A Survey of Visual Programming
Tools

Dominique Parker
Department of Computing Science
University of Alberta, AB T6G 2E8, Canada
dominiqu@cs.ualberta.ca

July 17, 2003

Abstract

Through their graphical interfaces, visual programming tools provide
a considerably different means for specifying programs than traditional
text-based programming languages do. Because humans use a lot of
imagery while thinking, it is believed that using visual tools is a much
more natural approach to programming than writing sequential text.
This paper surveys five recent visual programming tools — Create, Pro-
graph, Sanscript, Starlogo and ScriptEase — that have differing purposes
and approaches for specifying programs. While these tools have some
useful features, they also have their limitations, can be awkward to use,
and have yet to revolutionize the art of programming.

1 Introduction

Using visual programming tools to write programs is an alternative to man-
ually writing textual code in a traditional programming language. Visual
programming tools come in many forms and are used for various purposes.
There are tools for specific tasks such as creating user interfaces and specify-
ing physical simulations, whereas others are for general-purpose programming.
Some tools implement pure visual programming languages with programs rep-
resented using graphs composed of icons and other visual elements, and the
graph is the only form of source code before interpretation or compilation.
There are similar tools that convert graphs into textual code of another pro-
gramming language through a purely mechanical translation. There are other
tools yet in which programmers specify their intents using wizards and other
conventional GUI widgets.

There has been much research in the area of visual programming tools,
because humans think and remember things in terms of pictures. Imagery is
an integral part of creative thought. Humans can absorb data much easier
from well-defined plots than they can from large tables of numbers, or tex-
tual descriptions. Proponents of visual programming therefore argue that the
development of visual tools is a natural step in the evolution of programming.

This paper surveys five recent visual programming tools to gain some useful
insights into the pros and cons of these tools. Sections 2 through 6 each pro-
vide discussion on a different tool. The discussion for each tool describes how
the user goes about performing common tasks with the tool, and includes com-
ments on how easy it is to perform those tasks. These sections are presented
in the order that the tools were reviewed. Section 7 discusses some lessons
learned from using the tools. Finally, Section 8 presents some conclusions.

2 Create

Create, by Sharper Software [1], is a visual programming tool that represents
code using flowcharts, otherwise known as control-flow diagrams. It then con-
verts flowcharts into C or Java source code, or into a Windows executable.
While flowcharts can be converted into object-oriented Java code, the pro-
gramming model used to build the flowcharts is procedural.

A free demo for this tool is available from the web-site. As an aside, the
quality of the web-site’s design and content is extremely poor. The main page
only has a vague diagram depicting the interactions that occur between the
different parts of the tool, and a hyperlink to Enter the Site that absolutely
requires a Flash plugin. The hyperlink leads to a Flash introduction that takes
longer than necessary to load and contains nothing but Sharper Software’s logo
and yet another button labeled Enter. Clicking on this button finally leads
to the content of the web-site except that everything is disabled; everything
except a button labeled Start that enables everything else once pressed. The

i C:Documents and Settings'dominiqu’, My Documents'Create’ samples'untitied funt _.lﬂj_[
=] File Cards Wariables Procs chrd:e Project Systern Search Window Help

Cl=l=l & =] [HEEEE IZIFFEI'IL".'

| Closs viewer M (=9 SHartProgram
B Coassign guﬂ:tun +value
=Retum E
% Dorr nd P rogram
B Dowhile
& Docase

+ |l List Processing

+ Fwindow
+ @l User Interface

Figure 1: A trivial program in Create.

web-site’s content, for the most part, is uninteresting. It is all marketing hype
to convince people that their tool is revolutionary and makes programming a
simple task, but offers no support for their claims. Some parts of content are
just plain confusing, like the following sentence for example:

Logic structures involving and Variable assignments are color-coded
and class objects — which can be drag-and-dropped from CRE-
ATE’s Class Viewer into the flowchart — have their own unique
symbolic icons and family color.

The user interface can be seen in Figure 1. It has an area on the right
where the program’s flowchart is edited, and on the left is a window called
the Class Viewer. The Class Viewer’s name is misleading since it does not
contain any classes; at least not in the object-oriented sense of the word. It
just contains a list of all of the different graph nodes representing functions
and control-flow constructs that can be added to flowcharts. These are divided
up into categories. Nodes are added to the graph by dragging them from the
Class Viewer to the flowchart. The node will be inserted into the flowchart
directly below the node with the red arrow pointing to it (see the central node
in the figure). As the user drags the mouse, the arrow points to the node
nearest to the mouse cursor. When a node is attached to a flowchart, a dialog,
called a Large View immediately appears in which the node is configured. A
node’s Large View can be opened at any time by double-clicking it.

A program always has two nodes labeled Start Program and End Program
that appear at the extremities of the program’s flowchart. The Large View of
the Start Program node allows some application-specific details to be supplied,
such as the program’s name, window dimensions and positioning information.
Indeed, Create assumes that all applications are GUI-based. Some quirks of

Salact varisble to include in expression| Wariable Type
Lastisindaw i
Msririircicee: 3
L il
o

(* Integer

(" Word

" Ploat

g y

g

('“

«

g

g

|

g
New: | &+ Sori Mames
Defaull * Show globals

] " Show locals
Accept Cancel J Detaul J

Figure 2: Selecting a variable.

the system are immediately encountered in this dialog. The program name
is displayed in what appears to be a normal text-field, except that it is not
editable. When the text-field is clicked to give it focus, a dialog appears having
a regular text-field in it where the program name should be typed in. This
annoying approach to enter values is used everywhere in the system.

To use this tool, the user must already know the basics of programming.
The nodes that the user can place in the flowchart, and will have to in order
to write any kind of useful program, include the fundamental building blocks
of the Java and C languages, like assignments, control structures (if, while,
case, return), procedures and so forth. Let us take this simple assignment
expression as an example: sum = sum + value. A DoAssign node must first
be created. The central node from Figure 1 is an example of a DoAssign node.
The Large View of the DoAssign node is uninteresting, so it is not shown. It
has two immutable fields, one for the left-hand side and one for the right-hand
side of the assignment, that each bring up a dialog when clicked. The dialog
for the left-hand side looks like the one in Figure 2 where the variable being
assigned to is selected from a list of existing variables. Alternatively, a new
variable can be created by typing its name into the text-field at the bottom.
Figure 3 shows the dialog for editing the right-hand side of the assignment.
An arbitrary expression can be typed in the provided text-field. However, the
user cannot simply type the name of a variable into the text-field. They must
press the Select Variable button to bring up a dialog like the one for selecting
the variable on the left-hand side of the assignment. It looks like the tool
does not like parsing user input; it expects the user to tell it explicitly that

sum + value| J
&

4] | »

Lize the kevboard Select Variable J] ‘:j D’w Function i
Lo fill in values and
operators. Except

for the minus sign | e I Cancel J VE e Ln

Uiz this to change

the sign of & value. SIN | CDS TAN I1
LUze the - button as
aperator. - - X !

Figure 3: Editing the right-hand side of an assignment.

a variable is being used. There are buttons too for inserting basic arithmetic
operations, square roots, powers, trigonometry functions and a few others. In
the end, the user must know exactly what sum = sum + value does in order
for them to understand what they have just done. In other words, it does not
abstract out the basics of text-based programming in any way, while making
it painfully tedious to accomplish anything.

The tool may be more useful for performing higher level tasks. The API
supports GUI manipulation, loading and displaying images, some primitive im-
age manipulation functionality, making database connections and more. These
features were not explored in any detail because the tool tends to crash fre-
quently. As a first impression, the API still seems quite tedious to use because
the user is required to handle a lot of the low-level details, such as creat-
ing variables of the appropriate type. Perhaps an experienced user can learn
to cope with these details, in which case Create may actually do something
non-trivial. This tools was certainly the weakest tool of the ones reviewed.
Subsequent tools showed more promise.

Some of the good points of this system are:

e Code can be generated in C or Java, so programs written with the tool
are not bound to a particular language. It is not clear whether or not
the tool can be extended to support other languages, or how sensitive
it is to the particular system setup (which libraries and other tools that
are installed).

Some of the downsides of this system are:
e Use of the tool is not at all intuitive, even for an experience programmer.

e The demo version of the tools crashes frequently. Saving, loading, and
generating code always resulted in the tool crashing or hanging up.
Hopefully, the commercial version of the tool is more stable.

Prograph

Sections of "HelloWorld” Project - O X

Universals of "MyOnlySection”
o [E) main

This 100t ternal i fixed and cannot be dragged Mommal

Figure 4: A Hello World program in Prograph.

3 Prograph

Prograph, by Pictorius [2], is a visual programming language, not a graphical
front end to some other text-based languages. Where Create uses a control
flow diagram to represent executable code, Prograph uses a data-flow diagram.
Its programming model is a single-inheritance object-oriented one that allows
stand-alone methods, called universal methods. Prograph also has the notion
of persistents, which are like global variables whose states can be saved between
executions of a program. The API consists of a set of built-in operations called
primitives that behave much like universal methods. Primitives are divided
up into several categories, the important ones being, bit operations, logical
operations, file and I/O operations, list manipulation, math functions, string
manipulation and memory management.

The user interface makes use of the Multiple Document Interface (MDI)
model to display a program. MDI allows multiple child windows to be dis-
played within the confines of a parent window. Prograph uses MDI to supply
a separate child window for editing the different elements that exist in a pro-
gram, such as class declarations, method declarations and method bodies. It
is therefore possible to edit several parts of a program concurrently.

To give the reader a taste of Prograph, Figure 4 shows the classic Hello
World program. It consists of a single universal method called main in a
section of the program called MyOnlySection. The rightmost window contains

=13
File Edit Opers Controls Exec Tools Utilities Windows Help
pede | |¢ | edessvs

' @E) Sectionl

Classes of "Section1”

Mol

Figure 5: Prograph class declarations.

the body of the method, which consists of the string literal “Hello World” being
passed to a primitive called show. At run-time, the show primitive displays
a string in a window that has a single button used to dismiss the window.
The window in the upper-left corner shows the program executing. While the
entry point to this program happens to be a method called main, which is
reminiscent of languages such as C and Java, execution can actually begin in
any parameterless universal method.

Code for a program is divided up into sections, which are analogous to the
source files of a program written in a text-based language. In fact sections lit-
erally are stored in individual files by Prograph. The sections of a program can
be viewed by displaying the Sections Window, which can be done by select-
ing the Sections menu item from the Windows menu. The Sections Window
shows a list of sections, where each section is displayed as three icons next to
the section’s name. The three icons that can be seen in Figure 4 represent the
classes, universal methods and persistents of a section respectively. Creating a
new section involves either double-clicking with the mouse on the background
of the Sections Window, or selecting the New Section menu item from the
window’s context menu. Most elements of a Prograph program can be created
in a similar manner. The section can be named when it is first saved to disk
in a familiar way through a standard file chooser dialog.

Creating a new class is very easy. The first step is to display a section’s
Classes Window by double-clicking the hexagonal icon representing the classes
of the desired section in the Sections Window. A new class is then created
by double-clicking on the background of the Classes Window. An icon for
the new class appears. By default the new class is called Unnamed, but a
class can always be renamed. Clicking on a class’s name replaces it with an

=33
File Edit Opers Controls Exec Tools Utilities Windows Help
peEe | ¢ || eDeesvs

<{Person} >

“unnamed”

Figure 6: Editing class attributes.

editable text-field where a new name can be typed in. A class can be made
the subclass of another by selecting the parent class and SHIFT-left-clicking
on the subclass. A line extending from the bottom of the parent class’s icon
to the top of the subclass’s icon is drawn to show the inheritance relationship.
Figure 5 shows a class called Student that subclasses a class called Person.
Note how the class icons are divided in two, with a triangular shape in the
left-hand side and a rectangular shape in the right hand side. This feature will
be relevant momentarily.

Classes can have two types of attributes: class attributes and instance
attributes. These two types of attributes are analogous to static and instance
variables in Java. To view or edit the attributes of a class, an Attributes
Window like the ones shown in Figure 6 is opened by double-clicking on the
left side of the class’s icon. Class attributes appear above the horizontal line in
the Attributes Window with a hexagonal icon, and instance attributes appear
below the line with a triangular icon. All attributes show their default value
in the rightmost column. Figure 6 shows that the Person class has one class
attribute called ultimateLeader, and two instance attributes called name and
age. The figure also shows that inherited attributes also appear in a class’s
Attributes Window. Inherited attributes can be distinguished from the other
attributes by a little downward pointing arrow appearing within their icons.
As expected, a new attribute is created by double-clicking in the appropriate
region of the Attributes Window’s background. As is the case with class names,
the name of an attribute turns into an editable text-field when clicked. For
simple types, the default value can be edited in the same manner; the type of
the attribute will automatically be set accordingly. Editing the default value
of an attribute whose type is a class is a little more complicated. The user can

=1
File Edit Opers Controls Exec Tools Utilities Windows Help
2@ ae '

Person

@& <O
gethge
ol getName
@ sapHello
E setAge
“fl setMame

Figure 7: Editing class method declarations.

bring up a Value Window by double-clicking the attribute’s icon. From this
window, the user chooses the class of the attribute by selecting it from a list
of existing classes. Because the attribute is of a class type, it too may have
attributes whose default values may be set from the Value Window using this
same approach recursively.

Editing the method declarations of a class is just as straightforward as
editing its attributes. A Class Methods Window is first opened by clicking on
the right side of the class’s icon. A class can have four kinds of methods: Plain
methods that can be used for performing any arbitrary computations, Get
methods that return the value of an attribute, Set methods that set the value
of an attribute, and Instance methods which are analogous to constructors in
Java. The type of a selected method can be set through the menus. Figure 7
shows that each type of method has a different icon, and that instance methods
have no name. It should also be noted from the figure that methods do not
appear to have specific prototypes.

Creating universal methods is done in a similar manner, except that the
Methods Window in which they are declared is opened by clicking on the meth-
ods icon of the section in which the methods belong in the Sections Window.
Unlike class methods, universal methods are always of the Plain variety.

So far everything has been nearly trivial to do, and the graphical interface
presents the relevant information well. For example, the user can clearly see
the inheritance hierarchy as well as inherited attributes, which is not the case
with text-based programming languages. However, aside from the Hello World
program, we have yet to show any real executable code. Unfortunately, writing
code is a considerably more complicated task.

Because code is represented using data-flow diagrams, there are no notions
such as local variables and assignments. Figure 8 give a little bit more of an
idea what the code looks like. Both methods create an object of type Person
named Bob whose age is 2, then query the object for both its name and age

Prograph
File Edit Opers Controls Exec Tools Utilities Windows Help

peae | | e@eewve || 14
- 1:1 main1

(b

[[name "B"'.la!n 2))

The parmteee ‘make-hst’ has recened an nput of an nappropsate tpoe on fernal 1 MNormal

Figure 8: Creating and querying objects.

and displays those values. Note the cryptic notation used to initialize the
Person objects. The topmost node in both methods is a list of lists containing
key-value pairs, where the keys correspond to the names of the attributes of
the object being initialized.

Each node in a diagram has input points, called terminals, at the top and
output points, called roots, at the bottom. Nodes are connected together via
data links. When a node executes, the data that it produces emerges from a
root and travels over the data links connected to the root to the terminals at
the other end. When input is available at all of a node’s terminals, the node
becomes eligible to execute. Normally, there is no guarantee with respect
to the order in which nodes execute, so there is no telling whether getName
or getAge will execute first in the second case of Figure 8. Most operations
have a fixed number of roots and terminals. For example, Get operations,
like getName which is a Get method, always have one terminal receiving the
object from which an attribute is to be retrieved. Get operations always have
two roots supplying the input object and the value of the requested attribute.
Some primitives can have an arbitrary number of roots and/or terminals, such
as arithmetic expressions and list packing/unpacking operations.

Method arguments arrive through roots on the shaded bar at the top of the
method body and return values leave through terminals on the shaded bar at
the bottom of the method body. So far, none of the examples have shown this

EE&

File Edit Opers Controls Exec Tools Utilities Windows Help
e | v | epeewmvie ‘||t

—:imaind - 0% it myferioep |- [B]X| - 1:1 loop body [=B]X]
O oo -

A A

Thiz root/erminal i: fiwed and cannot be dagged Mowraal

Figure 9: A basic for loop.

feature. New roots and terminals can be added by double-clicking near the
edge of the bars. Doing so effectively modifies the prototype of the method.

Primitive and user defined operations can be transformed into list process-
ing or looping constructs called multiplexes. For example, an annotation can
be attached to a node’s terminal via its context menu so that the node exe-
cutes for every element of a list arriving at the terminal. This is a very useful
feature because it completely abstracts out the iteration for the user. There
is also an annotation that binds a root and a terminal belonging to the same
node, so that the node executes repeatedly with the output value being fed
back into the node as an input value. It is used to create loop constructs like
ones typically found in procedural languages. However, implementing loops in
this manner can be quite awkward. Figure 9 shows the implementation of a
loop that is roughly equivalent to the following C code:

int i;
for (i = 0; i < 7; i++)
printf ("The loop counter is %d\n", i);

There are a couple of things to note about this loop. The first is that my
for loop and loop body are not separate methods; they are local code blocks
(pieces of code that behave as a single entity, but are edited in a separate
window). The second is the presence of coil-like lines, called synchro links,
between the three nodes in the my for loop block. Synchro links impose an
ordering on the execution of the nodes that they are connected to. In this case
they are used to ensure that the loop body executes after the loop condition
is tested, but before the loop counter is incremented.

Some of the good points of this system are:

10

The GUI is flexible: you can do pretty much everything through the
menus, or using shortcuts (clicking on windows and icons).

Providing section, class, attribute and method declarations is almost
trivial.

The user can have the interpreter execute any universal method with
no inputs at any time. A universal method can therefore be used much
like a Smalltalk workspace, which is good for debugging. If an execution
error occurs, there is a Smalltalk-like debugger as well.

There are search utilities for finding entities (classes, methods, etc.).

Program elements that have been modified since the last time they have
been saved are marked with a little diamond beside their icon.

Some of the downsides of this system are:

Writing executable pieces of code is tedious, a problem made worse by
the fact that linking nodes together is not always easy. The tiny circles
have to be clicked exactly in order to create data links.

It is too easy to create bogus entities by clicking on a window’s back-
ground.

Typos can be a problem. The user has to type in the text that appears
in each node (class names, method names, primitives) and, depending on
the node type, the user might not know about a mistake until run-time.
Some types of nodes, such as arithmetic expressions, can be verified
at edit-time. Context sensitive menus that contain the names that are
already defined would be quite helpful.

A link cannot be deleted by selecting it and pressing delete as one would
expect; the user has to draw another link overtop of the existing one.

The set of primitive operations does not appear to be extensible.
The demo version tends to crash every now and then.

The documentation is far from intuitive. One usually has to look in
several different places in order to find all of the necessary information.
For example, the part of the documentation that describes the purpose
of data links and synchro links does not describe how to create them.

11

a@a | =
meq|':Pmm|

- @& General ~

€2 Corwersions

2 DDE

€3 Decimal

3 Directory

€3 Error

£3 Exp & Trig

£ File YO

£3 integer

B2 Language

£ List

22 Logical

£ Money

2 Registry v
£ 3

HEE & M m

Pramnt For Fila Mnan Fila Sava

: H
Bl

Running... 100

Figure 10: A Hello World program in Sanscript.

4 Sanscript

Sanscript, by Northwoods Software [3], is a tool that is very similar to Pro-
graph, because it too represents programs using data-flow diagrams. However,
Sanscript is not object-oriented, in fact, it is quite procedural. It has a lot of
built-in types, including all of the usual ones, as well as files, errors, money
and lists of these types. The available API is pretty extensive and contains
quite a bit of high-level functionality for manipulating and formatting time,
accessing the Windows registry keys, file and I/O operations, and accessing
system resources.

Like Prograph, Sanscript’s user interface also uses MDI for most of its
editing purposes, however, it occasionally breaks the rule and opens an inde-
pendent modal dialog. The interface also has a few other features not present
in Prograph seen in Figure 10. On the left side of the screen is the Overview
Window and at the bottom of the screen is the Catalogue Window. The
Overview Window contains a listing of the different categories of functions
available, including those defined by the user. When a category is selected in
the Overview Window its contents are displayed in the Catalogue Window.
To edit the definition of a function, the user double-clicks the function’s icon
in the Catalogue Window which causes its data-flow diagram to be opened in
a child window. To make a call to a function, the user drags the icon from
the Catalogue Window and drops it into the data-flow diagram where the call
is to be made. This approach is somewhat more intuitive than Prograph’s

12

Hame Type Default Set? De scription
1 Jname Text (ATL 1.2 unnamed "3
: |age integer (RTL 1.2 0 I~

Figure 11: Editing the fields of a record.

approach of double-clicking in the background of a window or using a context
menu to create a new node and typing in its name. Another subtle difference
between Prograph’s interface and Sanscript’s is that Prograph’s diagrams are
laid out vertically whereas Sanscript’s are laid out horizontally.

A quick note on terminology - input and output points on graph nodes are
called inlets and outlets.

The user can create new types called records that are similar in nature
to Pascal records or C structs. Doing so is not very difficult. The user first
selects File -> New -> Record menu item. A dialog containing a text-field
appears in which the user types a name for the new type. Then a dialog like
the one shown in Figure 11 appears that allows the user to edit the fields of
the record. Cells in the Type column are actually pull-down menus that list
all available types. Default values can be typed directly into the cells of the
Default column, however, the documentation does not describe if it is possible
to specify default values for fields which are themselves records. There is no
concept of a class (static) field as in Prograph, Java or C++.

Once a new record type is created, two new functions are created automat-
ically and made available to the user. The first function creates and initializes
new instances or sets the values of the fields of existing instances. The second
function is used to retrieve the values of the fields. Figure 12 shows a pro-
gram analogous to the Prograph program shown earlier that creates a Person
object then displays the contents of its fields. It is far more concise than its
Prograph counterpart for two reasons: the inputs do not have to be encoded
as an obscure list of key-value pairs, and both fields can be accessed in the
same operation.

Sanscript supports error handling, but in a slightly more primitive fashion
than Java or C++ does. The user drops an error handler, which is a node
much like any other except that it never has any inlets, into a function’s body.
If an error is generated within the body of that function or propagates up the

13

\5 Sanscript
File Edit View Insert Run Catalog Window Help

B@S e] e »lzlal nal 2000500 2w
i FEX
+ B General — - p-
+ [B Examples and T¢| “Bob" = je——1=] -
- B user ‘ name name p——— ool El
oo e Display M
e @_’/_I\:Keierson Pf:rsogtlr*::s__1 " rTessage
5gw
Display Message
had v
| b4 < »

[— — JR— —rn T —_— — — [—

Test1 Folder in Cabinet USER 1.0 (C:\PROGRAM FILES\NORTHWOODS SOFTWARE\SANSCRI} READY 100

Figure 12: Creating a record instance and fetching its fields.

call stack because it was not handled from within a called function, the error
handler executes. It is as though the entire body of the method were in a
Java try-catch block that catches Throwable, the interface from which all of
Java’s exception classes inherit. The consequence of this approach is that the
user cannot selectively choose the parts of the method that the error handler
covers, nor which types of errors to catch. From within the error handler, the
user can test which type of error was caught and handle the error accordingly.

Figure 13 shows a program called main6 that calls a function called Qops.
Oops unconditionally performs a division by zero which causes an error to
occur. Though the body of the error handler seems quite large (see the bottom
window in the screenshot), it does little more than extract some information
from the error object and concatenate it into a string which is then displayed.
Figure 14 shows the trivial outcome of running the program.

There are a couple of interesting control flow constructs. The first is a
generalized case statement called Pick One that can operate on Booleans,
integers, floating-point numbers or strings. In the case of Booleans, the con-
struct boils down to an if-then-else statement. Making use of a Pick One node
involves a three step process. First, the type of the operand must be identi-
fied. Then, the values for each case must be enumerated, unless the operand
is a Boolean. Finally, a data-flow diagram must be supplied to handle each
case. Figure 15 tries to demonstrate all three steps. The type of the operand
is set automatically when an edge is connected to the node’s inlet based on
the type of data emerging from the outlet at the other end of the edge. In
the upper-left window of the figure, a string literal is connected to the Pick
One’s inlet. Alternatively, the user can set the type manually by selecting
the Select Type item from the inlet’s context menu and picking the type from
a list. Enumerating the values involves selecting the Edit Choices item from

14

File Edit View Insert Run Catalog Window Help
B @S B o] vle wz|al nol 2L0:00 2R
B | | & mainé '
- B General
B3 Conversior
1 DDE
£ Decimal
&2 Directory
£ Error
3 Exp & Trig
£ File YO
O Integer
£ Language
2 List
82 Logical
83 Money
82 Registry
03 System
£ Text
2 Time
£ User Intert
+ B Examples and
- B user
B Testl

< > Errar Parts Format_Integers

- (E— S S S . o ._ S T

| Display Message: Display the Message in a small window; wait for user to dismiss window. READY 100

Figure 13: A program with an error handler.

mainé X
- Caught an ermorin.
y faciity: FvpRun
name Intemal
code: 0

[ex]

Figure 14: The output produced by the error handler.

15

5| I'C | Choices | |
- B General & Bing |
& Conver _j <Default>
£ DDE |
s 4
£ Directo
& Error Delete Choice |
O Eeps”
£3 File 1/C e Datalype [Tew (RTL 1.2) -
&3 Integer x Tips
/L . @ Befare aditing the chaices you must selact 3 datatppe. Once
pngun This is the Blang. | sg_d'. selected. the type iz resticted to similar tppes.
2 List Display Message : C :
p - To add a new choice o replace an existing choice value,
3 Logical tupe the new walue in the Choices field first. Select a chaice
£ Money before locking at its definition or delsting it.
h * «[» W\ siang £ ging £ <vefaut> 7 Chnn Help
[
For Help, press F1 DONE 100

Figure 15: Configuring a Pick One graph node.

the node’s context menu, which causes the dialog on the right to be opened.
It has a text-field where the literal value for each case may be typed in, and
buttons to manage the contents of the enumeration. The enumeration always
contains an implicit Default member to handle arguments that do not match
any of the other cases. This dialog is one example where editing is performed
in an separate modal dialog instead of a child window. The bodies for each
case are supplied by double-clicking the node itself which brings up a window
like the one on the lower-left. The window has a tabbed-pane for each case,
where each tab behaves like any other window used for editing diagrams.
The other interesting flow control construct is a Repeat loop, that can
iterate over Booleans, integers or list elements. Like the Pick One, the type of
the iterator is set appropriately when an edge is connected to the node’s inlet,
or it can be set manually by picking the type from a list. Given an integer
the loop will iterate from 1 to the value of the integer inclusive. Figures 16
and 17 show two implementations of a loop that are similar to the C code
presented in Section 3. The first iterates from 1-7 instead of of 0-6 as the
C code does, but it was very simple to implement. It was only necessary to
connect a 7 to a Repeat node to implement the iteration. The second is far
more complicated and tries to remedy the situation by computing the value of
the loop counter itself and breaking out of the loop at the appropriate time.
Unfortunately, it has one minor flaw mentioned later. This implementation
does not have an edge connected to the loop’s usual inlet and no type is
specified for the iterator, which effectively creates an infinite loop. The other
inlets and outlets that have been added and the entire contents of the loop
do practically the same thing as the Prograph implementation from Figure

16

5 Sanscript
File Edit View Insert Run Catalog Window Help

R@S | »l] v|2] vz |a| no| 20510 2%
8 |% | - main3

= B General &
£3 Corwer
C oDE
£ Decime
£3 Directo
©3 Error
Ciexpa-
€3 File YT
3 Integer
£ Langua
B3 List
C3 Logical

=

Rep%__at_l

& Repeat_1 in main3

» B

['Thn loop counter is %id” = mat Yold-9-

i
& b 4 v

P/_:z"-‘_ g X SS‘PE -

5 i Massa

0.2 s 5p ¥ €

Item Farmat Integers
==

| e — — — —_— _— —_— — —_—

DONE 100

Figure 16: A simple for loop.

9. The only noticeable difference is that the loop body is inlined instead of
being in a separate code block. It even has synchronization links to ensure the
proper order of execution. However, there appears to be a semantic difference
between Prograph and Sanscript. The Prograph loop breaks out immediately
as soon as the loop condition fails, whereas the Sanscript loop breaks out only
after the completion of the iteration in which the loop condition fails. So this
loop actually iterates from 0-7 instead of the desired 0-6. To fix the loop, the
loop condition would have to include a subtraction by 1.
Some of the good points of this system are:

e The system promotes code reuse. As in Smalltalk, all of the API that
comes with the system and the user code is always available across
projects. The API can be extended and shared; additional modules
are available from the Northwoods Software web-site.

e The API is pretty extensive.

e Linking nodes together is easier than with Prograph because it tries to
auto-complete edges based on where the user is dragging the mouse. On
the other hand, this feature makes it a little too easy to create bogus
edges if the user happens to click on an inlet /outlet. At least those edges
are easy to delete; indeed, edges can be selected and deleted.

e The icons convey a lot more information than the Prograph icons do.
Every icon is labeled and has pictures, instead of relying on obscure
shapes.

17

5 Sanscript
Fle Edt View Insert Run Catalog Window Help

@S s|BE| o | v[o] wis|al 1@ BlLLLI0 2N

8 % |
- B General

o
3 Comversior %\ Repeat B
£ DDE oop Courther f
g ge":";;; @_/Q/—Stw - ¥ Loop Counter

€3 Error nerements

£ Exp & Trig . Repeat_
£3 File YO =
£ Integer E5 Repeat_1 in main2

B2 Language e

&2 List . i

£ Logical [} E}_‘
£ Maney LessThan Or Equal
£2 Registry - :

£ system ol

£ Text [*The loop counter is %ld

€3 Time

€3 user Interi
+ B EBxamples and
- B usem

B Testl

Loop Counter Format Integers
v

-

[("'g-' e o ,j
< > Increment Plus Loop Counter
| — —— — —_— —_— — —_— —_— — —_—
DONE 100

Figure 17: A for loop with customized iteration.

e It does not crash!
Some of the downsides of this system are:

e Once again, some simple things can be extremely tedious, such as basic
text manipulation shown in the error handler example and more sophis-
ticated control flow.

e When the user instantiates a node and edits its properties, most of the
time the changes are local to that particular instance, as it should be, but
in some cases the changes do propagate to all instances. For example,
the functions to get/set fields of a record by default have outlets/inlets
for each field. Inlets and outlets can be left unused, but sometimes
it is desirable to remove unused ones to reduce visual clutter. So if an
outlet is removed from one instance of the function, it is removed from all
instances, usually resulting in disappearing edges. To avoid this problem,
the user has to create a copy of the function, edit the properties of the
new function, and use an instance of this new function instead.

e New record types are indirectly accessible/editable through instances
of the functions that are automatically created for manipulating them,
but do not seem to be available to the user otherwise. More impor-
tantly, there does not seem to be a way to delete them. For example,

18

if the user creates new types and deletes the functions associated with
them, the types still exist in the system. This fact can be verified by
the presence of the types in the pull-down menus wherever the user is
asked to select a type. However, there no longer exists a way to cre-
ate/manipulate/edit/delete instances of the type or the type itself.

e The icons are bulky (the size of the screenshots speak for themselves),
but it is a trade-off from the extra information that is packed into them.

5 Starlogo

Starlogo [4], developed at the MIT Media Laboratory, is a specialized version
of the Logo programming language that handles having multiple turtles carry-
ing out actions concurrently. The turtles can act autonomously and sense each
other as well as their environment. While it is well suited for teaching pro-
gramming concepts to young students, it is intended to be used for simulating
systems without centralized control (agents that act independently). Simula-
tions are command driven and unfold visually within the user interface. At
the lowest level, Starlogo is a text-based procedural language; all programming
can be done in text. It also provides some higher level abstractions like GUI
widgets for issuing commands and changing the values of variables. Moreover,
code can be generated automatically from parameterized templates. The full
version may be freely downloaded from the web-site.

The interface has two main windows: the Control Center and the other
one is simply called the Starlogo Window. Both windows have the same main
menu.

The Control Center, shown in Figure 18, is where the user writes textual
code, much like they would in classic Logo. The window has two panes, one for
turtle specific code and one for Observer code. The Observer is like a higher
power than can create new turtles and has full control over the environment.
Both panes are identical and are divided into two parts. The upper part
allows the user to type in commands which are executed immediately. Turtle
commands are executed by all turtles. The lower pane is where the user can
write procedures that can later be executed as any other command. Nothing
of a visual nature happens in this window.

The Starlogo Window has the animation area, controls for drawing and an
area where users can create their own control widgets. Figure 19 shows the
Starlogo window which has been shrunk down a whole bunch so that parts of
it are missing. One of the neatest features of this window is that users can
create their own buttons in the large white area and bind commands to them.
The three blue buttons labeled wander, grow-grass and setup are examples
of such buttons. Creating a button is accomplished by pressing the button
creation button (the blue one with a finger on it in the tool-bar) and drawing
a rectangle in the white area, much like one would in an image processing tool.

19

Control Center

Turtle Procedures setup - I

[To setup a
setcolor orange |
setyy (random screen-width) (random screen—hel |

setenergy (random 100
Traraet (random 10070
<

7§ -|:I

Figure 18: The Control Center.

A dialog like the one shown in Figure 20 is then displayed. In this dialog, the
user types in a command that executes whenever the button is pressed and
specifies whether the command is a turtle or observer command. The name
text-field often does not render properly. If the forever? check-box is checked,
the button fires repeatedly until it is depressed, instead of firing once when the
button is pressed. Forever buttons are distinguishable from regular buttons by
the chasing arrows appearing on them. Users can just as easily create sliders
that allow them to change the value of a variable at run-time.

The system supports templates that can be used to automatically generate
code. A template is used for describing an entire simulation, or the majority
of it, not just one component of a program. Using a template, several breeds
of turtles can be created that each exhibit different behaviour. The behaviour
of a breed of turtle applies to all turtles of that breed, but it is possible for
a turtle to change breeds during the course of its lifetime. This is analogous
to an object that can change its calss at run-time. A template also allows
the behaviour of the Observer to be specified. Since the code generated by
a template clobbers all code in the Control Center, the interface only allows
one template to be used per project. Templates are imported from external
files, so it is possible for new templates to be added, but Starlogo does not
come with tool support for creating new templates. In fact the documentation
does not even address the issue of template creation. The current Starlogo
distribution only comes with two templates. A screenshot of the Template
Wizard for the Ecology template is shown in Figure 21.

The interface of the Template Wizard is divided into quadrants. The upper-
left quadrant is used for creating and naming new breeds of turtles. Though it
is not visible in the screenshot, the list always implicitly contains an entry for
a default breed of turtle and the Observer, even though the Observer does not
qualify as a breed of turtle. The lower-left quadrant shows the list of functions

20

=
File Edit Font Size Windows Help

?Ia‘: &l vz

-

B 900>
» el

|Stap Button pressed!

Figure 19: The Starlogo Window.

New Button
Mame:) Show Name
[@ Show Instruction

StarLogo Instruction: @ Turle
Td 1 | observer
Toolkip:

Move turties =

(i Foraver? | cancel |[oxk_]

Figure 20: Configuring a button.

21

flexible eco template

Ereeds
Infect
Breed to infect healthy
|healthy [« Breedto change infected turtles o | sick
lgirke b4 Probability of infection {3 S
FE'"'_'__'_' J l.emne *51 _ ‘@ Use a constan value
| o |
Breed fomctivers [ta infect-sick
sick define | if {rancham 100) < 75
[Death T [grab one-of-healthy-here
[ask-turtle pariner
;htm 3 — [set breed sick
Mew J Remove
3 = T setup-sick
Clear J = sel energy temp-energy]
S — - ! 1

Figure 21: The Template Wizard.

describing the behaviour of the selected breed of turtle, or the Observer if it
happens to be selected. The functions represent particular events that may
occur during the lifetime of a turtle, such as walking, eating, reproducing,
dying and so forth. The available functions may vary from one template to
the other. It is also possible for the user to define new functions here, since it
is not safe to write new functions in the Control Center. Recall that the code
in the Control Control center is destroyed when the code for a template is
regenerated. The upper-right quadrant shows the options that may be tuned
for the selected function. Finally, the remaining pane displays the generated
code for the selected function and is updated after every configuration change.

The configuration controls consist only of pull-down menus, radio-buttons
and sliders that are are all accompanied by descriptive labels. Configuring
a template is therefore, quite straightforward. On the other hand, it is un-
clear whether or not the interface is powerful enough to express complicated
concepts, since the two available templates only request fairly simplistic infor-
mation.

It only took a few minutes using the Ecology template to create a pretty
complex simulation, with two breeds of turtles: sick and healthy. Sick turtles
do not reproduce, they infect healthy turtles, they have less energy, they ex-
pend more energy to walk around, and they only partially consume patches
of grass. Healthy turtles multiply randomly so long as they have a minimum
amount of energy, eat all of a patch of grass, and have more energy initially.
The rate at which the grass grows is also configurable. The result is fun to
watch, as we can see the fluctuations in the overall population, the proportion
of healthy versus sick turtles and the amount of grass. While that simulation
was easy to create, there is no way to make a turtle die if it has been, say,
infected by two different breeds of sick turtles. Adding that kind of function-
ality to the template would probably be difficult since there does not seem

22

to be a way to supply a list of conditions, much less making conjunctions or
disjunctions of them.

Another interesting feature that Starlogo has is a Plot Wizard that allows
the user to track data and build graphs as simulations unfold. The interface
for doing so is rather large and spans a number of windows so it is impractical
to include screenshots of this feature. First the type of plot must be chosen.
The plot types are: line, bar, histogram, scatter and X-Y. Then the data to
be plotted must be specified. Up to ten data items can be plotted at once.
Specifying the data to be plotted is done through pull down menus, so it is
not very complicated, but the interface is somewhat awkward. The problem
with the interface is that the number of menus and their contents change
dynamically depending on what is selected in them. To keep the discussion
brief, the user basically has to specify the type of entity being observed (breed
of turtle, patch of grass, etc.), the attribute being plotted (amount of energy,
coordinates, age, etc.) and the way in which it is plotted (total, average, max,
min, etc.). Experienced users can supplement the functionality available in
the wizard by supplying their own plotting commands.

Some of the good points of this system are:

e No programming knowlege is required to generate code from a template.
e The tool is both text-based and visual.

e Allowing the user to add GUI widgets is practical.

Some of the downsides of this system are:

e Template code clobbers the contents of the Control Center. If the user
wants to have their own functions they have to add them as custom
functions through the Template Wizard.

e 'To configure user-created buttons and sliders, the user has to first CONTROL-

click the widget to select it. Then it can be resized, or it can be double-
clicked to bring up its properties dialog. Right-clicking the widget to
bring up a context menu would have been more intuitive.

e The GUI is too dynamic. Widgets appear and disappear in response to
user input.

6 ScriptEase

Neverwinter Nights, a fantasy role-playing game by BioWare, allows users
to create their own modules depicting new worlds and scenarios. The game
comes bundled with a toolset called Aurora that has several high-level features
allowing the user to paint terrain, and populate the world with creatures,
objects, triggers, special effects and more. Aurora also allows the user to
create blueprints for creatures and objects that have new combinations of

23

properties. The actions and interactions that occur in modules are specified
using a scripting language that resembles C. Writing script code with Aurora
remains, for the most part, a manual task.

ScriptEase [5] is a pattern-based toolset for generating code in the Nev-
erwinter Nights scripting language. Each pattern instance generates code for
one small self-contained component of a user’s module that acts independently
from other pattern instances. Novice users can use ScriptEase without under-
standing the basics of programming, while those that do can extend the set of
resources available to the toolset.

Because these tools make use of some concepts and terminology not nor-
mally found in programming literature, an introduction to the definition of a
ScriptEase pattern is given in Section 6.1. Discussion of the use of the toolset
follows in Section 6.2.

6.1 Pattern Definitions

At the top level, a pattern definition consists of two parts: a list of parameters
and a list of situations. The role of a pattern parameter is similar to that
of a function parameter; it becomes bound to a value that is used by an
instance of the pattern, and has no significant impact on the structure of
the generated code. Each situation describes a particular scenario to which a
pattern responds, as well as how the pattern responds.

Let us use the Icon Container pattern to illustrate parameters and situa-
tions. The Icon Container pattern causes any number of actions to take place
when an item, called the icon, is added to or removed from the inventory of an
object, called the container. This pattern’s two parameters are the icon and
container objects. The three situations to which this pattern reacts are the
cases when the icon is added to the container, the icon is removed from the
container, and the icon is stolen from the container.

The definition of a situation, in turn, consists of four parts. Because user
scripts can only execute in response to an event, the first part of a situation
definition must necessarily be the specification of the triggering event. For the
situation where the icon is removed from the container in the Icon Container
pattern, the event of interest is the one where an item is removed from the con-
tainer’s inventory. Sometimes the occurrence of an event alone is not enough
to determine whether or not a situation should react, so another part of the
definition of a situation is the specification of a list of additional conditions
that must also be satisfied. Ultimately, the conditions are joined together by
conjunctions. Continuing with our Icon Container example, it is not sufficient
for any item to be removed from the container’s inventory; it is necessary for
the removed item to be the icon. A situation definition also includes a list
of actions that must be performed when the situation reacts (i.e. when the
triggering event occurs and all of the conditions are met). The Icon Container
pattern itself does not specify any actions; the responsibility is deferred to the
user upon pattern instantiation, since the intent of the pattern is to allow any

24

number of arbitrary actions to occur. It is often necessary for the conditions
and actions to manipulate values or objects other than the pattern parameters.
For example, a plausible action may be to have a monster move toward the
location of the container after the icon has been removed from it. To specify
the action that moves the monster to the location, the location must first be
defined. The definition of the location is an example of an entity. In addition
to an event, conditions, and actions, a situation definition also contains a list
of entities.

All elements of a situation definition are specified using atoms, where atoms
consist of descriptive information and one function written in the Neverwin-
ter Nights scripting language that performs exactly one task. Event Atoms,
described below, are exceptional and carry two extra pieces of information
used by ScriptEase when it binds script code to objects in a module. Atoms
represent the smallest unit of computation available to the ScriptEase user.
Because they are functions, atoms have parameters and may return a value.
All atoms fall into one of four categories, where there is one-to-one correspon-
dence between each category and the four parts of a situation definition. The
categories are as follows:

FEvent Atoms specify a class of event and must, at the very least, have one pa-
rameter identifying an object to which script code is to be bound. These
two pieces of information alone are almost sufficient for describing when
a pattern situation should react. However, there are some specialized
events which are described by the same class of event. For example, the
removal and addition of an item from/to an object’s inventory are both
represented by an OnDisturbed event. When an OnDisturbed event oc-
curs, a test may be performed to determine which specialization of the
event actually occurred. The purpose of an Event Atom’s function is to
perform such a test, and return a Boolean value indicating whether or
not an event which has occurred is the specialized event of interest. Most
events do not have specializations. Event Atoms that represent events
without specializations should always return true, since they have noth-
ing to test. Because there exists a finite number of events that may
occur in Neverwinter Nights, there is also a finite number of possible
Event Atoms.

Entity Atoms always have a return value and are used for obtaining values or
for extracting information from objects or the environment. An example
was given earlier where a location had to be extracted from a container.
Other examples include, obtaining a reference to the nearest door, and
who the possessor of a particular item is. In short, Entity Atoms are used
exclusively for obtaining data required within a situation, and should not
have any side-effects.

Condition Atoms always evaluate to a Boolean value and are used for speci-
fying the extra conditions that must be met before a situation reacts.

25

Action Atoms define actions as their name suggests, where an action can ba-
sically be any code having some sort of side-effect, such as having a
monster attack a player character. Action Atoms may also optionally
have a return value if they create a new object, or compute a value
that may be needed subsequently. In that respect, they also behave like
Entity Atoms, however, they may not be used where Entity Atoms are
expected.

The type of a parameter, pattern or atom, and the type of an atom’s return
value may be one of a handful provided by ScriptEase. The set of available
types includes the entire set of types native to the Neverwinter Nights script-
ing language, which in turn includes primitive types such as integer, float
and string, as well as other higher-level types such as location and object.
The remaining types consist of refinements of the native types that come in
two forms: enumerations of integers, and aliases to other native types. These
refined types exist in order to restrict the values that may be assigned to a
parameter to those which are appropriate given the parameter’s context, and
to convey more precise information to the ScriptEase user. The enumerated
types are used for describing things such as Booleans, spells and effects that do
not have native types in the scripting language, but that are instead simply
expressed by symbols predefined by the compiler that map to integral con-
stants. As for the aliased types, some examples include Item and Door, which
are both aliases to the object type, a type used to express every game object
spanning creatures, player characters, items and so forth. Unlike the set of
enumerated types, the set of aliased types is not extensible, since there is no
real need to do so.

6.2 Toolset

ScriptEase consists of three visual tools appropriately named the Atom Builder,
the Pattern Builder and the Instance Builder that supplement, but do not re-
place, BioWare’s Aurora toolset for building modules. The Atom Builder is
used to create and edit atoms, as well as enumerations. Of the three tools,
the Atom Builder is the only one that requires knowledge of the Neverwinter
Nights scripting language on behalf of the user. The Pattern Builder is used
to create and edit patterns. Finally, the Instance Builder is used to create and
adapt pattern instances for a particular Neverwinter Nights module developed
using the Aurora toolset. From the pattern instances, the Instance Builder
also generates script code for them and updates the contents of the module
file accordingly.

The main window of all three tools are nearly identical, so the Atom Builder
is used as an example. It can be seen on left hand side of Figure 22. The main
window only provides a report of the number of things that are currently
defined, and a menu-bar. The FEdit menu contains one menu item for each
category listed in the main window. Selecting one of these menu items displays

26

ScriptEaze Atom Builder x Action Atomsz

File Edit -Action Atoms

-Atoms Summary <AtionAtomList Description > Lo
Entity Atoms Defined 8 Kill Creature -]
Event Atoms Defined =7 Spawn Creature 4
If Condition Atoms Defined : 9 Face Object
Action Atoms Defined : 32 -
Enumerations Defined : 14 EG_W_E_F_?I_':I_____.__.________.____:-_l

 New | Ot | Copy | Paste |
w | e
Ok [Cancel

Figure 22: The Atombuilder’s main window and the list of Action Atoms.

a dialog like the one on the right hand side of Figure 22, that contains a list
of all items in the selected category. In this example the list of Action Atoms
is displayed. Lists like this one occur frequently in all three tools to represent
lists of atoms, patterns, pattern instances, situations and parameters. A new
element can be added to the list by pressing the New button, and an existing
list element can be edited by double-clicking it. In both cases, a new dialog is
displayed for editing the list element.

Let us take a closer look at the individual tools, starting with the Atom
Builder. Figure 23 shows the dialog for editing an Action Atom and how the
return type! is selected by choosing it from a pull-down list of available types.
Note how the parameters appear in a familiar looking list. The dialog for
editing a parameter (not shown) has a pull-down list like the one for selecting
the return type, and two text-fields: one for supplying the parameter’s name
and one for supplying a brief description. The code for the atom is supplied
via a built-in editor that is displayed when the Edit C'ode button is pressed.
The editor is rather featureless; it is just a general-purpose text-area where
the body of the atom’s function is typed in. The function’s prototype is not
typed into the editor, because it is generated from the information supplied
in the atom’s main dialog. Otherwise, the user supplies a name for the atom,
and some descriptive information in text-fields. For event atoms, the user
must additionaly pick one of the parameters from the list. It is through this
parameter that a situation using the Event Atom passes the object to which
the situation’s script should be attached.

Creating an enumerated type involves a very short process depicted in
Figure 24. The user gives a name to the enumeration and supplies a list of
key-value pairs in text-fields, where the keys are descriptive names and the
values may either be literal integers or symbolic constants predefined by the

1Only Entity and Action Atoms have configurable return types.

27

-Action Atom

GUID : 39554 24640786939904_7300302936506314752

<actiondtam Descripion >

Mame Spawn creature

Default Label

-Parameters

Location dLocation)

Elueprint (Creature Elueprint

New Cut Copy Paste
Up Down
CodeGen Function Name ~E_AC_SpawnCreature
Generic Description Spawn 3 creature
cific Description Spawn a creature with blueprint <pls> & <p2 >, called <label >

| Edn Code |

Figure 23: Selecting the return type of an Action Atom.

<EnumType Description §Gump ; 5371453676786973696_31

Name ol

<Enumyalue Description =

rYalues

Label Firaball

ball

Contagion

Magic Missile

Code Sr-tqsp ELL_FIREBALL

New

Figure 24: Adding an element to an Enumeration.

28

0 Situation x

Label -Conditions
Notes <le:|lltl1Ll‘S! Description > two objects are the same
Event two True or False values are the same

. i The ku is Disturbed Item : & "
Other Definitions an object was created from a specific hiutprmti
Conditions a container holds an item
Fyrr— a creature is a PC

two Yes or No values are the same
wo On or Off values are the same

—or—

| Back | Newt |

Figure 25: Adding a condition to a situation.

|-] r'uj 1 t 10N

al |l':nmmn|:t!1 he Icon

Object 2

Figure 26: Binding an atom’s parameters.

compiler.

To create a new pattern with the Pattern Builder, the user first supplies
a list of parameters in the same way that atom parameters are supplied in
the Atom Builder. The user then creates new situations and edits them in
the Situation Editor. In the Situation Editor, the user picks the triggering
event from the list of Event Atoms, and adds an arbitrary number of addi-
tional definitions, conditions and actions by picking atoms from the list of
Entity, Condition and Action Atoms respectively. Figure 25 shows the pro-
cess of adding the condition that the Icon must be the disturbed item to the
situation where the Icon Container pattern by selecting the Condition Atom
that compares two objects. For every atom added to a situation, the user
is presented with a dialog that allows them to bind the atom’s parameters.
An atom’s parameter may be bound to any of the pattern’s parameters or any
other entity of the appropriate type defined by another Entity or Action Atom.
Figure 26 shows the first object of the object comparison atom being bound
to the pattern’s icon parameter. The pull-down list of valid bindings distin-
guishes between pattern parameters and other entities by displaying them in
different colours.

29

Description
The lcon
The lcon's Container
Situations

[con Container

rThe lcon

Which item is the lcon?

Plat ltam

Diagnostic @ Special
 Known ltems @ Custom 1 g
| Greater Shield of Dawn &5
- " Fioteie Sinepeim Purple cloak
B Lonsam e Purple cloak, Change | Rod of Power
— Custom 2

Mext Ok

Figure 27: Editing a pattern instance.

Before instantiating patterns with the Instance Builder, a module con-
taining terrain, creatures, and objects must first be created using the Aurora
toolset in the usual manner, with the only exception being that scripting tasks
may be omitted. The module may then be loaded into the Instance Builder
and pattern instances added to it. Given a rich enough set of patterns and
atoms, the Instance Builder is the only one of the three tools that ScriptEase
users actually have to use. It is therefore possible for novices to avoid writing
any code at all for a module.

To add a pattern instance to a module, the user selects the desired pattern
from a list. Of course, it is solely the user’s responsibility to decide which
pattern is best suited for the task at hand. A dialog like the one from Figure
27 is displayed through which the user adapts the pattern to the needs of
the application in two ways. The first form of pattern adaptation, which
is not optional, is the binding of values to each of the pattern parameters.
Depending on the type of parameter, the user either supplies a literal value for
primitive types, chooses a value from a list for enumerated types, or chooses
a value defined in the game module for the higher-level types. Figure 27
shows the latter approach for a parameter of type Item. Pressing the Change
button, displays a dialog containing a tree listing all of the items from the game
module. The second form of pattern adaptation, which is an optional one, is
accomplished by editing the definition of the situations. A pattern instance
is actually a prototype of the pattern from which it originated, meaning that
the definition of the pattern is copied into the instance, where it may vary
without affecting the original definition or other instances. When editing the
definition of a situation within a pattern instance, the user is presented with
a Situation Editor that is nearly identical to that of the Pattern Builder tool,
with one subtle difference; when binding atom parameters, the values defined
within the module are also made available. Normally, the existing definitions
in a situation should not require modification upon instantiation of a pattern,
otherwise, the design of the pattern would be questionable. However, it is
common practice to add more definitions to a situation, such as actions in an

30

instance of the Icon Container pattern, which would otherwise do nothing.

Enumerated types, atoms, patterns and pattern instances built using the
toolset may be exported to files in XML format. This feature is needed so that
the output of one tool may be used by another tool in the toolset. For example
an atom built using the Atom Builder may then be used in a pattern created
with the Pattern Builder. It also allows users to easily share resources. As
a precaution, the tools check on which atoms patterns and pattern instances
depend before exporting or importing them, to ensure that pattern definitions
remain intact.

Some of the good points of this system are:

No programming knowledge is required when using available resources
(patterns and atoms).

ScriptEase’s ability to load values defined in a game module and make
them available to the user when binding parameters helps to reduce
errors and relieve the burden of recalling details.

The controls are straightforward and easy to use. Most activities involve
picking something from lists, pressing buttons, or typing short pieces of
text into text-fields.

Fairly complicated tasks can be expressed with little effort if all of the
necessary resources exist already.

Some of the downsides of this system are:

ScriptEase is not as powerful as the Neverwinter Nights scripting lan-
guage alone.

The main window of all three tools does not provide any useful function-
ality.

There are too many modal dialogs. Anything that can be edited opens
up in a modal dialog making navigation extremely difficult. It is easy
to forget which dialog is active, and the user has to close what he/she
is doing to look up some information somewhere else. Things get even
more confusing if all three tools are open simultaneously, because their
windows rapidly proliferate and intermingle.

Double-clicking list items to edit them is somewhat counter-intuitive.
To edit something, we usually expect to select it and press a button or
select an option from the main menu or a context menu.

31

7 Lessons Learned

The very nature of visual programming is quite high-level, therefore it is best
suited for dealing with high-level concepts. It is hard to provide useful high-
level abstractions for low-level concepts. Consider the assignment of a simple
expression to a variable (e.g. sum = sum + value;). No matter how this
concept is represented, the assignment, its left-hand side and its right-hand
side have to be expressed in as much detail. Representing it visually does
not provide a simpler, more elegant, or easier to understand abstraction than
a textual representation. The learning curve also remains the same, not to
mention that people are actually more accustomed to seeing such simple con-
structs in textual form; it resembles a math equation from an elementary school
textbook. So tools like Create that provide a near one-to-one mapping of a
procedural text-based language to a visual graph make for a poor application
of visual programming. On the other hand, Starlogo’s Template Wizard and
ScriptEase’s Instance Builder only manipulate high-level abstractions and are
easy to use for their intended purposes.

Though it may be claimed by some that visual programming is more natu-
ral for humans that programming through the interim of text-based languages,
we have to consider the relative ease with which humans can perform the pro-
gramming task. Most programmers are adept at typing and can do so rapidly
regardless of what they are trying to express. Building graphs with the com-
mon tools for interacting with a computer — a mouse and a keyboard — is
usually considerably more tedious and time consuming than typing text. Vi-
sual programming also requires learning how to manipulate and use a wide
variety of different visual elements, whether they be graph nodes or dialog
boxes.

Visual programming tools should provide as much support as possible for
frequent tasks, otherwise novice programmers will have a hard-time learn-
ing and experienced programmers will rapidly become annoyed. For example
string manipulations are very bulky and awkward in Sanscript. It does not
even supply an abstraction for a newline character; a character with value 10
(the ASCII equivalent) has to be constructed. Likewise, both Prograph and
Sanscript have different forms of high-level support for loops, like looping over
list elements, but doing other forms of loop indexing quickly becomes painful.

Humans usually do not work in a linear fashion; we tend to jump around
from one task to another, or work on several subtasks concurrently to cre-
ate a greater whole. Navigating a project and accessing functionality should
therefore be quick and easy in a visual programming tool. Both Prograph and
Sanscript have a main window that remains fairly static as the user works (it
is never replaced with another window), and allow multiple views to be opened
simultaneously. Most of the functionality is available through the main win-
dow’s menus and other controls, so there is usually just one or two degrees
of separation between what the user is doing at any given moment and the
functionality and/or views that the user may want to access the next.

32

On the same token, modal dialogs should be avoided whenever possible
because as long as one is visible, it will prevent all navigation. This prevents
users from multitasking, or simply from looking up information that is needed
to deal with the dialog. The last point is a particularly brutal blow to novice
users that want to see how they have dealt with other instances of the same
dialog before. ScriptEase and the Aurora toolset as well are particularly bad
with respect to modal dialogs.

Tools should not hide details known to the user, like records in Sanscript.
It confuses and frustrates users if they cannot find something that they wants
to recall or change.

Finally, consistency is of the utmost importance, whether it be how similar
tasks must be carried out by the user, or how data is represented in the
GUI. Consistency helps to shrink the learning curve, and reduce mistakes
and confusion.

8 Conclusion

This paper surveyed five visual programming tools: Create, Prograph, San-
script, Starlogo and ScriptEase. Create, Prograph and Sanscript use diagrams
to represent code and are as expressive as text-based programming languages.
While they can be used for writing arbitrary programs and provide some high-
level constructs, they are not very practical to use and often fail to simplify
basic programming tasks with respect to their text-based counterparts. Starl-
ogo and ScriptEase use higher-level abstractions — templates and patterns — to
automatically generate textual code. Their use is straightforward and easy to
learn, even though their interfaces require some refinement. They can gener-
ate elaborate pieces of customized code with little effort on behalf of the user.
However, they do not have the expressive power that their underlying text-
based languages possess. Additional lessons learned from the survey are that
visual tools are well suited for manipulating high-level abstractions, should
provide a lot of support for frequent tasks, and promote ease of navigation
and consistency.

References

[1] Sharper Software. Create. http://www.create-software.com.
[2] Pictorius Incorporated. Prograph. http://www.pictorius.com/prograph.

[3] Northwoods Software. Visual programming tools from Northwoods Soft-
ware. http://www.nwoods.com /sanscript.

[4] MIT Media Laboratory. Starlogo on the web.
http://education.mit.edu/starlogo.

33

[5] M. McNaughton, J. Redford, J. Schaeffer, and D. Szafron. Pattern-based
Al scripting using ScriptEase. In AI’2003: The Sizteenth Canadian Con-
ference on Artificial Intelligence, pages 35-49, June 2003.

34

