• JDK Java Development Kit.

• Jini This is not an acronym. Jini is a Java infrastructure technology to build

Java distributed systems.

• JNI Java Native Interface. JNI is a technology that helps Java program to

interact with native code.

• JRMP Java Remote Method Protocol. JRMP is used in RMI.

• JVM Java Virtual Machine. JVM is an abstract machine that interprets
Java bytecodes.

• LUS Look Up Service. LUS is a registry service provided by Jini.

• LRS Lease Renewal Service. LRS is a lease renewal service provided by Jini.

• MPI Message Passing Interface. MPI is a programming interface to imple-

ment network communication in distributed applications.

• RAM Random Access Memory. A type of computer memory.

• RPC Remote Procedure Call. RPC defines the protocol of invoking remote

methods in distributed computing.

• RMI Remote Method Invocation. RMI is an Java Object-Oriented version

of RPC.

• RRL Remote Reference Layer. RRL is a layer in RMI’s three-layered archi-

tecture.

• PDP Parallel Design Pattern. PDP encapsulates parallel designs in code

templates; it is used in CO2P3S to facilitate parallel application designs.

• PSRS Parallel Sorting by Regular Sampling. PSRS is a sorting algorithm.

• PVM Parallel Virtual Machine. Like MPI, PVM is another programming
inteface used to transfer (data) messages between distributed processes.

• SOAP Simple Object Access Protocol. SOAP is a platform-independent
communication protocol.

• TCP Transmission Control Protocol. TCP is a connection-oriented commu-
nication protocol.

• UDP User Datagram Protocol. UDP is a connectionless communication
protocol.

• XML EXtented Marking Language.

Chapter 1

Introduction

1.1 Motivation

Parallel programming offers the potential to significantly improve the performance

of computationally-intensive programs. Sequential solutions to such problems may

take hours, days or even weeks to finish. In a shared-memory environment, a mul-
tithreaded program can create multiple threads of control, with each performing

an individual task such as intensive disk I/O, network communication or compu-
tation. Threads can be scheduled to run in parallel by controlling the system’s

resources in different time slices. In a distributed-memory environment, a program

can be expanded to incorporate multiple machines to gain more computing power
and resources. This has the potential to achieve even greater parallelism and faster

execution than a multithreaded program.

As high-speed networks become ubiquitous, computing resources at distributed
locations can be federated for large-scale parallel processing. With the advent of

high-performance workstations with high-bandwidth low-latency network connec-

tions, many attempts [35, 9, 1, 2] have been made to form commercial networks of
workstations as supercomputers, at a much lower price than those of normal mul-

tiprocessors. This research addresses problems related to parallel programming in
the distributed-memory environment.

Despite the appeal of higher performance, parallel programming has coding,

performance and correctness issues that are not present in sequential programming.
These issues are related to communication overhead, synchronization complexities,

data inconsistency, job distribution strategies, load imbalance, deadlock and non-

deterministic behavior. In a distributed-memory environment, these problems are
even harder to solve than in a shared-memory environment. Faced with the com-

plexities associated with parallel programming, only experienced programmers can

make full use of it.
Many efforts have been made to mitigate such programming complexities at dif-

ferent levels. MPI and PVM [18, 16] provide low-level programming interfaces and
libraries for explicit and efficient point-to-point communication among distributed

processes. Java/DSM, cJVM and Hyperion [5, 44, 12] simulate a shared-memory en-

vironment by providing a multithreaded model that overlays a distributed-memory
environment. These approaches relieve many of the complexities of developing dis-

tributed parallel applications. However, parallel programming using these tools is

1

still a highly skilled task. A good parallel solution needs not only experience in

algorithm design but also a thorough understanding of the underlying architecture.

A parallel design can be error-prone and can consume a significant amount of the
total development time. As a result, even though such tools may facilitate a parallel

design, the quality of the resulting implementation largely depends on the com-

petence and experience of the programmer. Newcomers with little experience in
parallel programming cannot make full use of such tools to realize the performance

potential of their programs.
To solve this problem, a system called Correct Object-Oriented Pattern-based

Parallel Programming System [23](CO2P3S, called “cops”) has been designed by

our research group at the University of Alberta. As its name implies, CO2P3S
uses software engineering techniques to alleviate the complexities involved in par-

allel programming. The underlying philosophy of the CO2P3S system is based on

abstraction and development tools, both of which are widely used in the area of soft-
ware engineering. Parallel solutions to different problems share a certain number

of commonalities that can be captured by abstractions such as object-orientation,

design patterns, and frameworks. These abstractions can facilitate both design and
code reuse to reduce parallel software development complexities. CO2P3S supports

the automatic generation of object-oriented frameworks from design patterns. The
frameworks which encapsulate the parallel infrastructures, can easily be instantiated

into concrete parallel applications.

• Object-oriented programming enhances the separation of concerns and

code reuse by encapsulating data and operations into different self-contained

objects. Java is an object-oriented language that provides complete support for
multithreaded programming and facilities—RMI1 and sockets—for distributed

computing. These characteristics, as well as platform independence and code

mobility, make Java a good tool for high performance distributed and parallel
computing.

• Design patterns [15] record general algorithmic solutions to recurring prob-

lems in different domains. Software designers can benefit from the experience
of experts by adapting one or more design patterns to a specific problem.

• Frameworks [15] provide a set of classes that implement a software archi-

tecture in a certain context. A framework defines a general structure for a
group of applications in one specific domain. A programmer can instantiate

frameworks by filling in hook methods to quickly create concrete applications.

The CO2P3S parallel programming system combines these three abstraction

technologies to create a layered design model which is the basis of the PDP (Paral-

lel Design Pattern) process for correct and rapid development of parallel programs.
A new construct, the design pattern template, is used in CO2P3S to facilitate

automatic code generation from design patterns to frameworks. Three layers—
the patterns layer, the intermediate layer and the native code layer—are

involved in this layered design approach. The patterns layer constrains the program-

mer to focus on only application-specific details for the purpose of guaranteeing the

1RMI stands for Remote Method Invocation, a distributed object calling model used in Java-
based distributed computing.

2

structural correctness of an application. The complexities of parallel programming

are pushed down to the lower levels, and the user can focus on the sequential parts

of the algorithm and ignore the parallelism by working at the higher level. Fur-
thermore, unlike other parallel programming systems that leave the programmer

no options for performance tuning. CO2P3S gradually exposes the parallel design

details to the programmer through the lower two layers to allow users to customize
applications to enhance performance.

When this research began, CO2P3S supported only parallel program design in
a shared-memory environment. However, as low-cost and high-performance net-

works of workstations become ubiquitous, extending CO2P3S to support distributed-

memory programs will increase its usability and applicability. This dissertation
discusses how a Distributed CO2P3S (referred to as DCO2P3S) environment was

designed and implemented to support parallel computing in a distributed-memory

environment.
Jini, RMI and JDK-Serialization are the main Java technologies used to build

DCO2P3S. Jini is a Java-centric infrastructure technology for building reliable dis-

tributed systems. The network is used as a central connecting medium in such
systems. Components—hardware or software—can be dynamically federated by the

network to offer services or interact with each other regardless of their network lo-
cation and communication protocol. Therefore, Jini creates a network of services

that is flexible, reliable and scalable. RMI provides a convenient way to have dis-

tributed Java objects interact with each other. Using RMI, an object can easily
invoke methods of another object in a remote JVM in much the same way that local

method calls are issued. RMI is used as the communication scheme of entities in

the DCO2P3S environment. Both Jini and RMI use JDK-Serialization as a vital
component for object mobility. JDK-serialization is used to serialize an object into

a linear stream of bytes that can be transferred over the network and de-serialized

to re-create an identical object in another process. DCO2P3S uses parallel design
pattern templates to generate object-oriented framework code compatible with the

Jini and RMI standard.

1.2 The scope of this dissertation

The goal of the DCO2P3S environment is to aid in the design and implementation

of high-performance distributed-memory parallel applications. Efforts have been
made to address many performance considerations involved in the design of dis-

tributed parallel applications, such as communication overheads, synchronization
costs, process spawning and killing, and real-time performance monitoring.

This research uncovered problems with RMI and JDK-serialization that seriously

impacts the performance of parallel applications in a distributed-memory environ-
ment. Although Java RMI is easy to use and it offers many advantages, it has two

main defects.

• Firstly, RMI has a TCP-based network subsystem which does not work ef-

ficiently and cannot make use of other network technologies (like Myrinet).

The standard JDK-serialization, an important component used by RMI, is
not suitable for high-performance computing.

3

• Secondly, although JDK-serialization provides high reliability and security

guarantees for distributed computing at the Internet level, it is too slow and

storage inefficient for high performance applications in its present form.

These problems directly affect Java’s role in the area of high-performance com-

puting. This dissertation analyzes them in detail to find the source in Sun’s JVM
implementation. It also describes some enhancements to RMI and JDK-serialization

to make them more suitable for high-performance computing.

1.3 Dissertation organization

The rest of the dissertation is organized as follows. Chapter 2 introduces the CO2P3S

parallel programming system, describing its layered design model, the PDP process,
its main features and components. Chapter 3 gives an overview of Jini, its moti-

vation, features, and architecture. Chapter 4 presents the RMI (Remote Method

Invocation) technology. Its layered architecture and its characteristics are discussed.
In Chapter 5, JDK-serialization is explained in detail, including the wire protocol,

complete serialization and de-serialization process, its effectiveness in distributed
computing at the Internet-level and its weakness in high-performance computing.

In Chapter 6, the overall architectural design of DCO2P3S is discussed. Three as-

pects of the DCO2P3S environment are explained in detail. First, the considerations
for using RMI instead of TCP sockets as the inter-process communication scheme

are given along with a performance comparison. Secondly, the distributed synchro-

nization model used in DCO2P3S is described. Finally, the process management
and performance monitoring mechanism are presented. In Chapter 7, a new-version

of RMI and a modified serialization mechanism are introduced to address the per-

formance issues related to DCO2P3S. In Chapter 8, three new distributed parallel
patterns, DM Mesh (Distributed Mesh), DM Distributor (Distributed Distributor)

and DM Wavefront (Distributed Wavefront) are presented in detail. Finally, the
conclusions of this dissertation are provided in Chapter 9.

4

Chapter 2

CO2P3S Introduction

2.1 Introduction to CO2P3S

Programmers can enjoy significant performance improvements by taking advantage

of parallel programming. However, such improvements come at a cost. The pro-

grammer has to consider both the sequential application algorithm and the parallel
design. Implementing the parallel design can be a difficult and error-prone task that

may benefit from a tool such as a parallel programming system.
A parallel programming system, CO2P3S, has been designed by our research

group at the University of Alberta. The CO2P3S system applies abstractions and

development tools to the area of parallel programming. Abstractions are widely
used in the software engineering discipline for sequential programming. Abstraction

techniques such as object-oriented programming, design patterns and frameworks

can facilitate automatic code generation and code reuse so that software development
complexities can be significantly reduced. We apply these techniques to the parallel

programming domain to encapsulate the expertise in parallel design.

The research goal of CO2P3S is to allow users to easily parallelize their sequen-
tial programs without introducing errors. This is achieved by using parallel design

patterns. Parallel design patterns capture commonalities of solutions to different
parallel applications. A framework implements a design pattern in a certain con-

text, providing parallel structural designs and hook methods. CO2P3S also provides

a meta tool to support the addition of new design patterns and the modification
of existing ones. Design patterns in CO2P3S are generative. Frameworks can be

automatically generated from the corresponding pattern(s) based on programmer

adaptations. Figure 2.1 shows CO2P3S with a new application using one paral-
lel design template, a Mesh.1 The right pane in the figure provides a graphical

user interface to let a programmer specify problem-specific information. After be-

ing adapted, the design template can generate a framework which provides all the
parallel structures required to parallelize this application. By filling in the hook

methods provided in the framework with application-specific code (Figure 2.2), the
user can quickly create a concrete parallel application without even knowing much

about the concurrency.

To address correctness and openness2 in the design of parallel programs, CO2P3S

1One of the patterns supported in CO2P3S
2Openness means that the system provides users access to all the code used in architectural

5

Figure 2.1: The template GUI

Figure 2.2: The framework from the user’s point of view

6

applies the Parallel Design Pattern (PDP) process. The PDP process combines the

three abstraction technologies mentioned previously into a layered design approach,

including the Patterns Layer, the Intermediate Code Layer and the Native Code
Layer. The user can focus on the sequential components of a parallel program

by working at the Patterns Layer. The complexity of parallel structure design is

handled by lower layers.
Section 2.2 gives a brief overview of the PDP process, including its three abstrac-

tion layers and the steps needed for a user to build a parallel application. Section 2.3
discusses design patterns and frameworks. In CO2P3S we apply design patterns in

the parallel programming domain to achieve the concept of Parallel Design Patterns.

We describe how CO2P3S supports the adaption of a generic pattern to generate a
more specific framework.

At first CO2P3S supported only four design patterns: Mesh, Phases, Distributor

and Wavefront. The capacity of the pattern library was limited. Such an embar-
rassing situation exists in many pattern-based programming systems and prohibits

them from gaining greater acceptance. CO2P3S solved this problem by introduc-

ing a new tool called MetaCO2P3S [7]. This tool helps the developer generalize,
create and modify design patterns in a well-defined manner. It enables the pattern

library to be extended incrementally by developers. In fact, MetaCO2P3S was used
to design and implement all of the distributed pattern templates described in this

dissertation. MetaCO2P3S will be introduced in Section 2.4.

2.2 An Introduction to the Parallel Design Pattern Pro-

cess

The PDP process is a pattern-based design approach. It combines object-orientation,
design patterns and frameworks into a three-layered design model: the Patterns

Layer, the Intermediate Code Layer and the Native Code Layer. This three-layered

design model addresses both the correctness and openness issues of a pattern-based
parallel program design.

• The Patterns Layer generates a structurally correct framework for the user’s

program. It is the level that the user can directly access. Provided with certain

domain-specific information, a pattern can be adapted to a framework which
encapsulates the overall control flow and the parallel structures of the user’s

program. The user only has access to the sequential hook methods provided

in the framework to create concrete applications, as depicted in Figure 2.2.
In addition, the programmer must provide code (a driver program) to create

the application objects instantiated by the framework. Such code is used at

execution start time and, if necessary, also at execution termination time. The
Patterns Layer includes the generated framework code, the hook method code,

the initialization code and the result processing code. To facilitate the adapta-
tion from design patterns to frameworks, we use the design pattern template, a

parameterized construct that implements a design pattern. Different pattern

and parameter combinations result in CO2P3S generating different frameworks
with varying parallel structures.

code.

7

• The Intermediate Code Layer uses a high-level explicitly parallel pro-

gramming language to describe the parallel infrastructure, synchronization

and communication in the framework code. This high-level language uses par-
allel primitives defined in the Native Code Layer to express the parallelism.

The Intermediate Code Layer addresses the openness issue by making the

framework code available to the programmer. Even though a design pattern
is general enough to provide solutions to diverse applications, it is still unable

to offer the best design for certain situations, which cannot be easily captured
in design patterns. The CO2P3S system allows the programmer to modify

the control flow code and the parallel structure in the framework to better

fit specific application requirements. When using this level, the programmer
is responsible for maintaining the correctness of the parallel structure of the

program.

• The Native Code Layer uses a full-fledged object-oriented programming
language, as well as certain libraries, to implement the primitives used in the

Intermediate Code Layer. Primitives such as the barrier, mutex lock and

communication channels can be used to express the parallelism. The imple-
mentation of parallel primitives can be tuned based on the architecture of the

execution environment.

Based on this three-layer design mode, the PDP process is a five-step methodol-

ogy for the programmer to create a parallel application in the CO2P3S environment:

1. Identify one or more parallel design patterns suitable for a given application

and choose the corresponding pattern templates provided in CO2P3S.

2. Adapt the chosen pattern templates. A programmer selects application-specific
template parameters allowing them to customize the design patterns to their

application.

3. A framework is generated with application-dependent sequential hook meth-
ods. Fill in the hook methods with application-specific sequential code as well

as write initialization code and result processing code to build a complete par-

allel application. The first three steps focus on the Patterns Layer and they
are necessary to create an application.

4. Evaluate the resulting application for initial performance results. If they are

not acceptable, inspect the framework code in the Intermediate Code Layer
and edit it.

5. Re-evaluate the performance of the modified application. If it is still not

acceptable, the programmer can do anything at the Native Code Layer to
enhance the performance.

In summary, the five-step PDP process allows the user to quickly create a parallel
application. The first three steps are necessary for beginners to create parallel

applications from scratch. The last two steps allow more advanced programmers

to incorporate their own experiences into a parallel design. The use of the PDP
process will be further illustrated in the descriptions of supported distributed pattern

templates described in Chapter 8.

8

2.3 Design patterns and frameworks

2.3.1 Design patterns

A design pattern records general algorithmic solutions to a recurring problem in

different contexts [15]. It is widely used in object-oriented software designs. A design
pattern captures the knowledge and experience of expert programmers to be reused

by others. In general, a design pattern consists of a pattern name, intent, motivation,
applicability, structure, participants, collaborations, consequences, implementation

and sample code [15].

The most common form of a design pattern is a document, which describes
these components in a textual form. A design pattern in this form is more like an

instruction sheet instead of a code template that a programmer can directly work

on. Such design patterns are easy to read and access. Instead, after identifying
a design pattern for a real problem, programmers have to adapt the pattern and

convert it to code manually. The qualities of the adaptations and conversions made

by different programmers vary drastically because of their different interpretations
of the design pattern and their programming proficiency. Experts may reuse their

previous design experiences to quickly adapt the design pattern. However, without
tool support, it is hard for a novice to create proper class hierarchies from scratch

only based on applying pattern documentation to a real context. Thus, even though

a design pattern in textual form can be easily accessed and shared by programmers,
the real code implementations are not readily available to programmers.

2.3.2 Frameworks

A framework is a set of collaborating classes which implement a software architec-
ture. It can be instantiated to a specific application by sub-classing the framework

classes and filling in its hook methods [15]. A framework defines a general design so-

lution to a group of applications. It illustrates the overall architectural design of the
solution in this specific domain [15]. Based on a properly constructed framework,

a programmer can easily obtain a correct overall architecture and build an applica-

tion, because only application specific issues need to be focused on. A framework
is like a main program which defines an execution sequence that invokes a series

of methods. These methods, called hook methods, should be implemented by the

user to provide application specific details. In the parallel programming domain,
the idea of using frameworks is especially useful. A framework can encapsulate the

parallel structure as well as other abstractions. Frameworks allow the user to add
application specific code by sub-classing and filling in hook methods.

Although design patterns and frameworks both provide reusable designs for

groups of applications, there are several differences between them:

• a design pattern is more generic than a framework;

• a design pattern usually appears in a textual format while a framework is

implemented with code;

• a design pattern can only be adapted to a number of frameworks, and a frame-

work can be composed of several different design patterns. There is no one-
to-one mapping between design patterns and frameworks.

9

2.3.3 Generative design patterns

A generative design pattern extends an ordinary design pattern with the capability
of automatic code generation. A generative design pattern is a parameterized set of

code templates that can be instantiated to select any one of a group of frameworks

[4]. It records the descriptive properties [6] of an ordinary pattern in the form
of template parameters with domain restrictions. Different combinations of the

parameters help generate a diversity of frameworks. There have been several efforts
[14, 17, 11, 38] to create generative design pattern. In CO2P3S, generative design

patterns are implemented as design pattern templates. A design pattern template

is a construct that is used to encapsulate a design pattern and its corresponding
frameworks so as to facilitate the automatic generation of framework code from the

adapted design pattern. One meta tool, called MetaCO2P3S, is devised to help

create design pattern templates [7].

2.3.4 Parallel design patterns

Parallel programming is facing a similar dilemma as object-oriented programming

once did: it promises the potential for significant improvements to programs. How-

ever it requires strong skills to realize this potential. After identifying the parallelism
in an application, a programmer has to consider many aspects to make a good design

of the concurrency, including:

1. the data layout for achieving good cache performance and minimal communi-

cation,

2. the load balancing strategies and task granularity,

3. the special characteristics of the target platform, which may affect the appli-
cation performance,

4. the best communication scheme,

5. efficient coordination and synchronization schemes between processing units,

and

6. the design’s scalability and portability across different platforms.

In addition to these design complexities, parallel programming is error-prone. A

small error or omission may result in non-deterministic behavior. The program is

often difficult to debug and trace.
Fortunately, different parallel applications share certain commonalities in the de-

sign of their overall parallel structures, synchronization and communication schemes.

Such similarities can be abstracted and encapsulated into design patterns. As an
innovative application of the general design pattern in parallel programming, the

parallel design pattern encapsulates both the general design solutions of a recurring

problem and the concurrency designs needed to parallelize it. Furthermore, we apply
the concept of the design pattern template to the parallel design pattern. Parallel

design pattern templates provide correct and readily re-usable concurrency designs
for parallel program development.

10

2.3.5 From parallel design patterns to frameworks to programs

After choosing an appropriate parallel pattern template, the user selects parameters
that are used to guide the code generation process. The parameters help refine

the pattern’s code template and provide domain-specific information to generate a

compact and efficient framework.
A code generator is used to facilitate the automatic framework generation. This

process is based on the conditional compilation of a pattern template. During the
design process of a given pattern template, the designer associates a code fragment

with each value of one parameter or a value combination of several parameters. The

code fragments reflect design solutions based on different situations as represented
by the template parameters. Frameworks are generated by sewing together different

code snippets based on the combination of parameters selected.

The following screen shots depict the step-by-step process of generating a frame-
work from a pattern template.

Figure 2.3: Choosing the right pattern template

Figure 2.3 shows that a DM Mesh pattern3 is chosen by the programmer. As
described in Chapter 8, this pattern has six parameters. At the beginning, all these

parameters are set to default values. The programmer needs to instantiate these

parameters to provide the template with domain-specific information. A pop-up
menu shown in Figure 2.3 provides an interface for the programmer to set all the

parameters. The menu contains six menu items, each invokes a different pop-up

3Distributed Mesh Template, which will be introduced in Chapter 8.

11

Figure 2.4: Parameter instantiation

Figure 2.5: Framework generation

12

Figure 2.6: Displaying hook methods

window to set one parameter. One such window is depicted in Figure 2.4. Once all
the parameters are instantiated, the first menu item in the pop-up menu will be cho-

sen (Figure 2.5) to start the code generation process. The code generator parses the

pattern code template and concatenates together different code fragments according
to the instantiated parameter values to create the application’s code framework.

After all this has been done, the rest of the menu items in the pop-up menu

are enabled (Figure 2.6), notifying the programmer that the framework is ready to
be instantiated. The programmer is now able to insert application-specific details

into the generated framework. After clicking the ”View Pattern Templates” menu

item (Figure 2.6), the user-accessible part of the framework is shown in a pop-up
window (Figure 2.7). The contents are listed in an HTML file. Clicking a hyperlink

as shown in Figure 2.7 will launch a new window which allows the programmer to
input the sequential application code.

This step-by-step process helps the programmer provide domain-specific infor-

mation to guide the CO2P3S code generator to create efficient framework code for
a given application.

2.4 MetaCO2P3S introduction

Although design patterns try to be generic to cover as many situations as possible,

they are still not comprehensive enough to handle some requirements and ramifica-

tions which may appear in future applications. The limited capacity and extensibil-

13

Figure 2.7: Editing hook methods

ity of pattern libraries is one of the major reasons that pattern-based programming

systems have not gained greater acceptance.
CO2P3S has addressed this problem by introducing a new tool—MetaCO2P3S.

Using MetaCO2P3S, a pattern designer can identify and generate a new design

pattern and add it into the CO2P3S pattern library.
MetaCO2P3S provides a means of constructing generative design patterns (Sec-

tion 2.3.3) in a structured way. Each generative design pattern constructed using

MetaCO2P3S contains two parts: the GUI part and the pattern template part. The
GUI part allows the user to specify pattern parameters through a graphical user in-

terface. The pattern template part follows the three-layered design model (Section
2.2) to implement a design pattern. All design patterns created in MetaCO2P3S are

stored as XML and Java files, which are easy to store and share with other systems.

Figure 2.8 shows a graphical display of the DM Mesh template in MetaCO2P3S.
The left pane of this figure displays all the components in the template, including

constants, classes, parameters and GUI configurations.

The constants and GUI configurations define the GUI part of the pattern tem-
plate. The constants in Figure 2.9 describes the text labels that will be displayed

on the template GUI as in Figure 2.3. The GUI configuration (Figure 2.10) sets up

the graphical display, such as the picture which shows the pattern’s object structure
and the position of the constant labels in the window of the pattern template that

will be used by a programmer.
The class names and parameters are the core of each template since they imple-

14

Figure 2.8: The MetaCO2P3S GUI

ment a design pattern using a code template.
The classes consists of all necessary components that contribute to the imple-

mentation of a design pattern. Different classes have different attributes, reflecting

whether a class contributes to the private parallel structure or offers hook methods
for the programmer to input application-specific details. The class named DM Mesh

in Figure 2.11 describes the collector class in the DM Mesh pattern; the collector

class is a framework class that encapsulates the structure information and cannot
be accessed by the user.

An important step in creating a design pattern template is to generalize and

quantify the descriptive properties of an ordinary design pattern to formal param-
eters with domain restrictions. Each pattern parameter has a direct effect on the

code that is generated by a pattern. After identifying all possible parameters, the
pattern designer provides code fragments for each legal combination of parameters.

A design pattern thus becomes a template for a group of frameworks. For example,

Figure 2.12 lists a parameter of the DM Mesh pattern called “ neighbors”, which
specifies how many neighbour nodes (4 or 8) are needed to compute the mesh node.

MetaCO2P3S was a key tool in constructing DCO2P3S to support the generation

of parallel design patterns for a distributed-memory environment. It allowed us to
focus on designing efficient parallel structures, communication and synchronization

mechanisms for new distributed-memory version of patterns.

The next three chapters describe three Java technologies that are used in the
implementation of DCO2P3S.

15

Figure 2.9: The constants of the DM Mesh pattern in MetaCO2P3S

16

Figure 2.10: The GUI configuration of the DM Mesh pattern in MetaCO2P3S

17

Figure 2.11: The structure of the DM Mesh pattern in MetaCO2P3S

18

Figure 2.12: Pattern parameters in MetaCO2P3S

19

Chapter 3

Jini overview

3.1 Introduction

Jini is a newly-emerging Java technology for building distributed computing systems.

It offers “network plug and play” [32] for hardware and software components. They

can be federated in a Jini-enabled network without being previously configured.
Moreover, it is widely claimed that Jini can be used to build highly personalized,

cross-network, platform-independent, flexible and intelligent web services [32]. In
Jini, the view of a conventional computing system, which consists of hardware (com-

puters, peripheral equipments) and software is changed to one that is composed of

services (hardware devices and software components) and clients inter-connected by
a central network [41]. In a Jini system, there is no difference between the hard-

ware and the software: hardware devices and software components are treated in

the same way. Components over a network can be dynamically federated to provide
web services or to interact with each other regardless of their network locations

and communication protocols. Jini offers a network of services with flexibility,

reliability and scalability:

1. A Jini system is flexible in terms of the following attributes:

• A service can dynamically join, leave and access a service group. A

central bootstrapping service, the Jini lookup service, takes care of all

service registrations and discoveries in a Jini system. It helps a service to
dynamically attach to and detach from a Jini system. Thus, a distributed

computing system can be constructed by simply plugging in different
services.

• Components can be incrementally and individually updated, i.e, a com-

ponent can be updated several times without involving other components

or shutting down the whole network. This will be explained in Section
3.3.2.

• The communication scheme between a service and a client is open-ended.

A service can define customized communication protocols such as RMI,
SOAP, TCP/UDP Sockets and CORBA and their implementation details

are totally transparent to the clients. To access a Jini service, a client

only needs to know the interface.

20

2. Combining technologies such as distributed leasing, distributed transactions

and distributed events with the Java security model, the Jini infrastructure

provides reliability for distributed systems. The Java built-in security model
ensures the safety of running code downloaded from remote machines; the

strong typing of Java helps identify the class of an object created on other

machines; the distributed leasing model addresses partial failures inherent in
distributed systems; and the distributed transaction model helps distributed

services coordinate with each other in mission-critical tasks.

3. Jini can not only group services across different networks together, but also

manage different collections into hierarchies to form systems with higher-
scalability.

3.2 Applications

Jini technology has many applications. Jini has been used to build web servers,
information systems, mobile computing applications, mobile appliances and network

storage [32]. Here is a simple example of using Jini. A printer joins a Jini system
by registering with a central bootstrapping service to announce its presence and

properties. Properties may include the printer type (laser or bubble jet, color or

gray scale), the printing speed, current states, etc. A client can find this printer by
querying the central registry and specifying its requirements. In this way, the client

can use this printer without even knowing the printer’s exact network location or

having to be specially configured for the printer. The client can use well-known
APIs for basic functionalities such as printing one page or several pages, or it can do

more complex and more specific jobs by understanding the printer service’s interface

before use. The printer can be upgraded without making the client aware of it.
The client can still use the printer in the same way as before. If it needs new

functionalities, it can explicitly check the extended service API of the printer. It can
use Java Reflection, which offers the capability to discover the structural composition

of objects at runtime to obtain the extended interface. Alternatively, the client can

browse the graphical user interface provided by the printer service to obtain extended
services.

As a more complex example, consider connecting a scanner to the Jini system to

become a Jini service. The scanner can actively locate the printer service itself, by
searching the central registry for the printer, and then use it to print out scanned

documents. Thus two services on the network can coordinate with each other to

fulfill one task, or to become a more useful service.

3.3 How Jini works

3.3.1 The Jini architecture

A Jini system consists of three parts:

• Infrastructure components help federate services in one or more networks

into a distributed system. They provide mechanisms for a service to dynam-
ically join and detach from a distributed system, and to easily discover and

21

deliver services without making its clients aware of its physical location. The

basic infrastructure components are: an http server, an rmid (a daemon object

of the RMI system, which will be introduced in Chapter 4) and an LUS (Jini
Look Up Service, which will be introduced in the next section). An advanced

Jini system may also include a transaction server, a Lease Renewal Service

(LRS) and a JavaSpaces service (a central object space). These services will
be introduced in Section 3.3.3.

• A programming model defines standard APIs for devising reliable dis-

tributed services.

• Services are entities of a Jini distributed system. They provide user-defined

functionalities to other members in the system.

Lookup S erv ic e
h ttp s erver

S erver s ite
C lien t s ite

P roxy

reg is ter

S erv ic e
Bac kend

C lien t

reg is ter

P roxy clas s
file

P roxyac c es s es c om m un ic ates

RM IDactiva te s

Figure 3.1: A basic Jini system

Figure 3.1 shows a basic Jini system consisting of an http server, an LUS, an

rmid, one service and one client. The LUS and the rmid reside in the same machine

because as an activatable1 service the LUS needs an rmid to take care of its activation
issues. In Figure 3.1, the service first locates the LUS by broadcasting a standard

protocol request into the network. The LUS responds by producing a proxy (the

register) to the service. The service then sends its own proxy to the LUS which
stores the proxy in a registered service database. The service also needs to specify

a place (the http server) to store the class file of its proxy.
The client locates the LUS in the same way as the service and uses a register

object to send queries to the LUS looking for a service. The LUS will then look up

in the service database and return the proxy of the found service. In Java, to send
an object across the wire, the sender JVM needs to serialize the object (discussed in

Chapter 5) and then send the resulting byte stream across the wire. The object is

de-serialized from the byte stream at the receiving end. However, the de-serialization
process (discussed in Chapter 5) needs both the class definition and the serialized

1Descriptions related to activatable services and RMI Activation will be given in Chapter
4

22

data (the flat byte stream). The LUS only sends the serialized data of the proxy,

which cannot be de-serialized without its class file. From the http server specified

by the service, the client can download the class file from the http server in the
network and use it for the de-serialization process.

3.3.2 The key concepts of Jini

Services

The service is the most important concept in the Jini architecture [31]. A Jini

system consists of a collection of different services. The Jini architecture provides

standard APIs to build and manipulate services in a Jini system. A Jini service
consists of two parts: the service implementation (the backend) and the proxy. The

service backend contains the concrete implementation of the service behavior, while

the proxy describes the service’s interface and its communication with the backend.
The network communication scheme is totally encapsulated in such a way that the

interactions between the client and the service are greatly simplified. Because of the

code mobility and reflection that Java provides, deploying a service will not involve
all its potential clients having the proxy statically installed in their spaces. On the

contrary, the proxy can be dynamically loaded into a client’s space at run-time.
As a result, a service implementation and its proxy can be updated incrementally

without interfering with other entities on the network. A client can always load

up-to-date proxies dynamically and use reflection to obtain new functionalities.
Jini is built on top of RMI, which is used for communications in all the Jini

infrastructure components. However, third-party services can choose to use RMI or

other applicable protocols for their communications.
Consider the printer example again. Suppose the name of the printer service is

JiniPrinter. The first step to generate a Jini service is to determine its behavior. In

this example we define three methods: printText, printGraph and printPage.
These three methods are declared in JiniPrinterInterface, as depicted in Figure

3.2.

1: pub lic in ter fac e J in iP r in ter In ter fac e {
2 : pub lic vo id p r in tT ex t(S tr ing tx t) ;
3 : pub lic vo id p r in tG raph (G raph g raph) ;
4 : pub lic vo id p r in tP age(P age[] page) ;
5 : }

Figure 3.2: The JiniPrinterInterface

In the design of the proxy and the backend, there are basically two approaches:
RMI and customized-communication. In the RMI approach, the proxy and the

communication details are generated automatically by the RMI system. Chapter 4
will describe this approach while introducing RMI. In this chapter, we choose the

customized-communication approach, which needs the designer to specify the proxy

and the backend.
In this example, a Java TCP socket is chosen to set up a communication channel

between the proxy and the backend. We also select the wire format for trans-

23

ferring the method information. The proxy implementation is listed in Figure

3.3. Extending JiniPrinterInterface enables instances of the proxy class to

accept requests from the printer’s clients. JiniPrinterProxy also implements
Java.io.Serializable so it can be transferred between different JVMs. The proxy

class contains a port number (static variable PORT) that is set statically at design

time (line 3 in Figure 3.3). This static number informs the proxy that requests
can be sent through this given port. Furthermore, the argument to the proxy’s

constructor is a String representing the URL of the backend. Combining the static
port number with the dynamic network address of the backend, an instance of

JiniPrinterProxy can dynamically set up connections with the backend at run-

time. Once a client downloads a proxy from a central registry (LUS), it can invoke
the startup method, as shown in Figure 3.3, to create a communication channel be-

tween the proxy and the service backend. After that, the client can issue requests to

the proxy as if it were accessing the printer service locally. An alternative is to make
the startup method private to JiniPrinterProxy and use a lazy channel-creation

scheme. No connection will be set up after the proxy is downloaded to the client’s

space until the first request is issued. If the proxy notices that the connection is null
when a request comes from the client, it will set up the channel and then send the

request across. Otherwise it would forward the request directly through the channel
that has already been set up. However this approach incurs additional checks per

request so it is not suitable for high-performance computing.

The core of JiniPrinterProxy is the marshalling of method information. Each
method definition in this class takes care of passing the marshalled method infor-

mation across the wire. The implementations of the three methods listed in Figure

3.2 share a similar structure and can be described in three phases:

1. Send the method name across the wire. As the sender and the receiver both

know the method names, identifiers which can be mapped to distinct method
names can be sent across instead of the real names to reduce the data to be

transferred.

2. Send method arguments to the service backend so that the method can be

correctly executed there. We use JDK-serialization (line 36 in Figure 3.3) to
convert the arguments to a flat byte stream. Any other schemes that can

properly convert and restore the arguments to and from byte streams can also

be used.

3. Force the channel to send out all the buffered data and then clear all used

internal data structures for the next use.

To correctly interact with the proxy, the backend also needs to be customized to

deal with the specially-encoded method information. The code listed in Figures 3.4
and 3.5 shows the implementation of the JiniPrinter backend. JiniPrinterBackend

also implements JiniPrinterInterface as JiniPrinterProxy does. Unlike Jini-

PrinterProxy, it provides concrete implementations for the methods in the inter-
face. An instance of JiniPrinter-Backend spawns two threads. One thread waits

for any incoming requests from the proxy (line 19 in Figure 3.4), on the same port

as the one the proxy has. Once a request arrives, the other thread unmarshalls
the received information (from line 61 in Figure 3.4). The method identifier will

24

1 : p ub lic clas s J in iP rin t erP roxy imp lemen t s J in iP in t erIn t erface, Serializ ab le {
2 :
3 : s t at ic p ub lic final in t PO RT = 2981 ;
4 :
5 : p ro t ect ed St ring hos t ,s ocket ;
6 :
7 : p ro t ect ed O b jectO u t p u t St ream w rit er;
8 : p ro t ect ed O b ject Inp u t St ream reader;
9 :
10 : p ro t ect ed B u ffered Inp u t St ream in ;
11 : p ro t ect ed B u fferedO u t p u t St ream ou t ;
12 :
13 : p ub lic H elloServ iceP roxy (St ring hos t) {
14 : t h is .hos t = hos t ;
15 : }
16 :
17 : p ub lic vo id s t art up (){
18 : t ry {
19 : s ocket = new Socket (hos t , PO RT);
20 : } cat ch (Excep t ion e) {
21 : Sy s t em .ou t .p rin t ln ("Excep t ion "+ e.t oSt ring()+ " \n");
22 : }
23 : t ry {
24 : ou t = new B u fferedO u t p u t St ream (socket .getO u t p u t St ream ());
25 : w rit er = new O b jectO u t p u t St ream (ou t);
26 : } cat ch (IO Excep t ion e){
27 : Sy s t em .ou t .p rin t ln (" IO Excep t ion "+ e.t oSt ring()+ " \n");
28 : }
29 :
30 : }
31 :
32 : p ub lic vo id p rin t T ext (St ring t xt)
33 : {
34 : t ry {
35 : w rit er.w rit eIn t (1);
36: w rit er.w rit eO b ject (t xt);
37 : w rit er.flush ();
38 : w rit er.res et ();
39 : } cat ch (IO Excep t ion e) {
40 : Sy s t em .ou t .p rin t ln (" IO Excep t ion "+ e.t oSt ring()+ " \n");
41 : }
42 : }
43 :
44 : p ub lic vo id p rin tG rap h (G rap h grap h)
45 : {
46 : //om it t ed
47 : }
48 :
49 : p ub lic vo id p rin t P age(P age[] p age)
50 : {
51 : //om it t ed
52 : }
53 : }

Figure 3.3: Source code for the proxy implementation

be read first to determine the right method to be invoked, and proper routines are

launched to de-serialize the method arguments. The concrete implementation of the

appropriate target method is executed once all the arguments are ready.
The Jini Look Up Service (LUS) is a central bootstrapping mechanism of a Jini

system. It acts as a main entry point for services and clients to access the whole

system. A service needs to locate an LUS on a network in order to join a Jini
system. The LUS can be located by using one of two discovery protocols, depending

on whether the service knows the LUS’s URL ahead of time or not [33]. If the

service knows the location of the LUS ahead of time, then it can directly send a
request to this location to setup a connection. If the service does not know the

URL, then it has to broadcast a request on the network. Any LUS that hears the

25

0: im po r t java.net.* ;
1 : im po r t java. io .* ;
2 :
3 : pub lic c las s J in iP r in terBac kend ex tends T h read
4 : im p lem en ts HelloS erv ic e {
5 :
6 : p ro tec ted S erverS oc ket lis tenS oc ket;
7 :
8 : pub lic J in iP r in terBac kend () {
9 : try {
10 : lis tenS oc ket = new S erverS oc ket(J in iP r in terP roxy .PORT) ;
11 : } c atc h (IOExc ep tion e) {
12 : e.p r in tS tac kT rac e() ;
13 : }
14 : }
16 :
17 : pub lic vo id run () {
18 : try {
19 : w h ile(true) {
20 : S oc ket c lien tS oc ket = lis tenS oc ket. ac c ep t() ;
21 : new Connec tion (c lien tS oc ket) . s tar t() ;
22 : }
23 : } c atc h (Exc ep tion e) {
24 : e.p r in tS tac kT rac e() ;
25 : }
26 : }
27 :
28 : p r ivate in t c oun t=0 ;
29 :
30 : pub lic vo id p r in tT ex t(S tr ing tx t) {
31 : //p r in t s tr ing
32 : }
33 :
34 : pub lic vo id p r in tG raph (G raph g raph){
35 : //p r in t g raph
36 : }
37 :
37 : pub lic vo id p r in tP age(P age[] page) {
38 : //p r in t pages
39 : }
40 : c las s Connec tion ex tends T h read {
41 :
42: p ro tec ted S oc ket c lien t;
43 : Ob jec tInpu tS tream reader ;
44 : Ob jec tOu tpu tS tream w r iter ;
45 :
46 : Bu f fered Inpu tS tream in ;
47 : Bu f feredOu tpu tS tream ou t;
48 :
49 : S tr ing tem pS tr = nu ll;
50 : G raph tem pG raph = nu ll;
51 : P age[] tem pP age = nu ll;
52 :
53 : pub lic Connec tion (S oc ket c lien tS oc ket) {
54 :
55 : c lien t = c lien tS oc ket;
56 :
57 : try {
58 : c lien tS oc ket. s etT c pNoD elay (true) ;
59 : } c atc h (Exc ep tion e) {
60 : S ys tem .ou t.p r in tln ("Exc ep tion "+ e. toS tr ing ()+ "\n") ;
61 : }
62 :
63 : try {
64 : in = new Bu f fered Inpu tS tream (c lien tS oc ket.getInpu tS tream ()) ;
65 : ou t = new Bu f feredOu tpu tS tream (c lien tS oc ket.getOu tpu tS tream ()) ;
66 : reader = new Ob jec tInpu tS tream (in) ;
67 : w r iter = new Ob jec tOu tpu tS tream (ou t) ;
68 : } c atc h (IOExc ep tion e) {
69 : e.p r in tS tac kT rac e() ;
70 : }
71 : }

Figure 3.4: Source code for the service backend implementation

26

72 : pub lic vo id run () {
73 : in t m ethodT ype = -1 ;
74 : in t m ethodArg ;
75 : in t m ethodRetu rn = -1 ;
76 :
77 : w h ile(true)
78 : {
79 : try{
80 : m ethodT ype = reader . read In t() ;
81 : sw itc h (m ethodT ype) {
82 : c as e 1 :
83 : {
84 : try{
85 : tem pS tr= (S tr ing) reader . readOb jec t() ;
86 : } c atc h (Op tionalD ataExc ep tion O e){
87 : }
88 : c atc h (C las sNo tF oundExc ep tion Ce) {
89 : }
90 : c atc h (IOExc ep tion Ie){
91 : }
92 HelloS erv ic eIm p l. th is .p r in tHello (tem p In t) ;
93 : }
94 : c as e 2 :
95 : {
96 : //om itted
97 : }
98 : c as e 3 :
99 : {
100 : //om itted
101 : }
102 : }
103 : } c atc h (IOExc ep tion e) {
104 : //om itted
105 : }
106 : }
107 : }
108 : }
109 :}

Figure 3.5: Source code for the service backend implementation (continued)

request will answer the service. Figure 3.6 depicts the unicast approach. First, the

service constructs a locator (line 11 in Figure 3.6) with an argument representing
the URL of the LUS. Next, using the URL, the locator can set up a connection

between the service and the LUS and fetch the LUS’s proxy (called register in this

example) for the client. Then, using the register, the service exports its own proxy
which contains the interface and communication implementations into the database

27

of the LUS. After that, the service is available to others on the network.

1: S ys tem . s etS ec u r ityManager (new RM IS ec u r ityManager ()) ;
2 : LookupLoc ato r loc ato r = nu ll;
3 : S erv ic eReg is trar reg is trar=nu ll;
4 : HelloS erv ic eP roxy p roxy=nu ll;
5 : S tr ing hos t = nu ll;
6 : try {
7: new HelloS erv ic eIm p l() . s tar t() ;
8: } c atc h (Exc ep tion e) {
9 : }
10 : try {
11 : loc ato r = new LookupLoc ato r ("jin i://192 .168 .23 .7") ;
12 : } c atc h (java.net.Malfo rm edURLExc ep tion e){
13 : }
14 : try {
15 : reg is trar = loc ato r .getReg is trar () ;
16 : } c atc h (java. io . IOExc ep tion e) {
17 : } c atc h (java. lang .C las sNo tF oundExc ep tion e) {
18 : }
19 : p roxy = new HelloS erv ic eP roxy (hos t) ;
20 : En try [] en tr ies = new En try []{ new S erv ic eT ype("P roxy")} ;
21 : S erv ic eI tem item = new S erv ic eI tem (s erv ic eID ,p roxy ,en tr ies) ;
22 : S erv ic eReg is tration reg=nu ll;
23 : try{
24 : reg = reg is trar . reg is ter (item ,Leas e.FOREVER) ;
25 : } c atc h (java. rm i.Rem o teExc ep tion e) {
26 : }

Figure 3.6: The LUS registration code

Clients can locate an LUS in the same way and then search through the LUS’s

database for required services based on service types, service names and many other
attributes [33]. If any service is found, its proxy will be returned to the client to

handle the client’s requests. After having the LUS’s proxy, the client can then send

queries through the proxy to ask for the required service. Line 12 in Figure 3.7
constructs a service template to act as a filter in a query to retrieve desired servers.

The results will contain the proxies of services that satisfy the client’s requirements.
After that, the client can use the returned proxies to interact with the services.

The use of the LUS avoids the unfortunate situation in RMI where each client

has to know the exact network location of the desired services before they can
search for them. The LUS makes a distributed system more flexible and dynamic.

The distribution of services in a Jini system does not depend on the real network

topology. A service can flow in the network as long as it keeps the information
registered on the lookup service up-to-date.

A Jini distributed system can scale up by utilizing several LUSs managed into

a hierarchy. Based on this scheme, an LUS can act as a bridge between several
different systems. Another advantage of using several cooperating LUSs is that

they can avoid the bottleneck caused by single-point access.

28

1: try {
2 : loc ato r = new LookupLoc ato r ("jin i://192 .168 .23 .7") ;
3 : } c atc h (java.net.Malfo rm edURLExc ep tion e){
4 : }
5 : try{
6 : reg is trar = loc ato r .getReg is trar () ;
7 : } c atc h (java. io . IOExc ep tion e) {
8 : } c atc h (java. lang .C las sNo tF oundExc ep tion e) {
9 : }
10 : C las s [] c las s es = new C las s [] {HelloS erv ic e.c las s } ;
11 : En try [] en tr ies _P roxy = new En try [] { new S erv ic eT ype("P roxy")} ;
12 : S erv ic eT em p late tem p late_P roxy=new

S erv ic eT em p late(nu ll, c las s es , en tr ies _P roxy) ;
13 : try {
14 : hello_P roxy= (HelloS erv ic e) reg is trar . lookup (tem p late_P roxy) ;
15 : } c atc h (java. rm i.Rem o teExc ep tion e) {
16 :
17 : }

Figure 3.7: The LUS lookup code

The Leasing Model

Many services provided in a Jini system are granted based on some agreement made

between the grantor and the grantee. This agreement is called a lease [31] that
defines how long this grant will last. By using the Jini distributed leasing model,

a distributed system can allocate resources in a well-managed way. A client has

to negotiate a lease with the service, before any resource can be granted to it.
The resource will be released eventually unless the client renews the lease before it

expires. Once the lease expires, the service will stop serving the client and it will

release any resources that have been allocated for it. Each service registration on
the Jini LUS is also based on a lease. A service has to keep renewing its registration

lease if it wants to be available. Once it stops renewing the lease, either because
this service is withdrawn or because it breaks down, the lease will eventually expire

and the LUS will remove all information about this service from its database. After

that, no one else will find this outdated service any more. Based on this mechanism,
the distributed system can deal with partial failures (such as network outages and

machine break downs) efficiently. No outdated information will be accumulated,

and the system can be reconstructed dynamically based on the real-time conditions.
Thus, catastrophes are mitigated when some part of the system fails to work.

Jini supports the RMI Activation system (introduced in Chapter 4). The

Activation mechanism offers a Jini service the ability to be activated upon request.
The service will be swapped out of memory if no one asks for it. This way of

managing Jini services uses system resources efficiently. However, this approach has
a potential problem. If a Jini activatable service is not active when its registration

lease expiry event arrives, it is unable to react because it is out of the runtime

environment. A Jini service, called the Lease Renewal Service (LRS), can solve this
problem. All activatable services can register with an LRS at the same time as when

they register for an LUS. From then on, the LRS keeps running and interacts with

29

the LUS to renew the leases of the activatable services.

Transactions

When it is important to guarantee the order of a series of operations, or when data
consistency must be maintained between participants, this series of operations can be

combined into a transaction [31]. A transaction will guarantee that the operations

will all succeed or all fail. Transactions are very important in database systems and
other mission-critical systems. In Jini systems, transactions can be used as another

mechanism to deal with partial failures. The Jini architecture provides a distributed

transaction manager that can be used as a central monitor for two-phase commits.

Distributed event model

The Jini architecture supports a distributed event model, which supports one service

to receive notifications of state changes from other services on the network. This
model enables the construction of distributed event-based programs. A service that

cares about the status change of another service can register for event notifications

from that service. Each event registration is also based on a lease.

The JavaSpaces technology

A JavaSpaces service is an object-oriented implementation of the tuple-space that

first appeared in the Linda system [8]. It is a central object space that provides
simple and synchronized access to the entries stored in it. A JavaSpaces service is

implemented by Sun as a common Jini service for collaborative distributed applica-

tions; shared data can be stored in it so that concurrent accesses can be guarded to
achieve mutual exclusion and coordination among distributed processes.

Lookup S erv ic e

h ttp s erver

S erver s ite1C lien t s ite

P roxy

reg is ter

S erv ic e
Bac kend

reg iste r

re tu rn

Clien t

reg is ter

LUS d iscovery

P roxy clas s
file

P roxyac c es s es c om m un ic ates

RM IDactiva te s

L
U

 S
 d

i s
 co

v
e r

y

RM IDac tivates

J avaS pac es

Leas e Renew al
S erv ic e

T rans ac tion
S erv ic e

de
l e

ga
t e

renew lease

Server s ite2
reg is ter

S erv ic e
Bac kend

RM IDac tivates

S erver s ite3
reg is ter

S erv ic e
Bac kend

RM IDac tivates

ac tivates

activates

ac t iva te s

en try

s to re

fe tc h

co
or

d in
ate

coord ina te

coo rd ina te

Figure 3.8: An advanced Jini system

30

3.3.3 An advanced Jini system architecture

Figure 3.8 shows a more complex Jini system than the one depicted in Figure 3.1. In
Figure 3.8, three additional common Jini services (an LRS, a Transaction service,

and a JavaSpaces service) are added to provide comprehensive support for user-

defined services. If the number of services is not large, all common services can
run on one machine, as depicted in the figure. Because the LUS, LRS, Transaction

service and JavaSpaces service are activatable services, an rmid has to run to take
care of them. If the system scales up so that putting all common services in one

place will degrade the overall performance, we can assign those services to different

machines, each of which must also run an rmid.
Services can use a JavaSpaces service as a central object space to share informa-

tion. Operations owned by a collection of services can be wrapped into a transaction

in the transaction server to guarantee that all operations will succeed or all will fail.

3.3.4 Launching and shutting down the Jini system

1: java -jar $JINI_HOME/lib/tools.jar -port 8080 -dir $JINI_HOME/lib/&
2: /*start up the http server*/
3: rmid -log $HOME/jini_startup/log \
4: -J-Djava.security.policy=none \
5: -J-Dsun.rmi.activation.execPolicy=none \
6: -J-Djava.rmi.server.logCalls=false \
7: -J-Dsun.rmi.server.exceptionTrace=true&
8: /*start up the RMI daemon*/
9: sleep 2s
10: /*wait for two seconds*/
11: java -jar -Djava.security.policy=$JINI_HOME/policy/policy.all \
12: -Djava.rmi.server.codebase=http://myhost:8080/ \
 $JINI_HOME/lib/reggie.jar \
13: http://myhost:8080/reggie-dl.jar $JINI_HOME/policy/policy.all \
15: $HOME/jini_startup/reggie_log public&
16: /*start up the Jini Look Up Service*/
18: java -jar -Djava.security.policy=$JINI_HOME/policy/policy.all \
19: -Djava.rmi.server.codebase=http://myhost:8080/outrigger-dl.jar \
20: -Dcom.sun.jini.outrigger.spaceName=JavaSpaces \
21: $JINI_HOME/lib/transient-outrigger.jar public& \
22: /*start up the Transaction Server*/
23: java -jar -cp $JINI_HOME/lib/reggie.jar \
24: -Djava.security.policy=$JINI_HOME/policy/policy.all \
25: $JINI_HOME/lib/norm.jar http://myhost:8080/norm-dl.jar \
26: $JINI_HOME/policy/policy.all $HOME/jini_startup/norm_log
27: /*start up the JavaSpaces*/
28:
29:
30: java -Xbootclasspath/p:$HOME/io -jar $JINI_HOME/lib/tools.jar -stop
31: rmid -J-Xbootclasspath/p:$HOME/io -stop

Figure 3.9: Jini launching and shutting down scripts

Figure 3.9 illustrates how to use scripts to launch and shut down all Jini infras-
tructure components. Lines 1 - 27 start up the components, including an http server,

an rmid, an LUS, a JavaSpaces service and an LRS. Lines 30 - 31 shut down the

31

http server and the rmid. As the LUS, JavaSpaces service and LRS are activatable

services, destroying the rmid will result in stopping the execution of all of them.

3.4 Conclusion

Jini technology provides standard APIs to build Java distributed systems. Further-

more, it provides system support to make these distributed systems flexible, reliable
and scalable. It changes a conventional computing system to a network of services.

In this dissertation, Jini is used to construct the infrastructure of the distributed

CO2P3S environment. It greatly mitigates the complexity of implementing such a
system.

32

Chapter 4

Remote Method Invocation

4.1 Introduction to RMI

In distributed computing, it is necessary to support inter-process communication

for synchronization and coordination purposes. At first, programmers used sockets

which were originally UNIX APIs for TCP/UDP communication. Java supports
TCP and UDP sockets for low-level communication in Internet-centric client/server

applications. TCP sockets provide reliable, two-way communication; UDP sock-
ets offer broadcasting communication in a more efficient and faster way, without

providing the data delivery guarantees that TCP sockets provide. In sockets pro-

gramming, the programmer is fully responsible for network connection management,
wire protocol definition and additional checks for reliable transportation.

RPC (Remote Procedure Call) is an alternative to sockets. It is a mechanism

that defines a distributed calling model for distributed applications. The traditional
way for a program to interact with remote nodes is by explicit message passing.

With RPC, a client can access a remote server in much the same way that local

method calls are made, except for some data restrictions. In RPC, network com-
plexities are hidden from the programmer. Explicit message passing is replaced

by procedure calls to a local stub of the remote server. The underlying RPC run-
time, together with the stub, transfers the procedure information to the server to

be processed and receives any results. This kind of programming model simplifies

distributed computing. The user can focus on devising the application algorithms
instead of spending time on communication designs. However, the distributed com-

puting model supported in RPC is not object-oriented. Since JDK 1.1, Java has

provided RMI (Remote Method Invocation), a distributed communication mech-
anism, to support the extended semantics of RPC in the object-oriented world.

The key difference between RMI and RPC is that RMI supports object migration,

polymorphism and automatic distributed garbage collection [29].

4.2 The RMI programming model

RMI is implemented on top of Java TCP sockets and provides the semantics of
RPC with additional support for object orientation. It seamlessly incorporates the

distributed object model into the Java language to simplify object-oriented designs

in a distributed-memory environment.

33

Basically, a Remote object in the RMI model is an object that provides services to

clients on other virtual machines. A key principle in the RMI programming model

is that the behavior and the implementation of a remote service are separated.
Designing an RMI server involves two steps:

• Determining the server’s behavior. The behavior is implemented as an inter-
face, including a set of public methods. Only the public methods defined in

the interface are accessible to the clients.

• Providing concrete implementations to those methods in a class.

Clien t s ide

Ob jec tRem o te In ter fac e

Ac tivatab le

Remo t eO b ject

Un ic as tRem o teS erver

Remo t eServer

P roxy

Behav io r In ter fac e

S erver s ide

Se r v ic e ba c k e n dc om m un ic ate

OR

Figure 4.1: The RMI programming model

After these two steps, the interface and the implementation class are provided

to the RMI system to create the remote server. Each remote server consists of two
major components, one proxy and one backend. In reality, the backend consists of

one RMI generated skeleton class and the user class. In the RMI model, the proxy is

generated automatically from the interface provided by the designer. Both of these
two components implement the same interface (depicted in Figure 4.1) that defines

the server’s behavior. From the client’s point of view, the client accesses the proxy

in the same way that it accesses the remote server. Other than providing concrete
implementations of the remote behavior as the backend does, the proxy works as a

local deputy of the remote RMI server and is much like the local stub in RPC. The

network complexities are totally encapsulated in the proxy and the RMI system.
This proxy/backend model is the same as the one that Jini supports. However,

Jini supports proxies that can be devised by designers as well as be automatically
generated in the RMI system.

Using RMI, programmers can design distributed programs in much the same

style in which they develop sequential programs in a single-processor machine. A
programmer needs to obey the inheritance hierarchy (as described in Section 4.2.1)

34

and the behavior/implementation scheme to create a remote service. After that,

the client program has to follow proper procedures to load the service’s proxy into

its own memory space and to invoke methods on the proxy to access the remote
service.

4.2.1 The programming API

To have remote behaviors, an object has to directly or indirectly implement the

Remote interface. Consider the printer example described in Chapter 3. In this
chapter we choose to implement the printer service as an RMI server. In the RMI

implementation, the JiniPrinter class (Figure 4.2) implements an interface called

RemoteJiniPrinterInterface, which extends Remote and JiniPrinterInterface.
The latter defines the remote object’s behavior while the former helps the RMI sys-

tem identify the methods in the behavior interface as remotely accessible.
After the behavior has been specified in the interface, we have to provide concrete

implementations for each method in the JiniPrinter class. At line 21 in Figure

4.2, the concrete class JiniPrinter is defined.
After creating the remote interface and defining the concrete remote class, we

can use javac (Java compiler) and rmic (RMI compiler) to obtain the stub (the

proxy) of the JiniPrinter.
As depicted in line 21 of Figure 4.2, JiniPrinter extends interface Java.-

rmi.UnicastRemoteObject, which is one of the two classes that the RMI system

provides to facilitate the creation of remote servers. Each remote service should
extend java.rmi.server.UnicastRemoteObject or java.rmi.activation.Act-

ivatable. These two classes define the hashCode(), equals() and toString()

functions for remote objects. If a class extends none of the above, it has to provide

the correct semantics for these three methods itself. Moreover, these two classes

support two different reference semantics for remote servers:

1. UnicastRemoteObject [29] supports point-to-point active object references.

An instance of such a class does not have multiple identical duplicates on
different locations. The communication between each client and the server is

one-to-one. Moreover, instances of this class have to be running all the time

after being created. However, having multiple active servers running all the
time on one machine may take up significant system resources unnecessarily.

2. Activatable [29] enables servers to be activated on demand. This approach
is especially useful for large-scale distributed systems. Such systems may be

on different networks and share computing resources with many other applica-
tions. Using the Activation system (introduced later) will reduce unnecessary

resource use.

The RMI programming model also extends the Java exception model to handle

distributed exceptions during remote method invocations. The distributed excep-

tion model includes a series of new exception classes, which are all subclasses of
java.rmi.RemoteException. As specified in the interface definition that starts

from line 1 in Figure 4.2, each remote method declared in the interface must have

java.rmi.RemoteException in its throw clause.

35

1: im po r t java. rm i.Rem o te;
2 : im po r t java. rm i.Rem o teExc ep tion ;
3 : pub lic in ter fac e J in iP r in ter In ter fac e {
4 : pub lic vo id p r in tT ex t(S tr ing tex t) th row s Rem o teExc ep tion ;
5 : pub lic vo id p r in tG raph (G raph g raph) th row s Rem o teExc ep tion ;
6 : pub lic vo id p r in tP ages (P age[] page) th row s Rem o teExc ep tion ;
7 : }
8 :
9 : im po r t java. rm i.Rem o te;
10 : im po r t java. rm i.Rem o teExc ep tion ;
11 : pub lic in ter fac e Rem o teJ in iP r in ter In ter fac e ex tends
12 : J in iP r in ter In ter fac e, Rem o te
13 : {
14 : }
15 :
16 :
17 : im po r t java. rm i.Rem o te;
18 : im po r t java. rm i.Rem o teExc ep tion ;
19 : im po r t java. rm i. s erver .Un ic as tRem o teOb jec t;
20 :
21 : pub lic c las s J in iP r in ter ex tends Un ic as tRem o teOb jec t
22 : im p lem en ts Rem o teJ in iP r in ter In ter fac e{
23 :
24 : pub lic J in iP r in ter () th row s java. rm i.Rem o teExc ep tion
25 : {
26 : }
27 : pub lic S tr ing p r in tT ex t(S tr ing s tr){
28 : //p r in t a tex t;
29 : }
30 : pub lic S tr ing p r in tG raph (G raph g raph){
31 : //p r in t a g raph ;
32 : }
33 : pub lic S tr ing p r in tP ages (P age[] page){
34 : //p r in t pages ;
35 : }
36 : }

Figure 4.2: An example of building an RMI server

4.2.2 Remote object stubs and skeletons

Each RMI server contains one stub and one skeleton (the latter has become optional
since JDK1.2), both of which are generated automatically by the RMI system to

encapsulate communication details. These two entities act as two end-points of a
communication channel set up between a client and a server. The stub runs at the

client side and forwards the client’s requests to the skeleton running in the server

space; the skeleton analyzes the requests from the stub and dispatches correspond-
ing methods to the server’s backend. The communication protocol used between

the stub and skeleton is the Java Remote Method Protocol (JRMP). These two

entities are generated by compiling the remote object class using rmic. Since JDK
1.2, skeletons of all local servers can be replaced by one rmid. This daemon com-

municates with the remote stubs of local RMI servers and dispatches requests to

corresponding server backends.

36

Clien t s ide

S tub

S erver s ide

Serv ice backend

SkeletonC lien t

Figure 4.3: RMI stub and skeleton

4.2.3 RMI registry

The RMI system provides a simple naming service, called rmiregistry, to help a

client locate required services. The rmiregistry is a bootstrapping service that takes
care of the registrations and discoveries of the servers in the local machine. Servers

that want to announce their existence on the network will register with the rmireg-
istry using some textual description such as the servers’ names and capabilities.

Clients make queries into the rmiregistry database based on the textual information

for desired servers. The rmiregistry has two apparent weaknesses:

• the registration information is too simple to record some useful well-formatted

attributes of the servers, and

• one rmiregistry manages servers only on a local machine; a client has to

explicitly know the network address of the required server before it can locate

a rmiregistry at the same location and look for the server.

The rmiregistry is not used in our work because of its over-simplification; we rely

on the more powerful Jini LUS for the service lookup and registration.

4.2.4 RMI activation

Originally, all remote servers in an RMI system had to be running all the time
after being launched, but keeping multiple servers running consumes a lot of system

resources. Competitors of RMI, such as DCOM [26] and CORBA [19], can activate
objects upon request and deactivate them once the request has been processed. This

RMI weakness could seriously strain the performance of its applications. Since Java

2 SDK, the RMI activation framework has been introduced to meet the challenges
of its competitors. The basic idea behind RMI Activation is as follows [29]. At

first, an Activatable remote object will be up and running for a short while after

it finishes its registration with the rmiregistry and then quit. All the incoming
requests from remote clients to this service will be taken care of by an rmid. The

local rmid peeks at a certain port for incoming requests to all the registered local

Activatable services. If one request is for a service that is currently active, the
rmid directly dispatches the request to the service. Otherwise, the rmid will activate

the service and then dispatch the request to it. Remote objects no longer need to
stay active waiting for requests and taking up resources unnecessarily. Instead, they

can stay out of the memory and be activated upon request. When a request has

been served, the server can deactivate itself to release the allocated resources.
The RMI Activation framework introduces two main concepts: the Activatable

class and the rmid (the RMI Daemon). Each activatable remote object should

37

Clien t s ide
S erver s ide

Serv ice backend

Skeleton

rm ireg is try

 stub

Clien t s ide

S tub

S erver s ide

Serv ice backend

Skeleton

rm ireg is try

look up

com m un ica tes

di
sp

 at
ch

regi ste r

(a)

(b)

C lien t

C lien t

Figure 4.4: RMI registry

extend the java.rmi.activation.Activatable class. Moreover, one rmid is up

and running all the time at each host for all local activatable servers. The rmid

takes the place of both the rmiregistry and the skeleton.

4.3 RMI architecture

As depicted in Figure 4.5, the RMI system consists of three layers [29]:

• the stub/skeleton layer,

• the remote reference layer, and

• the transport layer.

These three layers work together to transfer the method invocation information
between a client and a server. Each layer has its own distinct functionality and

interacts with the layer below. At the client side, during one RMI call, the stub

encodes the method information, together with all marshalled arguments (Sun calls
the marshalling process serialization). This is passed to the lower layer, the remote

reference layer, which directs the transport layer to forward the information to the

destination. At the server side, the remote reference layer receives the information
from the lower transport layer and passes it to the skeleton. The skeleton decodes the

method information and unmarshalls all the method arguments before dispatching

38

Server JVMClien t JVM

Clien t S erver

S tub S keleton /RM ID

Remo t e R eference R emo t e R eference

T rans po r t S ubs ys tem

Figure 4.5: RMI architecture

the method to the local service backend. The following is a detailed description of

these three layers:

• The stub/skeleton layer uses the JDK-serialization routine (Chapter 5) to

marshall and unmarshall method arguments. Since JDK1.2, the skeletons of
remote servers on the same machine can be replaced by one rmid which then

takes care of incoming requests for all registered servers.

• The Remote Reference Layer (RRL) encapsulates different invocation seman-

tics and different reference semantics. The invocation semantics help identify
whether a server has only one instance or multiple duplicates at several lo-

cations, in order to determine whether a unicast or multicast communication

scheme is needed. The reference semantics supports persistent references to
both regular remote severs that will be active all the time and activatable

remote servers that will only be activated upon request. All these details are

transparent to the other layers. Currently, RMI supports only one set of in-
vocation semantics: the server is a single object, not having multiple replicas

at different sites.

• After the invocation semantics and reference semantics have been determined

by the RRL, the Transportation Layer deals with the communication channel

setup and management, remote object tracking and message dispatching to
remote objects.

The layered architecture facilitates the separation of concerns related to the com-
plexities of the RMI mechanism. Each layer has clearly defined interfaces and proto-

cols in such a way that it can incorporate different implementations as long as the in-
terfaces and protocols are kept intact. However, the current implementation of RMI

is not open-ended; components cannot be easily plugged in and out. For instance,

the JDK-Serialization routine, which is implemented in the ObjectInputStream

39

class, is utilized in RMI for argument marshalling. The current RMI implementa-

tion refers to it statically instead of binding an instance of ObjectInputStream to

an instance field, whose static type is a superclass of ObjectInputStream (such as
ObjectInput), at runtime. The transport subsystem of RMI has the same prob-

lem. As a result, RMI cannot incorporate optimized serialization and transport

components without modifications. Chapter 7 will introduce CO2P3S-RMI and
CO2P3S-serialization, both of which have more efficient implementations to address

high-performance computing.

4.4 Conclusion

RMI is a predecessor of Jini. It is also an infrastructure technology to facilitate

building Java-centric distributed systems. RMI provides a very easy programming
model to create remote servers. However, it is not as powerful and flexible as Jini.

In distributed CO2P3S, we mainly use RMI as a communication mechanism between
Jini services because of its simplicity. We rely on Jini to make the system flexible.

40

Chapter 5

Serialization

5.1 The purpose of serialization

In procedural programming, most data layout (values, arrays, records) is simple and

almost linear in memory so that the elements can be transferred and stored easily.

However, in the object-oriented world, the memory layout of objects is much more
complex, with many references from one object to another. In other words, linked

data structures are much more common. Data and operations are encapsulated
into an object to restrict the accesses to the data. Without language support, the

programmer cannot easily save objects’ states or send objects between different

address spaces.
Fortunately, JDK-serialization provides a generic way of linearizing storage for

Java objects [28]. Except for primitive data types, all other data are objects in

Java. The main idea of JDK-serialization is to use Java’s reflection capability to
access the internal structure of an object so that all its internal state and class

information can be stored into a linear byte stream. This stream of bytes can thus

be easily stored to a disk or transferred over a network to be constructed into an
identical object somewhere else. The conversion and reconstruction processes can be

done automatically by JDK-serialization and these processes are transparent to the
programmer. This mechanism greatly simplifies Java distributed computing, where

objects often need to be passed across different JVMs. During the serialization

and de-serialization processes, JDK-serialization also helps maintain Java security
requirements and class version consistency. The purpose is to prohibit malicious

revelation of an object’s internal structure and to avoid the situation that an object is

passed between JVMs which have different versions of class definitions. To use JDK-
serialization, the programmer does not need to provide any class-specific methods

(unless customization is desired).

JDK-serialization is a vital component of RMI. Methods can be invoked on
remote objects with given objects as arguments. To transfer an object to a remote

site and hide the complexity and communication details from the programmer, RMI
adopts JDK-serialization.

41

5.2 The programming API

To be serializable, objects should either implement the java.io.Serializable or

java.io.Externalizable interface; the latter is a sub-class of the former. The
java.io.Serializable interface helps a JVM identify whether an object can be

serialized or not. In JDK 1.0, all objects in Java were serializable by default. How-

ever, this scheme was not very secure because anyone could easily serialize any object
into a byte stream to discover its internal data contents. Since JDK 1.2, an object

has to implement one of these two interfaces (Figure 5.1) to be serializable. By this
means, the programmer can decide on a class-by-class basis which classes should

have exposed contents. Furthermore, using customized serialization, an object can

even choose to expose only a part of its state.
The java.io.Serializable interface is an empty interface. The programmer

is not required to supply any code. However, the designer can provide customized

serialization routines by writing two methods: writeObject and readObject. The
former allows an object to write some of its fields into the serialized data, while the

latter defines how to parse the customized serialized data. If a class only implements

the Serializable interface, the JDK-serialization routine will serialize all the fields
of an instance of the class by default. However, JDK-serialization will not access

any fields of an object that are not serializable. Subclasses of classes which are
not serializable can be serialized if the subclasses still implement the Serializable

interface and their non-serializable superclasses provide a non-argument constructor

to let the superclasses’ fields be initialized [28].
The Externalizable interface is a subclass of Serializable. It defines two

methods, readExternal and writeExternal, both of which have to be implemented

by its subclasses. The latter allows the class to be fully responsible for the format
of the serialized form, while the former defines the reverse.

At first sight, it is hard to tell the difference between the functionality of these

two interfaces, since both of them provide a mechanism for customized serializa-
tion. There is a slight difference between them: subclasses of the Externalizable

interface use a more powerful customized scheme. The writeExternal method has
full control of the layout of the serialized stream. When the serialization routine

encounters an object with a writeExternal method, it will invoke this method and

then return. However, the writeObject method only takes care of the contents
of the current object defined in the class where it appears. After a writeObject

method is executed, the serialization code scans the object’s superclasses to write

their instance fields. The readExternal and readObject methods have the same
difference.

Besides implementing the (read)writeExternal or (read)writeObject meth-

ods, an object can use another form of customized serialization. The object can
assign another object to replace itself to be written into the stream. For exam-

ple, by defining a writeReplace method, a Car object can assign a CarAgent ob-
ject to be serialized. If the writeReplace is implemented, another method called

readResolve has to be implemented to notify the de-serialization routine how to

deal with the input object. This will be discussed in the following section.
In addition to implementing the java.io.Serializable or java.io.Exter-

nalizable interface, each class has to provide an empty constructor so the Java

42

runtime can create an empty instance with initialized fields for the de-serialization

process. The code fragments in Figure 5.2 show how an object implements one of

these two interfaces and how to serialize an object in Java.

 pub lic In ter fac e S er ializab le {
 }

 pub lic In ter fac e Ex ternalizab le {
 pub lic vo id w r iteEx ternal() ;
 pub lic vo id readEx ternal() ;
 }

Figure 5.1: The serialization interfaces

5.3 The serialization process

Class ObjectOutputStream provides a series of methods to serialize contents into a

stream. For primitive data types, it provides writeByte, writeBytes, writeBoo-

lean, writeShort, writeInt, writeFloat, writeDouble, writeLong, write-

Char, and writeChars. For object types, one method, writeObject, is provided.
One object type—String—is treated specially: the programmer can use either

writeObject or writeString to serialize a String object.

Likewise, class ObjectInputStream provides a set of methods to restore infor-
mation from a stream. For primitive data types, it provides readByte, readBytes,

readBoolean, readShort, readInt, readFloat, readDouble, readLong, re-

adChar, and readChars. For object types, it provides one method–readObject.
For String objects, the programmer can use either readObject or readString.

The main entry point into the Object Serialization is the writeObject method,

the argument of which is the object to be serialized. Object serialization is a recur-
sive process. To serialize one object, the Java runtime recursively writes the whole

object graph, including the class information and the states of all the referenced
objects into a stream. The following is a detailed description of the serialization

process [28]:

1. If a subclass of class ObjectOutputStream is enabled to override this serial-

ization process, let an instance of the subclass handle the serialization of this
object.

2. If the object is null, a TC NULL marker is written into the output stream and

the process ends.

3. Check if the object has been replaced by another object previously. If the
replacement is found, the process writes the handle1 of the replacement to the

stream and ends.
1An internal hash table is constructed during a serialization process to store distinct objects that

have been serialized. Each time a new object is written into the stream, it is inserted into the hash

43

1: pub lic C las s S er ialization_P roc es s {
2 :
3 : pub lic S er ialization_P roc es s () {
4 : }

5 : pub lic s tatic vo id m ain (S tr ing [] argv) {
6 :
7 : F ileOu tpu tS tream os tream = new F ileOu tpu tS tream ("t. tm p") ;
8 : Ob jec tOu tpu tS tream pos = new Ob jec tOu tpu tS tream (os tream) ;
9 :
10 : pos .w r iteIn t(12345) ;
11 : pos .w r iteOb jec t("T oday") ;
12 : pos .w r iteOb jec t(new D ate()) ;
13 : pos . f lus h () ;
15 : os tream .c los e() ;
16 :
17 : F ileInpu tS tream is tream = new F ileInpu tS tream ("t. tm p") ;
18 : Ob jec tInpu tS tream p in = new Ob jec tInpu tS tream (os tream) ;
19 :
20 : in t tem p In t = p in . read In t() ;
21 : S tr ing tem pS tr ing = (S tr ing)p in . readOb jec t() ;
22 : S tr ing tem pD ate = (D ate)p in . readOb jec t() ;
23 : is tream .c los e() ;
24 : }
25 : }

Figure 5.2: An example of using serialization

44

4. If the object has already been serialized into the stream before, the handle

which points to the serialized data in the stream is written and the process

ends.

5. If the object is a Class object, its associated ObjectStreamClass is written

into the stream and the process ends.

6. If the object is an ObjectStreamClass object, information about the corre-
sponding class to be serialized including the class name, the Serial Version

Unique Identifier, and all the field information (name and type) is written and

the process ends.

7. Check to see if the object has not been replaced by another object before. If

not, the class of the object and/or a subclass of class ObjectInputStream (if

exists) will be given a chance to designate another object to replace this object
into the stream.

• As described in Section 5.2, the programmer can define a writeReplace

method for a class so that an instance of the class can assign a replacement
object to be serialized into a stream.

• The subclass of the ObjectInputStream also has the capability to replace
an object with another one as long as it calls the enableReplaceObject

method to enable itself to invoke the replaceObject method in Object-

InputStream.

If a replacement is returned after the first step, the subclass of class ObjectInp-

utStream will work on the delegate instead of the original object.

If a replacement is returned after these two steps, the mapping from the orig-

inal object to the replacement is recorded and the replacement is serialized
into the stream.

8. The contents of the object is written into the stream:

• If the object is a java.lang.String, it is written in the Universal Trans-
fer Format (UTF) format.

• If the object is an array, the ObjectStreamClass of the array is written
first, which is followed by the length of the array. Then all the elements

of the array are written to the stream. If the elements are primitives,

they can be directly written into the stream by calling one of the write
methods for primitive data types. Otherwise, if the elements are objects,

they will be written one by one by recursively calling the writeObject

method.

• For a regular object, the ObjectStreamClass objects, including the class
of the object and all super classes, except for Object, will be written.

Then, all fields of this object will be written one by one. If the field

table and assigned a unique handle. If later the same object is serialized again, only the handle
stored in the hash table will be written instead of the whole object. Based on this approach, if the
same object is written twice in one serialization process, the resulting stream will only contain one
serialized copy of it and a pointer which refers to the serialized copy.

45

has a primitive type, the data and type information are written directly

by the write methods for primitive data types. If the field has a non-

primitive type, the writeObject method is invoked recursively to write
this field. By this means, the whole object graph will be fully recorded

in the stream.

5.4 The de-serialization process

Object de-serialization is the reverse process of serialization. The programmer can

call the readObject method of an ObjectInputStream instance to restore the ob-
jects from the stream in the same sequence as they were serialized. The readObject

method returns an object referred to by an Object-type reference, which needs to

be cast to its original type.
Object de-serialization is also a recursive process. To de-serialize one object from

a byte stream, the routine recursively restores the whole object graph described in
the stream. The following is a detailed description of the de-serialization process

[28]:

1. If a subclass is enabled to override the ObjectInputStream, let the subclass

handle the de-serialization of this object.

2. If a TC NULL marker is read, a null object is returned.

3. If a handle is read, the object pointed to by this handle is returned.

4. Check if the object can been replaced by another object. If the replacement is

found, it is returned and the process ends. Corresponding to the serialization
process, the class of the object can define a readResolve method and the

subclass of class ObjectInputStream can use a resloveObject method to

find a proper replacement.

5. If the object is a Class object, its ObjectStreamClass is read from the stream

and it is inserted into a hash table and assigned a handle.2

6. If the object is an ObjectStreamClass object, the information of the cor-

responding class including the class name, the Serial Version Unique Identi-
fier, and all the fields information (name and type) are read to construct an

ObjectStreamClass object. The resolveClass method is invoked to load

the class for this descriptor; a subclass of the ObjectInputStream is given a
chance to load the class specially, e.g. from a remote place. If the class cannot

be loaded correctly, a class not found exception will be thrown.

7. The contents of the object are read from the stream:

• If the object is a string, the UTF format data is read.

2In the de-serialization process, a hash table, which is identical to the one that is used in
the serialization process is constructed according to the serialized stream. This hash table helps
decoding the handles in the stream. Each time an object is read from the stream, it is inserted into
a hash table and assigned a unique handle. Later, if a handle is read from the stream, the routine
will refer to the hash table by the handle to return an object.

46

• If the object in the stream is an array, its objectStreamClass and length

are read first. A new empty array is allocated and all elements are read

using the corresponding read method based on their types and are as-
signed to the array. If the elements are objects, they will be read one by

one by recursively calling the readObject method.

• For a regular object, an empty instance of the class is created by invoking
the non-argument constructor for the first non-serializable super class.

The fields are restored by the following:

(a) If the object implements the Serializable interface, the fields are

restored by calling readObject methods defined in the class and its
super classes. Otherwise, defaultReadObject methods are invoked

to read in all the serialized fields if readObject methods are not

defined. During this process, the version of the class specified in the
stream is compared with the local version. If they are the same, the

field restoration can continue safely. If they are different, fields have

to be restored carefully.

(b) For Externalizable objects, the readExternal method is called to
restore the contents of the object.

5.5 The layout of the serialized data

In this section we will go through an example to provide a clearer idea of the
serialization process. Figure 5.3 is the serialized format of an Integer object, whose

int value is 20. The left column shows the hexadecimal numbers while the right
column shows the corresponding ascii characters.

The beginning four bytes—“ac ed 00 05”—is simply the stream header marking

the start of this stream. After the stream header is the serialized form of the Integer
object, whose leading byte is 0x73 representing a stream marker TC OBJECT (listed

in Figure 5.3). TC OBJECT denotes that the following contents form an object.

After the TC OBJECT marker is a TC CLASSDEC (0x72) marker representing
that the following contents is the ObjectStreamClass instance of class Integer,

including the class name, a stream unique identifier (UID) defining the class version,

and all field names and types. The 19 bytes following the TC CLASSDESC marker
is the UTF coding of the Integer class name. After the class name is an 8-byte

UID, then is the SC SERIALIZABLE (0x02) marker denoting that the Integer

class is serializable. Then the following 2 bytes denote that there is one instance

field, whose type is int (0x49); the following 7 bytes are the UTF coding of the

field’s name, which is “value”. After the field name is the TC ENDBLOCKDATA
marker denoting the end of the ObjectStreamClass information.

Because the Integer class is a subclass of class Number, Number’s class informa-

tion should also be written. The objectStreamClass of the Number class is written
to the stream following the Integer’s objectStreamClass in the same format.

After the class description of the Integer class is written, the serialization pro-

cess continues to write all the fields of this Integer object. The Integer class has
one int field, so at the end of the stream four bytes - ’00 00 00 14’ representing the

int value 20 are written.

47

ac ed 00 05 73 72 00 11 6a 61 76 61 2e 6c 61 6e 67 2esr..java.lang.
49 6e 74 65 67 65 72 12 e2 a0 a4 f7 81 87 38 02 00 01 Integer.......8...
49 00 05 76 61 6c 75 65 78 72 00 10 6a 61 76 61 2e 6c I..valuexr..java.l
61 6e 67 2e 4e 75 6d 62 65 72 86 ac 95 1d 0b 94 e0 8b ang.Number........
02 00 00 78 70 00 00 00 14 ...xp....

final static short STREAM_MAGIC = (short)0xaced;
final static short STREAM_VERSION = 5;
final static byte TC_NULL = (byte)0x70;
final static byte TC_REFERENCE = (byte)0x71;
final static byte TC_CLASSDESC = (byte)0x72;
final static byte TC_OBJECT = (byte)0x73;
final static byte TC_STRING = (byte)0x74;
final static byte TC_ARRAY = (byte)0x75;
final static byte TC_CLASS = (byte)0x76;
final static byte TC_BLOCKDATA = (byte)0x77;
final static byte TC_ENDBLOCKDATA = (byte)0x78;
final static byte TC_RESET = (byte)0x79;
final static byte TC_BLOCKDATALONG = (byte)0x7A;
final static byte TC_EXCEPTION = (byte)0x7B;
final static byte TC_LONGSTRING = (byte) 0x7C;
final static byte TC_PROXYCLASSDESC = (byte) 0x7D;
final static int baseWireHandle = 0x7E0000;

Figure 5.3: The serialized data of an instance of class Integer

48

5.6 Discussion

JDK-serialization provides a linear storage technique for objects that supports a

convenient object transferring mechanism for Java distributed computing. It also
offers strong security and class version consistency control for transferring Objects

between different JVMs.

However, the complexity and high overhead reduce its suitability for high per-
formance distributed and parallel computing. In the HPC3 area, all participants

know exactly what classes are needed and trust the data sent between them. The
computation will last only a limited period of time, during which versions of classes

are not likely to change. In this case, the security and class version consistency

control become an obstacle for gaining high performance. In RMI, one third of the
time of a normal RMI call is spent in serialization and de-serialization, which is

quite significant.

As can be seen from Figure 5.3, the serialized data contains much redundant
information. In the detailed class information, except the class’s full-qualified name,

all other information such as the serial unique identifier and all field types and names

are unnecessary because different places will have the same version of the class and it
won’t change in one run. In the optimal situation, each object only needs its unique

class name and its internal data contents to be written to a stream. There are many
other kinds of redundancies that occur in the serialization process and they should

be reduced as much as possible to support high performance computing.

In Chapter 7, an enhanced implementation of the Java Object Serialization will
be introduced. It is used by our modified RMI. However, the programmer can

program with RMI and use our new serialization mechanism without being aware

of the modifications.

3Stands for High Performance Computing.

49

Chapter 6

The Architecture and

Infrastructure of Distributed

CO2P3S

6.1 Introduction

The existing version of CO2P3S supports only shared-memory parallel programming.

Using high-performance machines and commercial network connections, distributed-

memory systems are cheaper and easier to build and more readily accessible than
shared-memory machines. They can provide better scalability for some applications.

This dissertation describes how CO2P3S was extended to support programming

for a distributed system (DCO2P3S) on a network of workstations. The original
design goal was still maintained. This goal is to abstract parallel complexity into

parallel design patterns for the easy design of correct parallel programs with rea-

sonable performance. I built a runtime environment to support the execution of
distributed programs. The programmer can use distributed versions of pattern tem-

plates to generate code that runs in this environment.
In DCO2P3S, almost all the details about distributed parallel computing are

hidden from the user. Unlike multithreaded programming, which is fully supported

in Java, distributed multiprocess programming has little support in Java, except for
RMI and Sockets. Thus, to make DCO2P3S fully functional, we need to provide the

following facilities:

• an infrastructure to construct the whole distributed system,

• a communication subsystem,

• a synchronization mechanism,

• real-time performance monitoring and process management tools,

• and new versions of design patterns that generate distributed-memory code.

The rest of this chapter will give detailed descriptions of the first four compo-

nents; the fifth will be discussed in Chapter 8.

50

6.2 The DCO2P3S architecture

The first step in constructing DCO2P3S is to design a proper structure for the

system. As the existing CO2P3S system is implemented in Java, I can use two
Java-centric infrastructure technologies—RMI and Jini—to design the system ar-

chitecture.

DCO2P3S could be built on top of RMI in conjunction with additional central
control services devised by us. However, based on the differences between RMI and

Jini given in Chapter 3 and 4, RMI itself is not powerful enough to build a flexible
distributed system.

I decided to use Jini to construct DCO2P3S. In addition to a standard API,

Jini provides extensive support for Java-based distributed computing. Jini can be
used to build a distributed system with a scalable and dynamically-configurable

architecture. It also provides efficient process coordination mechanisms, a central

object space (a JavaSpaces service) for global synchronization and data sharing, and
a customizable communication scheme. All of these facilities offered by Jini greatly

alleviate the complexities of constructing DCO2P3S. More efforts could be focused

on pattern designs and performance enhancements.
DCO2P3S is implemented as a Jini system. All system control tasks such as

process spawning and killing, synchronization and communication, and real-time
performance monitoring are implemented using Jini technology. Applications gen-

erated using DCO2P3S contain multiple processes, each of which is a Jini service

running on a distributed machine. All Jini services locate each other through the
Jini lookup service (LUS) and coordinate with each other directly or through the

Jini Transaction Server and the JavaSpaces service.

Figure 6.1 illustrates the overall structure of the DCO2P3S environment. The
central control machine provides a graphical user interface for the programmer to

access the environment. The GUI extends the one in existing CO2P3S system with

control over the whole distributed runtime environment. The rectangles with thick
borders represent participating machines in the environment. Each machine contains

a set of Jini services that interact with others at remote sites. Through the user
interface, the programmer can easily configure and launch the whole environment.

The DCO2P3S Tools menu in Figure 6.2 shows three options—Distributed En-

vironment, Jini Start Up and Jini Shut Down—that control the DCO2P3S environ-
ment. The second option launches all Jini infrastructure components on one or more

machines. The third option destroys all Jini components in order to shut down the

environment. The first option, launches a configuration window, as shown in Figure
6.3. The left list box in the window includes all machines that comprise the system.

By clicking the Add, Delete and Delete All buttons, the user can add or remove the

machines in the system. The Launch button triggers all listed machines to launch a
series of daemon processes, which will be manipulated by the central control to pro-

vide execution support for distributed programs. The right list box in the window
allows the user to choose one or more machines from the left one as participants

for a specific application. This approach gives the user an option to apply static

load balancing to the application. By monitoring the real-time performance of all
machines in the environment (described later in Section 6.5), the user can choose

the most idle ones to use.

51

Lookup S erv ic e

h ttp s erver

S erver s ite1

P roxy

S erv ic e
Bac kend

P roxy clas s
file

RM IDactiva te s

RM IDac tivates

J avaS pac es

Leas e Renew al
S erv ic e

T rans ac tion
S erv ic e

S erver s ite2

S erv ic e
Bac kend

RM IDac tivates

S erver s ite3

S erv ic e
Bac kend

RM IDac tivates

ac tivates

activates

ac tiva te s

en try

CO2P3S GUI
c en tral c on tro lUs er

daem on

daem ondaem on

Figure 6.1: The overall structure of DCO2P3S

52

Figure 6.2: Menu options to start up the environment

Figure 6.3: The window to configure the DCO2P3S environment

53

After the environment is launched, all the underlying details about the dis-

tributed parallelism can be ignored by the programmer, who can use DCO2P3S the

same as CO2P3S. The PDP process still applies. Pattern selection and adaptation,
code generation and application instantiation are done using the central control.

No runtime environment will be involved until the generated application is actually

executed.
In DCO2P3S, a generated application consists of a main program and a series

of distributed slave processes. The main program is executed on the central control
machine. Each process is implemented as a Jini Activatable service (described in

Chapter 3) running on a distinct machine in the environment. Each slave process

contains a proxy and a backend.
Each distributed machine, except the central control, in the DCO2P3S environ-

ment runs an rmid to take care of the launching and shutting down of Activatable

processes. DCO2P3S employs the Java Activation system (Chapter 4) to make
efficient use of resources on distributed machines.

One LUS is setup in DCO2P3S to control the registration and discovery. By

using the LUS, the main program can obtain proxies to all distributed processes
to launch the computation and keep them coordinated. For instance, a DM Mesh

application (introduced in Chapter 8) has a main program and a set of distributed
processes. The main program creates a mesh data structure and divides it into

smaller blocks. Through the LUS, the main program finds all registered processes

that are able to process the blocks. Using proxies of these processes, the main
program can send one mesh block to each process and let them work on the blocks

in parallel.

This Jini-centric infrastructure allowed us to easily incorporate proper compo-
nents to support complex behaviors of distributed applications.

6.3 Communication scheme

After setting up the system architecture, we should decide an efficient and easy-to-

use communication mechanism for interactions between distributed processes. This

section will describe the design of the communication scheme in detail.

6.3.1 Design choices

A key feature of the Jini technology is that it supports customizable communication

scheme. A service designer can choose whatever applicable protocol for communi-

cations between one service and its clients. Furthermore, the design choice for the
service is totally transparent to the service’s clients, who only need to load the proxy

at runtime to discover the service’s interface for further interactions.

The default communication scheme used by Jini services is RMI, which is also
used in all Jini infrastructure components such as the Lookup Service, the JavaS-

paces service, the transaction manager and the Lease Renewal Service.
If RMI is used as the communication scheme in a user service, the proxy is sim-

ply a stub that is automatically generated by the RMI compiler (rmic). Using RMI

is advantageous since it greatly simplifies the communication design of distributed
applications. However, since RMI is not open-ended and it hides almost all the

54

communication details from the user, RMI is not flexible or customizable. It leaves

programmers little opportunity for fine tuning in high-performance computing ap-

plications.
Java sockets are an alternative to RMI. Using sockets, the user is responsible

for the correctness and efficiency of communication. As shown in the JiniPrinter

example in Chapter 3, the designer implements communication details for the proxy
and the backend. However, sockets have more flexibility than RMI and may perform

better since:

• more efficient wire protocols can be adopted,

• the designer can choose to implement a fat proxy or a thin proxy [33]:

– a fat proxy can process some or all of a client’s requests locally with-
out sending them to the backend. This approach is effective if a request

can be efficiently processed locally instead of involving network commu-

nications. Consider a request to ask for the remote server to display
real-time graphics based on the client’s input. It may be better if the

proxy processes the client’s input directly and then draws the graphics.

– a thin proxy simply forward the request to the backend and waits for a

reply.

Communication is often a performance bottleneck in distributed computing.

Customized communication may achieve higher performance by allowing the pattern

designer to reduce communication overhead for specific patterns.
DCO2P3S aims not only to reduce the complexities of parallel programming

in a distributed environment but also to support the design of new distributed

parallel patterns. The conflict between requirements for efficiency in communica-
tion and broad abstractions to assist pattern designers suggests that a compro-

mise is necessary. RMI was selected to design all required Jini services because

of its simplicity. However, the existing RMI implementation is modified to dimin-
ish the performance gap between it and Java sockets. Based on this approach,

I have created a system that uses RMI for design simplicities but achieves per-
formance similar to that of TCP Sockets. In particular, I have created a modified

version of RMI (DCO2P3S-RMI) that uses a more compact and efficient serialization

scheme (DCO2P3S-serialization) designed for high-performance computing. Using
the modified RMI provides generality to DCO2P3S programs, since it reduces the

need for end-user involvement for performance tuning of the communication pro-

tocol. This helps to maintain the CO2P3S goal of hiding parallelism from the end
users. Moreover, it also reduces the complexity of the design of pattern templates.

The DCO2P3S-RMI and DCO2P3S-serialization are discussed in Chapter 7. Exper-

iments were conducted to assess the performance differences between three kinds of
communication schemes: RMI, Java TCP sockets and C TCP sockets. The results

are listed in Table 6.1. To conduct the performance test, I implement a Jini ser-
vice both using the RMI and Java TCP socket. These two implementations follow

the examples described in Chapters 3 and 4. A C client/server program was also

developed to show the C socket performance.
The test program contains three major participants: two services and a client,

all of which run in the Jini environment. The schematics of this program are defined

55

as follows:

1. The two services register with the Jini LUS from two different machines and
wait for requests.

2. The client locates the Jini LUS to find these registered services and retrieve
their proxies.

3. The client invokes methods on the proxies. Performance results of the method
invocations on these two services are recorded.

Both services implement the same interface that contains three methods, each
of which has an array argument. The method signatures are shown in Figure 6.4.

The TestClass is a user-defined class with 6 instance variables: one is int and the

other five are Integers.

Figure 6.4: The interface of this service

The performance comparison focuses on the difference between the pure over-
head involved in the coding and decoding of method invocation information of the

RMI implementation and the TCP Sockets implementation. The real semantics

of these three methods are not important here. The test program was run on a
pc Cluster with 19 nodes connected with both the Myrinet and 100Mb Ethernet

connection. Each node has dual Athlon MP 1800+ cpus and 1.5GB of RAM. The
operating system kernel is Linux 2.4.18-pfctr and the JDK version is Java HotSpot

VM 1.3.1. Because RMI does not make use of non-TCP networks, I ran all per-

formance benchmarking with the Ethernet connection. The virtual machine was
started with a 256MB heap space. Table 6.1 records the execution time (in mi-

croseconds) of these three methods in the three implementations. The time is the

average of 100 executions. Clearly the performance of the C Sockets is the best.
And, as excepted, sockets are a bit faster than RMI.

6.4 Distributed synchronization mechanisms

After creating the system architecture and choosing the communication scheme, I

need to devise a distributed synchronization mechanism. A proper synchronization

package is indispensable for parallel applications. This section will introduce the
CO2P3S-synchronization primitives that can be used to describe the parallelism in

design patterns.

56

Implementation handleObjArr (Test-

Class[1000] objArr)

handleStrArr

(String[1000] strArr)

handleIntArr (Inte-

ger[1000] intArr)

RMI 36500 4600 6300

Java TCP Sockets 26600 4100 3500

C Sockets 200 170 58

Table 6.1: Comparisons between RMI, Java TCP sockets and C sockets (in mi-
croseconds)

6.4.1 Synchronization

Parallel applications use synchronization mechanisms to keep shared data consistent
and processes coordinated. Synchronization techniques include Mutex, Semaphore,

Barrier, Monitor, global clock and spin lock. The Pthreads, PVM and MPI libraries

synthesize complex synchronization mechanisms from simple atomic hardware prim-
itives. Java provides Monitors to fully support thread synchronization at the lan-

guage level. Such synchronization operations can also be implemented totally in
hardware for fine-grained parallelism.

One of the strengths of Java is that it supports multithreaded programming at

the language level. Thread synchronization, the major component in the Java mul-
tithreaded model, is supported by Java Monitors [39]. The Java virtual machine

associates a monitor with each object and provides two opcodes—monitorenter

and monitorexit—to access the monitor lock. In Java, it is convenient to imple-
ment complex thread-level synchronization semantics based on Monitors because in

shared-memory systems, the heap space and the method area are shared among all

threads.

6.4.2 The distributed synchronization implementation

In Java distributed computing, process synchronization has no direct support from

RMI and has to be implemented by the programmer. A distributed synchroniza-

tion mechanism is devised from scratch in DCO2P3S to simulate the Java Monitor
in a distributed-memory environment. It can be used as a parallel primitive for

expressing high-level parallelism in the Intermediate Code Layer of CO2P3S pat-

tern templates, or it can be used directly in distributed programming. Pattern
designers with experience using Java Monitors can easily acquaint themselves with

DCO2P3S-synchronization as they share similar syntax.
In our original design of DCO2P3S-synchronization, message passing was used.

The resulting implementation was self-contained and easy to use. However, because

of the lack of lower level communication support, setting up an all-to-all TCP con-
nection between N processes was too expensive. Using UDP does not help either.

Since UDP is not able to guarantee the arrival of data packets and their arrival

order, it is difficult to use UDP to implement correct coordination semantics, unless
additional checks are added at the application level.

Therefore, I chose to rely on the JavaSpaces technology (introduced in Chapter

3). The basic idea is to simulate the Java Monitor in a distributed environment. A
JavaSpaces service is setup in the DCO2P3S environment; it stores variables that are

shared among a collection of processes. The JavaSpaces service provides mutually

57

exclusive access to the shared variables. By this means, the basic mutex lock can

be implemented.

The class structure of the synchronization subsystem is described in Figure
6.5. The whole synchronization package includes the following classes: Barrier,

Monitor, Mutex, MutexEntry, ReadyQueue, ConditionQueue.

Bar r ier

bar r ier ()

Mon ito r

en ter ()

ex it()

w ait()

m on ito rNo tifyAll()

m on ito rNo tify ()

readyQueue
c ond itionQueue

Mu tex

loc k ()

un loc k ()

Mu texEn try

c oun ter
iden tif ier

if ! isE m p t y (r e a dy Q ue ue) ||
! isE m p t y (c o n dit io n Q ue ue)

m o n it o rN o t if y ()
e lse
 m ut e x .un lo c k ()

m ut e x . lo c k ()

E n try

m o n it o r

m ut e x
m ut e x E n t r y

m o n it o r . e n t e r () ;
if (m o n it o r .ge t C o un t e r () ==
P r o c e ssC o un t)
 m o n it o r .n o t if y A ll() ;
e lse
 m o n it o r .wa it () ;

Figure 6.5: Class hierarchy of distributed synchronization mechanism

The MutexEntry extends the net.jini.core.entry.Entry interface, the super-

class of all objects that can be stored in a JavaSpaces service, with two extra fields:
a counter to be used in the Barrier to count the number of processes that arrive and

a string value acting as a unique key identifying each distinct MutexEntry object in

a JavaSpaces service.
Each instance of class Mutex contains a MutexEntry and provides mutually ex-

clusive methods such as lock and unlock to access the MutexEntry instance. These

two methods are implemented based on two blocking methods—take and write—in
the JavaSpaces API. The take and write methods provide processes synchronized

accesses to entries stored in a JavaSpaces service. Each time an instance of class

Mutex is created, a distinct MutexEntry instance is stored in the JavaSpaces service.
Processes coordinated by the mutex invoke its lock method to acquire the mutex-

Entry. One process will eventually succeed and remove the mutexEntry from the
JavaSpaces service, while the others will be blocked until the mutexEntry is avail-

able again. The mutex lock can be released by the owner process (the mutexEntry

is written back to the JavaSpaces service) so that others can compete for it.
I built a DCO2P3S-Monitor based on the simple Mutex for more complex func-

tions. A group of processes can wait on some conditions for coordination, as sup-

ported by the Java Monitor. A monitor has one mutex and two queues that store
blocked processes. In Java, the JVM associates one monitor for each object auto-

58

matically, while in this case a monitor has to be generated explicitly for each use.

The following is the behavioral description of the DCO2P3S-Monitor:

• Instead of using the “synchronized(object)” syntax to guard a code block,

we use Monitor.enter() and Monitor.exit() to signify the entry and exit
of a code block guarded by the monitor. A monitor contains two queues [13]

to store waiting processes:

– A ready queue stores processes that are ready to continue their compu-
tations.

– Processes that are waiting for certain conditions to be satisfied are stored
in a condition queue. If a process successfully obtains the mutex lock to

continue into the code block, but later it finds that a certain condition

is not yet satisfied, the process simply invokes Monitor.monitorWait(),
which stores the process into the condition queue and releases the mutex

lock (Figure 6.6). This is analogous to calling the wait() method in a
standard shared-memory Java program that uses threads.

Figure 6.6: The distributed monitor

No queue is used to store the processes waiting for the mutex lock as such a

function is provided implicitly by the blocking mechanism of the take method

implementation of the JavaSpaces service. If the mutex lock is unavailable
when a set of processes are trying to acquire it by invoking the take method,

all the processes will be blocked. Once the mutex lock is available in the

JavaSpaces service, one take method will return, resulting in waking up one
process. The specific order in which the processes are chosen depends on the

implementation of the JavaSpaces service.

• If the condition becomes true when one process enters into the code block, the
process can invoke Monitor.monitorNotify() or Monitor.monitorNotify-

All() to wake up one or all the processes waiting for it. Awakened processes

are transferred from the condition queue to the ready queue. Again, this is
analogous to the shared-memory Java threads approach.

• Upon finishing the code block, a process must call Monitor.monitorExit(),

causing the monitor to pick a process in the readyQueue to be activated first.
If this queue is empty, the monitor will release the mutex lock to let processes

waiting outside the code block compete for it.

59

These behaviors of a distributed monitor are very similar to the Java Monitor

used for threads and are simple to use.

A barrier defines a synchronization point in a program that must be reached
by a group of processes before any of them can continue. With the support of

DCO2P3S Monitor, its quite easy to build a distributed barrier. A DCO2P3S barrier

uses a monitor to guard concurrent accesses to the barrier counter in the monitor’s
MutexEntry instance. Figure 6.7 is the main method in the distributed Barrier

class; it can be seen that the programming syntax is very similar to that of a Java
Monitor.

Figure 6.7: The distributed barrier

6.4.3 Discussion

In the DCO2P3S-Synchronization implementation, a JavaSpaces service stores all

the shared data and acts as a medium for indirect message passing. This design
is valid and provides reasonable performance for medium-scale parallel processing.

However, if there are a large number of participants, concurrent accesses to shared

data will result in a serious performance problem. There are two possible ways of
solving this problem:

• remove the JavaSpaces service and use explicit message passing for exchanging
information and pass the mutex lock as a token. A tree algorithm or butter-

fly algorithm [43] can be used to reduce the number of messages exchanged.
JNI (Java Native Interface [30]) can also be used to improve communication

performance.

• use a distributed-memory version of the JavaSpaces service. Currently, there

is one called GigaSpaces [37] which can act as a shared-memory layer for

distributed systems and which has the same interface as a JavaSpaces service.
Our implementation can be ported to the Giga-Spaces with only minor changes

for better performance for large-scale distributed computing.

60

6.5 Performance monitoring and process management

In a distributed system, having central control over distributed processes and remote

machines helps the user easily monitor and dynamically configure the system. We
want to provide such a function in DCO2P3S too.

For this purpose, we need to implement the following:

1. a real-time performance monitor which gives graphical run-time information

(CPU and memory load) for all participating machines;

2. a daemon that takes care of launching, shutting down and lease renewal (Chap-

ter 3) of remote processes;

3. a central panel displaying the output of remote processes.

The performance monitor

A graphical display of the runtime information of distributed machines helps DCO2-
P3S users monitor the environment to make full use of idle machines and avoid highly

loaded ones. Dynamic load balancing is not currently supported in DCO2P3S as this

requires extensive modifications to the Java virtual machine. Rather, by the use of
visual information, for most applications the user can easily improve performance

using static load balancing.

Performance monitoring needs to gather low-level runtime environment infor-
mation from distributed machines. However, as Java programs are interpreted by

the JVM instead of being executed on the hardware directly, the programs have
access only to the runtime information of the JVM and not to the physical machine.

The java.lang.Runtime class provides methods—freeMemory and totalMemory—

to return the free memory and total memory in the current JVM. The total memory
can be set at the launch of the JVM to designate a certain size of memory to exe-

cute Java programs, while the free memory shows the currently unused amount of

the heap space. Such information reflects the real-time status of the Java virtual
machine. However, it does not represent the overall load in the machine that the

JVM is running on.

To access low level hardware information in Java, I rely on the Java Native
Interface (JNI), which is a standard programming interface for writing Java native

methods and embedding the Java virtual machine into native applications [30].
JNI enables a Java program to interact with programs that are designed in other

languages such as C and C++. By this means, a Java program can cross the JVM

boundary and perform many low level operations.
LibGTop [21] is a C library that can fetch a system’s runtime information such

as the memory and cpu usage. I implemented a performance monitor using a com-

bination of JNI and LibGTop. A C program that uses the LibGTop library to
retrieve the required information from the system is manipulated by a Java pro-

gram through JNI (Figure 6.8). The “system information” menu item of Figure 6.9

is used to launch graphical displays1 (Figure 6.10 and 6.11). They show the runtime
information of the environment.

1The graphical display stems from a memory monitor in a Java 2D demo canned in the JDK1.2.2
distribution.

61

J ava c las s es JVM

JN I

C func tions C lib rar ies

Figure 6.8: Java Native Interface

Figure 6.9: The menu item to start up performance monitoring

Figure 6.10: The CPU usage of the machines in the environment

62

Figure 6.11: The memory usage of the machines in the environment

The process manager

A daemon running at each participating machine is responsible for remote pro-
cess management. A central manager controls these daemons by sending various

commands. These daemons are Jini activatable services so installing an additional

daemon on each machine does not require many resources that would degrade the
application’s performance. Each daemon controls all other local processes required

by the DCO2P3S environment. The daemon can launch and destroy processes,

manage their leases with the Jini LUS, and collect their output.

Remote display

Remote display is always a difficult problem in distributed systems because of a lack

of low-level control over distributed processes. However, I have solved this problem
by using the daemons. Each daemon gathers the output of all local processes and

sends the output to the central manager.

Figure 6.12 shows the run dialog used to execute generated applications. The
user must clarify whether an application is intended for a shared-memory environ-

ment or a distributed-memory environment. By clicking the radio box labeled “Dis-
tributed Memory”, the DCO2P3S environment is chosen for runtime. The user can

also specify the maximum and minimum heap size of JVMs that will be launched

on the central control and distributed machines. In the text field labeled “Main
class and command line parameters”, the user specifies the Java class that launches

the instantiated framework and provides necessary command line parameters. After

all necessary information has been specified, the user can click the Execute button
to run the application. Application output, including the results from distributed

machines, is displayed in the large text box at the top of the window.

63

Figure 6.12: The run dialog of DCO2P3S

6.6 Distributed parallel design patterns

After designing and implementing the DCO2P3S environment, distributed versions

of parallel design patterns were required to make it fully functional. The existing
parallel design patterns in CO2P3S were Mesh, Distributor and WaveFront. Accord-

ingly, three distributed patterns—DM Mesh, DM Distributor and DM WaveFront—

were added to the pattern library to support distributed programming in the DCO2-
P3S environment.

Intuitively speaking, distributed versions of parallel design patterns can be cre-
ated by replacing the shared-memory code templates in the existing patterns with

distributed-memory ones. Threads are replaced by processes, which are imple-

mented as Jini services. All the Jini-specific code is hidden in the framework. The
details of each DCO2P3S pattern will be discussed in Chapter 8.

6.7 Conclusion

In the DCO2P3S implementation, Jini has been chosen to create the overall archi-

tecture to make the system flexible and reliable. DCO2P3S-RMI, a modified version

of RMI, was employed to facilitate designers to generate efficient communication
schemes without much difficulty. Besides, we also developed our own synchroniza-

tion mechanisms and environment management tools to provide complete runtime

support for distributed applications. This runtime environment, as well as new
distributed design patterns, contributes to a fully functional DCO2P3S system.

64

Chapter 7

RMI and JDK-serialization

Modifications

7.1 Motivation

This chapter focuses on enhancing RMI’s performance by employing a more ef-

ficient and faster serialization routine. Since JDK1.2, RMI has been introduced

into Java to seamlessly incorporate the distributed object model. Combined with
Java’s dynamic class loading, object mobility, an extensive security model and

platform-independence, RMI provides a convenient way of building Internet-centric

client/server applications. However, RMI cannot offer high performance for appli-
cations on high-speed networks. The reason lies mainly in two aspects: an ineffi-

cient transport subsystem and a slow object serialization routine. Although using
technologies such as the HotSpot adaptive compiler, JIT compiler and Java native

compiler can improve an RMI application’s execution performance somewhat, the

time spent doing object serialization and communication still occupies a significant
amount of the total execution time of one RMI call.

• Since it is implemented almost entirely in Java and TCP sockets with only
sparse uses of JNI to access low-level buffers, RMI is unable to fully exploit

the network hardware resources. RMI cannot even gain much performance by

running on Myrinet or some other fast user-level networks.

• JDK-serialization is a key component in RMI to implement the argument pass-

ing semantics of remote method invocations. However, as described in Chapter
4, JDK-serialization does a lot of work that is redundant in the context of high

performance computing.

Table 7.1 shows the result of an experiment that identifies where the time (in

microseconds) of an RMI call is spent. The first row lists the time it takes to finish

three RMI calls; each with a different kind of argument. The second to fourth
rows are time break-downs for all these calls. Times of serialization, de-serialization

and network transportation are recorded in these three rows. Class TestClass,

TestClass1 and TestClass2 were used in the test. TestClass contains one int

field and five Integer fields; TestClass1 class consists of 3 int fields; TestClass2

also contains 3 int fields as well as two null TestClass2-type references.

65

The test program was run on a PC Cluster with 19 nodes connected with both the

Myrinet and 100Mb Ethernet connections. Each node has dual Athlon MP 1800+

cpus and 1.5GB of RAM. The operating system kernel is Linux 2.4.18-pfctr and the
JDK version is Java HotSpot VM 1.3.1. Because RMI does not make use of non-

TCP networks, the Ethernet connection is used in all performance benchmarking.

The virtual machines were started with a 256MB heap space.
It is important to note that serialization and de-serialization consumes most

of the total time of an RMI call, and so does the transportation time. For the
data in the second column, the total of the serialization time and de-serialization

time exceeds the time of the RMI call. This seems wrong at first sight. However,

the serialization process and the de-serialization process are not executed strictly
in a sequential order. These two processes are executed on two different JVMs

connected by a channel which in this case is a network connection. The serialization,

transportation and de-serialization are like three stages of a pipeline that works on
the arguments. For an RMI call, once the argument serialization is started, the

first available data packet will be transfered through the network connection to the

destination JVM, where the de-serialization will start immediately after the first
data packet arrives. These three processes will run in parallel after the serialization

process runs for a short while. Thus it is possible for the sum of the serialization
and de-serialization time to exceed the time of the RMI call.

TestClass[1000]

objArr

TestClass1

obj1

TestClass2

obj2

RMI 36500 680 700

Serialization Time 22690 60 60

De-serialization Time 26570 160 180

Java TCP Sockets 1160 20 20

Table 7.1: The RMI time split-up (in microseconds)

As described in Chapter 4, the JDK-serialization process addresses the reliability
and correctness of transporting objects among different virtual machines. JDK-

serialization not only uses many verifications to avoid class version inconsistencies
but also writes much extra information into the serialized data to correctly record

object graphs. In the high performance computing domain, such overhead incurred

is quite significant. The additional checks slow down the process time, while the
extra data increases the network transportation overhead.

In the HPC area, I can safely assume that all participants of one parallel ap-

plication share the same group of class definitions and trust the objects transferred
between each other. Based on this assumption, I can remove many checks to reduce

much of the overhead. Furthermore, with a thorough analysis of the JDK standard

serialization wire protocol, I can possibly compress the serialized data to shorten
the network transfer time.

As introduced in Chapter 5, RMI was used to describe communication schemes in
design pattern templates. In order to make RMI suited better for high-performance

computing as required by DCO2P3S, and to maintain the portability and compat-

ibility of existing Java programs, I modified the JDK-serialization implementation.
The RMI implementation is also modified slightly to make use of the new scheme.

66

By this means, our CO2P3S-RMI combines the existing RMI’s ease of use with

higher efficiency and lower overhead. Section 7.2 introduces related research involved

in enhancing the RMI and JDK-serialization performance. In Section 7.3 the design
of CO2P3S-serialization and modifications to existing RMI are discussed in detail.

Section 7.4 includes a comparison between three versions of Java object serialization:

JDK -serialization, DCO2P3S-serialization and UKA-serialization [34].

7.2 Related work

This section will introduce several endeavors that have been conducted to improve
JDK-serialization and RMI.

• Michael Philippsen et al. re-implemented JDK-serialization in pure Java.
Their new serialization mechanism, UKA-serialization, is used by karRMI [34],

which is also a re-implementation of Java RMI. The adopted techniques in the

UKA-serialization are the following:

1. Generated per class marshalling methods: In JDK-serialization,
if an object to be serialized has no customized marshalling routine, the

runtime system will use Java reflection to retrieve the class information

and all the fields of the object to write to the output stream. UKA-
serialization uses a preprocessor to pre-compile each ukaSerializable 1

class to generate explicit marshalling and de-marshalling routines, which

saves a lot of run-time overhead compared to using type reflections.

2. Slim encoding of type information: Instead of writing the complete
description of each class, only the fully qualified name is written into the

stream.

3. Efficient reuse of type information: As described in Chapter 5, a
hash table is constructed in JDK-serialization to solve aliasing problems.

The hash table helps avoid serializing the same object multiple times

(it is possible that one object is referred by several other objects to be
serialized). However, JDK-serialization refreshes the hash table before

processing each new RMI call. The contents of the hash table for one
call cannot be shared by other calls. Uka-serialization makes full use of

the hash table by clearing it only once for each connection, which may

contain multiple RMI calls. Thus different RMI calls can share one hash
table.

4. Better buffering: They make some private buffers in JDK-serializat-

ion classes public, so that they can be directly accessed and resized.

UKA-serialization is fully compatible with JDK-serialization. For existing se-

rializable objects it will delegate them to an instance of class ObjectInputSt-
ream. The enhanced serialization scheme will take effect only for those classes

that explicitly implement the UKATransportable interface and per-class mar-

shalling and de-marshalling methods. Unfortunately, because of the modified

1A ukaSerializable class can be recognized and serialized by UKA-serialization, just like a seri-

alizable class to JDK-serialization.

67

programming API, existing RMI cannot make use of UKA-serialization di-

rectly.

• Henri Bal’s group at the Vrije University in Amsterdam built a system called
Manta [20] to support Java-centric high-performance computing. The purpose

of Manta is to remove existing Java runtime overhead (such as the bytecode

interpretation and runtime reflection) as much as possible at compile time.
The whole Manta system is implemented in C, including re-implementations

of Sun RMI and JDK-serialization. Similar to UKA-serialization, Manta-

serialization applies a new wire format and requires explicit serialization and
de-serialization methods for each class. A native compiler compiles all Java

class files into native code, including the marshalling and de-marshalling meth-
ods. The native code of these methods are invoked once an instance of their

associated class is serialized. Based on explicit marshalling and demarshalling

routines and native compilation, Manta-serialization is much faster than JDK-
serialization. In addition, Manta uses a mechanism for a user to explicitly

replicate a remote server at multiple places to reduce the RMI overhead even

more.

• Matt Welsh et al. developed Jaguar [42] for efficient communication and I/O

in Java. Jaguar uses an alternative to JDK-serialization called Pre-Serialized

Objects (PSO). A PSO can be thought of as a Java object whose memory
layout is already in a serialized form. Associating a PSO with each object

can eliminate most of the overhead involved in official serialization and de-

serialization. In Jaguar, the first time an object is accessed a PSO is created
and associated with it. After that, all reads and writes to the object are

mapped to its PSO. During an RMI call, the PSOs are sent across the network.

• There are some other research efforts (Hyperion [12], Java/DSM [44],
cJVM [5], and JESSICA [22]) on simulating a distributed-shared-memory

layer on clusters. The existing multithreaded programming model can be used

without change and RMI is avoided.

7.3 Design of DCO2P3S-serialization

An important characteristic of CO2P3S-serialization is that it keeps the same pro-
gramming interface as JDK-serialization. The user can program using DCO2P3S-

serialization exactly the same way as using JDK-serialization. Existing Java dis-
tributed programs can enjoy the performance gains provided by DCO2P3S-serializa-

tion for free.

7.3.1 The CLASSPATH approach

To achieve transparency, portability and compatibility, I chose to implement DCO2-
P3S-serialization as a drop-in replacement for JDK-serialization. Existing JDK

classes that implement the serialization process (ObjectInputStream) and de-seriali-

zation process (ObjectOutputStream) can be masked by DCO2P3S-serialization
classes specified in a classpath. In JDK 1.1, a system’s classpath can be easily

changed by setting the CLASSPATH environment variable or using the ‘-classpath’

68

Java command line option. By this means, requests to JDK-serialization routines

can be re-directed to our CO2P3S-serialization classes.

However, the class loading mechanism has changed since JDK 1.2 [27]. The
JDK-serialization classes are now in another place which cannot be overridden by

original “-classpath” option any more. When the Java runtime needs to load a new

class for an application, it searches through a series of locations in the following
order:

1. Bootstrap classpath: this path points to two jar files: rt.jar which includes

all runtime system classes and i18n.jar which includes all internationalization

classes.

2. Installed extensions path: this path includes jar files in the lib/ext direc-

tory of the JRE directory.

3. classpath: this path includes third-party classes specified by the system prop-

erty java.class.path, which can be set by the CLASSPATH environment vari-
able or by -classpath/-cp command line option at run time. Since JDK 1.2,

java.class.path no longer covers the bootstrap class path and installed exten-

sions as JDK 1.1 does.

Since the separation of class search paths in JDK1.3 disables the simple approach
that works for JDK1.1, I resort to the Java command line options to override the

bootstrap classpath. Using the non-standard option “Xbootclasspath”, I can add

our own classes to the existing bootstrapping class search path to realize the re-
direction. Fortunately, all the execution commands are encapsulated in the scripts

launched by the DCO2P3S environment, so it is not necessary for the user to know

anything about the classloading mechanism.

7.3.2 Implementation details

JDK-serialization emphasizes the correctness of shipping object graphs in Internet-

centric applications with little considerations for high-performance computing in

wide-bandwidth low-latency networks. In DCO2P3S-serialization the requirements
of high-performance applications can be addressed by removing redundant checking

(introduced in Chapter 4) and data compressing. I argue that my approach is valid

because in these applications all objects are created and destroyed during a single run
of an application, even though this single run is distributed over many processors.

During one execution, all participants share the same group of class definitions and

the class versions are unlikely to change. Based on this observation, I can save many
checks and eliminate redundant information currently being transferred across the

network.
The techniques applied in DCO2P3S-serialization are the following:

Compact class information

The idea of using compact class information, which has been applied in several other

research projects [34] [20] records only the fully qualified name for each different
class. As described in Chapter 5, the official serialization process is a recursive

69

process which saves the complete object graph into a byte stream. In the graph, the

root node is the object that is serialized first, and all the other nodes are objects

that are referenced directly or indirectly by the root. Each object is associated with
one ObjectStreamClass object (also called the class descriptor) which contains

complete class information per class. The class information includes:

• a fully-qualified class name, e.g. java.io.ObjectInputStream,

• an identifier which is unique per class,

• a URL (optional) specifying the location of the class file,

• all the description of all of its super classes except Object, and

• all the descriptions of instance fields including primitive and non-primitive
ones (note that this may incurs recursive call of the serialization).

Integer Class Inf o data reference data reference data reference data ...

1st element 2nd element 3rd element 4th element

Integer Array
Clas s Info

Figure 7.1: The stream format of the 1000-element integer array

In the resulting stream, instances of the same class share one class descriptor.

As discussed before, JDK-serialization uses a strategy to solve aliasing problems.
For example, during the serialization process of an array of 1000 Integer objects,

an instance of ObjectStreamClass representing the Integer class will only be seri-
alized once when the first array element is scanned. The serializations of the other

elements will put references (4 bytes each) to the Integer class descriptor into the

stream. By this means, the resulting object graph can be compacted, as shown in
Figure 7.1. However, if the stream is a heterogeneous collection of objects, then de-

tailed per class information still occupy significant space because a single application

can use many different classes.
The complete class information can be reduced to a simple fully qualified class

name (e.g. Java.io.ObjectInputStream) because all the participants in one par-

allel application have the same version of a class definition. I assume that the class
definitions of the serialized data are locally available. This simplification not only

saves the size of the serialized data but also removes a lot of reads and writes during
the serialization and de-serialization processes.

Remove security checks

In a high-performance computing environment, participants of an application have

mutual trust in each other so that objects can flow freely between them. The Java
security control can be eliminated under this circumstance. All the security checks

in our serialization and de-serialization processes are removed.

70

Compact object references

Consider the Integer array example again. The serialized data stream will include
999 references that point to the same instance of class ObjectStreamClass (Figure

7.1), which contains the information for the Integer class. JDK-serialization uses

four bytes to represent one reference. Thus, each element has a redundant 4-byte
reference to the same Integer class information. For the Integer array, each array

element uses four bytes to store an int value. So the real data contents to be
transferred are 4,000 bytes. However, the serialized data will be at least 8,000 bytes

if the references are included. This is a significant amount of redundant space.

The identical object references can be treated in the same way the object aliasing
problem is solved. Distinct object references are stored into a hash table. The index

length of the hash table can be set to one or two bytes. Based on this scheme, a

four-byte long reference can be replaced by an index of one or two bytes long and
still supports 256 or 65535 different classes.

Each entry in the hash table has two attributes: one is a sequence number that

reflects the order that the distinct reference was stored in the hash table. The other
is the content of the reference. Figure 7.2 illustrates the approach. The first time

a reference is met by the serialization process, it is written to the stream in full,
headed by a short int with value -1. The new reference will also be stored into the

hash table with a sequence number. In the rest of the serialization process, if an

identical reference is to be written, only the sequence number of this reference in
the hash table will be actually stored into the stream. During the de-serialization

process, if the runtime encounters a -1, it reads in the following 4 bytes which is

the content of this reference. New references are appended to the end of a reference
array in the read-in order. If a positive number (a sequence number) is read, the

process will return the entry in the reference array indexed by this number. Figure

7.2 illustrates the enhanced stream format of the serialized Integer array after using
the compact reference scheme.

If the number of different references is less than 256, the sequence number can be
just one byte long. Thus the 4-byte reference can be compressed to 1 byte. However,

if the number exceeds 256, the hash table can grow in size and so does the sequence

number; so the resulting compression rate will be reduced from 4 to 2. The sequence
number can grow to 3 bytes too. Currently, the case of referencing more than 64k

different classes in one application is ignored.

The price of adding an intermediate layer (the hash table) is adding one extra
memory access to process each object reference and using more memory storage.

However the reduced transfer time outweighs this increased overhead.

Homogeneous array serialization enhancement

In addition to reference compression, I applied another even more aggressive seri-

alization technique for the special case of homogeneous arrays. Like many other

object-oriented languages, Java supports polymorphism. Each element of an array
with static type classA[] can be an instance of any subclass of classA at runtime

unless classA is final. Therefore during the serialization process, the runtime type of

each element must be computed and serialized even if all the elements end up having
the same type. The dynamic type computation of array elements is expensive both

71

Integer C las s
Info data reference data reference data reference data ...

1st element 2nd element 3rd element 4th element

Integer
C las s Info data -1 reference data index data index data ...

1st element 2nd element 3rd element 4th element

Index Contents

1 SampleTree C lass ref

2 SampleNode C lass ref

3 Integer C lass Infor Ref

Integer
C las s Info data -1 ref data 3 data 3 data ...

1st element 2nd element 3rd element 4th element

(b) The Serialization Process

Reference HashTable

refArr [1] -- SampleTree C lass Info Ref

refArr [2] -- Sample Node C lass Info Ref

refArr[3] -- Integer C las s Info
Ref

Return the Integer Class Desc r iptor Ref erence
to the De-ser ialization process

A ppend to the ref erence A rray

Reference Array

(c) The De-serialization Process

(a) Original Stream Format

Integer Array

Integer Array

Integer Array

Integer Array
Clas s Info

Integer Array
Clas s Info

Integer Array
Clas s Info

Figure 7.2: The enhanced stream format of the Integer array using compact refer-
ence scheme

72

in time and space, especially when the array size is large. If the array elements are

heterogeneous at runtime, such computation is necessary. However, if we know the

array elements are homogeneous ahead of time, can we do anything to save the over-
head? The answer is yes. In Java, a class marked as final can never be subclassed.

Therefore, an array whose component class is final must be homogeneous. we call

such an array, a final array. Unlike DCO2P3S-serialization, JDK-serialization
cannot make use of this final class information. In DCO2P3S-serialization, the wire

format of a serialized final array deviates from a non-final array. As illustrated in
Figure 7.3 for final arrays, the serialized data consists of two parts: a header and a

body. The header simply contains the array class name (e.g. ‘‘[Integer’’ 2) and

the length. The body part contains no class information for each element, because
such information can be fully inferred from the array class name. In the Integer

array example, the de-serialization routine can safely infer that the elements are

all Integers by the array class name. In Java all the primitive wrapper classes like
Integer and Float are final classes so in practice the opportunity for savings is

large.

In the case where an array is not a final array, a reference for each element
class (dynamic) must be stored. However, if this element has fields (instance vari-

ables) that are primitive or instances of final classes, this approach is applied to these
fields. The element class information, which includes the class name and the fields

information (final or not final) can be cached in the memory. By applying the infor-

mation to each array element, the serialization cost can be reduced by eliminating
redundant class information and unnecessary tests.

Class Name Array
Lengh data data data data data

Array Information Array Elements

Figure 7.3: The stream format for a final array

The CO2P3S-RMI implementation

RMI uses two classes—MarshalInputStream and MarshalOutputStream—to pro-
cess remote objects as well as ordinary serializable objects. MarshalInputStream

subclasses ObjectInputStream and MarshalOutputStream inherits ObjectOutput-

Stream. These two classes treat remote objects specially. For the definition of a
remote object, please refer to Chapter 4. Consider an argument of an RMI call

is a remote object, the RMI system will not pass the remote object to the callee.
Instead, a proxy of it (described in Chapter 4) will be serialized into the stream

at the call site. Thus the callee will use the proxy while executing the corre-

sponding method. The mechanism of replacing one object with another to seri-
alize it into a stream was introduced in Chapter 5. As the wire protocol has been

changed in ObjectInputStream and ObjectOutputStream, MarshalOutputStream

2The name of the Integer array class is represented as ‘‘[Integer’’

73

and MarshalInputStream also have to be modified. The modification only involves

reversing the order of several statements and this is the only change that has been

made to the existing RMI.

7.4 Performance comparison

In this section, the performance of three serialization schemes—JDK-serialization,
UKA-serialization and CO2P3S-serialization—are compared. Tables 7.2–7.5 lists the

performance of these three schemes. Four kinds of data were used in the test: an ar-

ray with 1000 TransportableTree elements, one TransportableTree object, an ar-
ray with 1000 TestClass elements and one TestClass object. For one combination

of each data type and each serialization scheme, three times (in microseconds)—the

serialization time, the de-serialization time and the sum of these two— are recorded,
as well as the length (in bytes) of the serialized data. The hardware and runtime

configuration for running the experiment is the same as I described in Chapter 6.

Transportable
Tree[1000]

Serialization
time

De-serialization
time

Total time Length of the
serialized data

JDK 28460 35800 63260 106123

UKA 25070 33030 58100 106084

CO2P3S 26430 36110 62540 71033

Table 7.2: Performance comparison for an array of TransportableTree (in microsec-
onds)

Transportable
Tree

Serialization
time

De-serialization
time

Total time Length of the
serialized data

JDK 440 290 730 188

UKA 320 310 630 140

CO2P3S 430 180 610 112

Table 7.3: Performance comparison for a TransportableTree (in microseconds)

TestClass[1000] Serialization
time

De-serialization
time

Total time Length of the
serialized data

JDK 22690 26570 49260 10061

UKA 26890 26670 53560 11064

CO2P3S 19590 26330 45920 5025

Table 7.4: Performance comparison for an array of TestClass (in microseconds)

Class TransportableTree3 implements the uka.transport.Transportable in-

terface. Like java.io.Serializable, uka.transport.Transportable is the iden-
tifying interface for UKA-serialization to recognize ukaSerializable objects. The

TransportbleTree has two int fields and two TransportableTree-type fields. This

3It is a tree structure designed in [34].

74

TestClass Serialization
time

De-serialization
time

Total time Length of the
serialized data

JDK 360 400 760 38

UKA 720 550 1270 41

CO2P3S 350 180 530 22

Table 7.5: Performance comparison for a TestClass (in microseconds)

HandleObjArr (Test-
Class[1000] objArr)

HandleStrArr
(String[1000] strArr)

HandleIntArr (Inte-
ger[1000] intArr)

RMI 36500 4600 6300

CO2P3S-RMI 31380 15% 4220 10% 5600 12%

Table 7.6: Performance comparison between Java RMI and CO2P3S-RMI (in mi-
croseconds)

class also contains a set of methods which are generated automatically by a prepro-
cessor. These methods will be invoked by the UKA-serialization routine to reduce

runtime type checking. These methods are transparent to JDK-serialization and

DCO2P3S-serialization. The level of a binary tree is two, i.e., an instance of Trans-
portableTree in the test program contains 7 nodes (the first level is 0).

Class TestClass contains one int field and 5 Integer fields and only imple-

ments the java.io.Serializable interface. UKA-serialization will not recognize
instances of this class and will just pass them to the standard JDK-serialization rou-

tine. Both the TransportableTree and TestClass class are final in order to use

the aggressive array compression scheme of CO2P3S-serialization (Section 7.3.2).
As can be seen from the tables, although DCO2P3S-serialization is not the fastest

in all conditions, the total time is always faster than standard JDK and is very
competitive with or beats UKA while being plug-compatible with standard JDK.

It is also the technique that provides the shortest serialized data in all cases. As

described in Section 7.3.2, the compact stream generated in the serialization process
deviates from the standard wire protocol. In the de-serialization process, additional

tests have to be made to differentiate the specific meaning of the data in the stream.

Extra data structures have to be created too. This extra limits the improvement of
the de-serialization process compared to JDK-serialization.

In Table 7.6 I compare the performance of RMI and CO2P3S-RMI. KarRMI

which uses UKA-serialization in the JavaParty project is not included. Unlike RMI
and CO2P3S-RMI, KaRMI is re-implemented to support non-TCP/IP networks.

It can easily achieve much better performance than existing RMI as the special
properties of the network (such as Myrinet) can be exploited. As CO2P3S-RMI is

still a pure-Java approach based on TCP sockets, I only compare it with JDK-RMI.

The hardware and runtime configuration is the same as described in Chapter 6.
As I can see from the table, CO2P3S-RMI gains up to a 15 percent performance

improvement over current RMI. Furthermore, we can expect better performance as

the argument size goes up.

75

7.5 Conclusion

In this chapter, I described the DCO2P3S-serialization scheme, including its design,

implementation and performance. As a drop-in replacement for JDK-serialization,
CO2P3S-serialization inherits the programming syntax of JDK-serialization. The

two kinds of techniques have been used: removing security checks and employing

higher data compression scheme. By applying these two techniques we not only de-
crease the communication latency (the object serialization and de-serialization time)

but also shorten the length of transmitted data. Among these two techniques, the
latter contributes more to the performance improvement. The wire protocol in the

new scheme is based on the existing scheme, but obtains improvements for certain

situations. The DCO2P3S-serialization scheme not only provides faster serialization
and de-serialization than the existing scheme but also produces much shorter serial-

ized data, which in turn reduces the network transportation overhead. As a result,

I realized my goal of facilitating the pattern designer in designing efficient patterns
without being involved in the communication design complexities.

76

Chapter 8

Distributed Design Pattern

Templates in DCO2P3S

8.1 Introduction

To make DCO2P3S fully functional, distributed-memory design pattern templates

are necessary for the execution of distributed programs. With the help of MetaCO2-

P3S, I created three new pattern templates: DM Mesh, DM Distributor and DM
Wavefr-ont. Each corresponds to one of the existing shared-memory templates

(Mesh, Distributor and Wavefront) supported in CO2P3S. These new pattern tem-

plates encapsulate concurrency designs supported in the DCO2P3S environment.
The user uses them in much the same way as their shared-memory counterparts.

8.2 The DM Mesh pattern

This section introduces the two-dimensional distributed-memory mesh design pat-

tern template (also referred to as DM Mesh). The description format follows that

in [15]. Here, we focus more on describing how to use the DM Mesh template in
DCO2P3S to generate framework code and how to use the framework to create a

concrete application. Performance considerations are also discussed about how to in-
corporate efficient customized communication and synchronization implementations

into the framework code.

8.2.1 Intent

DM Mesh supports mesh computation, which iteratively computes new states for

all elements of a two-dimensional data structure. Figure 8.1 [24] depicts two typical
mesh surfaces; one is an irregular shape and the other is rectangular. The new

state of each mesh element depends on the existing states of itself and its adjacent
neighbours, which may be four nodes or eight (Figure 8.2). The iteration repeats

until the states of all mesh nodes do not change by an amount greater than a

predefined threshold [23].

77

Figure 8.1: Two examples of a general mesh and a rectangular mesh [24]

Figure 8.2: Neighbour stencils

8.2.2 Motivation

The mesh computation is commonly used in many computationally intensive appli-

cations such as computer animation and simulation. Sequential mesh solutions may

take hours, weeks or even months to finish. Better performance can be achieved
by exploiting parallelism. The two-dimensional mesh surface can be divided into

multiple data blocks; each is assigned a computing unit (a thread or a process) for

processing. These computing units run in parallel and coordinate with each other
before each iteration. Each block cannot be processed until the boundaries of all

neighbouring blocks and itself are exchanged (as depicted in Figure 8.3), else the

new values of its boundary mesh nodes will be incorrect in the next iteration.
The existing Mesh Pattern template supported in CO2P3S generates multi-

threaded Java framework code. A distributed-memory version of the Mesh pattern
template for DCO2P3S was added into the pattern library.

The DM Mesh template encapsulates the parallelism in the same way that the

Mesh template does, except that it deals with multi-process programming in a
distributed-memory environment. The framework code generated from the DM Mesh

template encapsulates distributed process creation, process discovery, process syn-

chronization and network communication. Almost all the details of the distributed
computation are hidden from the programmer. The DM Mesh can be used in the

same way as a shared-memory mesh, by simply instantiating the pattern parame-

ters to generate the framework and filling in hook methods which contain sequential
code.

78

ghos t boundary

m es h b loc k

ghos t boundary

m es h b loc k

ghos t boundary

m es h b loc k

ghos t boundary

m es h b loc k

ghos t boundary

m es h b loc k

Figure 8.3: Boundary exchange scheme

8.2.3 Structure

Abs trac tCo llec to r

s tar tMes hP roc es s ()

s etCon tinueF lags ()

reduc eF lags ()

Co llec to r

c o llec to r ()

Abs trac tMes hP roc es s

s tar tUp ()

p repare()

no tDoneCond ition ()

operate()

exc hangeBoundar ies ()

pos tP roc es s ()

P roc es s

BoundedMes hS tat
eAr ray

getElem en t()

s etElem en t(Mes hS
tate s tate)

Mes hS tate

no tDone()
p repare()
operate()
pos tP roc es s ()

f o r a ll m e sh
p r o c e sse s

p r o c e ss. st a r t U p ()

OperateS trategy

operate()

BoundaryExc hangeS tr
ategy

exc hange()

Non - to ro idal
S trategy

operate()

F u lly - to ro idal
S trategy

operate()

Ver tic al- to ro i
dalS trategy

operate()

Ho r izon to l- to
ro idalS trategy

operate()

Non - to ro idal
S trategy

exc hange()

F u lly - to ro idal
S trategy

exc hange()

Ver tic al- to ro i
dalS trategy

exc hange()

Ho r izon to l- to
ro idalS trategy

exc hange()

e x c h a n ge St r a t e gy

o p e r a t e St r a t e gy

m e sh B lo c k

o p e r a t e St r a t e gy .o
p e r a t e ()

e x c h a n ge St r a t e gy .
e x c h a n ge ()

Figure 8.4: The class diagram of DM Mesh

Figure 8.4 depicts the class diagram of the DM Mesh pattern, including two

major participants—the mesh collector and the mesh process. A mesh collector

refers to a set of mesh processes which are computing units that work on mesh
blocks (represented by the BoundedMeshStateArray class). The collector starts the

mesh computation by distributing mesh blocks to processes and starting them up.

79

DM Mesh processes coordinate with each other for the computation over their mesh

blocks. This pattern also uses a strategy pattern [15]. Based on different boundary

and neighbouring conditions, different strategies are chosen to iterate through the
mesh blocks and exchange boundaries of neighbouring mesh blocks.

8.2.4 Pseudo code

The pseudo code for a DM Mesh application is:

1. Create an instance of the DM Mesh class, divide the mesh surface into a

number of mesh blocks (according to the number of available machines) and

send each block to a DCO2P3S process.

2. After the mesh blocks are distributed, the collector starts the execution of all

the remote processes. For each process, the following is done in a loop:

While (computation not done)

Exchange boundaries with processes which

have neighbouring mesh blocks.

Compute the new states for all mesh nodes

in its own mesh block.

Endwhile

PostProcess

Send Back its final mesh block to the collector.

8.2.5 DM Mesh pattern template parameters

To construct an application that uses a DM Mesh, the user first selects the DM Mesh

pattern in the CO2P3S GUI, as depicted in the right pane in Figure 8.5. The user has
to specify the template parameters to allow a specialized framework to be generated.

The pop-up menu in the right part of Figure 8.5 displays the associated template

parameters, which reflect design choices for this pattern. Different framework code is
generated according to different combinations of template parameters. The following

is a detailed description of the parameters with allowable values:

• The DM Mesh class name: This is the name of the class that represents

the whole mesh structure. This is the collector class. The user can create an

instance of this class to start a distributed mesh computation.

• The DM Mesh state class name: This is the name of the class whose

instances represent the mesh nodes, which populate the two-dimensional data
structure.

• The DM Mesh state super class name: This is the name of the super class

of the mesh state class. The user can easily incorporate application specific

classes into the framework by fitting the mesh state class into a certain class
hierarchy. As the template is implemented in Java, the default value of this

parameter is Object.

80

Figure 8.5: The graphical display of the DM Mesh pattern template

• Number of Neighbouring Elements: This parameter defines the neigh-

bours that are required for computing new values of each mesh node. A

four-neighbour stencil and an eight-neighbour stencil are supported (Figure
8.2). Each node has four neighbors by default.

• Boundary conditions: This parameter defines how to process the boundary
mesh nodes. It has four possible values:

1. Non-toroidal: The boundaries do not wrap around. All nodes will be
processed using only the connected neighbours.

2. Fully-toroidal: All the boundaries wrap around; all nodes are treated

in the same way.

3. Horizontal-toroidal: The horizontal edges wrap around, while the ver-
tical edges do not.

4. Vertical-toroidal:The vertical edges are cyclic and the horizontal edges

are not.

Figure 8.6 illustrates these four boundary conditions based on the four-neigh-

bour stencil. The boundary conditions of the eight-neighbour stencil are sim-
ilar except that diagonals may also wrap around.

• Mesh ordering: The mesh ordering parameter defines whether the compu-
tation over the surface is chaotic (Gauss-Saidel) or ordered (Jacobi). If chaotic

is selected, a node computation can use the current value or a previous value of

81

No n to ro rid al F ully T o ro rid al Ho rizo ntal T o ro rid al Vertic al T o ro rid al

Figure 8.6: The boundary conditions of DM Mesh

its neighbours. If ordered is selected, each node must use the latest neighbour’s

value. The default value is ordered.

8.2.6 Use of the template

As described in Chapter 2, the graphical interface provided by the DM Mesh tem-

plate (Figure 8.5) helps the programmer adapt the pattern to create a framework.

The pop-up menu in the right part of Figure 8.5 allows the user to instantiate
the template parameters. After parameter instantiation, the user can generate the

framework by selecting the first menu item of Figure 8.5, “Generate first code layer”.

The menu item named “view pattern template” is enabled after the framework is
generated. By clicking it, the programmer can view the framework code, which con-

tains all the hook methods in another pop-up window (refer to Chapter 2 for details).
The window helps the programmer input application-specific code to instantiate the

framework.

8.2.7 Implementation details

In the shared-memory mesh pattern, there is no real boundary exchange phase since
each thread has access to the whole mesh. Moreover, complex thread synchroniza-

tion mechanisms such as the Barrier can be built easily from Java synchronization
primitives. However, the benefits of the Java multi-threading model cannot be used

on a distributed-memory architecture. The boundary exchange becomes an explicit

phase with messages being exchanged between processes. These extra communica-
tions are the limiting factor for achieving high-performance. Java does not support

distributed global synchronization.

To solve the boundary-exchange problem, unsynchronized message passing is
used. The iteration over a mesh block is divided into two phases: the interior

iteration phase and the boundary iteration phase. Each process has two threads

that coordinate with each other for the computation of its mesh block. In the first
phase, one thread iterates over the block’s interior part. All of these mesh nodes

can access the required data from their neighbours. At the same time, another
thread is assigned the boundary exchange job. This thread sends messages across

the network to fetch the boundaries from neighbouring blocks and stores this data.

The first thread will be blocked after processing the interior part until the second
one finishes the boundary exchange. In the second phase, the first thread alone

will process all the boundary nodes. The boundary-exchange scheme is depicted in

82

Figure 8.3. This approach allows each process to keep the CPU busy while waiting

for the data from the network. Therefore, the communication overhead can be

overlapped partially by the computation.
The DM Mesh pattern makes use of the new distributed synchronization mech-

anism introduced in Chapter 6 to solve the global synchronization problem.

8.2.8 An example DM Mesh application

Many computer simulation and animation applications usually model the surface
of a target object as a two-dimensional mesh. For example, in image processing,

the image surface can be simply considered as a two-dimensional mesh, where each

mesh node represents one pixel of the image.

Figure 8.7: The zebra strips generated by Reaction-Diffusion

Reaction-diffusion is a chemical process that provides certain stable graphical

patterns. In this process, two or more chemicals diffuse over the surface and re-
act with each other to form a stable pattern. In computer graphics, the reaction-

diffusion simulation can be used to generate a zebra strip texture (Figure 8.7). In

the rest of this section the DM Mesh template will be applied to a reaction-diffusion
application according to the PDP process as described in Chapter 2. In this sec-

tion, I only focus on the first three steps of the PDP process, leaving performance

considerations until the next section.
In the first step of the PDP process, we can easily identify that the DM Mesh pat-

tern suits the reaction-diffusion process. The algorithm defines a two-dimensional

rectangular surface consisting of chemicals, each of which reacts with immediate
neighbours. After identifying the DM Mesh pattern from the reaction-diffusion ap-

plication, we can choose the DM Mesh pattern template from the left pane of Figure
8.8.

The next step is to instantiate the following parameters:

• The DM Mesh class name is instantiated as RDMesh.

• The DM Mesh state class name is set to be MorphogenPair. An instance
of this class represents a cell with a pair of morphogens.

• The MorphogenPair class has no specific super class, so the DM Mesh state

super class name is set to be Object.

• The topology of the mesh is fully-toroidal.

83

• The number of neighbours is 4.

• The mesh ordering parameter is set to be ordered.

Figure 8.8: The DM Mesh template with instantiated parameters

The third step is to generate a specialized code framework. The Reaction-

Diffusion framework contains a series of hook methods (Table 8.1) that the user

must fill in to provide application-specific details. These details include the un-
derlying computation that updates the morphogen concentrations at a node, the

threshold for stopping the computations and the reductions to be done on all the

nodes once the computation is stopped. Figure 8.9 lists the main execution loop
which invokes these hook methods in sequence.

pub lic vo id m es hMethod () {
 p reP roc es s () ;
 w h ile(no tDone()) {
 p repare() ;
 bar r ier () ;
 operate() ;
 }
 pos tP roc es s () ;
}

Figure 8.9: Code fragment of meshMethod

84

Hook method signature Implemented functionality

MorphogenPair(int i, int j, int sur-
faceWidth, int surfaceHeight, Object
initializer)

This method uses the user-specified
initializer object to initialize the mesh
node at (i,j) of the surface.

void preProcess()
void prepare()
void postProcess()

These methods allow users to specify
customized code fragment at different
points of the execution loop.

boolean notDone() This method evaluates the termina-
tion condition for each mesh node un-
til no one returns true.

void reduce(int i, int j, int sur-
faceWidth, int surfaceHeight, Object
reducer)

This method reduces the results of
the mesh computation with the user-
supplied reducer object.

void operate(MorphogenPair north,
MorphogenPair east, MorphogenPair
south, MorphogenPair west)

This method is the central part of
the mesh computation. It defines
how the MorphogenPair reacts with
its immediate neighbourhoods. Be-
cause the mesh surface in this case
is fully-toroidal, all mesh elements are
treated the same way. If the topology
is non-toroidal, six operate methods—
operateLeft, operateRight, operate-
Top, operateBtm, operateCorner and
operateInterior—will be generated to
process mesh nodes at different posi-
tions on the mesh surface.

Table 8.1: Hook methods of the DM Mesh Pattern

85

By filling in the hook methods with application-specific details, the DM Mesh

pattern has been fully instantiated into a specific mesh computation. The last thing

left to do is to write a driver program which creates an instance of the RDMesh and
launches the computation (Figure 8.10).

m es h = new RDMes h (s u r fac eW id th , s u r fac eHeigh t,
m es hW id th , m es hHeigh t, in itializer , reduc er) ;
m es h . launc h () ;

Figure 8.10: Code fragment of mainMethod

8.2.9 Application performance

The DM Mesh pattern can be used to generate parallel applications that achieve

a speedup in a distributed environment. The performance data of the reaction-
diffusion application are provided in Table 8.2.

Mesh Size 1 process 4 processes Speedup

400x400 31 103.2 0.3

800x800 120 110.2 1.1

1200x1200 267 131.5 2.0

Table 8.2: The Reaction-Diffusion application performance (in seconds)

The program was run using meshes with three different sizes. The central JVM

for the main program was started with a 512MB heap space. The distributed JVMs
were started with a 256MB heap space. The speedups are based on the average

wall clock time for ten executions compared to the sequential execution time using a

HotSpot virtual machine. Note that the timings consider only the computation time
and boundary-exchange time; the initialization and result gathering times are not

included. The results given in the table are not very satisfying. Using the real-time

monitoring function provided in DCO2P3S, each participating processor was found
to be less than 40 percent utilized when the mesh size was less than 1200x1200. Most

of the time was wasted on synchronization and boundary exchange. As the mesh
size rose to 1200x1200, each processor received more work to do that compensated

for the high communication overhead.

Based on the layered design approach supported in the PDP process, the user
still has a chance to tune the RDMesh application if current performance is not

sufficient. By following the last two steps in the PDP process, the user can modify

the parallel-structure implementations in the Intermediate Code Layer and even
modify some primitives in the Native Code Layer. In this case, the user needs to

modify the code in both the Intermediate Code Layer and the Native Code Layer.

Consider the main execution loop in the framework code of Figure 8.9. All
processes need to synchronize by calling the barrier method twice for each iteration.

One call is between the prepare() method and the operate() method inside the
execution loop. There is a hidden barrier inside the notDone() method that can

be found using the Native Code Layer. At the hidden barrier, all processes must

86

submit the current status of their own computation. Based on this information,

the collector decides whether the done condition is satisfied or not. Before such a

decision is made, all processes have to synchronize at the hidden barrier. The second
barrier is to ensure that no process can continue the computation until the last one

finishes updating its block. The preparation work is some pre-processing that has

to be done before each iteration.
The distributed barrier is very expensive in that it involves passing multiple

messages among all the participants. If the number of barrier synchronizations
can be reduced by one for each iteration, it will be a huge win in performance

since it will reduce the total synchronization overhead by 50%. By inspecting the

framework code and the code at the native layer, the user can choose to incorporate
the prepare() method into the notDone() method before the synchronization point

of the notDone() method. The new framework code is shown in Figure 8.11. Of

course this modification comes with a price: now each block has to prepare even if
it is not needed, so some cpu cycles maybe wasted.

pub lic vo id m es hMethod () {
 p reP roc es s () ;
 w h ile(no tDone()) {
 operate() ;
 }
 pos tP roc es s () ;
}

Figure 8.11: Code fragment of the modified meshMethod

Mesh Size 1 process 4 processes Speedup

400x400 30 63.9 0.5

800x800 120 71 1.7

1200x1200 267 90.8 2.94

Table 8.3: The Reaction-Diffusion application performance (in seconds)

Table 8.3 shows the performance results after modifying the code. As shown

in Figure 8.11, these results are better than Table 8.2, since the synchronization
points are reduced by half. Thus by using the PDP process, the programmer can

further incorporate application-specific information into the generated program if

such information cannot be captured by pattern parameters and hook methods.
Now that the code in Figure 8.11 can run faster than the code in Figure 8.9, we

can modify the code generated by the framework to use this faster version. However,
if the prepare() method is computation-intensive, always incorporating it into the

notDone() method will waste CPU cycles in the last iteration, where the prepare()

method is not needed. So this choice of code should become a performance parameter
in the pattern. The user can choose which code should be generated.

87

8.3 The Phases pattern

8.3.1 Intent

Help decompose a program into distinct phases, which will be executed sequentially.

8.3.2 Motivation

The existing CO2P3S system supports the Phases design pattern template. The
Phases pattern is not a real parallel design pattern; rather, it is a tool to facilitate

program design. The Phases pattern helps the programmer to divide the overall

control flow into consecutive phases, which are implemented as separate methods
that are called in a sequential order. Each phase undertakes a distinct task. As a

result, the Phases pattern facilitates the construction of an application with different

kinds of parallelism in different stages throughout its life-cycle. The Phases pattern
simplifies the design of complex parallel programs.

The Phases pattern can be supported in DCO2P3S without modification since
it contains no information about parallelism in itself.

Structure

Conc reteP has es

f ir s tP has e()
s ec ondP has e()
th irdP has e()

A bstractP hases

exec u teP has es ()
f ir s tP has e()
s ec ondP has e()
th irdP has e() t h is. f ir st P h a se () ;

t h is. se c o n dP h a se () ;
t h is. t h ir dP h a se () ;

Figure 8.12: The class diagram of the Phases pattern [23]

Figure 8.12 illustrates the class diagram [23] of the Phases pattern. The struc-

ture of the Phases pattern is simple, and includes only two main classes: the ab-
stract phases class and the concrete phases class. The user can modify the latter

to add different methods; each represents a distinct phase of an application. The

executePhases() method defined in the abstract class will invoke all these methods
in the same order as they are added.

88

Parameters

• The name of the Phases class.

• A sequence of methods

8.3.3 Using the template

Figure 8.13 shows the Phases template window involving an example application
named SamplePhases, which is the first pattern parameter. The method list in the

upper right part of the window includes all current phases that the programmer

wants to add to the application. By clicking the bottom entry of the pop-up menu
in Figure 8.13, the programmer can enlarge or reduce the method list.

Figure 8.14 displays all the hook methods that the programmer needs to imple-

ment after the framework has been generated. The implementation of these hook
methods can use different patterns. Therefore the generated Phases framework acts

as a bridge that connects different parallel patterns together. Section 8.4.6 has an

example application that uses the Phases pattern along with another pattern called
DM Distributor.

89

Figure 8.13: The template GUI of the Phases pattern

Figure 8.14: The code template of the Phases pattern

90

8.4 The DM Distributor pattern

8.4.1 Intent

The DM Distributor pattern template defines a data-parallel style of computation.

It applies the master/slave paradigm: a master has a fixed set of slaves and works
as a supervisor of them. The master divides up the work to be done and distributes

it to the slaves. The master also gathers results from the slaves and returns the final
result to the user.

8.4.2 Motivation

The master/slave paradigm is a fundamental and commonly-used model in parallel

and distributed computing. As illustrated in Figure 8.15, a group of slaves work

independently under the supervision of a master, who accepts tasks and divides
them into sub-tasks, each of which is assigned to a slave. No direct access to the

slaves from outside is allowed except through the master. The slaves act passively
based on the master’s commands. A slave does not have direct access to the master,

nor does it have direct accesses to other slaves. In contrast, the master can gather

necessary information from its slaves and supply them with new information. This
approach improves parallelism by avoiding direct references between slaves. How-

ever, in a distributed-memory environment, requiring the master to be involved in

all communications will inevitably increase the communication overhead. Enabling
direct references between slaves may incur less communication overhead so they can

spend more time on computational tasks.

S S

M

SS S

Us er

Figure 8.15: The object diagram of DM Distributor

Master/slave applications have a common structure, which includes the task di-

viding, slave control and sub-tasks dispatching, and can be abstracted using a par-

allel design pattern template. The DM Distributor parallel design pattern template
supports general master/slave computations in a distributed-memory environment.

This template allows the programmer to provide a list of methods, each representing
a task that should be conducted in parallel by all slaves. The methods are defined as

parallel methods that are implemented in both the master class and the slave class.

The master’s implementation is generated automatically, while the slave’s imple-
mentation is provided by the programmer to deal with each individual subtask. In

addition to these methods, the master can also have a set of sequential methods to

manipulate the states of its slaves.

91

8.4.3 Structure

A bstractD istribu torM a
ster

parallelMethod1 ()
parallelMethod2 ()

D is tr ibu to rMas ter

A bstractD istribu torS la
v e

parallelMethod1 ()
parallelMethod2 ()

D is tr ibu to rS lave

parallelMethod1 ()
parallelMethod2 ()

P as sT h rough
S trategy

d is tr ibu te()

Bloc kD is tr ibu
tionS trategy

d is tr ibu te()

N eighbou rD is tr i
bu tionS trategy

d is tr ibu te()

S tr ipeD is tr ib
u tionS trategy

d is tr ibu te()

D is tr ibu tionS trategy

d is tr ibu te()

Figure 8.16: The class diagram of DM Distributor

Figure 8.16 shows the class structure [23] of the distributor pattern, including

two major components—the DistributorMaster and the DistributorSlave. An
instance of the DistributorMaster refers to one or more DistributorSlave in-

stances. The strategy pattern [15] is also used to help the master divide each task

and dispatch resulting subtasks to slaves.

8.4.4 Parameters

The parameters [23] for the DM Distributor design pattern template are the follow-

ing:

• The name of the master class. The slave class name will simply have “Slave”

appended after the master class name.

• A list of parallel methods. Each is implemented in both the master class

and the slave class. The master’s implementation is generated by the template.

It encapsulates the details of job dividing, subtasks dispatching and invoking
the methods on the slaves. The slave implementation contains user-supplied

sequential code which defines the actions to be undertaken on each individual

subtask.

Each method element contains three sub-parameters:

– The return type. Each slave will return an instance of this type once

the method is done. The results are gathered by the master into an array
to be returned to the invoker.

– The method name.

92

– The arguments of the method. Each argument contains the type, name

and distribution strategy. Once a client invokes the parallel method on

the master with the required arguments, the master will invoke the same
method on all the slaves. The arguments will also be distributed to the

slaves to be used in the slave’s implementation of the parallel method.

The distribution strategy associated with each argument is used to decide
the scheme for dividing and dispatching it. Four different distribution

strategies [23] are supported:

1. Pass through. Each slave will have a duplicate copy of the argu-
ment that the master has.

2. Block distribution. The data (should be a one-dimensional array

in this case) will be divided into several consecutive equal-sized non-

overlapping data blocks, the number of which equals the number of
slaves. Each data block will be assigned to one slave.

3. Neighbour distribution. The data will be divided into several

consecutive data blocks each of which overlaps with its neighbors
somehow.

4. Stripe distribution. Data elements evenly-spaced in the array will

be chosen to form a data block to be assigned to each slave.

 1 2 3 4 5

1 2 3 4 5

 1 2 3 4 5

p a ss th rou g h

n eig h b ou r d istrib u tion

b lock d istrib u tion

strip d istrib u tion

Figure 8.17: Distribution strategies

8.4.5 Use of the template

The DM Distributor template GUI is shown in Figure 8.18. The pattern pane titled

with “Distributor” depicts the object structure of the DM Distributor pattern and

all of its instantiated parameters for a sample application. The master class name in
this case is DM DistSample and the slave class name is DM DistSampleSlave. The

method-list parameter on the right part of the pane shows the user-specified meth-
ods, including the complete method signatures as well as the distribution strategy

for every argument.

Methods can be added, deleted or edited by the use of the method input dialog
shown in Figures 8.19 and 8.20. In the window shown in Figure 8.20, all the sub-

parameters relating to one new method can be specified. For each method, the user

93

has to specify its return type, method name and arguments if necessary. The user

has to specify the distribution scheme only for arguments that are one-dimensional

arrays. Non-array arguments will be simply passed to the slaves by the master using
the pass-through scheme.

Figure 8.18: The template gui of DM Distributor

Figure 8.19: The method dialog of DM Distributor

After specifying all the required parameters, the user can execute the code gen-
eration command by clicking the pop-up menu option shown in Figure 7.2.4. A

new framework will be generated according to the specified class name parameter

94

Figure 8.20: Editing one parallel method

and the method list parameter. The hook methods provided in the framework are

simply the methods in the method list parameter. They provides a means for the
user to specify application-specific sequential operations that the slaves should do

under the master’s control.

8.4.6 Example application

PSRS (Parallel Sorting by Regular Sampling) [36] is a parallel sorting algorithm
suitable for a diverse range of parallel architectures. Its most notable characteristic

is its regular-sampling load-balancing heuristic, which yields good analytical and
empirical performance. During the sorting process, this strategy helps sample the

data to find out pivots that are used for an even redistribution of the data across

processors.
PSRS consists of four stages, as illustrated in Figure 8.21 [23]. The sequential

execution order of these stages has to be guaranteed for correct results.

Suppose p processors are used in the PSRS algorithm, the four phases are:

• Divide the whole data into p equal-sized consecutive segments and each pro-

cessor is assigned one. In parallel, processors sort their own parts and select
evenly-spaced elements as samples to be used in the next phase.

95

• One processor is assigned to gather all the samples and sort them. Another set

of samples (called pivots) are picked out from these sorted samples afterwards.

• Each of the other p-1 processors receives a copy of the pivots and divides

its sorted data according to them. All p processors exchange the resulting
subparts according to different pairs of pivots. For instance, processor 1 fetches

all the 1st subparts from all the other processors, processor 2 will have all the

2nd subparts, and so on. After the exchange is finished, subparts owned by
one processor will be in the same range.

• In parallel, p processors merge their subparts into contiguous parts and one
processor will collect all the sorted parts and concatenate them into a whole

array.

Figure 8.21: The four phases of the PSRS algorithm [25]

In a shared-memory environment, all processors share the same memory space.
Data dispatch and exchange can be simply realized by passing pointers and offsets

between threads. However, things are completely different in a distributed-memory
environment, where message passing must be used. It can be anticipated that phase

3 will be a bottleneck as (p-1)/p (theoretically) of the data will be sent across the

network. In our implementation, a non-blocking message passing scheme is adopted
to reduce the communication overhead involved. A main thread spawns a set of

children threads in which a number of RMI calls take place. By this means, we

96

Figure 8.22: The PSRSPhases pattern template

can issue many messages once and check the results of them together later, just like

what non-blocking MPI provides. All this is done in the framework code.

As the PSRS algorithm consists of four distinct stages, and the second and
fourth stages can use data-parallelism. a combination of the Phases pattern and

the DM Distributor pattern was chosen to implement the PSRS algorithm. The

implementation uses two instances of the Phases pattern template and one instance
of the DM Distributor pattern template.

The first Phases template instance is called PSRSPhases [23], which contains the
four PSRS phases listed above plus two additional phases (Figure 8.22). One of

these additional phases initializes the data and the other verifies the final result.

The fourth PSRS phase contains two sub-phases, which are modeled by the
second Phases pattern— MergePhases [23]. These two sub-phases are the following:

• Processors merge their sub-parts in parallel;

• A final merge which concatenates all the results of last phase into a single

array.

A single instance of the DM Distributor template is used in the application.

Two instances of the Phases pattern share one PSRSDistributor framework which
works both in the sort phase and the merge phase. This approach saves the effort

of redistributing the data through the slaves which would occur if two instances of

the PSRSDistributor pattern were used.
Figures 8.22, 8.23 and 8.24 illustrate these three patterns with instantiated pa-

rameters. Table 8.4 gives some performance results (in milliseconds). The program

97

Figure 8.23: The PSRSDistributor pattern template

Figure 8.24: The MergePhases pattern template

was run using an int array with 4 different sizes and with randomly generated values.

The runtime and hardware configuration is the same as in Section 8.2.9.

8.5 The DM Wavefront pattern

8.5.1 Intent

Similar to the DM Mesh pattern, the Wavefront pattern supports computations over
a two-dimensional rectangular data structure [3]. However, the Wavefront pattern

98

Size Sequential 2 processes 4 processes 6 processes 8 processes
time speed

up
time speed

up
time speed

up
time speed

up

2M 730 743 0.98 649 1.12 690 1.06 881 0.83

4M 1580 1216 1.13 973 1.63 919 1.72 867 1.8

8M 3417 2214 1.55 1515 2.26 959 3.60 809 4.22

12M 5340 3633 1.47 1871 2.90 1494 3.60 1170 4.56

Table 8.4: The PSRS application performance (in seconds)

provides more complex computation semantics. The computing of each element
depends on the results of the computations of a series of prerequisite elements. This

dependency relationship among elements results in data flowing through an acyclic
graph.

8.5.2 Motivation

1 2 3

4 5 6

7 8 9

NW N

W

Dep end enc y

Figure 8.25: The Wavefront pattern [3]

The Wavefront pattern models the computation over regular two-dimensional

data structures with complex dependency strategies. Each element can depend on
one or more of its immediate or non-adjacent neighbours. Rules are enforced to

avoid cyclic dependencies among elements so that all elements can be processed in

a specific order resembling a flow moving from one region of the surface to another.
In Figure 8.25 [3], a 21x21 matrix represents the data be processed in the whole

computation. The computation is based on the dependency graph depicted in Fig-
ure 8.25, in which each interior element is dependent on its north, northwest and

west neighbours. Boundary nodes and corners are treated slightly differently as the

topology is not toroidal in any direction. For instance, the nodes on the top edge
only depend on their west neighbours; the nodes at the left edge depend only on

99

their north neighbours. Unlike the mesh computation, each element is only com-

puted once.

In Figure 8.25, the upper-left corner is the only one that does not depend on
any other node. Thus it is the start point of the computation. The black stair-like

thick line denotes the current wavefront in the computation. Nodes above the line

have been processed; nodes directly underneath (in shaded color) are ready to be
processed as all of their prerequisites have been satisfied. All the other elements are

still waiting because the nodes they depend on have not been processed yet.
The nodes that are ready will be generated as the wavefront moves forward; each

ready node can be computed based on itself and all of its prerequisites. By assigning

these nodes to different processors, the wavefront computation can be parallelized.
To increase the granularity of the parallel processing, the matrix can be divided into

blocks, each of which is assigned to a processor. Figure 8.25 shows 9 blocks, each

containing 7x7 elements. The dependency graph described in the figure still applies
to the blocks, but at a larger-scale. For example, block 5 depends on blocks 1, 2

and 4. At the beginning, only one processor will be assigned a task, block 1, for

processing. As the computation continues, the parallelism grows as more and more
blocks are added to the work list.

However, the evaluation of the boundary nodes in each block needs information
from the neighbouring blocks. The boundary exchange is treated in the same way as

the DM Mesh pattern. Each block will distribute its boundaries to its dependents

once it is finished.
The distributed-memory Wavefront design pattern template encapsulates par-

allel design complexities such as the matrix surface division and distribution, the

communication scheme for boundary exchange, the synchronization support for mu-
tually exclusive access to the work list, etc. Different dependency strategies are also

recorded in the form of a template parameter. Provided with a combination of

user-specified parameters, the DM Wavefront template will generate a framework
with all the code necessary to define the overall structure and the parallelism for

the application.

8.5.3 Structure

Figure 8.26 shows the class structure of the Wavefront pattern template. Two
main components are the Wavefront controller class and the Wavefront process

class. An instance of the controller class divides a wavefront surface to initialize a
central work list. A series of Wavefront processes will mutually exclusively access

the work list to obtain mutually exclusive blocks to compute. Two instances of

the Strategy pattern are used in DM Wavefront. One is called OperateStrategy,
which is used by each process to compute its acquired block based on different

dependencies. The other is called BoundaryStrategy, which helps the Wavefront

controller determine how to send the boundaries of a finished block to its dependents.
BoundaryStrategy is used if the computation of each node only needs access to

its immediate neighbors. If the computation also needs non-adjacent nodes, the

controller will provide another series of methods to fetch the required nodes. This
condition only exists in the distributed-memory environment and can be captured

by a pattern template parameter described later.

100

A bstractCon tro ller

in itialize()

s tar tW aveP roc es s ()

f illBoundary ()

w o rkDone

Con tro ller

c o llec to r ()

A bstractDWav ef ron tP
rocess

s tar tUp ()

no tDoneCond ition ()

getW ork ()

operate()

P roc es s

DW avef ron tBloc k

p roc es s ()

s ignal()

DW avef ron tElem en t

reduc e()
operate()

f o r a ll m e sh
p r o c e sse s

p r o c e ss. st a r t U p ()

OperateS trategy

operate()

BoundaryS trategy

exc hange()

D ependenc yS
trategy1

operate()

D ependenc yS
trategy2

operate()

D ependenc y
S trategyn

operate()

BoundaryS tra
tegy1

exc hange()

BoundaryS tra
tegy2

exc hange()

BoundaryS tra
tegyn

exc hange()

bo un da r y St r a t e gy o p e r a t e St r a t e gy

wa v e P r o c e ss

o p e r a t e St r a t e gy .o
p e r a t e ()

e x c h a n ge St r a t e gy .
e x c h a n ge ()

wa veCo n tro lle r

Figure 8.26: The DM Wavefront pattern structure

8.5.4 Pseudo code

The pseudo code for a DM Wavefront application is as follows:

1. The Wavefront controller will do the following:

(a) create an instance of the DM Wavefront class, divide the wavefront sur-

face into a number of blocks (according to the number of available pro-
cessors),

(b) initialize the blocks and create dependencies between them,

(c) and put the block which is the starting point of the wavefront computa-

tion into a worklist.

2. After the initialization work has been done, the controller will start the exe-

cution of all the remote slave processes. For each slave, the following steps are
done in a loop:

While (computation not done)

Get one block from the controller’s worklist,

Process this block.

Once the block is finished, notify its dependents

and send back its boundaries to the controller

to fill the ghost boundaries of the dependents.

Endwhile

101

8.5.5 Parameters

The DM Wavefront template parameters can be classified into two categories: design
parameters and performance parameters. The design parameters have an impact

on the overall parallel structure of the resulting framework for the target problem.

The performance parameters are only concerned with the efficiency of the generated
framework code, not the structural designs.

The DM Wavefront pattern template has three design parameters:

• The name for the Wavefront element class instances which represent nodes in

the Wavefront surface.

• The shape of the element matrix (see Figure 8.27). The value of it is defined

as follows:

– Full Matrix in which all elements of a rectangular matrix are populated
with data to be computed. It is the default value.

– Triangular matrix in which only half of the matrix is processed.

– Banded matrix in which only several element bands parallel to the diag-
onal are computed.

(a) F u ll Matr ix (b) T r iangu lar Matr ix (c) Banded Matr ix

Figure 8.27: Three matrix shapes supported in DM Wavefront

• The dependency set for all nodes on the surface. A graphical user inter-

face (Figure 8.29) is provided to the user to specify the dependency set. Not

all combinations of the eight directions are legal dependency sets. Combina-
tions that include opposite directions are illegal since they may create cyclic

dependency graphs, resulting in deadlock during the computation.

The three performance parameters are the following:

• The notification method used to inform wavefront nodes whose dependency
constraint has been satisfied. This parameter has two values:

– the Push notification scheme which lets an element notify its dependents
once it is done;

– the Pull notification scheme which has all the dependents actively test
their prerequisites for completion.

102

• The type of Wavefront elements. The user can choose to specify the type

of the element. If the element type is primitive, a specific primitive type

such as int or char can be chosen to generate static methods for computing
each element. If the element type is the object type, instance methods are

generated to process instances of the element class. Executing static methods

with primitive data can be more efficient than invoking instance methods on
objects.

• The Neighbours only conditions defines whether each element only accesses
its immediate neighbourhood or not. In a shared-memory environment, this

parameter will not make much difference since the whole surface is accessible to
every thread; in a distributed-memory environment, accessing non-immediate

neighbourhoods needs more explicit messages to be passed between machines

and may incur more overhead than accessing immediate neighbours

8.5.6 Use of the pattern template

Figure 8.28: The DM Wavefront template GUI

The DM Wavefront template is shown in Figure 8.28. The pattern pane titled

with “DM Wavefront” depicts the diagram of the DM Wavefront pattern and all of
its instantiated parameters for a sample application. In this case, the Wavefront

element class name is SampleDM Wavefront. The matrix shape is full matrix. The

103

Figure 8.29: The dependency dialog

dependency set is North, Northwest and West, as depicted in the right corner of

the window. The notification method is Push and the neighbours-only parameter is

true. Pop-up windows in the figure provide options to set different parameters. For
example, Figure 8.29 shows a dialog used to set the Dependency parameter.

After the instantiation of all template parameters, the user can choose the code

generation option to generate a new framework. This framework provides a series of
hook methods (Figure 8.30), which define the computation for each element based

on its prerequisites. The user must also provide sequential code to create a concrete
application. As depicted in Figure 8.30, a set of hyperlinks are provided to direct

the programmer to different dialogs to input the sequential code for different hook

methods (Figure 8.31).

8.5.7 Applications

The Wavefront pattern has applications in many different domains. For example,
in bioinformatics it can be used for genetic sequence alignment. In the scientific

computing area, it can help solve the LU-decomposition of matrices and the matrix
product chain problem.

8.5.8 Example application

Sequence alignment [10] is one of the fundamental techniques used in computational

biology research. Different genetic sequences can be aligned using this algorithm to
gather evidence of similar functions or common biological origins. DNA or protein

sequences are converted to arrays of letters and aligned. The alignment process will

compare these sequences with cost functions. The purpose of such functions is to
find an optimal comparison score so as to maximize the similarities between the

sequences.

The sequence alignment problem can be solved using a dynamic programming
matrix, which can be modeled by the Wavefront pattern. In essence, aligning two

sequences with lengths of m and n reduces to finding a maximum cost path through a

matrix of size (m+1)x(n+1). An extra row and column are added to represent initial
scores of the matrix to start the computation. The computation starts from the top

left corner and proceeds to the bottom right corner. The resulting paths across

the matrix represent different combinations of the possible operations: letters are
matched, mismatched and matched with gaps inserted into the original sequences.

The instantiated design template parameters for this application are:

104

Figure 8.30: The code template with all hook methods

• The Wavefront element class name is SAElment

• the matrix shape is full matrix, and

• the dependency set is North, Northwest and West.

The performance parameters are the following:

• the notification method is Push,

• the type of wavefront elements is int, and

• instances of SAElement only needs to access its immediate neighbours.

105

Figure 8.31: The hook method instantiation dialog

Figure 8.32: The sequence alignment application

106

Figure 8.32 is a screen shot of the CO2P3S GUI showing the Wavefront template

instantiated with these six parameter values.

Six hook methods are provided by the Wavefront framework after pattern tem-
plate parameters are instantiated. In the sequence alignment application, they are

implemented as follows.

• operateCorner(): it returns 0 to set the top left corner.

• operateLeft(): it calculates the elements along the left edge based on their
north neighbours.

• operateTop(): it computes elements along the top edge based on their west
neighbours.

• operateInterior(): this method is the core of the sequence alignment. It
computes the element value based on its adjacent neighbour elements (north,

west and northwest) along with a cost function.

• initialize(): in this example application, this method does nothing since

the matrix elements need no initialization.

• reduce(): this method is used to save the results of the computation. In

this application, the method will return the value at the bottom right corner,
which is the optimal comparison score accumulated during the computation.

Table 8.5 lists the performance (in milliseconds) of the sequence alignment ap-
plication using the Wavefront pattern. The speedup rises slowly as more processors

are added. Although these speed-up numbers are not great, they still indicate some

speed-up in exchange for quick parallelization.

Size Sequential 2 processes 4 processes 6 processes 8 processes
time speed

up
time speed

up
time speed

up
time speed

up

10000x
10000

6386 7321 0.87 3733 1.71 2633 2.43 2115 3.02

Table 8.5: The sequence alignment application performance (in milliseconds)

8.6 Conclusions

This chapter introduced four distributed design pattern templates—DM Mesh, Pha-

ses, DM Distributor and DM Wavefront. Programmers can use these pattern tem-
plates to design distributed applications in the DCO2P3S environment. From the

descriptions of these pattern templates and some real applications, we can see that
these patterns are easy to use and that they generate parallel designs with reasonable

performance.

107

Chapter 9

Summary and Conclusions

This dissertation describes a research project that supports parallel programming
in a distributed-memory environment. It is an important extension of the exist-

ing CO2P3S environment which is restricted to shared-memory environment. My

extended CO2P3S, called Distributed CO2P3S (DCO2P3S), minimizes the user in-
volvement in the intricacy of distributed, parallel programming, while providing

reasonable performance gains.

9.1 Contributions of this research

This research made a number of contributions to the CO2P3S project. First of

all, a full-fledged distributed-memory runtime environment (DCO2P3S) has been
built. Jini, RMI and JDK-serialization are three main technologies used in the

implementation for the infrastructure and communication support. Other important

components of DCO2P3S include the process manager, synchronization controller
and performance monitor, all of which are implemented using techniques such as

Jini, JNI and JavaSpaces. Secondly, I developed a customized version of JDK-

serialization— CO2P3S-serialization. The existing RMI is slightly modified to make
use of the new component. The new routine applies a more efficient wire format and

more aggressive data compression schemes. Using CO2P3S-serialization, the RMI
system has less overhead in the argument marshalling phase and the transportation

process. The pattern designer can enjoy the performance improvement for free and

use RMI the same as before.

9.2 Future work

One on-going research project is to devise a meta-level pattern language to facilitate
the design of new design pattern templates. To support the design of distributed

pattern templates, I should encapsulate the details related to Jini (such as the

service discovery and service lease renewal) into the pattern language using macros
or explicit language constructs.

Another possible avenue of the DCO2P3S research is to extend the distributed

environment to an even larger scale. Grid computing addresses the ever-increasing
need for computing power to solve scientific applications. The term “the Grid”

108

refers to an emerging infrastructure technology that provides security control, re-

source accessing, information sharing, process coordination and other services to

build computing systems with resources that are geographically distributed [40].
While it is similar to Jini in some sense, the Grid technology focuses more on high

performance scientific computing. The Globus Toolkit (www.globus.org) is the base

API to build computational grids. It would be wonderful if the programming details
of using the Globus API could be captured in DCO2P3S design pattern templates.

Thus the computational science community could benefit from our DCO2P3S sys-
tem.

Finally, existing pattern templates are dedicated to either distributed-memory

or shared-memory, but not both. In future research, we can add an additional
environment parameter in each parallel design pattern template. This parameter can

direct the template to generate shared-memory or distributed-memory framework

code. A potential advantage of this approach is that different kinds of parallelism
can be more easily specified.

109

Bibliography

[1] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu,

and W. Zwaenepoel. TreadMarks: Shared Memory Computing on Networks of

Workstations. IEEE Computer, 29(2):18–28, 1996.

[2] T. Anderson, D. Culler, and D. Patterson. A Case for NOW (Networks of

Workstations). IEEE Micro, 15(1):54–64, 1995.

[3] J. Anvik. Asserting the Utility of CO2P3S using the Cowichan Problems. Mas-

ter’s thesis, Department of Computing Science, University of Alberta, Septem-

ber 2002.

[4] B. Appleton. Patterns and Software: Essential Concepts and Terminology,

1997. http://www.enteract.com/ bradapp/docs/patterns-intro.html.

[5] Yariv Aridor, Michael Factor, and Avi Teperman. cJVM: A Single System Im-

age of a JVM on a Cluster. In International Conference on Parallel Processing,

pages 4–11, 1999.

[6] Kent Beck and Ralph Johnson. Patterns Generate Architectures. In Proceedings

of the 8th European Conference on Object-Oriented Programming, 821:139–149,

1994.

[7] S. Bromling. Meta-programming with Parallel Design Patterns. Master’s thesis,

Department of Computing Science, University of Alberta, 2001.

[8] N. Carriero and D. Gelernter. Linda in Context. Communications of the ACM,

32(4):444–458, October 1989.

[9] J. B. Carter, A. L. Cox, S. Dwarkadas, E. N. Elnozahy, D. B. Johnson, P. Kele-

her, S. Rodrigues, W. Yu, and W. Zwaenepoel. Network Multicomputing Using

Recoverable Distributed Shared Memory. In Proc. of the 38th IEEE Int’l Com-

puter Conf. (COMPCON Spring’93), pages 519–527, 1993.

110

[10] K. Charter, J. Schaeffer, and D. Szafron. Sequence Alignment Using FastLSA.

International Conference on Mathematics and Engineering Techniques in

Medicine and Biological Sciences, pages 239–245, 2000.

[11] Amnon H. Eden, Yoram Hirshfeld, and Amiram Yehudai. Towards a Math-

ematical Foundation for Design Patterns. Technical Report Technical report

1999-004, 1999. http://www.math.tau.ac.il/eden/bibliography.

[12] Gabriel Antoniu et. al. The Hyperion system: Compiling multithreaded Java

bytecode for distributed execution. Parallel Computing, 27(10):1279–1297,

2001.

[13] Raphael A. Finkel. ADVANCED PROGRAMMING LANGUAGE DESIGN.

Addison-Wesley, 1st edition, 1995.

[14] Frank J. Budinsky, Marilyn A. Finnie, John M. Vlissides and Patsy S. Yu.

Automatic Code Generation from Design Patterns. IBM Systems Journal,

35(2):151–171, 1996.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[16] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.

PVM Parallel Virtual Machine, A User’s Guide and Tutorial for Networked

Parallel Computing. MIT Press, Cambridge, Mass., 1994.

[17] Gert Florijn, Marco Meijers, and Pieter van Winsen. Tool Support for Object-

Oriented Patterns. Proceedings of the 11th European Conference on Object-

Oriented Programming, pages 472–495, 1997. volume 1241 of Lecture Notes in

Computer Science.

[18] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Program-

ming with the Message-Passing Interface. MIT Press, Cambridge, Mass., 1994.

[19] Object Management Group. CORBA (Common Object Request Broker Archi-

tecture). http://www.corba.org/.

[20] J. Maassen, R. van Nieuwpoort, R. Veldema, H. Bal, T. Kielmann, C. Jacobs,

and R. Hofman. Efficient Java RMI for Parallel Programming. Programming

Languages and Systems, 23(6):747–775, 2001.

111

[21] libGTop. Library that Provides System Information, 2001.

http://www.gnu.org/directory/Software Libraries/LibGTop.html.

[22] F. Lau M. Ma, C. Wang and Z. Xu. JESSICA: Java-Enabled Single System

Image Computing Architecture. In The International Conference on Parallel

and Distributed Processing Techniques and Applications (PDPTA’99), pages

2781–2787, June 1999.

[23] S. MacDonald. From Patterns to Frameworks to Parallel Programs. Ph.D.

thesis, Department of Computing Science, University of Alberta, 2002.

[24] S. MacDonald. Two-Dimensional Mesh Design Pat-

tern Template for CO2P3S. Technical report.

http://www.cs.ualberta.ca/ stevem/papers/COPS meshDocs.ps.gz.

[25] S. MacDonald, D. Szafron, and J. Schaeffer. Object-Oriented Pattern-Based

Parallel Programming with Automatically Generated Frameworks. Proceed-

ings of the 5th USENIX Conference on Object-Oriented Tools and Systems

(COOTS’99), San Diego, CA, May 1999.

[26] Microsoft. DCOM (Distributed Component Object Model).

http://www.microsoft.com/com/wpaper/default.asp#DCOMpapers.

[27] Sun Microsystems. Java Class Loading Mechanism, 1997.

http://java.sun.com/docs/books/tutorial/ext/basics/load.html.

[28] Sun Microsystems. Java Object Serialization Specification, 1997.

http://java.sun.com/j2se/1.3/docs/guide/serialization/spec/serialTOC.doc.html.

[29] Sun Microsystems. Java Remote Method Invocation Specification, JDK 1.1

FCS, 1997. http://java.sun.com/products/jdk/rmi ed.

[30] Sun Microsystems. JNI Specification, 2000.

http://java.sun.com/products/jdk/1.2/docs/guide/jni/spec/jniTOC.doc.html.

[31] Sun Microsystems. Jini Architectural Overview. 2001.

http://wwws.sun.com/software/jini/whitepapers/architecture.pdf.

[32] Sun Microsystems. Jini Network Technology An Executive Overview. 2001.

http://wwws.sun.com/software/jini/whitepapers/jini-execoverview.pdf.

112

[33] Jan Newmarch. A Programmer’s Guide to Jini Technology. Apress, November

2000.

[34] M. Philippsen, B. Haumacher, and C. Nester. More Efficient Serialization and

RMI for Java. Concurrency: Practice and Experience, 12(7):495–518, May

2000.

[35] R. Sansom, H. Kung, and S. Schlick. Network-based Multicomputers: an

Emerging Parallel Architecture. In Supercomputing’91, pages 664–673, 1991.

[36] Hanmao Shi and Jonathan Schaeffer. Parallel Sorting by Regular Sampling.

Journal of Parallel and Distributed Computing, 14(4):361–372, 1992.

[37] GigaSpaces Technologies. GigaSpaces Cluster White Paper, 2002.

http://www.gigaspaces.com/download/GSClusterWhitePaper.pdf.

[38] ModelMaker Tools. Design Patterns in ModelMaker.

http://www.modelmakertools.com/mm design patterns.htm.

[39] Bill Venners. Inside the Java 2 Virtual Machine. McGraw Hill, 2nd edition,

1999.

[40] Michael Philippsen Vladimir Getov, Gregor von Laszewski and Ian T.Foster.

Multiparadigm communications in Java for grid computing. Communications

of the ACM, 44(10):118–125, 2001.

[41] Jim Waldo. The Jini Architecture for Network-Centric Computing. Commu-

nications of the ACM, 49(7), July 1999.

[42] Matt Welsh and David Culler. Jaguar: Enabling Efficient Communication and

I/O in Java. Concurrency: Practice and Experience, 12(7):519–538, 2000.

[43] B. Wilkinson and M. Allen. Parallel Programming: Techniques and Applica-

tions Using Networked Workstations and Parallel Computers. Prentice Hall,

1st edition, 1999.

[44] Weimin Yu and Alan L. Cox. Java/DSM: A Platform for Heterogeneous Com-

puting. Concurrency - Practice and Experience, 9(11):1213–1224, 1997.

113

