University of Alberta

Library Release Form

Name of Author: James Michagl Redford

Titleof Thesis: A Visua Tool for Generative Scripting in Computer Role-Playing
Games

Degree: Master of Science
Year this Degree Granted: 2003

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of thisthesis and to lend or sell such copies for private, scholarly or
scientific research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis nor
any substantial portion thereof may be printed or otherwise reproduced in any
material form whatever without the author's prior written permission.

Sgnature

James Michael Redford
Apartment 311, 10145 - 121 Street
Edmonton, Alberta

Canada, T5N 1K5

Date:

University of Alberta

A Visud Tool for Generative Scripting in Computer Role-Playing Games

by

James Michagl Redford

A thesis submitted to the Faculty of Graduate Studies and Research in partia
fulfillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2003

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, athesis entitled A Visual Tool for
Generative Scripting in Computer Role-Playing Games submitted by James
Michael Redford in partial fulfillment of the requirements for the degree of
Master of Science.

Duane Szafron
Co-supervisor

Jonathan Schaeffer
Co-supervisor

Jim Hoover

Craig Montgomerie
External Examiner

Date:

Abstract

It is common for computer game developers to release world-building toolsets to
the public, packaged with their games. This allows home users to create and
share custom game modules. Many toolsets utilize text-based scripting languages
to specify in-game character behaviors. While text-based languages are generally
powerful, non-programmers find them difficult to learn and use. Thisis
unfortunate since many professional game designers and home users are not
proficient programmers. In this dissertation, we present our research in
developing a powerful and practical visual scripting tool, called ScriptEase, which
automatically generates code in an underlying text-based scripting language. In
ScriptEase, users specify information through a series of questionnaires and
context-sensitive menus. Currently, ScriptEase generates scripts for Bioware's
computer role-playing game, Neverwinter Nights, but in the future, it could be

extended to work with a variety of different games.

Acknowledgements

| would like to thank the following people:

My fiancé, Melissa, for her love, support, and patience while | played
video games in the name of academic achievement

My parents, for the encouragement they have provided throughout my life
Matt McNaughton, my partner in crime, for his substantial and essentia
contribution to ScriptEase, our productive discussions, and generally
letting me bug him about every little thing

My supervisors, Duane Szafron and Jonathan Schaeffer, for their
guidance, collaboration, and generous financial support

The other member of my examination committee —Jm Hoover and Craig
Montgomerie

Dominique Parker, for his contribution to ScriptEase and his collaboration
over the summer

Mark Brockington, Don Moar, and everyone else at Bioware who took
time out of their busy schedules to provide us with valuable feedback

Sean McQuillan, for his efforts in testing ScriptEase

John Anvik, Calvin Chan, Maria Cutumisu, Patrick Earl and all of the
other students and faculty in the Software Systems Group, for their
friendship, and for providing a comfortable and stimulating research
environment

Contents

1 Introduction
2 Computer Role-Playing Games
2.1 Background

211 Definition

212 Design Challenges

2.1.3 Pen and Paper Role-Playing Games

2.1.4 Research Opportunities

2.2 Neverwinter Nights
221 TheGame

2.2.2 TheAurora Toolset

2.2.3 The Scripting Language — NW Script
3 Reated Work
3.1 Toolsets

3.1.1 Unlimited Adventures
3.1.2 The Elder Scrolls Construction Set

3.2 Visual Programming Environments

3.3 Behavior Specification
3.3.1 Scripting Languages

3.3.2 Finite State Machines

3.3.3 ForceFidds

3.4 Automated Code Generation
34.1 Generative Design Patterns

3.4.2 Generative Questionnaires

3.4.3 A Generative Learning Technique

344 Summary-
4 ScriptEase
4.1 Introduction
411 Gods
412 Oveview
4.2 Situations

421 Presentation

422 Modification

4.3 Types

4.4 Patterns
441 Encounter Patterns

442 Action Paterns

4.4.3 The Pattern Builder
4.5 Atoms

451 The Atom Definition Window.

45.2 Specifics of Event Atoms
453 Enumeration Types

4.6 Code Generation

EEREBo~wrrrR

4.6.1 Situation Functions

4.6.2 Situation Component Code
4.6.3 Combining Situation Functions

4.7 Assessment

471 Setup
4.7.2 Patterns Used

4.7.3 Encounters
474 Reaults
4.8 Summary.

5 Discussion and Future Work

5.1 Connecting Patterns

5.2 Language Issues
521 Language Structure

5.2.2 Operators

523 Down-Casting
524 Pattern Parameters

5.3 Interface | ssues

57
60
61
62
62
62
64
66
67
68
68
70
70
71
71
72
72

531 Moda vs. NonModal Diaog Windows——— 72

5.3.2 Tree Organization

5.3.3 The ScriptEase-Auroralnterface

5.4 Error Reduction

5.5 Patterns
5.6 Behavior, Plot, and Conversation Patterns

5.7 Extension to Other CRPGs

5.8 Conclusion

6 Bibliography

72
74
74
75
75
76
76
78

List of Figures

Figure 2.1: A screenshot from Neverwinter Nights..........ccooovevvveeveecesecseceee 12
Figure 2.2: A screenshot from the Aurora TOOISEL.c.cceeverrirrieneeieseee e 12
Figure 2.3: The tabbed properties dialog for amonster - The Elder Fire Elemental

... 14

Figure 2.4: Thisis an example of a conversation specified using the Aurora
Toolset. Text spoken by the NPC is shown in red, possible responses by the
player are shown in blue, and links to other nodes in the tree are shown in
0= SRS 15

Figure 2.5: The Aurora plot wizard allows the user to specify a plot as a series of
plot nodes. Each node involves a conversation, a conflict, or opening a door

(o]0 o] 1] = SRS 15
Figure 2.6: Thelist of events associated with acreature.ccooceevereenenennee. 17
Figure 2.7: Sample NWSCHPE COUE.c.ooveiiiirieie s 17
Figure 3.1: A screenshot of the Unlimited Adventures editor.ccccecceevveenee. 20
Figure 3.2: Two pages from a combat event questionnaire in Unlimited

N0 1Y < g LU =R 20
Figure 3.3: Sample of the Morrowind Scripting Language.ccccvevveeerieeeene. 22
Figure 3.4: Screenshot from The Elder Scrolls Construction Set. ... 22
Figure 3.5: Sarlogo’s Ecology TemMPlate.ccocvveeverienienenie e 24
Figure 3.6: Dataflow of a Script COmMPIlES.cooiiiinireeeeee e 25
Figure 3.7: An FSM representation of a Shambler monster from Quake, taken

L0 001 2474 TP 27
Figure 4.1: A dataflow diagram illustrating the interactions between the

Neverwinter Nights game engine, the Aurora Toolset, and ScriptEase. 33
Figure 4.2: The control flow of a ScriptEase Situation.cccoveeviieeiieccieennenns 34
Figure 4.3: An example situation, formatted to match its representation in

S o 100z = USSR 34
Figure 4.4: The Label page of a situation questionnaire..............ccceceevveeeerreenenne. 36
Figure 4.5: The Notes page of asituation qUESLIONNAITE.cccereeieereerieneenees 36
Figure 4.6: The Event page of a Situation qUESLIONNAITE.cccoererererereeenes 36
Figure 4.7: The Entities page of a situation questionnaire.c.cccceeeevvveeenee. 37
Figure 4.8: The Conditions page of a situation questionnaire.cc.cceeeeeenee. 37
Figure 4.9: The Actions page of a situation qUESLIONNAITE.cccoverererererenne 37
Figure 4.10: A list of possible actions that can be added to a situation. 40
Figure 4.11: The Description page of an Attack a creature action’s questionnaire.

... 41
Figure 4.12: When the Known Creatures option is selected, the user can access all

of the other creature entities that were previously defined in ScriptEase..... 41

Figure 4.13: When the Aurora Blueprint option is selected the user can select any
blueprint, defined in the Aurora Toolset, by using ScriptEase’s Blueprint
PICKEN . < e 41

Figure 4.14: Data types utilized by ScriptEase and abrief description of each

Figure 4.15: Thisis the object type hierarchy used by ScriptEase. 43

Figure 4.16: Some of the Enumeration-types used by ScriptEase.cccceeeeee. 43
Figure4.17: An Integer-typed parameter’ s quUestionnaire Page..........ccoceeeeeeuenne 44
Figure 4.18: A pattern chooser dialog in ScriptEase.........cccvvevvvvevecciececcecee 45
Figure 4.19: The Icon-Container Pattern’s qUeStionnaire.ccoeeeveereeneenennee 46
Figure 4.20: The Stuations page of the Icon-Container Pattern’s questionnaire.
... 46
Figure 4.21: The Event page of the Add Icon Situation.ccceceeeviieeieeciieennnnns 47
Figure 4.22: The Conditions page of the Add Icon Situation.ccocevvreenene. 47
Figure 4.23: The Entities Page from the Add Icon situation of a customized
instance of the Icon-Container pattern.coceveeveeieceese e e 48
Figure 4.24: The Conditions Page from the Add I con situation of a customized
instance of the 1con-ContainNer PatErN.cvererieriieieresese e 48
Figure 4.25: The Actions Page from the Add | con situation of a customized
instance of the Icon-Container Pattern.coceveerenieneeneee e 438
Figure 4.26: The questionnaire for the Placeable-Creature Transformation Pattern
... 49
Figure 4.27: The list of actions added to a situation after a Placeable-Creature
Transformation Pattern was instantiated.ccooevereeeienene e 50
Figure 4.28: The Encounter Pattern definition window of ScriptEase’s Pattern
BUITAEN et st 51
Figure 4.29: A parameter description window from ScriptEase’s Pattern Builder.
... 51
Figure 4.30: The Action Pattern definition window of ScriptEase’s Pattern
BUITAENttt be e 52
Figure 4.31: The action atom definition window in ScriptEase’s Atom Builder.
Thewindow contains the Spawn a Creature at a Location action. 54
Figure 4.32: The Code window of a Spawn a Creature at a Location action atom.
... 55

Figure 4.33: The event atom definition window for ScriptEase’s Atom Builder.. 56
Figure 4.34: A series of windows used in creating new enumeration types with

riptEase’ SAIOM BUIHAENcoviiiiieeeee e 56
Figure 4.35: An example of the generated code for a Situation in ScriptEase. 58
Figure 4.36: A script created by merging three situation functions...................... 62
Figure 5.1: Two example situations with repeated information.ccccceeueenee. 69
Figure 5.2:Two example situations with their common information extracted into

a separate parameterized SItUBLION.ccvccveveerecee e 69
Figure 5.3: A mockup of a sample code segment from a possible future version of

SCITPLEASE. . 71
Figure 5.4: Mockup of a possible future ScriptEase interface. This figure was

created by Matt McNaughton using Microsoft' SVISIO.cccceveeveccieceenen, 73

Figure 5.5: The Actions page of a situation questionnaire.ccoceeceeeenieeeenee 75

Chapter 1

| ntroduction

In 2002, the commercial computer gaming industry generated over $10 billion US
in the United States alone [20]. In the pad ten years, advances in computer
graphics hardware and software have led to a cascade of games with increasingly
more impressive graphics. Accordingly, high-quality computer graphics has been
the primary selling point of most computer games. Recently, with faster
processors, larger memories, and more sophisticated graphics cards, this has
reached a saturation point [16]. As a result, game developers are beginning to
shift their focus towards other areas, such as artificial intelligence (Al) to provide
amore realistic gaming experience [16]. The Sms[60] and Black and White [45]
are notable examples of successful commercial computer games that incorporate
Al asamajor feature.

Computer role-playing games, or CRPGs, are one particular genre that is making
strides in the area of Al. These games involve a large virtual world populated by
a host of characters. In order to make the characters believable, developers need
to provide them with realistic and complex behaviors. Additionally, conversations
between characters and the player are vital to the gameplay of most CRPGs.
Creating natural conversations is another daunting task that developers face.
Finally, CRPGs cast the player in an interactive story, and like all stories, CRPGs
require a plot to be specified. To further complicate matters, CRPG plots are non
linear and interactive. All of these features equire special development tool
support.

Typically, the virtual game worlds of state-of-the-art CRPGs are vast and detail ed.
Specifying the spatial layouts and graphics for the environment, as well as the 3-D
prop and character positions, is complicated. Developers create world-building
toolsets that their designers use to specify al of this information. Toolsets aso
provide special support for specifying the Al-related character-behaviors,
conversations, and plots. Most CRPGs script behaviors using rule-based systems,
finite state machines, or scripting languages. Scripting languages provide a
powerful behavior- and plot-specification mechanism in computer games, and
many game toolsets utilize them. Games like Neverwinter Nights [56] and
Morrowind [47] provide powerful text-based scripting languages in their tool sets.
Other games, like Sarcraft [61] and Unlimited Adventures [66], incorporate easy-
to-use visua scripting tools into their toolsets.

State-of-the-art scripting tools for computer games suffer from a trade off
between power and ease-of-use. Power is necessary in order to create
sophisticated and realistic behaviors. Easy to use visual tools are desirable since
game designers are not necessarily programmers. Additionally, it is becoming

more common for game toolsets to be released to the public. Home users are aso
not likely to have much, if any, programming experience, making ease-of-use
even more desirable.

Modern visua scripting tools lack power because they are inflexible. The set of
behaviors that they can represent is small and inextensible by end users. For
instance, the design tool included in Unlimited Adventures [66] allows designers
to choose from thirty-six different high-level event types, such as combat and
finding treasure, which can be customized and added to a game module.
However, event types that were unanticipated by the original game designers are
not included in this list, and end-user designers cannot extend the available
events. Therefore, designers are restricted to a small set of possible behaviors that
can be scripted. The root of the problem lies in the high level of abstraction, at
which visual scripting tools work. Lower level mechanisms are needed to build
custom high-level visua structures.

On the other hand, text-based scripting languages are quite powerful. The
scripting language for Neverwinter Nights [56] is a procedural G like language,
which provides designers with access to the game engine’s state through a set of
basic library functions. Designers build complex behaviors using these library
functions. Text-based scripting language work at a much lower level of
abstraction than visual scripting tools, which is the basis for their power. At the
same time, the low level of abstraction is one of the main reasons that text-based
languages are hard to use.

Our aim is to develop a method for specifying behaviors in an easy-to-use visua
environment, while maintaining a level of power close to that of a text-based
language. Our approach involves working on multiple levels of abstraction. The
highest level alows the average non-programming designer to script behaviors by
instantiating and customizing high-level behavioral templates, called Patterns, in
a purely visual programming environment. At this level, al information is
provided using context sensitive menus and questionnaires. No coding is
required. The lower levels allow designers to create new patterns and specify new
basic actions that the game's characters can perform. Some programming skill
and/or coding may be required at the lower levels, but not nearly as much as a
text-based language requires. Finally, we automatically generate code in a text-
based scripting language — the lowest level of abstraction — based on the
information specified in the visua tool.

In this dissertation, we present our research in creating an easy-to-use and
powerful visual scripting tool called ScriptEase. ScriptEase allows game
designers to build complex scripts in a purely visua environment for the state-of-
the-art computer game Neverwinter Nights [56], by Bioware. Information is
specified in ScriptEase using reusable patterns and context-sensitive menus.
Code is then automatically generated in Neverwinter Nights text-based scripting
language. ScriptEase includes a Pattern Builder, which allows new patterns to be

created, and an Atom Builder, which alows new primitive conditions and actions
to be defined. These lower level support tools add flexibility to the system by
facilitating extension.

ScriptEase augments the Neverwinter Nights toolset, called Aurora, by replacing
all functionality normally specified using the scripting language, including
behaviors, plotlines, and some parts of conversations. Aurora is still needed in
order to create the game modules, specify environments, place props and
characters, and define the structure of conversations. Based on internal testing
and a small usability review, we are confident that ScriptEase is a powerful and
practical visua scripting tool. We plan to release ScriptEase to the public in the
near future. We hope ScriptEase will be able to capitalize on the vast base of
Aurora users aready established.

In this chapter, we have offered the motivation behind our research and a briefly
presented ScriptEase, the visua scripting system that we have developed to reach
our goals. In Chapter 2, we define and discuss computer role-playing games,
including the challenges faced by designers and potential research opportunities.
We aso introduce Neverwinter Nights and its toolset, Aurora. In Chapter 3, we
describe previous work relating to our research. We present two computer game
toolsets other than Aurora — Unlimited Adventures and The Elder Scrolls
Construction Set — and the way in which they support scripting. We then mention
four visual programming environments: Prograph, Sanscript, Sarlogo, and
COP,S. Next, we discuss various behavior specification techniques, including
scripting languages, fnite state machines, and force fields. We conclude the
chapter with a look at the automatic code generation mechanisms of generative
design patterns, generative questionnaires, and a novel generative learning
technique. In Chapter 4, we present ScriptEase in detail and discuss the usability
review that we performed. Finaly, in Chapter 5, we discuss the issues addressed
by ScriptEase and present possibilities for future work.

Chapter 2

Computer Role-Playing Games

2.1 Background

2.1.1 Definition

In order to discuss computer role-playing games, we first need to define them.

Providing a definition of computer role-playing games (or CRPGS) is not easy,
and there are a number of varying opinions on the subject [28][30][34][35]. In
general, we can define a CRPG as a game where the player controls a character
that is the protagonist in an interactive story. Unfortunately, this definition is not
specific enough and can also be applied to adventure games such as Resident Evil
[59], first-person shooters such as Quake [58], and genera action games such as
Super Mario Brothers [62]; none of which are considered CRPGs. So rather than
attempting to provide a formal definition, we will instead list several features that
seem to be present in most CRPGs, especialy in the fantasy sub-genre of CRPGs.

Abilities

“ Speechcraft allows you to influence others by admiring, intimidating, and taunting them.

Listeners are more willing to divulge information or to entrust important tasks to the skilled
speaker.” —Morrowind [47]

One feature that seems to appear in every CRPG is a mechanism for characters to
acquire abilities and/or improve them. The variety of abilities that might be
included in a CRPG is quite extensive. Some examples could be casting a magic
spell, picking a lock, long-distance running, or playing a musical instrument.
Some abilities are represented by integer-valued attributes; the higher the value,
the more skilled the character is at using that ability. There are other abilities that
a character either does or does not have; there are no levels of skill associated
with them. CRPGs employ a number of different mechanisms for improving
skills. Two examples are given below.

In Neverwinter Nights [56], characters have an integer-valued attribute that is
caled experience. Characters gain experience by accomplishing tasks in the
game such as killing monsters and completing quests. When a character’s
experience score reaches certain levels, a number of their abilities might improve
and they may even gain new abilities.

In another example, Hero's Quest [54], a character possesses a number of physical

attributes such as strength and intelligence, and skills such as climbing and

throwing, al of which are represented by integer values between 0 and 100. Asa
character uses a particular skill in the game, that skill score graduelly increases, as
do the physical attributes associated with that skill.

Exploration

“Welcome back, oh illustrious adventurers! Long has been thy sojourn in this strange realm,
though 'tis a fitting respite for great heroes.” — Ultima 3: Exodus[64]

Characters are placed in a virtual world that needs to be explored. In the fantasy
sub- genre, these worlds are vast and inspired by the medieval fantasy worlds of
Dungeons and Dragons [9] or Lord of the Rings [21]. The landscapes are dotted
with cities, towns, castles, and dungeons, which are populated by a variety of
colorful characters ranging from simple farmers, to valiant warriors, to fierce
monsters. This feature is not unique to CRPGs, but CRPG worlds are typically
larger and more detailed than in other game genres. To fully explore a world, the
player must usually take advantage of other CRPG features. For instance, a
player might have to gather information about a particular location, by talking
with some of the supporting characters, before traveling there. Alternatively, a
player might have to acquire a specific item or accomplish some complicated task
before being alowed to enter a certain area.

Equipment and Treasure

“ Amulets are necklaces with some form of large decoration or symbol. Most are ornamental, but
some are infused with magic.” — Neverwinter Nights [56]

An important aspect of CRPGs is the constant search for more powerful
equipment. In the fantasy sub-genre, this primarily includes weapons, armor, and
other magical items. Characters also acquire wealth, usually in the form of gold
coins, which can be used to purchase equipment from shopkeepers. Gold and
equipment are typically found on the bodies of monsters that the character has
killed and in treasure chests or other containers hidden in hard to reach locations.

Monsters

“Also called lllithid, the brain devouring Mind Flayers are hideously alien creatures of the
Underdark. Evil beyond redemption, they will consider you a slave or simply food, if they
consider you at all.” — Baldur’s Gate 2: Shadows of Amn [44]

Fighting with monsters is a theme that runs through al fantasy CRPGs. Not only
isit fun, it aso usualy provides the primary mechanism for gaining treasure and
improving abilities. Again, battling monsters is not a unique feature of the CRPG
genre, but it incorporates other CRPG features. For instance, when fighting,
characters can usually use certain skills or abilities that they have acquired, such
as the ability to trip an opponent, or to cast amagical spell. Characters also utilize

a variety of weapons, armor, and other offensive and defensive equipment that
they have acquired throughout their adventures.

Supporting Characters and Conver sations

“It is almost impossible to solve thy quests without talking to virtually all people in each towne.”
— Ultima 4: Quest of the Avatar [65]

CRPG worlds are populated with a number of supporting characters, often
referred to as nonplayer characters or NPCs. Some of these characters play
mundane background roles such as farmers, peasants, artisans, politicians,
tradesman, and al of the other miscellaneous roles found in everyday life. These
background characters typically execute very ssimple and limited behaviors when
interacting with the player. Other NPCs play important plot-dependant roles and
have complex interactions with the player.

The player can aso talk to NPCs. The characters in some CRPGs, such as Final
Fantasy [50] and Ultima 1 [63], speak a single line of text when the player
approaches them. Thereis no real interaction between the player and the NPC in
this model. Games such as Hero's Quest [54], Gorasul [53], and Ultima 4 [65],
allow the player to type in subjects to ask the NPC about. This conversation
model offers a much more interesting chalenge to players, as they have to
discover the relevant topics of conversation for each NPC. Finally, most of the
more recent CRPGs, such as Baldur’s Gate [43], and Neverwinter Nights [56],
present conversations as a series of dialog windows that include the words spoken
by the NPC and alist of sentences from which the player can select a response for
their character. Another notable game is Morrowind [47], which uses elements
from al three conversation models.

Puzzles and I nvestigation

“The man who invented it, doesn't want it for himself. The man who bought it, doesn't need it for
himself. The man who needsit, doesn't know it when he needsit.” —Baldur’s Gate 2: Shadows of

Amn [44]

Many CRPGs challenge players with puzzles. Some are as simple as answering a
riddle, others are more complicated. For instance, a puzzle found in Baldur’'s
Gate 2 [44] involves 12 items and 12 statues. The player must place the correct
item in the hands of each statue. Each statue includes a hint indicating which item
should be given to it. Another example, from Shadows of Undrentide [57],
involves a grid on the floor. The player is required to place objects called rune
stones in certain cells of the grid, forming a particular pattern. The room
containing the grid also contains various clues as to what this pattern should be.

When these puzzles are solved, the player gains some type of reward.

Many quests involve an amount of investigation as well. For example, a quest in
Baldur’s Gate 2 [44] begins when a city guard informs the player that a series of

murders has occurred in a particular area of the city. The player then attempts to
find the killer by investigating that area of the city; interviewing witnesses,
gathering evidence, and such.

Plot

“ A city dead for a thousand years. A city | had to see with my own eyes. The end of Yuna's
journey. Thelast chapter in my story.” — Final Fantasy X [51]

As mentioned earlier, CRPGs are a form of interactive story where the player is
the protagonist. As with al stories, CRPGs have a plot. Some games, like Final
Fantasy X [51], immerse the player in a very rich and involved story written by a
professional writer. The plot is completely linear and unfolds in the exact same
manner every time through the game. Many players didike linear plots such as
this, but Final Fantasy Xs story is so well written and interesting, that most
players do not mind.

Other games, such as Baldur’s Gate [43] and Neverwinter Nights [56], have one
essential plotline that runs through the entire game, and dozens of non-essential
sub-plots that appear from time to time. These sub-plots (sometimes called mini-
guests) are usualy unrelated to the main plotline, so the player is not required to
follow them. Typicaly, a number of these plotlines possess a small degree of
non linearity. Depending on the player’s choices, these plots unfold in different
ways. For instance, a mini-quest might indicate that the player is supposed to
acquire a magical ring for his king, and that the mighty dragon Trogdor the
Burninator [29] possesses this ring. The player might have severa options. The
character could day the dragon and take the ring. The character could sneak into
Trogdor’s lair and steal the ring. The character could negotiate with the dragon to
trade something for the ring. The character could even create a forgery of the ring
and attempt to pass it off to his king as authentic. There could be a multitude of
other possihilities that the game designers had included, as well.

2.1.2 Design Challenges

Now that we have identified several features that define computer role-playing
games, we can discuss why research in this area is interesting. There are a
number of challenges that the game designers face when creating CRPGs. They
are listed below. In Section 2.2.2, we will discuss how the Aurora Toolset can be
used to meet these challenges. This is the tool used by Bioware to design their
game, Neverwinter Nights[56].

World Layout
CRPG worlds can be very large, consisting of hundreds of different areas. The

game developers need to be able to specify the layout of these areas. For
instance, there may be a large city that consists of hundreds of houses, businesses,

streets, markets, plazas, and parks. The city may also be decorated with
streetlights, flags, trees, signs, fences, gates, monuments, and many other
miscellaneous fixtures. The game developers must be able to create and layout
the components of this city easily and relatively quickly (after all they also have a
hundred other areas just as complex as this one to design).

Non-Player Characters (NPCs)

The world also needs people to populate it. Game developers need to specify the
physical appearance and clothing of an NPC, as well as any attributes and abilities
used by the game engine. For instance in Neverwinter Nights, the developers had
to specify attributes for each NPC, such as their name, gender, intelligence, and
voice among many others. They also had to specify abilities, such as the magic
gpells that the NPC could cadt, the different weapons and armor that the NPC
could use, and the various skills that the NPC possessed. Finally, these NPCs
have to be placed in the world so they can take on arole in the story.

Specifying Behaviors

In order to make NPCs interesting, developers need to tell them what to do. For
example, Clancy is a castle guard and he guards the King's treasure chest. When
anyone other than the King or another guard enters the room, Clancy tells them to
get out. If the intruder does not leave immediately Clancy sounds an alarm by
ringing a large gong in the corner, then attacks the intruder. 1f Clancy does not
see another person for one hour, he gets tired and falls adeep. At 12:00, Clancy
gets hungry and wanders off to the kitchen to get food. Clancy may have many
more behaviors as well. Specifying a complex set of behaviors such as this, for
an NPC, can be atime-consuming process for developers.

Encounters

The previous section describes a set of behaviors applied to a single principle
actor, but there are other situations in CRPGs where interactions between multiple
participants need to be defined. We cal these interactions Encounters. The
following is an example of atypical encounter. The participarts in this encounter
are atreasure chest, a sword, a statue, a demon, and the player’s character. There
isaroom in a castle with the sword inside the treasure chest and the statue beside
the chest. If the player’s character opens the treasure chest and takes the sword,
the statue transforms into a demon and then attacks the character. The behavior of
the demon attacking the character could be part of the encounter specification, or
it could be part of the demon’s personal set of behaviors.

Conver sations

Talking to NPCs is essential in CRPGs. Conversations are the player’s primary
source of information when trying to solve the various quests in the game. In

Section 2.1.1, we presented three common conversation models used in CRPGs.
The third model where conversations are presented through a series of dialogs is
the one we are most concerned with in this dissertation. Some conversations are
quite large and consist of dozens of possible dialog windows that could be
presented to the player. A conversation can be represented by a directed graph,
where the nodes contain the text that an NPC speaks to the player, and the edges
represent the player’ s possible responses to what the NPC says.

Plots

Specifying plots, especialy nonlinear plots, is not a simple task. Plot can be
represented by a directed graph. Nodes in the graph represent different states
along the plot line, and edges represent actions the player can take to advance the
plot in some way. Developers must identify and specify plot states, indicate
which actions the player can perform in order to affect the plot, and then indicate
how the plot is to be advanced. They are also challenged with ensuring that no
player actions can break the plot, causing a nonsensical event to occur, or even
worse, making the game impossible to finish. Some games provide fail- safes to
fix some plot problems that might occur. For instance, Neverwinter Nights
provides the player access to a container called a Divining Pool. If the player ever
loses some plot-critical item, it will appear in the Divining Pool so the player can
retrieve it.

2.1.3 Pen and Paper Role-Playing Games

Computer role-playing games are inspired by their pen and paper counterparts,
such as Dungeons and Dragons [9]. Some games, such as Baldur’'s Gate [43],
Icewind Dale [55], and Neverwinter Nights [56] are based drectly on various
Dungeons and Dragons rule sets. Pen and paper RPGs involve a human Dungeon
Master that is responsible for running the game. The Dungeons and Dragons
third edition Player’s Handbook defines the Dungeon Master, or DM, as “the
player who controls non-player characters, makes up the story setting for the other
players, and serves as a referee.” O] The DM is responsible for describing the
game world and situations that the players are in by verbally describing them or
using visual aids such as miniature figurines, maps, and other props. In turn, the
players describe the actions that they wish to take to the DM, and then the DM
determines what the consequences of those actions are and relates them back to
the players. Computer role-playing games attempt to emulate this experience by
having the computer take on the role of DM. Both pen and paper, and computer
RPGs have their advantages. Pen and paper RPGs give players the benefit of a
human DM capable of improvisation, and CRPGs provide a visualy exciting and
interactive graphical environment for the game.

2.1.4 Resear ch Opportunities

The last four challenges mentioned in Section 2.1.2 - behavior specification,
encounters, conversations, and plots - offer particularly good research
opportunities since al four of these elements are still limited in state-of-the-art
games.

Plots often consist of only a handful of states and any non-linear plotlines are not
very complex. However, it is hard to criticize CRPGs for this. The truly non
linear storylines that players enjoy in pen and paper role-playing games require
the imaginative and improvisational interaction between a human Dungeon
Master and the players. In computer role-playing games, the Dungeon Master is a
computer program that is only capable of doing what the designers instructed it to,
during development. The imagination of the playersis also limited by the game's
user interface. The game is not capable of allowing the player to perform
absolutely any action they would like, because in order for the game to respond to
a particular player-action, that action must have been anticipated by the game
designers during development, and an appropriate response programmed. It is
unrealistic 1 expect computers to be as capable Dungeon Masters as humans in
the near future, but there are opportunities for improvement in creating non linear
CRPG plotlines.

Conversations in CRPGs often feel very unnatural. The reason is that the amount
of informetion that an NPC is capable of conveying to the player is rather limited.
Typically, NPCs have only a select few pieces of information that they are
designed to reveal to the player. This lack of information can lead to an NPC
repeating phrases severa times within a single conversation. It also means that
the player cannot talk to an NPC about any arbitrary topic; just the ones the NPC
was designed to talk about. The reasons for this are that designers do not want to
bog the player down in conversations full of useless information, and it would
also take a long time to specify very verbose conversations. The length of a
conversation is especially relevant considering most CRPGs are released in
several different languages. However, the creation of realistic conversations in
CRPGs is certainly a good opportunity for research.

The behaviors exhibited by creatures are often predictable and not very
intelligent. For instance, it is common for a player to enter, say, a tavern, open
some crates and barrels, and then take the items inside. In reality, the proprietor
of the tavern would consider this stealing and attempt to stop the player by
attacking them or calling the city guards. In many CRPGs, the player receives no
negative feedback in situations like this. Typica CRPG worlds can contain
hundreds of buildings, all of which would require the developer to put in the
effort to specify behaviors for the occupants to protect their belongings. Usually,
this type of behavior is not critical to the plot of the game, so it is understandable
why developers might overlook it and spend their time defining more important
behaviors. There are a great many noncritical behaviors such as this that

10

developers just do not have the time to implement by hand, but would add a great
deal of realism to the game. Development tools that can automatically generate
and attach these behaviors to characters would be useful.

Finally, encounters are so pervasive in CRPGs that they can often be categorized
into groups or patterns. For instance, the encounter example given in Section
2.1.2, where the statue turns into a demon when the player’s character takes a
sword out of atreasure chest, is part of a pattern of similar encounters. Variations
of this pattern might involve changing the participants. For instance, there could
be an encounter where a kitten transforms into a bear when an amulet is removed
from a pedestal. Variations could also be changes in the actions performed by the
participants. For instance, when an emerald is placed inside a desk drawer, the
bookcase behind the desk disintegrates revealing a secret passage. Specifying
these patterns in such a way that they can be quickly customized to fit the many
different variations required by the game designers is aninteresting problem.

2.2 Neverwinter Nights

2.2.1 TheGame

Neverwinter Nights [56] is a state-of-the-art computer role-playing game
developed by Bioware. Since its release in the summer of 2002, Neverwinter
Nights has been a critically-acclaimed best seller and has won over eighty awards
[26]. The game is based directly on the third edition rules of the pen and paper
role-playing game Dungeons and Dragons [9], and contains all of the features of
a CRPG listed in Section 2.1.1. The vast game world is full of fantastic treasures
and horrible monsters. The variety of abilities that a character can possess
includes hundreds of skills, feats, and magic spells. There are hundreds of
supporting characters, all of which have their own set of behaviors and are
capable of conversation with the player. The game has a magjor plotline that runs
through it and dozens of mini-quests for the player to complete, many of which
include puzzles and investigation. A screen shot from Neverwinter Nights is
shown in Figure 2.1. It includes the player's character Natha Vae, severa
NPCs, and a monster — the bear — in an interior setting. Na'thal is equipped with
agreen-glowing magical sword. The circle of light on the floor with a halo above
it is a magica transportation portal. Bioware developed and used the Aurora
Toolset, presented in the next section, to specify all of thisinformation.

2.2.2 The AuroraToolset

When Bioware released Neverwinter Nights, they packaged the Aurora Toolset
with the game. Aurora is the world-building tool that was used by Bioware's

A screenshot from N

everwinter Ni ghs.

* Bioware Aurnra Meserwinber highes Tooket colial miod || %
Fie B View BEraonmsnt Bl Tosk ‘WiRandk Hap

[atm=aaze < Fasae=sin o 0008 &

Faim Tran Il P &
Paim Traa oo
Fighbin o e W 4
Sicech kisik. i
Sicnrch ek .
Econch blagk H Aok "I
Shub Hi Coretracts
Shub & Draong
Shub b Elermenin
Shub B Can
Ehub A Hurmenid
Shones ek
Erone 51 Wagcal Bossi
Tram by O B g
Trae = Pawnar
< Soanit & Srepechangern
img i orel hetl = Linidaad
EcarpiCiias = HPCs
ToadsLons & Dt
[T T =t Ehme
Wabarlaps CHEATER
WeaiciLaps D Amecrcan
Trggu Drow Azzaesin
= WEoainis Dvow Bssssin
WapE_L Dirow Azzmesin
WarpdP 2 Dow s i
Warg#F_3 Drow Wege
Warpe g Do Mige
WAIPWE S Drow Mege
Mg B D bl g
T O B Drcw Wi
[IT=R1 i Lrow Wie
4 Serg Dvow iR
_BCipd] (N Lrow Wikt
el N . s LIS =
o + 4 4] > < av alaf els)
Fonfey ++ 4 4| >« A¥| aja] c|o p—
|
— L]
T = T e g e MR | L
D TR o e E~ | unm.ws'l.;..|§]mg-d_u.rr..l Iﬂm_ﬂ-z..i-;]hnp;xm...!ﬂm_ [ﬂﬁmiﬂﬂ 510K PR

Figure 2.2: A screenshot from the Aurora Tool set.

12

game designers to create the entire Neverwinter Nights game world. Aurora
allows home users to create their own worlds and adventures using the
Neverwinter Nights game engine. While Neverwinter Nightsis not the first game
that has included world-building tools, Aurora is groundbreaking in the power
that it gives to its users and the ease with which it can be used. Aurora provides
solutions to all of the design challenges listed in Section 2.1.2.

World Layout

The appearance of each individual areais governed by an environmental template,
called atileset. The Aurora Toolset provides the user with about a dozen different
indoor and outdoor tilesets to choose from, including forests, deserts, castle
interiors, and caverns. Once a tileset is chosen, the user lays out the terrain
features such as trees, roads, walls, and water. The terrain features available are
dependant on the chosen tileset. In addition to the genera terrain layout, the user
can drop miscellaneous objects (called placeables) into the world such as statues,
wagons, crates, and treasure chests. These objects are independent of the tileset
and can be placed into any area by simply pointing and clicking. A screenshot
from the Aurora Toolset is shown in Figure 2.2. It shows an NPC, an obelisk
(placeable) and a boulder (placeable) on a small isand surrounded by water. The
panel on the left shows all objects that have been placed in the world, as well as
all defined conversations and scripts. The panel on the right is the palette of all
terrain types and placeable objects that are available to be placed.

Non-Player Characters

Aurora provides an extensive list of predefined creatures (NPCs and monsters)
that can be placed into the world. The user can define new creatures and edit their
properties through a tabbed gui dialog, shown in Figure 2.3. Creatures, like any
game object, can be dropped into the world by just pointing and clicking.
Creatures can aso be placed at run-time using the Aurora Toolset’s scripting
language, described in Section 2.2.3.

Specifying Behaviors

Behaviors for creatures are specified using a scripting language — NWScript —
described in Section 2.2.3. Every creature receives a default set of behavioral
scripts that handle many simple tasks, such as opening a door that blocks the
creature’s path, and some more complex tasks, such as the artificia intelligence
(Al) for combat. The user can modify or replace any of the creature’ s scripts they
wish. Creatures are not the only objects with scripts. Creatures, placeables,
doors, and areas are some of the objects that have a set of scripts associated with
them. Even the game module itself contains a set of scripts.

13

Creature Properties 1 __ Ej
Anvanced | Feals | Spells | SpeoalAbiiies | Commens
Bagic Sistishics |Appea.ranu:>a 1 Clesses | Skills | Setipla

“Ahbilte Scores-
Soore Fuaciol Maclfisr Total Eonus
st - B = [E
Dlesterihy = Ell
Constition r -]F |‘1_
Intelligence F =]E_ En
Whadom = o
Charizme F =]T o
- Eows
Hese .&.hll‘;_rﬁuudmerEIunus Tatal
Fariuce i FlE
Fedex CE |'3_ = iz
Wil S T]_ o
—Amor Cless — HitFoinls ; ;
MawroldE B 3] BoseHitPainks [103 3]

Bmse 10 HitPaint Boruses |38

Diestenty Borws |9 Tolal Hi Poinks ~ |204
Eize Modifier 0 Spoad-

Totel Armor Cless |27 HmementﬁatEDelaun 'i

Imertny...l ik I Carncel |
Figure 2.3: The tabbed properties dialog for amonster - The Elder Fire Elemental

Encounters

Aurora provides special support for one particular encounter pattern, where a
number of creatures are created (or spawned) when a character enters some
perimeter drawn on the ground. The user specifies the perimeter, the spawn point,
alist of creatures, and a difficulty rating. The difficulty rating indicates how hard
it will be for the player to defeat the creatures in battle, however the spawned
creatures need not be hostile. The list of creatures can be further customized to
indicate the minimum and maximum numbers of each type of creature to spawn.
The game then randomly spawns an appropriate number of each creature to match
the difficulty rating indicated by the user. Aurora refers to these particular
encounter patterns smply as Encounters and the tool used to build them as the
Encounter Wizard. Note that our use of the word “encounter” is used in the
broader scope as described in Section 2.1.2. In order to specify other types of
encounters in Aurora, such as the example given in Section 2.1.2, the scripting
language must be used.

Conversations

In Neverwinter Nights, conversations are presented to the player as a series of
dialog windows, where each window shows the text spoken by an NPC and a list
of possible responses for the character. The player’s choice of response affects
which text the NPC will speak next. Aurora uses a tree type interface for
specifying conversations, as shown in Figure 2.4. However, the underlying data

14

- [OwMER] - Child of the sun, zhall you take the tests of the Haoly Ritual? ou must prove your convivtion befo
EI. | am prepared to take the test.

EI. [MWMNER] - It is well. Prove wour faith and be blessed.

=B [COMTIMUE]

EI. [WwMER] - It iz dawn, O seeker of light. ‘what is th first duty?

E|. | zhall zing a hyrmn ko the Sun Lord,
= . [OwrER] - What shall you do zecond in the ritual?
EI. | ghall hold high my children that they might zee the zun.
218 [WNER] - How shall the ritual end?
i L . | zhall reflect an the glory of the light as it conguers dark.
. [WwWMER] - This test iz concluded. Return when pou are ready to o
. [WwMER] - The tests have ended. Amaunator in his glony offers his
. [WHER] - Incorect. Those who mock the sacred ritual shall feel |
| zhall rejoice at the dominance of the light.
. | shall mourn and weep az the sun gives way to the darkness.

. [0WHER] - Incomect. Those who mock the sacred ritual shall feel the wratk
]. | shall raize my hands to the ight.
]. | zhall hold high the Holy Book: that the sun might bless it
[+ . [WMER] - Inzaomect. Thosze who mock the zacred ritual shall feel the wrath of the &
+] . | zhall zay a prayer to the light.
-l | shall recite the tennents of faith,
[]---. [OWwMER] - The sun iz high. Moon iz upon us. How shall pou honor the Lord?
[]—--. [WwRER] - It iz dusk and as the darkness moves in, the evening ritual must be zaid to ward

[
E

|'_—'|. | do not pet wish to be tested,
E|. [OWwMER]-Sobeit. The Sun Lord will not bless thee until thy faith iz known,
. [EMD DIALOGUE]
----- B (0/NER] - The tests are complete.

Figure 2.4: This is an example of a conversation specified using the Aurora Toolset. Text spoken
by the NPC is shown in red, possible responses by the player are shown in blue, and links to other
nodesin the tree are shown in gray.

Plot Node Wizard I x|

* Basic Information
at Hap

/ Conversation Type Choose what happens at this paint in the plat.
%€ Conversation
/ Premsqusite = Conversation
{ Other Conversation The plaver talks to the cast member. The player might receive information, receive a quest,
J) Journal receive an item, give up an item, or any combination of the above.

What Happens?

i~ Conflict with ¥illain

The player meetz a villain. The player might talk to the villain, The plager probably has to kill the
willain. The player might receive an item from the willain,

I~ Willair talk s ta player before attacking
I~ | Villairr carries items that drop o death;

= Open a Door or Container
The plaver must oper an object. The object might be lacked, requinng the plaper ta use akey.

I~ The objecteontains atritern that e plaper must obtain.

< Back | Mext > I Firizh | Cancel |

Figure 2.5: The Aurora plot wizard alows the user to specify a plot as a series of plot nodes.
Each node involves a conversation, a conflict, or opening a door or container.

15

structure is actually a directed graph, since leaf nodes in the conversation tree are
capable of pointing to any other node in the tree. Nodes in the conversation graph
can have scripts attached to them, indicating the actions to be executed when that
node is reached. Additionally, nodes can have a conditional script attached to
them called a “ Text appears when” script. This script contains a Boolean function
that determines whether the text in the node is displayed or not.

Plots

Originally, Aurora contained no specia support for plot. Plot was specified ad
hoc using the scripting language, by modifying global \ariables. Later, Bioware
released a patch that added a plot wizard to Aurora. The plot wizard offers a
mechanism for specifying some simple plotlines. In the wizard, events that can
advance the plot are limited to a conversation with a character, conflict with some
villain, or opening a specific door or container, as shown in Figure 2.5. In order
to implement more complicated plotlines, the user must still use the scripting
language.

2.2.3 The Scripting Language - NW Script

In this section, we will describe NWScript (detailed in [38]), the scripting
language used by the Aurora Toolset. However, before we begin, we need to
describe some important aspects of the Neverwinter Nights game engine that are
integral to NWScript.

First, we should define exactly what a script is. A script is a set of instructions
that the game engine interprets as actions to perform.

Second, the Neverwinter Nights game engine is event-based. Almost every object
in the game has a set of events associated with it. For instance, every cresture
handles the events shown in Figure 2.6. Each of these events can have a script
attached to it. When a particular event occurs, its associated script executes.

Finaly, every object has afirst-in-first-out action queue, which contains all of the
actions it is supposed to execute. Actions are removed from the front of the queue
and executed accordingly. The scripting language is capable of modifying these
queues.

NWript is a procedura C-like language, supporting variable assignments,
arithmetic operations, conditionals, loops, and function calls. Aurora provides
NWcript with an interface to the game engine through a set of library functions.
The best way to illustrate NW<cript to the reader is to give a short example;
consider the code in Figure 2.7. This code defines a function that teleports a
player's character to agiven location, as long as the distance moved is no further

16

Event Description

OnBlocked Occurs whenever acreature’s movement is blocked by adoor.

OnCombatRoundEnd Occurs at the end of every round, while the creature is in
combat.

OnConversation Occurs whenever the creature finishes a conversation.

OnDamaged Occurs whenever the creature is damaged.

OnDeath Occurs whenever the creature dies.

OnDisturbed Occurs whenever the creature’ sinventory changesin any way.

OnHeartbeat Occurs approximately every six seconds.

OnPerception Occurs whenever the creature sees or hears another creature.

Physical Attacked Occurs whenever the creature is initially attacked by another
creature.

OnRested Occurs when the creature rests.

OnSpawn Occurswhen the creatureisfirst created.

OnSpellCastAt Occurs whenever a spell istargeted on the creature.

OnUserDefined This event isuser defined.

Figure 2.6: Thelist of events associated with a creature.

1 void Tel eport PC(object oPC, |ocation |IDest) {
2 float distance;
3 | ocation | Pl ayerLocati on;
4 i f(GetlsObjectValid(oPC)) {
5 | Pl ayer Locati on = GetLocati on(oPC);
6 di stance = Get Di st anceBet weenLocati ons(
| Desc, | PlayerlLocation);
7 i f(distance < 50.0) {
8 Assi gnCommand(oPC, Cl earAll Actions());
9 Assi gnCommand(oPC, Acti onJunpToLocation(l Dest));
10 }
11 }
12}

Figure 2.7: Sample NWScript code.

than fifty meters. The parameter oPC is a reference to the character and | Dest
is the location to which the character should be teleported.

Those familiar with G-programming should have no trouble understanding most
of the code. The functions used on lines 4, 5, and 6 are part of the function library
provided by Aurora. Get | sQbj ect Val i d tests to see if an object is valid,
Cet Location returns the location of the given object, and
Get Di st anceBet weenLocat i ons returns the distarce in meters between
two given locations. Lines 8 and 9 modify the character’s action queue.
ClearAl | Actions empties the «caling object's action queue.
Acti onJunpTolLocat i on places an action in the caller’s action queue, which
will instantly transport the caller to a given location when it is executed. In this
example, we do not want to modify the caller’s action queue; we want to modify
the character's action queue. NWcript provides a function called
Assi gnComrmand, which alows us to specify another doject’s action queue to

17

modify. Lines 8 and 9 modify the action queue of the character, referenced by the
oPC variable.

NW<ript is very powerful. The number of different behaviors and encounters
that can be programmed by the user is virtually limitless. However, since
NWcript resembles a traditional programming language, non-programmers find
it very hard to learn and use. The fact that home users can create their own
worlds and adventures is one of the primary selling points of Neverwinter Nights
This is unfortunate since the majority of Aurora’s users are not programmers and
they are unable to take full advantage of the power that the scripting language
offers. In Chapter 4, we present our visual programming tool caled ScriptEase,
which does alow norprogrammers to specify complex behaviors.

18

Chapter 3
Related Work

Our research incorporates ideas from severa different areas, including computer
game toolsets, visual programming environments, behavior specification, and
automated code generation. In this chapter, we present related research done in
these aress.

3.1 Toolsets

When toolsets started to appear in the late 1980s, they were released as novelties
that appealed to only small groups of dedicated gamers, due to their complexity,
limited power, and lack of a distribution medium. Today, game developers spend
as much time, if not more time, developing powerful and easy-to-use toolsets as
they do on the actual game. Thisisin large part due to the size and complexity of
most state-of-the-art computer games, which require sophisticated tools to specify
gpatial layouts and game mechanics, for their own internal development.
Recently, toolsets have become so popular that it is common for developers to
release them to the public and use them as promotional points when marketing
thelr game. Toolsets released to home users increase the replayability of a game
by alowing thousands of users to create and share their own custom game
modules. The pervasiveness of the Internet in modern culture permits mass
distribution of user-created game modules. We presented the Aurora Toolset for
Neverwinter Nightsin Chapter 2. In this section, we will present toolsets for two
other CRPGs, Unlimited Adventures and Morrowind. There is a multitude of
game bolsets available. We chose to present Unlimited Adventures because it
was one of the first toolsets promoted as the mgor selling point of a game.
Additionally, its behavior specification mechanism is very similar to ScriptEase.
We chose to present Morrowind’ s toolset because it is a state-of-the-art alternative
to the Aurora Tool set.

3.1.1 Unlimited Adventures

Unlimited Adventures (or UA) [66] is a Dungeons and Dragons CRPG that was
released in 1993 by Strategic Simulations. The player controls a party of up to six
characters. UA is a turn-based game that uses a very smple 3D maze-like
graphics engine. The game world is a grid, where each cell in the grid is a
position that the party can occupy. Each of the four sides of acell can beawall, a

19

COMBAT EVERT

EUVEHT HAPPEHS 17§
| RHHHDOM PERCEHT CHHMCE

Hl' I""UF'*! LJJ

LEFT MHALL:
LOCKED

" FACI1NG WALL:|
\OPEN

BIGHT WALL:
LOCKED

LMD 24 AT 11
COL 18 BOMW 6|

TUTOR 1AL DES1GH : F‘LHEE‘ HHALL
DUHGEON 10

"REE MOUEMENW"
FREE MOUEMENT OPER

E'E'L'Ei' ’i‘ L'E'E"’i' FLFEFI: 'E: H | i‘:ﬁ"i'
Figure 3.1: A screenshot of the Unlimited Adventures editor.

EVEHRT OHLY OHCE 71 | GOBLIN

PERCENHT CHAHCE: [L

jlii=8] UF CLOSE [NGih]
(il OF THE FARTY,

| HE1THER |
L _‘n’._-ﬂf_-H

Figure 3.2: Two pages from acombat event questlonnaj reinUnlimited Adventures.

door, or simply open space. The game editor places the designer in an empty 3D
maze (al cells are open). The designer can navigate the maze using the arrow
keys in the same way a party moves through the maze in the actual game. The
designer can place walls and doors in the cell that they currently occupy. First,
the designer selects the wall image that they wish to use, such as brick, wood, or
even trees, and then it is added by indicating which side of the cell should become
awall. Figure 3.1 shows a screenshot of Unlimited Adventures. The 3D maze
view is shown on the left. The centre shows a top-down grid view of the map
with a compass indicating the direction currently being faced. Information about
the currently occupied cell is shown on the right. Other miscellaneous
information, about the game world and the designer's current actions, is shown
along the bottom.

Unlimited Adventures supports limited behavior and plot specification through a
feature called events. The designer can choose from thirty-six different event

20

types, including combat, having an NPC talk, and finding treasure. The designer
places an event in a map cell, thus the party entering an event's cell is an implicit
condition for that event to fire. After an event is selected, an event-specific multi-
paged questionnaire is presented, which alows the designer to modify various
options in order to customize the event. Figure 3.2 shows two pages of a combat
event’s questionnaire. These images show severa event options that the designer
can modify, including an explicit condition for the event to fire, and some text to
display before the battle. In this example, the explicit condition specifies that the
event has an 80% chance of occurring and the text displayed before the battle is
“You Die Now!”. Note the Chain Control section in the first image. This feature
allows events to be linked together. In this example, if the combat event occurs,
then a Give Treasure event is fired right after. Some event types even alow
conditional linkage to one of several possible events. Eventsin UA are similar to
ScriptEase's situations, which we present in Chapter 4.

While UA's events are not as powerful as a scripting language such as NWcript,
it is far easier to use. The user can completely specify an event by answering
several questions in an easy-to-read menu-driven questionnaire. The average
menu contains between five and twenty entries. Unfortunately, the thirty-six
event types cannot be modified or added to. The ability to define new behaviors
that were unanticipated by the game designers would add significant power to the
tool. We discuss how ScriptEase addresses this problem in Chapter 4.

There is one fina interesting feature of Unlimited Adventures that we will
mention in this section. The toolset is capable of showing the designer the cellsin
the grid that are immediately accessible to the party, the cells that are accessible
only if the party has some specia ability or equipment, and the cells that are
completely inaccessible to the party. The usefulness of this feature is two-fold.
Firgt, if the designer intended for the party to access a particular area in the world,
but forgot to create a door or some other transition mechanism for entering that
area, then this feature would catch that mistake. Second, most of the mazes
created with the toolset have a series of connected rooms and corridors but do not
use every single cell inthe grid. In other words, some of the cells are never meant
for the party to enter. If the maze has aleak — a missing section of wall that gives
the player access to the unused space — then this feature will catch it. Error-
detection is an important, yet often ignored, feature in computer game tool sets.

3.1.2 The Elder Scrolls Construction Set

Aswith Neverwinter Nights, The Elder Scrolls 3: Morrowind [47] is a State-of-
the-art CRPG released in 2002 with all of the CRPG features listed in Section
2.1.1. The game comes with a toolset called The Elder Scrolls Construction Set,
or TESCS, that addresses al of the design chalenges listed in Section 2.1.2.
Terrain features, structures, and miscellaneous objects can be selected and placed
in a smilar fashion to Aurora. Supporting characters and props can be defined
and customized using tabbed dialogs similar to those used in Aurora. TESCS isa

21

I f (Get DeadCount "Trogdor" > 0)
Start Conbat Pl ayer
Set Fi ght 100

endi f
Figure 3.3: Sample of the Morrowind Scripting Language.

A WNPEF

= Tes comnction sat =l

(e B Mew ekl Drercter Bomeelay. B
Bl ok mid|)] 2l e

Mutic i
Door | bgiedien | Ligt | Lockpack | keseban | Pioke | Ragai hae
Spabowning | Encearieg | Moramy | Lovelscinam
Artaine | Apparmus | drmon | Body Fag | Bonk | Gsding | Snianer

Smue | Waamen | BRL Creshie | Loviiud Creches
o | Ciu J Hems Sitpd | &1;
B o shachy wmon gl 0 Shady Smeg 3
& Gryzher b 0 Sorieg e Ba [
B obeh seldrma-d acis I bk T, ColanBkR fiad
_}ul-‘li 1 kb alpeSoripl 4
M obeeasi prindassel . 1 Abowss s T
& nbin b ikl 1 Abbenihe hE|
& ntsba chiidae 1 Ahplia Chagi H
E ababon) sl Eren | AbbesAsdl. E
§ esbouk sham 1 Abshpds S0, L
H sohw 1 - Ach |4
sk in e 1 admnink ¥
:E.m-mr.-. akasician 1 Admakaksb E
B cderjn 1 aAdeyn W
F i e e 1 A Thai 3
e N 1 Addemives AbengeuseRs T
 nocnnnt pesa deir | e A Fs
B noctisran 1 Addamnn aoiare 8
| g g o [
W adcunbosim | aodwionem Emborerion . 10
W aetisnsp 1 Adkaeen wcsmpt. 1| [r— - — == =
sdibmal e et 1 adbe Hei “, L iy e e TEE Seydu Fmwa L D e
Wi i T i boromen [[T Inlaricr 296 r > r e
!ar‘h e 1 Ades Oges [Smonl dormeiet Tomks | (wbenge 194 a':-lr"'_rh" iy l :_:';I* I \m"m‘:l
Adndeai Sad okl | Adendas Ba. q Enram Ancsabel Termb! wlnor JE ¥ = "_‘2 s e
B sdeiDarane 1 e Dararm E] Ewrrmiani lnmesi 2IE ‘im e "F_ =
F aiesimonwinrin T A 'encl, 11 B b dsciched Tash etaric 2 ¥ _I:'I:.::;; Lo :p:
B aine noheea 1 Adnin e R 12 Eatpno Saarinel To Imianicr | 14T ¥ B ® dock guend ..--':
Boduemuiserinmss . 1 ddueameise 1 EvbarjoceumiTy. | (rlerior | 200 v (BB T HE
Asbercwue bcae 1 Asbordmus. denBwesl | E Ewure Egy bins I M8 ¥ , (Pl P
W et | Asigoh e oo * Eindarkun 20 a5 v lu..:-'w-r":: s
e 1 [hein " Epdabiagn =l el HFG
B oein wiren bk 1 Aeinibpes- soloee q Eednbleen fedets | lmerioe 3E '-j;l ..':.'"f ,'.._'._ r:_l
ew 1A alewetiogd] [T | = Af (S
i o
Frtsnrf ks Door = B0, - 1800, AR, G, 23] -E -9 Cigertr 300, Faoes: TR0 Lighes: TR Tes 12 freaipen: T [ReOby 27, Fac: 20005, Lim: 1]

Figure 3.4: Screenshot from The Elder Scrolls Construction Set.

bit more complex and harder to use than Aurora but aso gives the user some
more power over the physical characteristics and 3D positioning of characters and
props. Character behaviors, encounters, and plot must all be specified using
Morrowind's scripting language. Thereis no specia support for these, such as the
Neverwinter Nights plot and encounter wizards. The toolset also includes a
conversation editor.

Like NWcript, Morrowind’s scripting language is procedural, and accesses the
game engine through a set of library functions. A sample is shown in Figure 3.3.
The code on line 1 tests if a creature called “Trogdor” is dead. If that condition is
true then the executer of this script attacks the player (line 2) and sets its own
morale to 100% (line 3), meaning it will never flee from the battle.

Like Neverwinter Nights Morrowind’'s game engine is event-based. However,
unlike Neverwinter Nights events in Morrowind do not modify a character’'s
actions directly. Instead, Morrowind’s events merely modify the state (or
memory) of a character. A character executes its script repeatedly as quickly as

22

possible. The script determines which actions the character should perform, based
on its memory and global information provided by the game engine.

A screenshot from TESCSis shown in Figure 3.4. The tabbed Object Window, on
the left, shows lists of al of the objects in the game, including NPCs,
conversations, magic spells, clothing, etc. The Cell View window on the lower
right displays alist of all of the areas in the game world as well asalist of objects
that exist in the selected area. Finally, the render window displays the selected
areain 3D. The user can insert, remove and modify objects by selecting them in
the render window.

Morrowind's gameplay is very different from Neverwinter Nights due mostly to
their difference in perspective. Morrowind uses a first-person perspective and a
driving-type movement interface, where the player uses the keyboard to move
forward, backwards, and side-to-side. The player uses the mouse to turn and
interact with the world. Neverwinter Nights has a floating third-person
perspective and movement is accomplished fully through a point-and-click
interface, where the player uses the mouse to select a location and the character
then moves there. It is interesting to note that despite the games somewhat
disparate gameplay models, the functionaity of their toolsets — Aurora and
TESCS-—isvery amilar.

3.2 Visual Programming Environments

Besides computer game toolsets, there are dozens of other visual programming
software packages available. We mention them here because ScriptEase is
essentially a visual programming tool, even though it is specialized for CRPG
scripting. Some of these tools are general-purpose visua programming
languages, such as Prograph [39] and Sanscript [37], while others, such as
Sarlogo [36], are designed to handle a specific family of problems. Others still,
such as CO,P,S [14] [15], provide a graphical front-end that generates code in an
underlying text-based language. Dominique Parker has written a survey of
various visual programming packages [17], including Prograph, Sanscript, and
Sarlogo. In this section, we will briefly summarize these three tools. We will
mention CO,P»Sin Section 3.4. Sarlogo and CO,P,S are prototypes. Prograph
and Sanscript are commercial development tools. With the exception of a few
very simple programs, such as those listed in [33], none of these tools are used in
real-world applications.

Prograph and Sanscript are full-fledged programming languages as opposed to
graphical front-ends that generate code for a text-based language. They both
represent programs visually as data-flow graphs. The nodes in the graph represent
operations to perform on the data. Each node has a set of input and output points,
which can be connected to other nodes using edges. There are nodes

23

flexible eco template

Infect

; HGIEE Breed to infect | healthy
healthy i‘ Breed to change infected turtles to |_sick
sirk 2 Probability of infection {45}

Remove || Rename ‘

Ereed functions T

sick define if franclom 100 < 75
[graty one-of-healthy-here
[ask-turtle partner
[zet breed sick

Death
Infect

[

‘ Mew | | Remove | | Describe | let [temp-energy energyl
setup-sick
| Clear || Done | set energy [temp-enardy] =

1

Figure 3.5: Sarlogo’s Ecology Template.

corresponding to al of the syntactic structures found in most text-based
languages, such as conditionals, arithmetic operators, loops, and function calls.
Additionally, both languages feature a visua interface for creating data-types.
Sanscript is a visua-procedura language and, in addition to the standard set of
types, supports record types, analogous to records in Pascal or structs in C.
Prograph is object-oriented and supports the creation of classes and their
organization into a hierarchy.

Sarlogo is a visua programming tool that focuses on simulations involving
multiple independent agents that interact with each other and their environment.
Sarlogo is fundamentally a text-based language. Agent-control programs can be
written entirely in text, but at runtime, the agents and their environment are
represented visually. The user can aso create GUI widgets, such as buttons and
diders, capable of giving the agents commands or changing variable values
dynamically during the program’s execution. In addition, Starlogo code can be
generated using purely visual parameterized templates. For instance, Figure 3.5,
taken from [L7], shows an instance of the Ecology template that creates two
breeds of turtles: sick and healthy. The user defines new breeds of turtles using
the Breeds section of the template dialog. The list of functions that apply to a
particular breed can be edited in the Breed functions section. These functions
refer to the actions that a turtle is capable of performing, such as walking, eating,
and dying. The window in the upper-right contains function-specific parameters
that allow the user to customize the smulation. The lower right window contains
the generated code for the selected function and it is updated dynamically as the
user makes changes.

24

Compiler
Lexer
Source C> Bytecode
Code Stream
Parser
Code Runtime
Generator Interpreter

Figure 3.6: Dataflow of a Script Compiler.

3.3 Behavior Specification

All CRPGs, and most other computer game genres, have a set of characters that
interact with the player and each other in the game world. In this section, we will
mention three interesting behavior-specification mechanisms used in commercial
computer games: scripting languages, finite state machines, and force fields.

3.3.1 Scripting Languages

Scripting languages are a common method for specifying behaviors in computer
games. We discussed the Neverwinter Nights scripting language, NWScript, in
Section 2.2.3 and the Morrowind scripting language in Section 3.1.2. In this
section, we will discuss scripting languages in general.

The basic architecture of a scripting language is shown in Figure 3.6 (recreated
from [3]). A scripting language consists of two components. the actual language
and the scripting engine that interprets it. Source code, written in the scripting
language, is compiled into a format interpretable by the scripting engine. The
compiled code is called the bytecode stream, and it is formatted in such a way that
the scripting engine can decode and execute its instructions quickly. Lexical
analysis and parsing of source code can be an expensive process, especidly if the
language is complicated. By moving the lexer and parser into an offline
compiler, the performance hit to the game at run-time is greatly reduced.

A scripting language adds a small amount of overhead to the run-time

performance of a game. However, this is offset by several advantages that a
scripting language provides as opposed to hard coded behaviors. First, aslong as

25

the interface between the scripting language and the game engine is not changed,
the game's designers and developers can work independently. As a result,
changes to character behaviors do not require that the entire game source be
recompiled; only the relevant scripts. Second, the chance of the game crashing
due to erroneous script code is minimized since the code is interpreted and run in
a protected environment. In the worst case, the script simply fails and the
character does nothing. Non-crashing code is especially important if the
designers, which may include home users, are not particularly good programmers.
Finaly, scripting languages are generdly simpler to use than standard
programming languages such as C++, making them amenable for use by both
game designers and home users.

Several commercial games use an existing general-purpose scripting language,
such as Python [11][40]. Some of these games include Blade of Darkness [46],
Frequency [52], and EveOnline [48] (according to [11]). Using a language like
Python has two mgjor advantages. First, Python includes several advanced
features such as complex data types, class inheritance, and garbage collection, all
of which have been rigoroudy tested and used by thousands of users in the past.
Since custom scripting languages lack the years of evolution that Python has
endured, they cannot hope to include these advanced features and be as stable as
Python. Second, Python has an enormous online user-community. There is avast
collection of documentation, tutorials, message forums, code libraries, sample
code, and development tools immediately available to script writers.

Custom scripting languages have advantages as well. General-purpose languages,
such as Python, are typically quite large and may seem more daunting to the home
user than a small smple custom language. Ancther concern is if a genera-
purpose scripting language is used, the developer is under pressure to interpret the
language correctly according to some standard. This may introduce unneeded
complexity and performance issues to the game via the runtime script- interpreter.
Often, the tasks that are specified using a scripting language do not require the
complex features included in general-purpose languages. A simple language with
few or no complex features is easier to learn and understand. Additionally, it may
be difficult to trandate a genera-purpose language’ s bytecode stream into a form
recognizable by the game engine. Likely, the general bytecodes are more
complex than those used by the game engine. A custom language can generate a
game-interpretable bytecode stream directly.

Readers interested in more information on scripting language design for
commercia computer games should see[2], [3], [4], [5], [6], [18], and [22].

3.3.2 Finite State M achines
A finite state machine, or FSM, is a smple and elegant behaviora model for

controlling character Al. An FSM is composed using the two following features
[27]:

26

l—— Spawn State Shambler
Monster
I
| Firish Spawning |
Last poal
Yy
‘ Idle State —I Located gosl I * Attack State
I
Zeto hedith ¥ ¥
Zern heaith | helee Attack | | Miszile Attack ‘
[
1 ¥ ¥
B Die State 4 | Smash | | Left | | Right |

Figure 3.7: An FSM representation of a Shambler monster from Quake, taken from [27].

1. Behavioral States. Characters occupy a single state at atime. Each state
defines a single behavior or set of behaviors that the character can utilize.

2. State Transitions: Characters may move from one state to another if there
is a state transition defined between those two states. Transitions have
rules or conditions attached to them. A state transition occurs when the
conditions for thet particular transition are met.

Figure 3.7 shows a behavioral FSM for the Shambler monster in Quake [58].
This figure was taken from [27]. The small black boxes on the left side of the
diagram are the entry and exit points to the FSM. The light blue boxes are the
behavioral states of the FSM. The black arrows are state-transition arcs. The
orange boxes contain conditions for the state-transition arcs to which they are
attached. There are four mgjor states in this example: Spawn, Idle, Die, and
Attack. Each of these states can have its own mechanism for determining which
action the Shambler could perform. This mechanism could even be another FSM,
permitting arbitrarily deep nesting of FSMs. The attack state in Figure 3.7
illustrates this. Once in the attack state, the Shambler must decide to perform a
melee attack (close range) or a missile attack (long range). The decision could be
made based on a random number, a script, another FSM, or any other decision
making mechanism. Similarly, if a melee attack is chosen, the Shambler must
then decide to either attack with its left arm, right arm, or smash with both arms.

One disadvantage of FSMs is that they can be predictable, especialy if the FSM
is small. Adding nondeterminism to an FSM model is important when
attempting to create realistic and unpredictable behaviors. To this end, a fuzzy
logic architecture [1][24] can be applied to FSMs, creating Fuzzy State Machines
[27], which add an element of randomness to the state transition arcs.

27

3.3.3ForceFields

The disadvantage of FSM-based architectures (fuzzy or otherwise) is that, by
definition, a character can only be in one state at a time. Consider our dragon
friend, Trogdor the Burninator. Trogdor might have several needs and desires,
such as food, rest, treasure, security, and entertainment. In an FSM model, there
would be a state for every one of these motivations and Trogdor would be in one
of them at atime. For instance, if Trogdor was hungry he might fly over to the
largest herd of cattle that he can find, even though it takes him dangeroudly far
away from his lair, where some brave adventurer could snesk in and stea his
treasure. If we wanted Trogdor to consider multiple needs when choosing his
actions, the FSM would have to grow exponentially to handle every possible
combination of needs.

Force fields are a behaviora model used in smulation games like The Sms
[13][60], and researched in sports games such as FIFA Soccer [23][49]. In aforce
field architecture, characters have a set of drives, like Trogdor's needs listed
earlier. Each object that has an effect on a drive generates a force field attracting
or repelling the character. For instance, food sources would generate fields
attracting Trogdor to them, and renowned dragonslaying heroes would generate
repulsive force fields. The strength of a given force field is determined by the
urgency of its associated drive and the distance of the force field from the
character. All of the force fields influence the character’s actions. The action
taken is determined by the sum of al of these influences. Referring to Trogdor
again, he may find a smaller herd of cattle closer to his lair, satisfying both his
hunger and security needs simultaneoudly.

Another advantage of force fields is that they are well suited to machine learning.
When something undesirable happens, such as Trogdor’s treasure being stolen or
agoa being scored in a soccer game, the urgency levels of the force fields can be
adjusted in order to prevent the same thing from happening again. Learning is
particularly useful in sports games, which often have sweet spots or a series of
actions that the player can perform that scores a goal amost every time. Jack van
Rijswijck has implemented a force field Al system in a research version of EA
Sports' FIFA Soccer 2002 [23].

3.4 Automated Code Generation

A great dea of research has been done in automated code generation, primarily
with generative design patterns. In this section, we will mention two automated
code generation techniques. generative design patterns and generative
questionnaires. We will also mention a novel generative learning technique.

28

3.4.1 Generative Design Patterns

Gamma et al. [12] define design patterns as *“ descriptions of communicating
objects and classes that are customized to solve a general design problemin a
particular context.” A design pattern is ahigh-level description of a solution to a
family of recurring design problems. The implementation of the solution is left to
the user, since only they understand the specific variant of the problem. To
reiterate, design patterns do not provide specific implementations of their
solutions, since their solutions require application specific information.

Generative design patterns are an attempt to generate framework code for a
specific solution from the family of problems, based on specification parameters
provided by the user [15]. MacDonald et al. [15] discuss why design patterns are
not generally used as generative constructs that support code reuse, and give three
major reasons. First, it is difficult to generate a single body of code that
adequately solves each problem in the family of a particular design pattern.
Second, defining and modifying generative patterns is hard. Finally, the lack of a
tool-independent representation for generative design patterns hinders the creation
of a shared-repository that would make patterns more available to both users and
pattern developers. MacDonald et al. present an approach to solving these
problems using their tools, CO,P,S [14] and Meta-CO,P,S [7]. COP.Sis a
visual tool that allows the user to easily specify the various options of a particular
pattern, as well as insert applicationspecific code. CO,P,Sthen generates object-
oriented framework code based on the options selected. Meta-CO,P,Sisavisud
tool that allows users to create new generative design patterns. Budinsky et al. [8]
have devel oped a web-based tool that generates code for design patterns. The tool
generates code based on implementation trade-offs selected by the user. The tool
also provides full documentation for each pattern through a series of cross-
referenced html pages. For the reader interested in generative programming in
genera, Czarnecki and Eisenecker [10] have written a comprehensive book on the
subject.

3.4.2 Generative Questionnaires

We mentioned questionnaires earlier, in Section 3.1.1, with regard to the game
toolset for Unlimited Adventures. A generative questionnaire presents the user
with a series of questions about what they would like their program to do and then
automatically generates code based on the answers. As opposed to generative
design patterns, generative questionnaires do not generate frameworks, but
instead generate fully functional stand-alone code that requires no extension by
the user. Questionnaires have this capability because they are more restrictive,
than generative design patterns, in the power that they give to the user. This
restriction is acceptable (and sometimes preferable) in behavior-specification
tools for commercial computer games, since the majority of users for such tools
are non-programmers. Unlimited Adventures, the Aurora Toolset’s plot wizard,

29

Sarcraft’s[61] trigger editor, and Lilac Soul’s NWN Script Generator [31][32] are
examples of such tools.

3.4.3 A Generative Learning Technique

Pieter Spronck et al. [19] have devised a novel learning technique for combat Al
in CRPGs. Their approach involves giving a character a set of weighted hand-
scripted if-then-else rules such as “ If I'm critically wounded then drink a healing
potion”, “ If an enemy isa magic user then cast a deafening spell on them”, or “ If
an enemy is within 5 feet of me then attack them”. The learning algorithm
extracts a subset of these rules, based on their weights, and generates a combat
script for the character using the selected rules. After a battle, the weight of each
rule used by the character is modified depending on how well they performed.
Spronck et al. have used Neverwinter Nights [56] and a customtbuilt simulation
environment that resembles Baldur’s Gate 2 [44] as testbeds for their research.

3.4.43ummary

Automatic code generators must make a choice between power and ease-of-use.
Generative design patterns are quite powerful, since the user is required to submit
application-specific code. These tools make the correct implementation of design
patterns easier for programmers, but do little to allow non-programmers to benefit
from design patterns. On the other hand, generative questionnaires are easy and
accessible to nonprogrammers due to their purely visua interfaces, but lack in
power for the same reason. Our tool, ScriptEase, aspires to be both powerful and
easy to use by nonprogrammers, in the specific domain of CRPG scripting. We
present ScriptEase in Chapter 4.

30

Chapter 4
ScriptEase

4.1 Introduction

4.1.1 Goals

In many ways, a CRPG islike amovie. It has acast, sets, props, specia effects, a
script, etc. All of these elements are important when designing a CRPG. We
would like to provide all of these facilities in an easy-to-use visual environment.
Fortunately, much of the work has aready been done. Casting characters,
designing sets, and placing props is easily accomplished using existing CRPG
toolsets such as Aurora, presented in Section 2.2.2, and TESCS, presented in
Section 3.1.2. Therefore, our focus is on the game’s script.

Unlike a movie script, a CRPG script is typically nontlinear and aways
interactive. The dilemma faced by designers is that the player's character is
unscripted and therefore unpredictable. Designers must be careful not to alow
any player actions to break the plot of the game. To account for this, a CRPG
script is divided into a list of rules. Each rule defines how a character, prop, or
the environment reacts to a particular action by the player. For instance, a rule
associated with a bartender might indicate the following: When a player character
enters my tavern, greet them and offer them a tankard of ale. I1n order to support a
very large set of complex rules, state-of-the-art CRPGs utilize text-based scripting
languages. Not only are these languages hard to learn and use, they are also
difficult to read and understand. A movie script can be written in plain English,
and read easily. We would like to represent a CRPG script in a similarly easy-to-
write and easy-to-read format.

In Section 2.1.4, we discussed four design challenges in computer role-playing
games that offered good research opportunities. behavior specification,
conversations, plots, and encounters All of these challenges are related to the
game' s script. The three primary goals of our research are the following.

1. To provide a powerful and easy-to-use visual dternative to a text-based
scripting language for CRPGs that requires no programming knowledge
on the user’s part.

To provide specia support for specifying encounters using patterns.
To serve as a basis for future work in specifying behaviors, conversations,
and plots.

wnN

31

In this chapter, we give a detailed presentation of our research and the visua
scripting tool that we developed, ScriptEase. The current version of ScriptEase is
specific to the CRPG Neverwinter Nightsand its toolset, Aurora.

4.1.2 Overview

Since the Neverwinter Nights scripting language, NWScript, is text-based, it is
very difficult for nonprogrammers to use, such as game designers and home
users. ScriptEase provides a visual scripting alternative to NWScript that requires
no programming knowledge to use. To reiterate, the average ScriptEase user
never writes code. We presented our first prototype version of ScriptEase in [15],
and since then, it has evolved into a powerful and practical scripting tool.

Users specify information in ScriptEase using easy-to-understand questionnaires
whose answers are specified using context sensitive GUI components, such as
lists, menus, and trees. Once specified, the information is presented back to the
user in easy-to-read English sentences.

In order to provide users with a degree of power dose to that of a text-based
scripting language, ScriptEase works on multiple levels of abstraction. At the
highest level, users instantiate high-level reusable patterns. At the second level,
new patterns can be created using a tool called the Pattern Builder. Neither of
these two levels of abstraction requires any coding by the user. The third level of
abstraction allows new fundamental scripting components, called Atoms, to be
created using the Atom Builder. At thislevel, some coding isrequired. An atom’'s
designer must enter the code that the atom generates. With alarge enough base of
atoms, the average user will never use the atom builder. However, those users
that are capable of programming in text-based languages can create new atoms.
Additionally, non-programming users can post regquests for new atoms in public
Web-based forums where users capable of programming can fulfill the request,
taking the burden off our shoulders. The Pattern Builder and Atom Builder
facilitate extension in ScriptEase, alleviating the lack-of-power problems that
other visual scripting tools, such as Unlimited Adventures (discussed in Section
3.1.1), suffer from. Finally, ScriptEase automatically generates NWScript code —
the lowest level of abstraction — based on the information provided by the user at
the higher levels. The generated code is automatically documented using the
same English language descriptions used to present information to the user. For
the most part, we expect users will never look at the generated code, but it is
comprehendible should they decide to.

Ideally, ScriptEase would be integrated into the Aurora Toolset in order to provide
a seamless interface between the two. We did not have access to Aurora’s source
code, so total integration was rot feasible. Fortunately, the Neverwinter Nights
file-formats P5][41] and a stand-alone command-line NWcript compiler are
publicly available. Therefore, ScriptEase can load data from the preexisting

32

Neverwinter Nights

FPlayl

Aurora Toolset
ScriptEase World Layout
=oript Specification Blgipr lntPIl)Efimtmns
{ ect Placement
c'iéie Gﬁffll'?f_atioﬂ Houule Cjonversations
ompilation : :
Hile Environmental and
Lighting Effects

Figure 4.1: A dataflow diagram illustrating the interactions between the Neverwinter Nights game
engine, the Aurora Toolset, and ScriptEase.

module file, have the user specify scripts based on that information, generate
NW<cript code, compile it using the stand-alone compiler, and then insert the
compiled scripts back into the module file. Figure 4.1 illustrates how ScriptEase
interacts with the Aurora Toolset and the Neverwinter Nights game engine. The
Aurora Toolset is used to create the module file, define object blueprints,* layout
the world, place objects, and do everything else unrelated to the scripting
language. ScriptEase handles all of the tasks normally done by NW<cript. It is
used to specify scripts in a purely visua environment, and then it automatically
generates NW<Script code, compiles it, and inserts it back into the module file.
The Neverwinter Nights game engine loads the module file and executes it.

In Section 4.2, we present the primary building blocks of ScriptEase, called
Stuations. Section 4.3 describes ScriptEase’s type system. In Section 4.4, we
discuss Patterns and how they are represented and used in ScriptEase. In Section
4.5, we describe Atoms, which define the various kinds of situation components
used in ScriptEase. In Section 4.6, we discuss how ScriptEase’s code generation
works. In Section 4.7, we offer an assessment of ScriptEase based on internal
usage and a modest usability review. Finaly, in Section 4.8, we summarize the

chapter.

4.2 Situations

The primary building blocks in ScriptEase are called Stuations. The components
of adtuation are an Event, a set of Entities, a set of Conditions, and aset of

! Object blueprints are descriptions of game objects that can be instantiated and placed in the
world. Wewill revisit them in Section 4.3.

33

Entry point

Diefine any avent-
dependant enfifies.

Do all of
the

condifions
hiald?

Euxit
¥

Define any stand-
alone enfiflas.

Execute all of the

Rcfions, morder. . it

Figure 4.2: The control flow of a ScriptEase situation.

Event: When an item is removed from the Aurora defined placeable called
Pedestal.

Event-Implied Entities:
Define Disturbed Item as the item that was removed from the Pedestal.
Define Disturber as the creature that removed the item from the Pedestal.

Other Entites:
Define Helm as the headgear that Disturber is currently wearing.

Conditions.
If the Disturber is a player character, and
If the Disturbed Item is the Aurora-defined item called Gem of Power, and
If HElm is not the Aurora-defined item called Wor mskull

Actions:
Define Pedestal’ s Location as the location of the Pedestal, then
Destroy the Pedestal, then
Show avisua effect called Harm at Pedestal’ s Location, then
Create an Aurora-defined creature called Zombie at Pedestal’ s Location,
hereinafter referred to as Larry the Zombie, then
Have Larry the Zombie attack the Disturber.

Figure 4.3: An example situation, formatted to match its representation in ScriptEase.

Actions. The flowchart in Figure 4.2 illustrates how these components are
composed to form a Situation. A situation reads. when the Event occurs, if al of
the Conditions hold then, execute the Actions. Entities are analogous to accessor
functions that assign values to variables in a text-based language, and once
defined, are used by the conditions and actions of the situation.

34

This section is split into two parts. In the first part, Section 4.2.1, we discuss each
of the components of a situation and how they are presented by ScriptEase.
While reading Section4.2.1, the reader will notice that we do not discuss how to
specify or edit any of this information. We first want to demonstrate how
stuations “look” in ScriptEase. In the second part, Section 4.2.2, we will
describe how gituations are modified by creating, removing, and editing
components.

We will use the following example to describe the different components of a
situation and how the user specifies them in ScriptEase. We will assume that
blueprints for a placeable called Pedestal, a creature caled Zombie, and items
called Wormskull and Gem of Power have been defined in the Aurora Toolset.
Our example situation reads: When a player character removes the Gem of Power
from the Pedestal, the Pedestal transforms into a Zombie that attacks the player
character, unless the player character is wearing the helmet Wormskull. This
situation is typical of those found in CRPGs. Figure 4.3 describes this situation in
the terms it components, corresponding to its representation in ScriptEase.

4.2.1 Presentation

This section demonstrates how situations are viewed in ScriptEase. In the next
section, we will describe how information is entered into the situations. Figures
4.4 through 4.9 are screenshots of the pages from ScriptEase’s situation
guestionnaire. The user starts with the Label page shown in Figure 4.4. The
purpose of this panel is to give the situation a name so that it can be referred to
later. In this example, we name our situation Pedestal-Zombie Transformation.
The user can navigate to the ather panels using the Next and Back buttons shown
along the bottom of the panel. Alternatively, the user can choose which panel
they wish to examine by selecting it from the list on the left. Next is the Notes
page, shown in Figure 4.5, which allows the user to include important instructions
or documentation regarding this situation. The remaining panels are more
complex than the first two, and will require more detailed discussions.

The Event page is shown in Figure 4.6. An event is an occurrence within the
game that prompts a situation to execute. In our example, the type of event is
when an item is added or removed from a container. In order to complete this
event, two parameters need to be specified: the container, and the inventory
disturbance type (whether the item was added or removed). In Figure 4.6, these
parameters have already been set. The event line reads, “When an item is
removed from Pedestal” . All situation components are presented in plain easy-to-
understand English sentences. It is important to note that these sentences are not
typed in by the user. They are generated by ScriptEase based on menu-driven
information provided by the user, which we discuss in Section 4.2.2. The
coloured words correspond to the component’s parameters. The word Pedestal
represents the container parameter. It is shown in purple to indicate that it is a
game-object defined within the Aurora Toolset. The phrase removed from

35

£ situation
e

x|
Label 5@ A situation is comprised of an event, entities, conditions, and actions. A situation reads: When
Notes g@ the event occurs, ifthe conditions are true, then execute the actions. Actions are executed in the
Event :| order in which they are specified.
Other Entities|
Conditions |
Actions

Mame Fedestal-Zombie Transformation

;i Ifthe PC is notwearing the helmet Warmskull and removes the Gem of Power fram the Pedestal,
§§ then the pedestal will turn into a Zombie that attacks the plaver.

§§ Itis impartant to nate that after the transformation, the pedestal and all of its contents will he
‘destroved farever.

| Back | Mext | ok | cancel
Figure 4.4: The Label page of asituation questionnaire.
|
!__al]e_l__ ; ou can use this area to write any important information or documentation regarding this
Notes ¢| situation,
Sl ‘| -Notes
Other Entities| “|————— - -
Conditions This situation transforms a Pedestal into a Zomhbie.
Actions ;

| Back | Next |

‘ Ok H Cancel

Figure 4.5: The Notes page of a situation questionnaire.
x
Label |rEvent
hites Specify the eventthattriggers this situation here. |
]_E’_\{@I’lt SRR | = =
Other Entities '.r:ll};en an item is removed from Pedestal - I Change H Edit H T |
SAnIsIony Entities Added by this Event
Actions Sl i

Define Container Disturber as the creature that just removed from Pedestal
Define Disturbed ltem as the item that was removed from Pedestal

| Back | Next | ok | cancel

Figure 4.6: The Event page of asituation questionnaire.

36

£ situation

x|
Label §§ rOther Entities
Notes ; : : .
Specify any other entites yau require here.
LS|
(Other Entities| :||Define Helm as the item equipped on Container Disturber's Head.
Conditions :
Actions
Hener | Cut | Copy Faste
Edit Up Do
| Back | Mext | ok | cancel
Figure 4.7: The Entities page of asituation questionnaire.
x|
Label ‘|rConditions
Hotes ' Specify the conditions far this situation here.
Event :
Other Entities ﬁg If Container Disturber is a PC
Conditions And, If Disturbed lkem was created from the Gem of Power blueprint
Actions And, If Helm was not created from the Wormskull blueprint
Mener | Cut | Copy Fasta
Edit (=] Do
| Back | Next | | ok | cancel
Figure 4.8: The Conditions page of a situation questionnaire.
x|
Label ‘|rctions
Hutes ' Specify the actions for this situation here.
Event :
Other Entities| ;|| Define Pedestal’s Location as the location of Pedestal
Conditions | :||[Then, Destroy Pedestal

2|[[Then, Show a Harm effect at Pedestal's Location

| 2|[[Then, Spawn a creature with blueprint Zombie at Pedestal’s Location, called Larry the Zombie
§§ Then, Larry the Zombie attacks Container Disturber

MNewr | Faste

Cut | Copy

Edit

Up

| Back | Next | ok | cancel

Figure 4.9: The Actions page of asituation questionnaire.

37

represents the disturbance type parameter. It is shown in red to indicate that it isa
constant value. In fact, removed from is an element of an enumeration type that
lists all of the possible itemcontainer disturbances. We discuss enumerations in
Section 4.3. In addition to the event itself, there are certain Entities that are
implicitly defined, based on the event. In this example, the event-implied entities
are the creature that disturbed the container’s inventory and the item that was
disturbed. They are labeled Container Disturber and Disturbed Item respectively
and are listed in Figure 4.6 under the Entities Added by this Event heading.
Entities (event-implied or stand-alone) are coloured green. These entities are
available to the user when they specify conditions, actions, and other entities later.
In the next section, we will explain how new events are created and edited.

In addition to the entities implicitly defined by the event, the user can define
stand-alone entities, independent of the event. Figure 4.7 shows the Entities page
of the situation questionnaire. For our example, one additional entity, Helm, is
defined as the item that Container Disturber is wearing on their head. Note thet
this entity uses the previously defined Container Disturber entity in its definition.
The word Head in the entity’s description is coloured red, indicating that it is a
constant value. The newly created Helm entity can now be used when specifying
conditions, actions, or more entities. It is also worth noting that all entities have a
type associated with them. The type of the Helm entity in our example is Item,
which means that it is an object capable of being possessed by a creature or
placeable. We discuss ScriptEase’s type system in detail in Section 4.3. The
mechanism used to add and edit entities is presented in the next section.

Figure 4.8 shows the three conditions of our example within the Conditions page
of ScriptEase’s situation questionnaire. The first ensures that the Container
Disturber is a player character. The second ensures that the Disturbed Item is an
instance of the Gem of Power blueprint. This condition is necessary since the
Pedestal may contain severa items other than the Gem of Power, all of which the
player should be able to freedly manipulate since they are unrelated to this
situation. The third condition ensures that the Container Disturber is not wearing
the helmet Wormskull. Helm is coloured green because it is an entity. Gem of
Power and Wormskull are coloured purple since they are Aurora-defined
blueprints.

Figure 4.9 shows the actions from our example within the situation
guestionnaire’s Actions page. Actions are executed in order, and only if al of the
conditions hold. There are two kinds of actions: entity definitions and game
actions. Game actions affect the game world in some way, whereas entity
definitions simply access the game's state without changing anything. Therefore,
any entity that can be defined in the Entities page shown in Figure 4.7 can aso be
defined in the Actions page. Later, we will discuss the reasons for defining
entities in different places. The first action in Figure 4.9 defines an entity called
Pedestal’ s Location, which retrieves the location of the Pedestal. The next action
destroys the Pedestal (removes it from the game world). The third action displays

38

avisual effect called Harm at the Pedestal’ s Location. This visual effect is purely
cosmetic and makes the pedestal-zombie transformation look cool. The fourth
action creates a creature using the Zombie blueprint as defined in the Aurora
Toolset. Theinstance of the Zombie blueprint is created at the Pedestal’ s Location
and is referred to as Larry the Zombie. Finadly, the lag action instructs Larry the
Zombie to attack the Container Disturber. It should be noted that game actions
are capable of defining entities. For instance, the fourth action defines the entity
Larry the Zombie, and is a game action since it affects the game world by creating
acreature.

Entities can be defined in three different places within the situation questionnaire.
They can be defined in the event-dependant entities section of the Event page, in
the Entities page, and in the Actions page. Entities are available when specifying
the parameters of a situation’s other components. Entities defined in the Event
page are separated from the rest since they are dependent on the event and cannot
be modified by the user. Event-implied entities are available to be used by every
component of the situation except for the event. Entities defined in the Entities
page are available to all of the conditions and actions of the situation. They are
also available to any entity in the Entities page that is defined lower in the list. In
other words, an entity has access to al of the other entities defined above it, but
none of those below it in the list. This visibility issue can cause problems when
entities are reordered after being defined. We discuss these problems in Chapter
5. The entities defined in the Actions page can only be accessed by the entities
and actions defined below them in the action list. The vishility of the entity to
the other situation components, influences the designers decision on whichlist to
define the entity in.

4.2.2 Modification

In this section, we explain how situation components are created, removed, and
edited in ScriptEase. A dituation has a single event, which can be changed,
removed, or edited using the buttons labeled Change, Remove and Edit
respectively, shown in Figure 4.6. A sSituation can contain multiple entities,
conditions, and actions. These components can be manipulated using the inner
button panel shown in Figures 4.7, 4.8, and 4.9. The New button creates a new
component and adds it to the end of the list. The Cut, Copy, and Paste buttons
offer the expected functionality. These functions are loca to the page to which
they belong. For instance, an entry in the list of conditions cannot be cut and then
pasted into the list of actions. The Up and Down buttons allow the selected entry
to be moved in thelist. Finally, in order to edit one of these components, the user
clicks the Edit button or double-clicks on the appropriate list entry. Note that the
event-implied entities listed in the event page (Figure 4.6) have no such buttons.
These entities are fixed according to the selected event and cannot be modified by
the user.

39

8 Action Atoms x|

enreate a random integer. i
et an item equpped on a creature.

ttack a creature

ecrement the remaining number of uses for a feat
estroy an ohject |
estroy an object {with death animation) =
ill a creature ==
pawn a creature at a location.
pawn a creature at a waypoint.
hange the direction an ohject faces
e some gold to a creature

ake some gold away from a creature

ive some XP to a creature =

| 0Ok H Cancel |
Figure 4.10: A list of possible actions that can be added to a situation.

When the user elects to create a new component, they are presented with a list of
possible events, entities, conditions, or actions, depending on which page they are
editing. For instance, if the New button is clicked in a situation’s Actions page
(Figure 4.9) the dialog in Figure 4.10 is displayed. This dialog presents a list of
all possible actions. After the user selects the action that they wish to add, that
action’s questionnaire is opened. Events, entities, and conditions are created in
the sameway. If the user elected to edit an existing component, that component’s
guestionnaire would open directly. There are hundreds of different events,
entities, conditions, and actions available in NWScript. At present, we have
included approximately 200 of these components into ScriptEase.

We will use the Attack a creature action as an example of how a situation
component is edited. Thisisthe selected action in Figure 4.10. It involves having
one creature attack another. The questionnaire for this action is shown in Figure
4.11. The first page of the questionnaire gives a short description of the action.
The remaining pages correspond to the action’s parameters. This example has
two parameters, the Attacker and the Attacked. Figures 4.12 and 4.13 are
screenshots of the Attacker parameter page, which we will explain shortly. Like
entities, parameters have a type associated with them. The type of the Attacker
parameter is Creature, which means that only entities of the same type or creature
blueprints defined in the Aurora Toolset are valid vaues for this parameter.
Accordingly, the Attacker parameter page of the action’s questionnaire presents
both of these options to the user. Figure 4.12 shows the Known Creatures option
selected. This option alows the user to select a value for this parameter from all
of the valid entities, previously defined within the situation. In Figure 4.12, two
such entities exist: Container Disturber and Larry the Zombie. The user may
select either of these values from a drop-down menu. In Figure 4.13, the Aurora
Blueprint option is selected. The box beside the radio button shows the currently
selected blueprint, as well as a button labeled Change. When the Change button
ispressed, ScriptEase’s Blueprint Picker is brought up, also shown in Figure 4.13.
This dialog presents the user with all of the custom blueprints defined in the
Aurora Toolset, within a tree-type interface corresponding to the one used by
Aurora. The row of icons displayed along the top of the Blueprint Picker

40

B

Description| /| -Description
Attacker |
Attacked

This action causes one creature to attack
another creature.

| Back | mext | ok | cancer |
Figure 4.11: The Description page of an Attack a creature action’ s questionnaire.

x|
Description| - |-Attacker
Attacker |
Attacked

Selectthe creature that attacks.

i@ Known Creatures I].__arrg.-"t“l-l-e Zombie v

) Aurora Blueprint [

| B.lack || Hext | ‘ Ok H Cancel

Figure 4.12: When the Known Creatures option is selected, the user can access all of the other
creature entities that were previously defined in ScriptEase.

E

Description| - rAttacker
Attacker |-
Attacked

Selectthe creature that attacks.

| © Known Creatures Larrythe Zombie |

Module Blueprint
®} Aurora Blueprint Lumhie IE
| I':;ack H Hext | | Ok || Cancel |

F
[TESYXEXN:
Standard

g Ghoul
Ghaul
WUy
Other
Shadow
§- Skeleton
Skeleton
G- Wraith
Wraith
¢ Zombie
Zombie|

| »

i M| =]

‘ Ok H Cancel |

Figure 4.13: When the Aurora Blueprint option is selected the user can select any blueprint,
defined in the Aurora Toolset, by using ScriptEase’s Blueprint Picker.

41

Super -

Type Description Type
I nteger A signed 32-hit integer. N/A
Float A 32-hit floating point number. N/A
String An arbitrarily long character string. N/A
Vector A 3-dimensional positional value. N/A
Location A 3-tuple containing an area, aposition, and adirection. N/A
Enumeration | A finitelist of valuesthat avariable can take on. N/A
A A 3-D environment that the player’s character explores. Areas
rea .) . . - N/A
contain objects with which the player’ s character can interact.
Represents anything that can be placed into an area. Thisincludes
Object containers, creatures, placeables, items, doors, perimeters, and N/A
waypoints.
Container An object capable of holding items. Containersinclude creatures Object
and placeables.
Cresture An NPC or monster capable of moving about the world and Container

interacting with the player’s character.

An inanimate prop such as atable, barrel, or tree. While
Placeable placeables cannot move, they are still capable of interaction with Container
the player’ s character.

Item An object that can be held by a container. Object
Door A door. Object
Perimeter Aninvisible polygon drawn on the floor. Object
Waypoint An object representing alocation. Unlike locations, waypoints Object

are capable of interacting with the player.

Containsall of theinformation required to instantiate a particular
Blueprint object. The creature, placeable, item, door, perimeter, and N/A
waypoint types have corresponding blueprint types.

Figure 4.14: Data types utilized by ScriptEase and a brief description of each type.

represent the different object types used by Aurora. When the user clicks on one
of the icons, the objects with the corresponding type are displayed. The types that
are invaid in the context of the given parameter are grayed out, indicating that
they are unavailable.

All situation components are edited using questionnaires similar to the one shown
in Figures 4.11, 4.12, and 4.13. The questionnaire has a description page and a
page for each parameter. The description page for a component that defines an
entity asks the user to enter a name br the new entity, in addition to giving a
description.

4.3 Types

ScriptEase uses a variety of data types, including the familiar Integer and String
types, as well as some that are not found in traditional programming languages,
such as Creature, Door, and Location. A full lising of the types used by
ScriptEase and their descriptions is given in Figure 4.14. Some of the data types
are organized into a hierarchical tree indicated by the Super-Type column. Figure
4.15 shows a visual representation of thistree.

42

Object

Cioor [tem Container Perimeter Wwayvpoint

Creature Flaceable

Figure 4.15: Thisisthe object type hierarchy used by ScriptEase.

Enumeration Type Description

Yes/No Thistypeis appropriate for parameter questions that require an answer of
YEes or no.

Visual effects are graphical animations played by the game. There are
hundreds of different visual effects. Some include Lightning Bolt, which
shows a bolt of lighting strike the ground, Harm, which displays a pillar
of red energy, and Poison, which shows a green cloud of mist.

Visual Effect

Inventory slots are places where a creature can equip items. The possible
values of this enumeration are Head, Neck, Chest, Arms, Left Hand, Right
Hand, Left Ring, Right Ring, Waist, Feet, Cloak, Arrows, Bolts, and
Bullets.

Inventory Slot

Aninventory disturbance is amethod in which an item can interact with a

Inventor . . .
. y container’ sinventory. Itspossible values are: Added to, Removed From,
Disturbance
and Solen From
Magic Spell There are over 200 magic spells in Neverwinter Nights. Some include

Magic Missile, Haste, Fireball, and Meteor Svarm.

Figure 4.16: Some of the Enumeration-types used by ScriptEase.

The Integer, Float, and Sring types are the same as in traditional programming
languages. An Enumeration-type has a finite list of possible values. There are
severa different enumeration types used in ScriptEase, including those listed in
Figure 4.16. A Vector is a 3tuple of floating-point numbers representing a 3
dimensional position in the game world. A Location is a combination of a
position, adirection, and an Area. The position is represented by a Vector, and the
direction is represented by a floating-point number indicating a directional angle
in degrees, where ® is north. An Area represents a closed environment in the
game world, such as a section of city streets, a cave, or a room in a castle.
Creatures move throughout Areas and interact with the Objects that reside in
them.

Instantiations of the types shown in Figure 4.15 have Locations and they can be
placed inside of Areas. The top-level Object is a common super-type of the rest.
A Door is exactly what one would expect —simply adoor. An Item is an object
that can be held in a Container’s inventory. A Perimeter is a polygonal area

43

E «
Description | [rAmount Description | [rAmount
TFarget Haow much damadge should be applied? Farget Haowe much damage should be applied?
Damage Type| - Damage Type
Amount Amount :

(@ Known Integers | Value 4 -) Known Integers | Value A

A T3 constant Integeraliie A || ® canstant integer 500 |

Al— Walue B b 2

‘ Back || Next | 'v'allllEC | | Back ” Next | | Ok || Cancel |

Figure 4.17: Anlnteger-typed parameter’ s questionnaire page.

drawn on the ground. A Waypoint is an object representation of a location and is
normally used to specify patrols for Creatures. Waypoints and Perimeters are
invisible objects in the game. A Container is an object capable of holding Items.
The Container type has two sub-types: Creature and Placeable. A Creature is a
player character, NPC, or monster capable of moving throughout an Area and
interacting with the objects within. A Placeable is an inanimate prop such as a
tree, barrel, or pedestal. Only Objectsand Areas can have scripts attached to
them.

A Blueprint is a prototype from which Objects can be instantiated. A Blueprint
contains al of the physical characteristics, properties, attributes, and scripts
required to completely specify an Object. There are six blueprint-types, one for
each of the leaf nodes in the tree shown in Figure 4.15: Door, Item, Creature,
Placeable, Perimeter, and Waypoint.

Entities, Aurora-defined objects, and parameters of situation components, al have
types. When the user is choosing a value for a parameter, these types serve to
restrict the list of possible choices to the compatible entities and Aurora-defined
objects. For instance, if a parameter required that a Container be specified, then
the parameter’'s questionnaire page would present al available Containers,
Creatures, and Placeables to the user. Creaturesand Placeables are included in
the possible values since they are sub-types of Container, as shown in Figure
4.15. If a parameter’s type were one of the non-Object types - say Integer - then
any previously defined Integer-entities would still be available. However, instead
of providing a GUI widget for selecting Aurora-defined objects, the parameter’s
guestionnaire page would instead provide a field for entering a constant integer.
Figure 4.17 shows an example of an Integer parameter’ s questionnaire page.

4.4 Patterns

ScriptEase supports two types of patterns, which we present in this section:
Encounter Patterns and Action Patterns.

& Available Patterns x|

Blank Pattern

Icon-Container Pattern
Icon-Perimeter Pattern
Icon-Container-Perimeter Pattern

Barrier Pattern
Construct Pattern
Door-Switch Pattern

| 0K | Cancel

Figure 4.18: A pattern chooser dialog in ScriptEase.

4.4.1 Encounter Patterns

CRPGs, Neverwinter Nights in particular, contain many similar encounters that
can be grouped into families or patterns. We call these patterns Encounter
Patterns and ScriptEase provides specia support for instantiating, customizing,
and creating them. The structure of an encounter pattern is simple. It has a name,
a set of parameters, and a set of situations. The easiest way to demonstrate an
encounter pattern is through an example. One very common encounter found in
many CRPGs involves something special happening when a particular item is
added to or removed from a particular container. We have created an encounter
pattern in ScriptEase called the Icon-Container Pattern to support this type of
encounter. This pattern has two parameters. The Icon parameter is the item and
The Container parameter is the container that the icon is to be added to or
removed from. The pattern has two situations as well, one that handles adding
The Icon to The Container and another that handles removal.

There is an important distinction between the situations defined inside a pattern
and stand-alone situations. Patterns are reusable templates that can be instantiated
multiple times in multiple game modules. Patterns and their situations are
independent of a particular game module, and as such, they do not reference any
specific game objects. However, when a pattern is instantiated, game objects can
be bound to the pattern’s formal parameters. Specific game objects can aso be
included in a patterninstantiated situation when customizing it. In the remainder
of this section, we elaborate on these points.

When the user elects to instantiate a pattern, ScriptEase presents a list of available
patterns, like the one shown in Figure 4.18. The selected pattern in Figure 4.18 is
the lcon-Container Pattern for our example. Once selected, the pattern’s
guestionnaire is displayed, as shown in Figure 4.19. The first page of a pattern’s
guestionnaire provides a brief description of the pattern and a text-field for the
user to name the pattern instance. Following that is a page for each parameter of
the pattern. The user specifies parameter values for patterns in the same way as
they goecify parameter values for situation components (recall Figures 4.12, 4.13,
and 4.17). The Icon-Container Pattern has two parameters listed on the left of
Figure 4.19: The Icon and The Container. The find page in a pattern’s
guestionnaire contains a list of the pattern’s situations. Figure 4.20 shows the
Stuations page for our example pattern. The Add Icon situation handles the case

45

£ 1con-Container Pattern

B

Description | °| This pattern is activated when a specific
The Icon i| item, called the lcan, is added or remaved
The Container from a container's inventary.

Situations]

“Mame |Samp|e lcon-Container Instance

‘ Ok H Cancel

Figure 4.19: The Icon-Container Pattern’s questionnaire.

£ 1con-Container Pattern ﬂ
Description | /|rSituations
The Icon lladd 1con
The Container Remove Icon
Situations |
Meww | Cut | Copw Faste
Edit Up Doswm
‘ Ok H Cancel |

Figure 4.20: The Situations page of the Icon-Container Pattern’s questionnaire.

where The Icon is added to The Container. The Remove Icon situation handles
the opposite case.

Figure 4.21 shows the Event page from the Add Icon situation’s questionnaire.
All of the information specified in this panel was automatically added by
ScriptEase when the pattern was instantiated. The event reads. When an itemis
added to The Container. Notice that The Container parameter in both the event
description and the entity descriptions is coloured blue. This indicates that The
Container is a pattern parameter. The Container will be replaced with the pattern
parameter’s user-specified value just before code generation, discussed more in
Section 4.6. The Event page of the Remove Icon’s questionnaire is identical to
Figure 4.21 except that the Added to constant is replaced with Removed from. The
Conditions page, shown in Figure 4.22, has a condition for ensuring that the
Disturbed Item isin fact The Icon. This condition was also automatically added
when the pattern was instantiated. The Icon, like The Container, is coloured blue
to indicate that it is a pattern parameter.

46

& situation x|

Label |rEvent

N_utes Specify the event that trigoers this situation here. ‘
IEvent :

Other Entities When an item is added to The Container || Change H Edit || e |
Conditions | || l — -]

Actions rEntities Added by this Puent

Define Container Disturber as the creature that just added to The Container
7|| |Define Disturbed ltem as the item that was added to The Container

| Back H Next | ‘ ok H Cancel

Figure 4.21: The Event page of the Add Icon situation.

& situation i x|
Label “|~Conditions
Mites Specify the conditions for this situation hera.
Event :
Other Entities| :|(If The Icon is Disturbed ltem
Conditions | -
Actions

MHenes | Cut | Copy Faste

Edit Up Diorem

| Back | mext | ok | cancer |

Figure 4.22: The Conditions page of the Add I con situation.

Notice that there are no Aurora-defined objectsin Figure' s 4.21 or 4.22 (no purple
words). Since patterns are reusable templates, independent of any particular game
module, they cannot contain module-specific objects. When a user instantiates a
pattern, they specify module-specific objects as parameter values. Parameter
specification is the primary method of customizing a pattern instantiation. The
secondary method of customizing a pattern instantiation is by modifying its
situations, which we discuss next.

The Entities page and Actions page are left blank in both of the Icon-Container
Pattern’s dituations. Therefore, the situations are incomplete. The user is
required to complete these situations by customizing them. Actions, entities, and
conditions can be added using the methods discussed in Section 4.2. In fact, the
user can even modify the existing pattern-defined situation components, such as
the event in Figure 4.21 and the condition in Figure 4.22. Module-specific game

47

£ situation

Xl
Labhel §§ rOther Entities
Motes P . ; :
2| Specify any ather entites you require here.

Event |°

'Other Entities §§ Define Helm as the item equipped on Container Disturber's Head.

Conditions :

Actions

(= | Cut | Copy Faste
Edit Up Do
‘ Back || Hext | | Ok H Cancel
Figure 4.23: The Entities Page from the Add | con situation of a customized instance of the Icon-
Container pattern.
xl
Label ¢|-Conditions
Mutes Specify the conditions far this situation hera.
Event
Other Entities| - || If Container Disturber is a PC
IConditions Z|land, If The Icon is Disturbed tem
Actions Z|lnd, If Helm was not created from the Wormskull blueprint
(= | Cut | Copy Faste
Edit Up Diorsm
‘ Back || Hext |

| Ok H Cance

Figure 4.24: The Conditions Page from the Add I con situation of a customized instance of the
Icon-Container pattern.

& situation

:{|[Then, Spawn a creature with blueprint Zomhbie at Container's Location, called Larry the Zombie
§§ Then, Larry the Zombie attacks Container Disturber

x|
Label irActions
Mutes Specify the actions for this situation here.
Event
Other Entities| || Define Container's Location as the location of The Container
Conditions | |[Then, Destroy The Container
Actions | -||Then, Show a Harm effect at Container’s Location

(= | Cut | Copy Faste
Edit Up Diorsm
‘ Back || Next |

| Ok H Cancel

Figure 4.25: The Actions Page from the Add | con situation of a customized instance of the Icon-
Container pattern.

48

£ Placeable-Creature Transformation ﬂ
Description This action pattern transforms a placeable into a
Target §§ creature.
The New Ohject| :
Visual Effect |-

| Back | Mewt | ok | cancer |

Figure 4.26: The questionnaire for the Placeable-Creature Transformation Pattern

objects are valid values for new situation components that are added, since the
situations have already been instantiated in the context of a specific game module.

The Pedestal-Zombie Transformation situation, described in Section 4.2, could
have been created by customizing an instance of the lIcon-Container pattern.
Figures 4.23, 4.24, and 4.25 show the customized Entities, Conditions, and
Actions Pages of the Remove Icon situation from an Icon-Container instance.
Notice the similarities to the pages shown in Figures 4.7, 4.8, and 4.9. This
situation’s event (shown in Figure 4.21) and the second condition in Figure 4.24
are components that were automatically added by the pattern. All of the other
components were added by the user after the instance was created. The Pedestal
and the Gem of Power from Section 4.2 are replaced with the pattern parameters,
The Container and The Icon. This situation contains references to the game
objects, Wormskull and Zombie, which is alowed since the components to which
they belong were added by the user after the pattern was instantiated in the
context of a specific game module.

4.4.2 Action Patterns

Encounter patterns involve entire situations and interactions between them. There
are other simpler patterns, called Action Patterns, which specify a complex action
built from simple actions®. An Action Pattern is composed of a name, a set of
parameters, and a set of actions. When composing an action list within a
situation, the user may elect to instantiate an action pattern, which will add a
series of actions to the action list. We will use the following example to
demonstrate. The Placeable-Creature Transformation Pattern transforms a
placeable object into a creature, by removing the placeable from the game world
and creating a creature in its place. Figure 4.26 shows this action pattern’s
guestionnaire. The first page gives a description of the pattern. The remaining
pages correspond to the pattern’s parameters. This particular pattern has three
parameters. The Target is the placeable object to be transformed. The New
Object parameter is a creature blueprint indicating which creature should be
created in the Target’s place. Lastly, the Visual Effect parameter specifies a
cosmetic visual effect to show while the transformation is taking place. After the

% These s mple actions are called Action Atoms, which are presented in Section 4.5.

49

x

Label ‘|pictions

Mates §§ Specify the actions far this situation here.

Event

Other Entities Define Target's Location as the location of Pedestal
Conditions | ||[Then, Destroy Pedestal

Actions §§ Then, Show a Harm effect at Target's Location

:/|Then, Spawn a creature with blueprint Zombie at Target’s Location, called Spawner

My | Cut] | Copy Paste

Edit Up Doveem

| Back || Next | | Ok H Cancel |

Figure 4.27: The list of actions added to a situation after a Placeable-Creature Transformation
Pattern was instantiated.

guestionnaire is completed, the list of actions associated with this pattern is
incorporated into the action list of the situation from which the pattern was
instantiated. Figure 4.27 shows the actions generated by the Placeable-Creature
Transformation Pattern. The parameter values selected by the user in this
example are Pedestal (the Target), Zombie (The New Object), and Harm (the
Visual Effect). Notice that the added actions are very smilar to the first four
actions of Pedestal-Zombie Transformation example from Section 4.2 shown in
Figure 4.9. In fact, the actions from the example in Section 4.2 could have been
created using the Placeable-Creature Transformation action pattern.
Furthermore, the example situation in Section 4.2 could have been constructed by
first instantiating an Icon-Container pattern, combining it with an instance of the
Placeable-Creature Transformation pattern, and finaly making a few
customizations. We discuss pattern combination more in Chapter 5.

Like an Encounter Pattern’s dtuations, an Action Pattern’s actions are
instantiated from templates, and once they are added to a situation’s action list
they maintain no reference back to the Action Pattern that created them. The user
is free to manipulate these actions, once instantiated, in any way they wish.

4.4.3 The Pattern Builder

ScriptEase provides a pattern-creation feature using a separate tool called the
Pattern Builder. Figure 4.28 shows a screenshot of the Pattern Builder's
encounter pattern definition window, with the Icon-Container Pattern loaded.
The Name field aong the top is used to specify a name for the pattern. The
Parameters panel on the upper-left allows the pattern designer to specify the
pattern’s parameters. The Stuations panel on the lower-1eft is used to specify the
pattern’s situations. Finally, the Description panel on the right allows the pattern
designer to specify the pattern’s description, as seen in Figure 4.19.

50

£ pattern : x|
Name |[con-Container Pattern |

rParameters rDescription
The Icon {item) Thiz pattern is activated when a specific
The Container (Container) itern, called the [can, is added or removed

from a container's inventary.

Mew | Cut | Copy Faste
Edit Up Dowwm
rSituations
Add lcon

Remaove Icon

Mewer | Cut | Copy Faste

Edit Up Dosm

| Ok || Cancel
Figure 4.28: The Encounter Pattern definition window of ScriptEase’s Pattern Builder.

& Parameter Descripti'_ il ﬂ
rParameter Description

Title|The Icon |
rDescription

hich iterm is the lcon®?

rType
tem{Object >
~[Container{Object) et

I
[T

Creature(Container)
—Pla_[:ea.hleg(:u.r_n.a_in_er).

Door(Object) 1
Perimeter(Ohbject)
Waypoint{Object)
Ability(Enumeration) -

Figure 4.29: A parameter description window from ScriptEase’s Pattern Builder.

51

& Action Pattern x|

Name |Placeable-Creature Transfarmation F'attern| |

rParameters rDescription
Target {Placeahle) This action pattern transforms a placeahle into a
The New Object (Creature Blueprint) Creature,

Wisual Effect (Visual Effect)

Mewr | Cut | Copy Faste
Edit Up Dosm
rAction List

Specify the actions far this situation here.

Define Target's Location as the location of Target

Then, Destroy Target

Then, Show a Visual Effect effect at Target's Location

Then, Spawn a creature with blueprint The New Ohject at Target's Location, called Spawned Creature

Heras | Cut | Copy Faste

Edit Up Dosm

| (0]1 || Cancel |
Figure 4.30: The Action Pattern definition window of ScriptEase’sPattern Builder.

Section 4.2 described how to specify situations in ScriptEase. As we mentioned
earlier in this section, the major difference when specifying situations within a
pattern definition is that patterns exist independent of a Neverwinter Nights game
module. They are generic components that can be utilized in any game module.
Accordingly, no Aurora-defined objects are available when specifying these
situations. Instead, the user has access to the pattern’s formal parameters, such as
The Icon and The Container in the lcon-Container Pattern. These formal
parameters will not be bound to objects until the pattern is instantiated in the
context of a particular game module.

The entries in the parameters ligt, in Figure 4.28, display their name followed by
their type in parentheses. For instance, The Icon parameter’s type is Item. When
creating a new parameter or editing an existing one, ScriptEase presents the
window shown in Figure 4.29. Using this window, the pattern designer specifies
the parameter’s name, description, and type. The name and description are
entered into text-fields, which are used when creating the parameter's
guestionnaire page. The type is selected from a pull-down list containing all
available types. Entries in the type list show the name of the type followed by its
super-type in parentheses.

Action Patterns are created using a window similar to the Encounter Pattern

definition window shown in Figure 4.28. Figure 4.30 shows the Action Pattern
definition window for the Placeabl e-Creature Transformation Pattern. Instead of

52

the list of situations defined by an Encounter Pattern, an Action Pattern defines a
list of actions.

4.5 Atoms

An Atom is a description of a situation component. ScriptEase maintains atoms
for events, entities, conditions, and actions. When a user creates a new situation
component, say an action, they are first presented with a list of available actions,
such as the list of actions shown in Figure 4.10. The entries in the list are actually
action atoms, which define the name, the parameters, the Englishlanguage
description, and other information necessary to instantiate a situation component.
For instance in Section 4.2, we used the Attack a creature action as an example.
This action has two parameters, Attacker and Attacked. These parameters and the
English sentence description (the last action in Figure 4.9) are some of the
information specified by the action’s atom.

ScriptEase provides a separate tool called the Atom Builder, which allows new
atomsto be created. Atoms serve as ScriptEase’s interface to the underlying text-
based scripting language, in our case, NWcript. When defining an atom, the
atom designer is required to specify the NWScript code that ScriptEase is to
generate during code generation. Therefore, atom designers do require some
programming skill and knowledge of NW<cript. Thisis in conflict with the first
goa we presented at the beginning of this chapter. We accept this because with a
large enough base of atoms, the average user will not require additional atoms to
be defined, and thus will never even need to look at the Atom Builder.

Additionally, by providing the Atom Builder feature, the small percentage of
ScriptEase users who do know how to program can become atom designers, who
create new atoms and make them available to the entire user-community over the
Web. The Atom Builder facilitates extension in ScriptEase.

45.1 The Atom Definition Window

Figure 4.31 shows the action atom definition window in ScriptEase’s Atom
Builder with the Spawn a Creature at a Location action atom loaded. The
definition windows for al types of atoms - event atoms, entity atoms, condition
atoms, and action atoms - look very similar to the one shown in Figure 4.31. We
will discuss each of the window’ s features.

Name: Thisfield is used to name the atom.

Type: This field defines the type of the entity created by this atom. Only entity
and action atoms have thisfield, sincethey are the only kinds of atoms that can

53

& Action Atom] x|
rAction Atom
Tyne
Hame |Spawn 3 Cresture at a Location
| : |“Creature{tnntainer) bt |
rParameters rNotes
Blueprint (Creature Blueprint) This action creates a creature.
L ocation (Location)
Mew | Curt | Copy FPaste
Edit Up Dowsm
CodeGen Function Name [SE_Ac_SpawnCreature
Generic Description Spawn a creature at a location.
Specific Description Spawn a creature with blueprint =p1= at =p2=, called =label=
‘ Edit Code
‘ Ok H Cancel

Figure 4.31: The action atom definition window in ScriptEase’s Atom Builder. The window
contains the Spawn a Creature at a Location action.

create an entity. Action atoms that do not create an entity, such as the previousy
mentioned Attack a creature atom, indicate this by selecting the type None.

Parameters. Parameters are described in exactly the same manner as pattern
parameters, which we discussed in Section 4.4.3.

Notes: Inthe Notes panel, the atom creator specifies the description that is shown
in Description page of the situation component’ s questionnaire.

Generic Description: Recall the list of actions presented to the user when a new
action is added to a situation (Figure 4.10). The text that appears in this list is
specified in the Generic Description field.

Specific Description: The atom’s specific description is used to generate the
English-sentence descriptions shown in Figure's 4.6 through 4.9. The tokens
<pl> and <p2> in the Specific Description field in Figure 4.31 are substituted by
the values of the first and second parameters respectively, when the action is
instantiated. In general, a <pn> token is replaced by the vaue of the n"
parameter when the situation component is instantiated. The <l abel > token is
replaced by the name of the entity that the sSituation component creates, if it
creates one.

K

object 3E_Ac JpaimCreature(atring param 1, location param 2] {
return Createlbject (0BJECT_TYPE CPEATURE, param 1, param Z, TRUE):

+

‘ Ok H Cancel |

Figure 4.32: The Code window of a Spawn a Creature at a Location action atom.

CodeGen Function Name: All atoms generate a single function in the
underlying text-language during code generation. The name of this function is
specified here.

Code: The user specifies the code to generate for this atom by clicking the Edit
Code button on the bottom right of Figure 4.31. This button opens the window
shown in Figure 4.32. Notice that the function's signature is created
automatically and displayed along the top of Figure 4.32. The function’s name is
taken from the CodeGen Function Name field. The number of parameters and
their types is taken from the list of parameters specified earlier. The return typeis
taken from the atom’s type. The code shown in Figure 4.32 is the NWScript code
for the Spawn a Creature at a Location action specified in Figure 4.28. The atom
designer must have enough knowledge of NWScript to write the appropriate code,
in this case, a single call to the NWScript function Cr eat eCbj ect () . We
discuss code generation more in Section 4.6.

4.5.2 Specifics of Event Atoms

Event atoms require some extra information not needed by the other atom types.

Figure 4.33 shows an event definition window for the When an item is added or
removed from a container event. Two features of this window are not found in the
definition windows for the other types of atoms.

Attach Script To: This field alows the atom creator to select one of the event's
parameters as the object that the generated script should be attached to during
code generation.

Implied Entities: These are the event-dependant entities that are automatically

defined by the event. The atom designer specifies these entities in the same way
asthey would in the Entities page of a situation questionnaire (Figure 4.7).

4.5.3 Enumeration Types
Atom designers can define new enumeration types using the atom builder as well.

Figure 4.34 shows aseries of three windows used in creating new enumeration

55

& Event Atom x|

rEvent Atom
| =Eventatorn Description= |Q
Hame |OnDisturbed Attach Script To | The Container {Container) b |
rParameters rNotes
Type of Disturbance (Disturbance Type) This event happens when an itern is added
The Container {Container) ar remaved fram a container.,
Meww | Curt | Copy Faste
Edit Up Diowwm

CodeGen Function Name |SE_E¥_ContainerOnDisturbed

Generic Description WWhen an itern is added aor rermoved from a container
Specific Description

rimplied Entities

WWhen an itermn is <=pl= =pi=

-

Specify any other entites you reguire here.

Define Container Disturber as the creature that just Type of Disturbance The Container
Define Disturbed ltem as the item that was Type of Disturbance The Container

-

MHewr | Cut | Copy Faszte

Edit Up Do

Edit Code

‘ Ok H Cancel |
Figure 4.33: The event atom definition window for ScriptEase’s Atom Builder.

E fi Ersierieain Uaia
Canisarisael Eraen oratian [=] | '
TynelEnumaraics) =

\Disturbarce TypejEnumner atioe) - Labe animiata Dead
FFaat Erumarationt I B [Fo SYMUEREPELL_AHIMATE_DEAD |
et Tyne [Emmeration} | (. ok | Cancel
Sl (Ermpreer ation | || ||ackaFog |= —
SpalEn uraration f Al Ed
(True (False ValhoeEnumerstiong | | Asiimate Dead
[(s Wb ot e ﬁ | Aowvnikun
SO T rausE nusnR o) A || eane
:VBIHE'IEI‘IE-TEIﬂ.CIﬂ Bearkis ki i
v aition Wisial ETect{Emirecatinig = | Eastow Curse =

T | cul Copy | Pmxm Heet o | Dl Gopst Fahe

=] Up Dovnm | Edb | | <] Dcean

ok | Concel | | ok | cemcat

Figure 4.34: A series of wi ndows used in creati ng new enumeration types with ScriptEase’s Atom Builder.

types. The left window shows a scrollable list of al of the enumeration types
defined thus far. The centre window shows the selected Spell enumeration type
and al of its possible values. The window on the right is the edit panel for the
Animate Dead spell. The Label field indicates the name of this enumeration value
as it appears in ScriptEase. The Code Symbol field indicates the symbol used to
represent this value in NWScript. This symbol is used during code generation.

56

4.6 Code Generation

SriptEase’s code generation involves three steps. The first step is to complete
the dsituations that were instantiated via encounter patterns. These situations
contain references to pattern parameters, such as The Container in Figure 4.21,
that must be bound to their actual values specified by the user. Second, code is
generated for every situation in the system. A situation’s generated code takes the
form of a function, like the one shown in Figure 4.35. The finad step is to
combine the generated situation functions into scripts that can be attached to game
objects.

Thefirst step is self-explanatory. ScriptEase scans each situation for references to
pattern parameters and replaces them with their user-specified values. The second
and third steps require a more in-depth discussion. In Section 4.6.1, we describe
how the code in Figure 4.35 is constructed from the situation’s components. In
Section 4.6.2, we discuss how code for a single component is generated. Finaly,
in Section 4.6.3, we describe how multiple situation functions are combined into a
full script.

4.6.1 Situation Functions

The NWcript code shown in Figure 4.35 was generated by ScriptEase for the
example situation given in Section 4.2, specifically, Figures 4.4 through 4.9.
Notice that most lines of code are preceded by a comment that corresponds to the
English sentence descriptions used by the various situation components. These
comments are automatically generated to indicate to the reader which lines of
code correspond to each situation component. While we do not expect many
users to look at the generated code, those that do should have no problem
understanding it.

The Function Header

1 Pedest al Zonbi eTransformati on_0() {

The name of this situation function is Pedest al Zonbi eTr ansf ormati on_0,
shown on line 1. This name is automatically generated and is unique among the
other situation function names.

TheVariable Declar ations

obj ect Pedest al _SE4;

obj ect Disturbedltem SE2;

obj ect LarrytheZonbi e_SES;

obj ect Contai ner Di st urber _SEI1;
obj ect Hel m SE3;

| ocati on Pedestal sLocati on_SES5;

PO OWOoW~NO®

e

57

1 voi d Pedest al Zonbi eTransformati on_0() {

/1l The following are all of the variables used in this situation

obj ect Pedest al _SF4;

obj ect Di sturbedltem SE2;

obj ect LarrytheZonbi e_SES;

obj ect Cont ai ner Di st ur ber _SE1,;
obj ect Hel m SE3;

| ocati on Pedest al sLocati on_SE5;

/1 This script is attached to the follow ng object's OnD sturbed script slot
Pedestal _SEO = OBJECT_SELF;

/1 When an itemis renoved from Pedest al
if(! SE_Ev_Container OnDi st urbed(| NVENTORY_DI STURB_TYPE_REMOVED, Pedestal _SEQ0))
return;

/1 Define Container Disturber as the creature that just renoved from Pedest al
Cont ai nerDi sturber _SE1 = SE En_Cont ai ner D st ur ber (Pedest al _SEOQ,
I NVENTORY_DI STURB_TYPE_REMOVED ;

/1 Define Disturbed Itemas the itemthat was renoved from Pedest al
D sturbedltem SE2 = SE_En_Di st ur bedl t en(Pedest al _SEO, | NVENTORY_DI STURB_TYPE_REMOVED) ;

/] Define Helmas the item equi pped on Container D sturber's Head.
Hel m SE3 = SE En_Cet Equpped! t em(Cont ai ner Di st ur ber _SE1, | NVENTORY_SLOT_HEAD) ;

/1 Main code body - checks conditions and executes actions

/1 |f Container Disturber is a PC
i f(SE_Co_l sPC(ContainerDisturber_SE1)) {

/1 1f Disturbed Itemwas created fromthe Gem of Power bl ueprint
i f(SE_Co_Conpare(j ect sBl ueprint (D sturbedltem SE2, "genof power")) {

/1 If Helmwas not created fromthe Wrnskul | bl ueprint
if(SE_Co_Conparehj ect sBl uepri nt Not Equal (Hel m SE3, "wornskul 1")) {

/1 Define Pedestal's Location as the |ocation of Pedestal
Pedest al sLocati on_SE5 = SE En_(bj ect sLocati on(Pedest al _SE4) ;

/1 Destroy Pedest al
SE _Ac_DestroyObj ect (Pedest al _SE4) ;

/1 Show a Harm effect at Pedestal's Location
SE _Ac_ShowwMi sual Ef f ect At Locati on(VFX_| MP_HARM Pedest al sLocat i on_SE5) ;

/1 Spawn a creature with blueprint Zonbie at Pedestal's Location, called Larry
/'l the Zonbie
Larryt heZonbi e_SE8 = SE Ac_SpawnCr eat ur e(" zonbi e002", Pedest al sLocati on_SE5);

I/ Larry the Zonbi e attacks Contai ner D sturber
SE _Ac_AttackCreat ure(LarrytheZonbi e_SE8, Contai nerDi sturber_SE1);

Figure 4.35: An example of the generated code for a situation in ScriptEase.

58

Next, lines 5 through 11 define all of the variables used in this function. The
names of these variables are a combination of the user-defined name used in
ScriptEase and a trailer string to ensure that no two variable names are the same.
For instance, the variable defined on line 5 is Pedest al _SE4. ThePedest al

part is the name used in ScriptEase to identify this object. The _SE4 is the
automatically generated trailler string. ScriptEase scans the situation and
generates a variable declaration line for each entity and Aurora-defined object
used. Variable name generation is discussed more in the next section.

The Event Code

13 // This script is attached to the follow ng object's OnDi sturbed script slot
14 Pedestal SEO = OBJECT_SELF;

16 // Wen an itemis renpved from Pedest al
17 if(! SE_Ev_Contai ner OnDi st ur bed(| NVENTORY_DI STURB_TYPE REMOVED, Pedestal _SEO))
18 return;

20 // Define Container Disturber as the creature that just renmoved from Pedest al
21 ContainerDisturber_SE1 = SE En_Cont ai ner Di st ur ber (Pedest al _SEOQ,
22 I N\VENTORY_DI STURB_TYPE_REMOVED) ;

24 || Define Disturbed Itemas the itemthat was renoved from Pedest al
25 Disturbedltem SE2 = SE En_Di st ur bedl t en{ Pedest al _SEO, | NVENTCORY_DI STURB_TYPE_REMOVED) ;

Code generated for the situation’s event is split into three parts. The first is shown
on lines 13 and 14. This code sets the variable that contains a reference to the
object to which the script is going to be attached. NWcript refers to this object
as OBJECT_SELF. <riptEase identifies this variable using the Attach Script To
feature in the event’s atom (refer to Figure 4.33).

The next section of code, lines 16 through 18, is responsible for ensuring that the
parameter values for the event match the values provided by the game engine.

For instance, the NWript-event that this code is attached to fires whenever any
item is added to or removed from the Aurora-defined object, Pedestal. The
ScriptEase event is more restrictive in that it requires the inventory disturbance to
bearemova. SE _Ev_Cont ai ner OnDi st ur bed is the function specified by
the event’s atom. It takes a disturbance type and a container as parameters. This
function returns true if the disturbance type is a removal and the container is
Pedestal. If it returns false, the situation function returns immediately, without
performing any actions.

Finally, the last part of an event’'s generated code is the event-implied entities;
lines 20 though 25. The variables Cont ai ner Di st urber _SE1 and
Di st urbedlt em SE2 correspond to the implied entities shown in Figure 4.6.
The functions SE_En_Cont ai ner Di st urber and SE_En_Di st ur bed-

| t emare the entities’ corresponding code generation functions specified in their
atoms.

59

The Entity Code

27 |/ Define Helmas the item equi pped on Container D sturber's Head.
28 Hel m SE3 = SE _En_Get Equppedl t en(Cont ai ner Di st urber _SE1, | NVENTORY_SLOT_HEAD) ;

Lines 27 and 28 contain the generated code for the Helm entity, as shown in
Figure 4.7. Like the event-implied entities, SE_En_Get Equppedl t emis the
function specified by the Helm entity’ s atom.

The Condition Code

32 // If Container Disturber is a PC
33 if(SE_Co_lsPC(ContainerD sturber_SE1)) {
34

35 /1 If Dsturbed Itemwas created fromthe Gem of Power bl ueprint

36 i f(SE_Co_ConpareQoj ect sBl ueprint (D sturbedltem SE2, "genof power")) {
37

38 /1 1f Helmwas not created fromthe Wrnskul | blueprint

39 i f(SE_Co_Conpare(j ect sBl uepri nt Not Equal (Hel m SE3, "wornskul ")) {

The three if-statements shown in lines 32 though 39 correspond to the three
conditions specified in Figure 4.8. The functions SE Co_| sPC,
SE Co_Conpar eObj ect sBl uepri nt, and SE_Co_Conpar eCbj ect s-
Bl uepri nt Not Equal are calls to the functions specified in the condition
atoms. These functions return true if the condition holds and false otherwise. The
generated code for a blueprint parameter value is a constant string. Both

“genof power” and “wor nskul | 7 are such values. We revisit blueprint
parameter values in the next section.

The Action Code

41 /1 Define Pedestal's Location as the |ocation of Pedestal

42 Pedest al sLocati on_SE5 = SE En_(hj ect sLocati on(Pedest al _SE4) ;

43

44 /] Destroy Pedest al

45 SE Ac_Dest royQbj ect (Pedest al _SE4) ;

46

a7 /1 Show a Harmeffect at Pedestal's Location

48 SE _Ac_Showwvi sual Ef f ect At Locati on(VFX_| MP_HARM Pedest al sLocat i on_SE5) ;

49

50 /1 Spawn a creature with blueprint Zonbie at Pedestal's Location, called Larry
51 /1l the Zonbie

52 Larryt heZonmbi e_SE8 = SE _Ac_SpawnCr eat ur e(" zonbi e002", Pedest al sLocati on_SE5) ;
53

54 /1 Larry the Zonbi e attacks Container D sturber

55 SE_Ac_AttackCreature(LarrytheZonbi e_SE8, Contai nerDi sturber_SE1);

The five function calls in lines 41 through 55 correspond to the five actions shown
in Figure 4.9. As with the other function calls in this code, these five function
calls correspond to the functions defined in the actiors’ atoms.

4.6.2 Situation Component Code

In order to generate code for a Situation, we must generate code for each of its
components. In this section, we describe how code is generated for a single

60

situation component. Every component generates a function call. The name of
the function is taken from the CodeGen Function Name field of the component’s
atom (refer to Figure 4.31). For instance, SE_Ac_At t ackCr eat ur e fromline
55 of Figure 4.35 is the function name of an Attack a creature action.

Each parameter of the function can be a constant, an entity, or an Aurora-defined
object. Constants include integers, floats, strings, enumerations, and blueprints.
An enumerationtyped parameter value generates the symbol specified in the
Code Symbol field of the enumeration’s definition panel (refer to Figure 4.34).
| NVENTORY_SLOT_HEAD on line 28 of Figure 4.35 is an example of code
generated for an enumeration value. Blueprints generate a constant string
identifier set by Aurora. “ zonbi e002” on line 52 of Figure 4.35 is an example
of the code generated for a blueprint.

Entities and Aurora-defined objects are referenced through variables. The
variable Hel m_SE3 on line 39 of Figure 4.35 is used as the value of an entity
parameter value and is bound on line 28. Each of these variable names is created
during a pre-compilation step. This step scans the situation for all entities and
Aurora-defined objects and associates a unique variable name with each. When a
component uses an entity or Aurora-defined object, the code generation routine
looks up the variable name associated with that object and inserts it into the
generated code.

4.6.3 Combining Situation Functions

After the situation functions have been generated, they must be combined into
NWScript scripts. Every object in Neverwinter Nights has a set of script slots that
correspond to particular events. For instance, every placeable has an OnDisturbed
script dot that corresponds to the following event: When an item is added to or
removed from the placeable. Therefore, every one of the situation functions that
uses this event must be merged into a single script file. This process is
straightforward. Since every situation reduces to a single function, the generated
script file smply has to invoke each one of these functions. If there are three
generated functions named situation_ 0, situation_1, and
si tuati on_2, al of which use the same event, they must be merged. The fina
generated script would look like the code in Figure 4.36.

Once these scripts are complete, ScriptEase compiles them using a stand-alone
NWScript compiler, and then inserts them into the game module.

61

void situation_0() {
|/l Generated code for this situation

void situation_1() {
/! Generated code for this situation

}

void situation_2() {
|/l Generated code for this situation

}

void main() {
situation_0();
situation_1();
situation_2();
}
Figure 4.36: A script created by merging three situation functions

4.7 Assessment

4.7.1 Setup

In order to assess how practical ScriptEase is as a CRPG scripting tool, we
performed a small usability review. We hired an experienced game-playing high-
school student for two Lweek periods to do testing and a usability review of
ScriptEase. He had an elementary understanding of procedural programming,
typical of that of an average high-school student. He was also familiar with
Neverwinter Nights and the Aurora Toolset, but not the scripting language,
NWcript. After aweek of using ScriptEase and testing its features, we requested
that he create a small Neverwinter Nights game module using ScriptEase.

The target module was based on a part of an area known as The Temple Ruins
from the CRPG Baldur’s Gate 2 [44]. We chose this area for two reasons. First,
the Situations in this area exist in a commercia CRPG other than Neverwinter
Nights, indicating that ScriptEase can be used to script situations independent of a
particular game, athough the generated code is specific to Neverwinter Nights.
Second, this area contains severa interesting encounters. By specifying al of
them in ScriptEase, we demonstrate its flexibility as a scripting tool.

We provided a set of atoms and patterns for the tester to use. He did not use the
Pattern Builder or the Atom Builder.

4.7.2 Patterns Used

The tester used the four encounter patterns, listed below.

62

| con-Container

The Icon-Container pattern was presented as an example pattern in Section 4.4.
Its parameters are an item called The Icon, and a container called The Container.
This pattern defines two situations, one for adding The Icon to The Container, and
another for removing The Icon from The Container. These situations do not
include any actions, leaving them for the user to specify.

| con-Perimeter

The Icon-Perimeter pattern handles @ses where a creature carries a particular
item called The Icon, into or out of a particular perimeter caled The Perimeter.
This pattern defines two situations, one for entering The Perimeter and another
for exiting. Like Icon-Container, the actions executed by these situations are left
for the user to specify.

| con-Container-Perimeter

|con-Container-Perimeter is an amalgamation of the previous two patterns. It has
three parameters. an item called The Icon, a container called The Container, and a
perimeter called The Perimeter. This pattern handles the situations where a
creature enters or exits The Perimeter while The Icon is held by The Container.
The Icon-Perimeter pattern could be considered a specialized case of the Icon-
Container-Perimeter pattern, where The Container is the creature entering or
exiting The Perimeter.

3-Item Construct

The 3-1tem Construct pattern has four parameters. The First Item, The Second
Item, and The Third Item, are all items. The Constructed Item is an item blueprint.
When the three items are placed in any container, they merge into the new
Constructed Item. This pattern has a single situation that occurs whenever any
item is added to any container. If that container happens to contain all three of the
specified items, then those items are destroyed, and The Constructed Item is
created in their place. This pattern requires exactly three component items. A
more flexible pattern would allow an arbitrary number of component items.
Currently, ScriptEase is not capable of specifying an n-Item Construct pattern
because it does not support list types. We revisit this problem in Chapter 5.

The tester also used the following five action patterns.
XP-Item Reward

The XP-ltem Reward pattern rewards a creature by giving it some experience
points and an item. The pattern has three parameters. The Rewardee is the

63

creature that receives the reward, XP Amount is the number of experience to give
to The Rewardee, and The Reward Item is an item to give to The Rewardee. Once
again, if ScriptEase supported list types, then this pattern could be extended to
include alist of reward items, rather than just one.

Damage Punishment

The Damage Punishment pattern punishes a creature by applying damage to them.
The pattern takes four parameters. The Victim is the creature to be punished.
Damage Type is the type of damage to apply, such asfire, cold, acid, etc. Damage
Amount is an integer amount of damage to apply. Damage Effect isavisua effect
to show on The Victim.

Death Punishment

The Death Punishment pattern resembles the Damage Punishment pattern. Death
Punishment takes two parameters, The Victim and Death Effect. This pattern
shows the visua Death Effect then kills The Victim.

Spawn and Face

The Spawn and Face pattern creates a creature at a given waypoint and faces the
creature in the same direction as the waypoint is facing. The pattern’s parameters
are The Creature, which is a creature blueprint, and The Spawn Point, which is a
waypoint.

Spawn and Attack

The Spawn and Attack pattern creates a creature at a given waypoint and orders it
to immediately attack a particular object. The pattern’s parameters are The
Creature, which is a creature blueprint, and The Spawn Point, which is a
waypoint, and The Target, which is the object to attack.

4.7.3 Encounters

The following is a list of encounters found in the Temple Ruins module, and
which patterns were used to specify them.

Monster Encounters

There are severa places in the temple where the player is attacked by monsters.
Often the monsters spawn when a triggering perimeter is entered, but there are
cases where a door being opened or an item being taken causes monsters to
spawn. The Spawn and Attack action pattern was used in al of these encounters.
At times, severa monsters were spawned at a time at the same location. It was a

tedious task to instantiate the same pattern repeatedly. Support for lists and loops
in ScriptEase would do a great deal to alleviate this problem.

The Sun Ray Encounter

One of the nore interesting encounters in the Temple Ruins involves a pedestal
surrounded by aring of lights, called Sun Rays There is a gem on the pedestal
called the Sunstone. When the Sunstone is removed from the pedestal, the Sun
Rays go out, and when the Sungtone is put back on the pedestal, the Sun Rays
come on again. The significance of the Sun Rays is that any Shadows (a type of
monster) that enter the ring of lights die immediately if the Sun Rays are on. The
player character can use the ring of lights & protection, but at some point must
remove the Sunstone from the pedestal, abandoning the protection of the Sun
Rays, in order to advance through a locked door in the temple. When the player
character approaches the locked door while holding the Sunstone, the door
explodesin aflash of lightning, allowing the player character to pass.

The tester used the Icon-Container pattern to turn the Sun Rays on and off in
response to the Sunstone being added or removed from the pedestal. The Icon-
Container-Perimeter pattern in combination with the Death Punishment pattern
was used to kill the Shadows that entered the ring of lights, while the Sunstone
was on the pedestal. The destruction of the locked door was accomplished with
an instance of the Icon-Perimeter pattern.

The Statue of Amaunator Encounter

There is a statue of a deity named Amaunator the Sun Lord in the temple. The
player can talk to this statue. The statue tests the player by asking a series of
guestions about certain rituals pertaining to the worship of Amaunator. If al of
the questions are answered correctly, an item is given to the player character as a
reward. If any question is answered incorrectly, the player character is punished
with a damaging flash of fire, and then they must retake the test. Throughout the
temple, there are hidden scrolls, which explain the rituals and indicate the answers
to the test questions.

The XP-Item Reward pattern was used to implement the reward portion of this
encounter. The Damage Punishment pattern was used to implement to
punishment portion.

The Floor Puzzle Encounter

An encounter in the original Temple Ruins module from Baldur’s Gate 2 involved
a grid on the floor of a room. Each cell in the grid contained a letter of the
alphabet. The player character had to walk over the letters spelling out the name
Amaunator in order to get across to the other side of the room. If the player
character stepped on an incorrect letter, they were damaged with a powerful flash

65

of fire. Unfortunately, the Aurora Toolset does not provide the capability to create
a grid of letters on the floor. So instead, we covered the floor of the room in
scorch marks, except for a narrow winding path. Instead of spelling out the name,
the player character smply has to walk the path through the room.

The areas of the floor covered in scorch marks are contained within a perimeter.
Therefore, the tester used a Damage Punishment pattern, which was activated
when the perimeter was entered. |f Aurora did allow letter-grids to be placed on
floors, then the encounter could be implemented as it isin Baldur’'s Gate 2 using
the same method.

Amauna’'s Ghost Encounter

There is a stone bed in the temple with a ghostly figure standing beside it. The
ghost tells the player that a small child, named Amauna, was killed and her grave
defiled. He asks the player character to find the child's bones and return them to
the stone bed, so she can rest in peace. The bones are hidden somewhere in the
temple. Once the bones are found and returned to the stone bed, the ghost of
Amauna appears and rewards the player character with an item.

The Icon-Container pattern, combined with the Spawn and Face pattern, was
used to spawn the ghost of Amauna when the bones were placed on the bed. An
XP-Reward pattern was used to reward the player character with an item.

Sun Symbol Construction Encounter

The reward items gained from The Statue of Amaunator and Amauna’'s Ghost
encounters are called Sun Shards. These two shards and one other hidden in the
temple can be combined into another item called the Sun Symbol. Once al three
shards are gathered by the player character, they automatically combine to form
the Sun Symbol. This new item is required to advance further in the Temple
Ruins.

This encounter is implemented using the 3-I1tem Construct pattern. The three Sun
Shards are the component items, and the Sun Symbol is the new constructed item.

4.7.4 Reaults

We implemented the Temple Ruins module in Aurora using NW<cript. Our
implementation was over 700 lines of code and took this author, who is an expert
user of NWcript, approximately three days to write and debug. Our tester had
only an elementary understanding of computer programming, and about one week
of experience with ScriptEase. He scripted the module using ScriptEase in alittle
over one day. However, most of this time was spent on a single frustrating task.
The conversation with the statue of Amaunator was large, complex, and required

66

many “Text appears when” scripts® attached to its nodes. The tester found getting
the conversation to work right, by specifying all of these “Text appears when”
scripts and having them interact correctly, was very difficult. In the end, we had
to help him complete the conversation scripts. Not including the statue of
Amaunator conversation's “Text appears when” scripts, it took him only about
three hours to script the module in ScriptEase and debug by play-testing it. His
implementation of the module consists of approximately 12 encounter pattern
instantiations and 30 situations, again not including the “Text appears when”
scripts. With these scripts, there were over 45 situations in his implementation.

This initial review verified some of the problems that we discuss in Chapter 5,
such as attaching scripts to object instances rather than blueprints, arithmetic and
string operations, down-casting, and connecting situations. We aso identified
severa additional useful features, such as the ability to delay an action by a
certain amount of time, and the need for better support for conversations.

We learned a great deal from the usability review. We plan to hold another, once
some of the language and interface issues, discussed in Chapter 5, have been
addressed.

4.8 Summary

ScriptEase is written entirely in the Java programming language [42]. The source
contains approximately 14,000 lines of code not including blank lines, 260 classes
and interfaces, and 1700 methods.

ScriptEase allows users to create scripts by specifying patterns and situations in a
purely visual environment. Situations are composed of events, entities,
conditions, and actions, which are selected from lists and customized by choosing
parameters from context-sensitive menus, lists, and trees. A parameter’s context
is determined by its type. Only entities and Aurora-defined objects with
appropriate types are presented as valid parameter value choices. Situations are
presented in easy-to-read English-language descriptions. Pattern designers can
create new encounter patterns and action patterns using the Pattern Builder. Atom
designers can create new atoms and enumeration types using the Atom Builder,
although some programming skill and knowledge of NWScript is required.
Findly, the generated NWScript code has a simple structure and is well
commented, making it readable to the interested user.

3 “Text appears when” scripts were mentioned in Section 2.2.2, concerning conversations
specified in the Aurora Toolset.

67

Chapter 5

Discussion and Future Work

5.1 Connecting Patterns

Currently, the only support that ScriptEase provides for connecting patterns is
with Action Patterns. An action pattern is instantiated within the context of a
Stuation’s action list. When constructing or customizing a Stuation for an
encounter pattern, an action pattern can be instantiated, which adds a series of
actions to the situation’s action list. In this basic way, encounter patterns and
action patterns can be connected. There is no support for connecting encounter
patterns to each other.

In Chapter 3, Section 3.1.1, we discussed the CRPG toolset Unlimited Adventures
and its Chain Control feature, which allowed Unlimited Adventures' Eventsto be
connected. In the future, we would like to implement similar functionality in
SriptEase. Since ScriptEase’s situations eventually reduce to a function call
during code generation, a natural extension to situations would alow them to
invoke other situations. For instance, consider the following situation. There are
three fragments of a shattered Gemstone, labeled Frag-1, Frag-2, and Frag-3.
There is aso amagical box, called Box, and a perimeter, called Perimeter. When
all three of the fragments are placed within Box and a Bless spell is cast upon the
box, they are recombined to form the complete Gemstone. Alternatively, the
fragments can be combined into the Gemstone when they are al carried into
Perimeter by a player character. Figure 5.1 shows these two Situations in
component form. There is a large amount of repeated information in these two
gituations. In Figure 5.2, we have added a parameterized third situation, called
Construct Gemstone. This situation contains the conditions and actions that
combine the fragments into the gemstone. The parameter to this situation is the
container that holds the fragments. The Box Stuation and Perimeter Stuation
invoke the Construct Gemstone situation, instead of explicitly including the
repeated information themselves. Currently, ScriptEase does not support
parameterized situations or situation invocation. However, with these features,
situations could be connected together.

It is unclear how to extend connected parameterized situations into connected
multi-situation encounter patterns. However, during a preliminary assessment of
the patterns present in CRPGs, we are finding that most potential patterns involve
only a single situation. Therefore, it is worth exploring the possibility of
redefining an encounter pattern to simply be a parameterized situation. Once the

68

Name: Box Situation

Event:

Conditions:

If Box holds Frag-1, and
If Box holdsFrag-2, and
If Box holdsFrag-3

Actions:

Destroy Frag-1, then
Destroy Frag-2, then
Destroy Frag-3, then

When a Bless spell is cast on Box

Create the Gemstone inside Box

Name: Perimeter Situation

Event:
When Perimeter is entered

Event-Implied Entities:
Define Perimeter Enterer asthe creature that
entered Perimeter

Conditions:

If Perimeter Enterer isaPC

If Perimeter Enterer holds Frag-1, and
If Perimeter Enterer holds Frag-2, and
If Perimeter Enterer holds Frag-3

Actions:

Destroy Frag-1, then

Destroy Frag-2, then

Destroy Frag-3, then

Create the Gemstone inside Perimeter Enterer

Figure 5.1: Two example situations with repeated information.

Name: Construct Gemstone

Parameter:
The Container

Event: None

Conditions:

If The Container holdsFrag-1, and
If The Container holdsFrag-2, and
If The Container holdsFrag-3

Actions:

Destroy Frag-1, then

Destroy Frag-2, then

Destroy Frag-3, then

Create the Gemstone inside The
Container

Name: Box Situation

Event:
When a Bless spell is cast on Box

Conditions: None
Actions:

Invoke Construct Gemstone situation with parameter
Box

Name: Perimeter Situation

Event:
When Perimeter is entered

Event-Implied Entities:
Define Perimeter Enterer as the creature that entered
Perimeter

Conditions:
If Perimeter Enterer isaPC

Actions:
Invoke Construct Gemstone situation with parameter
Perimeter Enterer

Figure 5.2:Two example situations with their common information extracted into a separate

parameterized situation.

69

initial version of ScriptEase is released to the public, user-feedback on this issue
will be invauable.

5.2 Language I ssues

5.2.1 Language Structure

The structure of ScriptEase’s situations is much more restrictive than the syntax
of atext-based language. This is desired because the restrictive structure makes
stuations easy to construct. However, this aso makes future extensions to
situations hard to implement. Additionaly, it unnecessarily restricts the power of
the users who are proficient programmers. Ideally, ScriptEase should have a
powerful underlying representation that is as flexible as a text-based language.
Multiple views could be built on top of the underlying representation in order to
provide users, having various levels of programming skill, with an appropriately
complex visua scripting tool.

Procedural text-based languages have four primary features: functions, arithmetic
operators, variable assignments, and control structures, such as if-thenelse blocks
and loops. Additionally, these languages support complex data types such as
records and lists. A vital avenue for future work is to examine to how each of
these features can be included in ScriptEase. ScriptEase already supports simple
if-statements, through Conditions, variable assignments, through Entity
definitions, and a restrictive function structure, through Stuations. A Situation’s
structure could be extended to alow arbitrary ordering and nesting of conditions
and actions, as well as extending conditions to include else-blocks. List types, list
iterators, and loops should also be straightforward extensions. These extensions
will require us to consider entity-scoping issues. For instance, an entity defined
inside of an if-block should only be visible within that if-block.

Figure 5.3 illustrates what the code might look like in this system. Entities,
constants, and Aurora-defined objects are coloured as they are in the current
version of ScriptEase, discussed in Chapter 4. It should be possible to extend
riptEase to permit al of this code to be specified using its purely visud
interface, while remaining simple to use. In plain English, this code iterates
through a list of three creature blueprints, instantiates them, and sets the direction
that they face. Thirty-five percent of the time the creatures are placed a a
waypoint called Spawn WP 1, and the rest of the time they are placed at the
waypoint called Spawn WP 2. The Monster List entity definition, at the top of the
figure, demonstrates how alist would be defined. The For each line demonstrates
a smple list-iterator structure. This statement loops through all entries in the list
Monster List and defines an entity called Monster that references the current list
element. The body of the loop is indicated by the text's indentation. The if-
statement in this code has an else component, indicated by the Otherwise

70

Define Monster List as a list of the following creature blueprints: Skeleton,
Zombie, and Wraith

For each Monster in Monster List
Define Random to be a random integer between 0 and 99

If Random is less than 35
Spawn a creature from the blueprint Monster at Spawn WP 1,
called Spawn
Then, Face Spawn in the same direction as Spawn WP 1
Otherwise
Spawn a creature from the blueprint Monster at Spawn WP 2,
called Spawn
Then, Face Spawn in the same direction as Spawn WP 2

Figure 5.3: A mockup of a sample code segment from a possible future version of ScriptEase.

keyword. The Random entity is defined within the loop body and should not be
accessible outside of the loop. Similarly, the Spawn entities inside the if-block
and the otherwise-block are unrelated, since they are defined in parallel scopes.
Finally, notice that the structure of the code is fairly wide-open. Conditions,
actions, entity definitions, and loops can be arbitrarily ordered and nested.

5.2.2 Operators

Arithmetic and string operators are a major problem area in visua programming
languages [17]. The problem is that the easiest interface, for specifying equations
with multiple terms combined using various operators, is text-based, even for
non-programmers. Most people are familiar with seeing these equations in text,
from their schooling, and are capable of writing them. Using avisual interface to
specifying equations is awkward and unintuitive. Fortunately, the average CRPG
script does not require complex equations. However, for the few cases where
these equations are necessary, specia text-based support would be desirable.

5.2.3 Down-Casting

During our own internal tests, we have experienced problems with down-casting
entities. Our concerns were verified during our initial usability review, discussed
in Section 4.7. For instance, consider an entity caled Owner, which is the
container that holds the item, Sword. The designer knows that Owner is a
creature, and wants them to attack the player character. Unfortunately, Owner’s
type is Container, not the subtype Creature. Containers cannot attack things, only
creatures can. Therefore, Owner cannot be instructed to attack anything using
riptEase. In atext-based language, Owner could be cast into the Creature type.
Research into how ScriptEase could elegantly accomplish down-casting is

necessary.

71

5.2.4 Pattern Parameters

Other automatic code generation tools, such as CO,P,S[15], use multiple types of
parameters. CO,P,S has four types of parameters. lexical parameters, design
parameters, performance parameters, and verification parameters. Lexical
parameters are used to specify syntactic elements in the generated code, such as
class and method names. Design parameters affect the structure of the generated
code. Performance parameters affect the performance of the generated code.
Verification parameters generate code that performs runtime semantic checks on
user-supplied code, when turned on. Parameters in ScriptEase do not affect the
structure, performance, or verification of the generated code at all. They only
indicate what code should be inserted into the function invocation that they are
associated with. If the structure of a pattern’s generated code was not fixed, but
dynamic based on some (or all) of the pattern’s parameters, then structure,
performance, and verification issues could be addressed in ScriptEase’s code
generation. The disadvantage of this approach is that specifying patterns in the
Pattern Builder would not be as smple as it is in the current version of
ScriptEase.

5.3 Interface |l ssues

ScriptEase was developed as a rapid prototype. Because of this, some of the
interface design decisions that we made can be improved upon.

5.3.1 Modal vs. Non-M odal Dialog Windows

A diaog window is moda if when it is opened, al other windows in the
application are disabled. In other words, if a modal dialog is open then none of
the application’s other windows can be edited. Information is specified in
ScriptEase using a series of modal dialogs. By making all dialog windows modal,
we were able to avoid the problems involved with editing multiple views whose
data may be dependent upon each other. Text-based programmers often utilize
multiple code windows, open simultaneously. Based on our own experience,
multiple editable views would be desirable in ScriptEase, as well. With a
properly implemented Model-View-Control [12] architecture, ScriptEase could
still address these problems and provide multiple editable views through non
modal dialog windows.

5.3.2 TreeOrganization
There are several places in ScriptEase where trees could be used to better

organize information. Atom lists are one of these places. When the user selects
an event, entity, action, or condition atom, they are presented with alist. Thislist

72

| ScriptEase - [Demo Module]

= Dema Module
f=t3. Sarcophagus Opened

agus is opaned
n at waypeint “wp_skelspawn”, and call it Skeleton

Ly

ipt Template)

i Play animation Placeable Activate on The Switch

w0 Then, Play animation Placeable Deactivate on The Switch

i Then, Define Tha MNearby Door &s the nearest door with tag Door Tag fo The Switch
s Then, Toggle The Nearhy Door locked/unlocked

Spawn Shadows when Entering Pedestal Perimeter {lcon-Container-Parimater Scrpf Template)
i w Parimeter Enterad

i@ meeeWhen a creature enters The Paerimetar

#vi If The Container holds The lcon

g And, If Perimeter Entereris a PC

#-2¢- Then, Spawn a Shadow at waypoint “wp_shadowspawn”, and call it Shadow

i (= Parimeater Exited

i i >§_<-->é-- When a creature exiis The Parimeter

i & #oee|f The Container holds The icon
: (o= Destroy lcon on Enter
e Whan a creature enters Tha Perimatar
#.e5- |f Thie Container holds The lcon
st And, If Deswroy on Entar is Yes
#at.- Then Destroy The lcon

O

i ‘Destroy Shadow when it Enters Parimeter (fcon-Container-Parimeter Scripl Tempiate)
w-« Parimeter Enterad
-« Parimater Exited

#o Dagtroy lcon on Entry

- % Bun Stone {feon-Containar)

oo Destroy the Shadow Deor (lcon-Parimater)

The Swiich ;pnor Tag) Plot |Advanced|

This switch will contral the nearest door with the door 1ag you
give. You can either pick & paricular instance of a switch that
you have already placed |n an area, or 2 blusprint.

[nstance « Figk.., Floor Lever in Grandma's House at {1,6,5.5)
(e Blueprint: Plak,, Floor Laver

Figure 5.4: Mockup of a possible future ScriptEase interface. This figure was created by Matt McNaughton

using Microsoft’ sVisio.

can contain hundreds of entries, which makes finding the particular atom that the
user is looking for difficult. If atoms were organized in a categorized tree,

locating the appropriate atom would be easier.

Generally, ScriptEase presents the user with lists of objects, which when selected
for editing cause other modal dialogs to open. For instance, if the user selects a
situation from a pattern’s situation list then that situation’s questionnaire opens. |If

73

the user then selects an action from the situation’s action list, that action's
guestionnaire opens. This proliferation of modal dialogs can be eliminated by
organizing al of this information into a tree structure. Matt McNaughton and
Dominique Parker, two member of the ScriptEase team, have been working on a
new interface for ScriptEase, which addresses this issue. Figure 5.4 shows a
mockup of the interface that Matt McNaughton created. This figure shows a
pattern instance called Ghost House Door Lever selected. The pattern’s
parameters are shown in the tabbed panedl at the bottom of the figure. The Switch
and Door Tag tabs contain pattern parameters. The Plot and Advanced tabs relate
to other future extensions that Matt is exploring. Note how patterns, situations,
and situation components are all displayed within a single window, organized in a
tree.

5.3.3 The ScriptEase-Aurora Interface

The current version of ScriptEase modifies the scripts of object blueprints in
Aurora then propagates those changes to all of the instances of the blueprints.
Because of this, two instances of the same blueprint cannot be accessed separately
in ScriptEase. In our experience using ScriptEase, accessing objects in this way
is awkward. Providing ScriptEase access to individual object instances is a
necessary extension.

5.4 Error Reduction

As a visua programming tool, ScriptEase is inherently easier to use and less
error-prone then a text-based programming language, which has syntax. Since
riptEase automatically generates compilable code, the user does not have to
worry about syntactic or semantic errors. The visual dialogs used to specify
parameter values only alow valid values to be selected, further reducing the
possible errors that the user could make.

Currently, ScriptEase does not handle errors that are the result of a user reordering
or removing situation components. For instance, consider the list of actions
shown in Figure 5.5. |If the user deletes the first action, which defines he
Pedestal’ s Location entity, then the third and forth actions become invalid, since
they use Pedestal’s Location. At present, ScriptEase does not catch this error.

Adding checks that validate the correctness of a situation, after any component is
removed or reordered, should be a straightforward extension to ScriptEase.

74

x|
Label ‘|réctions
Mot Specify the actions for this situation here.
Event i
Other Entities| :||Define Pedestal’s Location as the location of Pedestal
Conditions | :||[Then, Destroy Pedestal
Actions :||Then, Show a Harm effect at Pedestal's Location
] §§ Then, Spawn a creature with hlueprint Zombie at Pedestal's Location, called Larry the Zombie
§§ Then, Larry the Zombie attacks Container Disturber
Hener | Cut | Copy Faste
Edit Up Do
| Back | Mext | ok | cancel
Figure 5.5: The Actions page of asituation questionnaire.

Patterns facilitate code reuse in ScriptEase. Encounter pattern instantiations work
by copying a set of parameterized situation templates into the system. Once
created, these situations no longer rely on the pattern from which they were
created. This independence allows the user to add to, remove from, and modify
the situations in any way they wish. The advartage of this approach is that it
gives the user a great deal of power, since they retain total control over the new
dgtuations. The disadvantage is that the situations can be modified to such an
extent that they no longer make sense in the context of the pattern that they
belong to. In other words, the user is capable of using the pattern incorrectly,
possibly causing unexpected behavior in the game. The way in which patterns are
instantiated, and the way users customize these instantiations, may need to be
reevaluated.

5.6 Behavior, Plot, and Conver sation Patterns

Currently, ScriptEase supports patterns for encounters. In the future, we would
like to incorporate behavior patterns, plot patterns, and conversation patterns into
ScriptEase, as well. We have contemplated behavior and plot patterns and we
will present our preliminary thoughts on the subject. We have not yet given any
significant attention to conversation patterns or the problems with specifying
“Text appears when” scripts that we mentiored in Section 4.7.

A behavior pattern could involve a single principle actor who utilizes afinite state

machine. A set of situations is placed within each state, which defines the
creature’ s behaviors while they are in that state. For instance, assume a creature’s

75

FSM includes three states, Guard, Off Duty, and Adeep. The situations in the
Guard state define all of the actions that the creature performs while guarding a
treasure chest, or the door to the treasury, or the king, or any other object or
location specified by the user. The Off Duty state’ s situations could define actions
for eating dinner, relaxing at home, or going for a leisurely walk. The Adeep
state’s situations would define the actions associated with sleeping. There aso
needs to be a mechanism for specifying state transitions and their conditions.

Additionally, the possibility of nesting FSMs needs to be considered. Finaly, we
are planning to investigate the incorporation of Al techniques, such as machine
learning, into behavioral patterns.

Plot can be specified using a directed graph, where nodes indicate plot states and
edges represent conditions that must hold for that state to be reached. We have
contemplated representing the plot-advancement conditions as tokens that a
character possesses. For instance, in order for a character to open a magical door
that advances the plot in some way, there are two conditions: the character
possesses the magic key and the character has talked to the king. The magic key
is an item that can be carried; therefore, it is a physical plot token. Talking to the
king is a task that the character has performed, and is not evidenced by an item
being held. Therefore, this condition is represented by giving the character a
virtual token indicating that the task was completed. If the character possesses
both tokens, the door is opened and the plot advances.

5.7 Extension to Other CRPGs

Ultimately, we would like to evolve ScriptEase into a general-purpose CRPG
scripting tool, which is independent of a particular game. In theory, we should be
able to extend ScriptEase to generate code for any CRPG scripting language that
issimilar to NWScript. These are languages that are procedural, event-based, and
access the game engine through a set of library functions, such as Morrowind's
scripting language [47]. Each game would require its own set of Atoms, which
correspond to library functions and include the basic building blocks of the source
code to generate.

5.8 Conclusion

In Chapter 1, we stated that our aim was to develop a CRPG scripting tool that
was both powerful and easy to use. ScriptEase accomplishes both of these goals
by working on multiple levels of abstraction. ScriptEase is easy to use because
high-level information is specified through context-sensitive menus and by
instantiating reusable patterns. It is aso powerful because the high-level

76

information can then be tweaked by customizing the pattern situations’ low-level
components. The Pattern Builder and Atom Builder work on respectively lower
levels of abstraction, while still providing easy-to-use visud interfaces. These
tools allow users to extend ScriptEase by adding their own patterns and atoms,
further increasing the power of the system. ScriptEase’s initial usability review
was the first step in validating its purpose as a practical CRPG scripting tool.
Once released to the public, ScriptEase will undergo its first substantial trial.

In this chapter, we discussed several outstanding language and interface issues
with ScripteEase. Clearly, there is room for improvement. Still, we believe
ScriptEase is more powerful than any other available visual scripting tool for
computer games. Furthermore, the ScriptEase project is an ongoing effort shared
by severa colleagues at the University of Alberta. We are confident that future
versions of ScriptEase will be even more powerful, flexible, and easy to use.

77

Bibliography

Publications

10.

11.

12.

13.

14.

15.

Thor Alexander. An Optimized Fuzzy Logic Architecture for Decision Making, Al Game
Programming Wisdom, Charles River Media, USA 2002, pp. 367-374.

Jonty Barnes and Jason Hutchens. Scripting for Undefined Circumstances, Al Game
Programming Wisdom, Charles River Media, USA, 2002, pp. 530-540.

Lee Berger. Scripting: Overview and Code Generation, Al Game Programming Wisdom,
Charles River Media, USA, 2002, pp. 505-510.

Lee Berger. Scripting: The Interpreter Engine, Al Game Programming Wisdom, Charles
River Media, USA, 2002, pp. 511-515.

Lee Berger. Scripting: System Integration, Al Game Programming Wisdom, Charles
River Media, USA, 2002, pp. 516-519.

Mark Brockington and Mark Darrah. How Not to Implement a Basic Scripting
Language, Al Game Programming Wisdom, Charles River Media, USA 2002, pp. 548-
554.

Steve Bromling. Meta-programming with Parallel Design Patterns, M.Sc. Thesis,
Department of Computing Science, University of Alberta, 2002.
(http://www.cs.ual berta.ca/~systems/Theses/Bromling.M S.ps)

Frank Budinsky, Marilyn Finnie, Patsy Y u, John Vlissides. Automatic Code Generation
from Design Patterns. IBM Systems Journal, 35(2): 151-171, 1996.

Monte Cook, Jonathan Tweet, Skip Williams. Dungeons and Dragons Player’s
Handbook, 3" Edition. Wizards of the Coast, 2002.

Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods,
Tools, and Applications Addison-Wesley, 2000.

Bruce Dawson. Game Scripting in Python, Game Developers Conference, 2002.
(http://www.gamasutra.com/features/20020821/dawson_01.htm, and further discussion at
http://www.cygnus-software.com/papers/gamescriptinginpython.html)

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns. Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

Neil Kirby, Solving the Right Problem, Al Game Programming Wisdom, Charles River
Media, USA 2002, pp. 21-28.

Steve MacDonald. From Patternsto Frameworksto Parallel Programs, Ph.D. Thesis,
Department of Computing Science, University of Alberta, 2002.
(http://plg.uwaterl 0o.ca/~stevem/papers/PhD.pdf)

Steve MacDonald, Duane Szafron, Jonathan Schaeffer, ohn Anvik, Steve Bromling and
Kai Tan. Generative Design Patterns, 17th |EEE International Conference on Automated
Software Engineering (ASE) 23-34, September 2002.

(http://www.cs.ual berta.ca/~jonathan/Papers/Papers/2002ase. pdf)

78

16.

17.

18.

19.

20.

21

22,

23.

24.

Matt McNaughton, James Redford, Jonathan Schaeffer and Duane Szafron. Pattern-
based Al Scripting using ScriptEase, The Sixteenth Canadian Conference on Artificial
Intelligence (Al 2003), Halifax, Canada, June 2003, pp. 35-49.

(http://www.cs.ual berta.ca/~j onathan/Papers/Papers/scripting.ps)

Dominique Parker. A Survey of Visual Programming Tools, M.Sc. Essay, University of
Alberta, July 2003. (http://www.cs.ual berta.ca/~dominiqu/essay/tools.ps.gz)

Falko Poiker. Creating Scripting Languages for Nonprogrammers, Al Game
Programming Wisdom, Charles River Media, USA 2002, pp. 520-529.

Pieter Spronck, Ida Sprinkhuizen-Kuyper and Eric Postma. Online Adaptation of Game
Opponent Al. The 15th Belgian-Dutch Conference on Artificial Intelligence (BNAIC),
The Netherlands, 2003.

Everard Strong. Industry Watch: Keeping an Eye on the Game Biz, Game Devel oper
Magazine, April 2003, p. 8.

JR.R. Tolkein. Lord of the Rings George Allen & Unwin (Publishers) Ltd. 1954.

Paul Tozour. The Perils of Al Scripting, Al Game Programming Wisdom, Charles River
Media, USA 2002, pp. 541-547.

Jack van Rijswijck. Learning Goals in Sports Games, Game Developers Conference, San
Jose, 2003. (http://www.cs.ualberta.ca/~javhar/research/L earningGoal s.doc)

Michael Zarozinski. An Open-Source Fuzzy Logic Library, Al Game Programming
Wisdom, Charles River Media, USA 2002, pp. 90-101.

Websites

25,

26.

27.

28.

29.

30.

31

32.

33.

Bioware. Neverwinter Nights: For Developers, http://nwn.bioware.com/devel opers,
2003.

Bioware. Neverwinter Nights Awards, http://nwn.bioware.com/about/awards.html, 2003.

Jason Brownlee. Finite State Machines (FSM), Al Depot, http://www.ai-
depot.com/FiniteStateM achines, 2003.

Crono and Dekar. Console RPGs are Non-Existant.
http://www.geocities.com/TimesSquare/Dungeon/2857/edit_nonrpg.html, May 1999.

Dragon, http://www.homestarrunner.com/sbemail58.html, 2003.

Murray Keir. A Discourse on Computer Role-Playing,
http://ptgptb.org/0003/discourse.html, 1998.

Lilac Soul. Lilac Soul’s Neverwinter Nights Page, http://lilacsoul.revility.com, 2003.

Lilac Soul. Lilac Soul’s NWN Script Generator,
http://nwvault.ign.com/Files/other/data/1044998316652.shtml, 2003.

List of Products Created with the Prograph Programming Language,
http://www.tritera.com/prograph.html, 2001.

79

34.

35.

36.

37.

38.

39.

40.

41.

42

Com

43

44,

45.

46.

47.

48.

49,

50.

51.

52.

53.

54.

55.

LunarAlex. Definition of RPGs: Another Perspective,
http://www.rpgfan.com/editorial s/old/1999/0006.html, 1999.

Jeff Luther. The RPG Experience: Conventions and not Beyond,
http://www.gamesfirst.com/articles/jluther/rpg_narrative/rpg_narrative.htm, April 2001.

MIT Media Laboratory. Starlogo on the Web, http://education.mit.edu/starlogo, 2002.

Northwoods Software. Visua Programming Tools from Northwoods Software,
http://www.nwoods.com/sanscript, 2003.

NWN Lexicon Group. Neverwinter Nights Lexicon,
http://www.reapers.org/nwn/reference, 2003.

Pictorious Incorporated. Prograph, http://www.pictorius.com/prograph, 2002.
Python Language Website, http://www.python.org, 2003.
Edward T. Smith. Torlack.com, http://www.torlack.com, 2002.

. Sun Microsystems. The Source for Java Technology, http://sun.java.com, 2003.

puter Games

. Baldur’sGate. Bioware Corp. / Black Isle Studios/ Interplay, 1998.
(http://www.bioware.com/games/baldurs_gate)

Baldur’s Gate 2: Shadows of Amn. Bioware Corp. / Black Isle Studios / Interplay, 2000.
(http://www.bioware.com/games/shadows_amn)

Black & White, Lionhead Studios/ Electronic Arts, 2001. (www.bwgame.com)
Blade of Darkness. Codemasters, 2001. (http://www.codemastersusa.com/blade/)

The Elder Scrollslll: Morrowind. Bethesda Softworks, 2002.
(http://www.elderscrolls.com)

EveOnline. CCP Games, 2003. (http://www.eve-online.com)

FIFA Soccer, EA Sports, 2003. (http://www.easports.com/games/fifa2004)
Final Fantasy. SquareSoft, 1987. (http://www.square-enix-usa.com)

Final Fantasy X. SquareSoft, 2001. (http://www.square-enix-usa.com)

Frequency. SCEA, 2001.
(http://www.scea.com/games/categories/stratpuzzl e/frequency/)

Gorasul: The Legacy of the Dragon. Silver Style/ JoWood, 2001.
(http://www.jowood.com)

Hero's Quest: So You Want To Bea Hero? Sierra, 1990. (http://www.sierra.com)

Icewind Dale. Black Isle Studios/ Interplay, 2000. (http://www.interplay.com/icewind/)

80

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Neverwinter Nights. Bioware Corp. / Atari, 2002. (http://nwn.bioware.com)

Neverwinter Nights: Shadows of Undrentide. Bioware Corp. / Atari, 2003.
(http://nwn.bioware.com/shadows)

Quake. id Software, 1996. (http://www.idsoftware.com/games/quake/quake)

Resident Evil. Capcom, 1996. (http://www.capcom.com/ResidentEvil)

The Sims, Electronic Arts, 2000. (http://thesims.ea.com)

Sarcraft, Blizzard Entertainment, 1998. (http://www.blizzard.com/starcraft)

Super Mario Bros. Nintendo, 1985. (http://www.nintendo.com)

Ultima 1: The First Age of Darkness. Origin Systems, 1981. (http://www.origin.ea.com)
Ultima 3: Exodus Origin Systems, 1983. (http://www.origin.ea.com)

Ultima 4: The Quest of the Avatar. Origin Systems, 1985. (http://www.origin.ea.com)

Unlimited Adventures. Micromagic / Strategic Simulations Inc., 1993.

81

