
University of Alberta

Library Release Form

Name of Author: Steven MacDonald

Title of Thesis: From Patterns to Frameworks to Parallel Programs

Degree: Doctor of Philosophy

Year this Degree Granted: 2002

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly
or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis, and except as herein before provided, neither the
thesis nor any substantial portion thereof may be printed or otherwise re-
produced in any material form whatever without the author’s prior written
permission.

Steven MacDonald
1410–8210 111th Street
Edmonton, Alberta, CANADA
T6G 2C7

Date:

University of Alberta

From Patterns to Frameworks to Parallel Programs

by

Steven MacDonald

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Doctor of Philosophy.

Department of Computing Science

Edmonton, Alberta
Spring 2002

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled From Pat-
terns to Frameworks to Parallel Programs submitted by Steven Mac-
Donald in partial fulfillment of the requirements for the degree of Doctor of
Philosophy.

Jonathan Schaeffer
Supervisor

Duane Szafron
Supervisor

H. James Hoover

Eleni Stroulia

Michael Carbonaro

Douglas Lea
External Examiner

Date:

Abstract

Parallel programming offers potentially large performance benefits for com-

putationally intensive problems. Unfortunately, it is difficult to obtain these

benefits because parallel programs are more complex than their sequential

counterparts. One way to reduce this complexity is to use a parallel program-

ming system to write parallel programs. This dissertation shows a new ap-

proach to writing object–oriented parallel programs based on design patterns,

frameworks, and multiple layers of abstraction. This approach is intended as

the basis for a new generation of parallel programming systems.

A critical evaluation of existing parallel programming systems is presented.

This evaluation is based on a set of 13 characteristics of an ideal pattern–based

parallel programming system. Based on the results of this evaluation, the

PDP process was created. This process provides multiple layers of abstrac-

tion to support the complete application development cycle. The first layer

supports pattern–based parallel programming by generating object–oriented

frameworks from a design pattern description of the application structure.

The generated code is hidden from the user to ensure correctness. Lower layers

gradually provide access to the generated structural code and other low–level

facilities.

The CO2P3S parallel programming system is an example of a tool that sup-

ports the PDP process. It generates multithreaded Java frameworks for a set

of supported design pattern templates. The utility of this tool is demonstrated

by four example programs which obtain reasonable speedups after being writ-

ten using CO2P3S. Further, the results of a usability experiment are presented.

The experiment compared parallel programming using CO2P3S against pro-

gramming in non–CO2P3S Java with threads. The results show that CO2P3S

users write less application code than their Java counterparts, and that this

code is less complex.

Acknowledgements

I have heard that if you don’t acknowledge your supervisors first, they won’t
write nice reference letters for you. So, I’d like to thank my wife Trudy for her
love and patience. I also have to thank my family far all of their support.

Okay, now a big thank you to Jonathan and Duane for all of the guidance
and support over the past eight (!) years. They have been great collaborators
and played an invaluable role in making me the researcher I am today. They
have also been great friends.

Thank you to the other members of my examining committee: Jim Hoover,
Eleni Stroulia, Mike Carbonaro, and Doug Lea. I appreciate all of the effort
you expended on my behalf.

I absolutely must acknowledge the work of Steven Bromling. He was re-
sponsible for much of the design and all of the implementation of the CO2P3S
user interface. Through his efforts, CO2P3S advanced from an idea on pa-
per to a tool I can see and use. I also have to thank the other members of
the CO2P3S research group: Kai Tan and John Anvik. Together with Steve
Bromling, they’ve all tackled interesting problems and improved this work.

I have to thank the students in CMPUT 425 who served as the subjects in
my usability study. I can only assure them that, contrary to what they may
have thought at the time, I was not trying to make their lives miserable.

I also have to thank the people who helped me run my experiments. The
Research Computing Support Group at CNS, notably Ron Senda and Wally
Lysz, gave me access to the Origin systems. John Bartoszewski and Rod
Johnson let me run programs on their Sun server.

There have been a large number of people I’ve run into during my stay here.
All of them have made their mark. Some of the notables, who have always been
good for some conversation or a bit of fun, are: Diego Novillo, Nelson Amaral,
Paul Lu, Ernie Novillo, Chris Dutchyn, Cam Macdonell, Maria Cutumisu, and
Darse Billings. Elmer, Sean, Andrew and Eric also deserve mention. And, of
course, everyone back in Ontario who wondered if I was ever coming back.

Of course, I big thanks to the D&D group for all of the amusement on
Wednesday nights: Gord, John, Jonathan, Mark, Dave B., Wade, Ian, Duane,
and Dave W.

And finally, thanks to everyone else. I’m not forgetting you. I’ve just run
out of room, and there are simply too many of you.

A final note: you are all encouraged to read [3] for your own benefit.

Contents

1 Introduction 1
1.1 Introduction and Motivation 1
1.2 Contributions . 4
1.3 Organization . 6
1.4 Publications . 7

2 Related Parallel Systems Research 8
2.1 Evaluating Parallel Programming Systems Research 8

2.1.1 Structuring the Parallelism 9
2.1.2 Programming . 16
2.1.3 User Satisfaction . 20
2.1.4 Summary . 25

2.2 Design Pattern Research . 25
2.2.1 Parallel Design Patterns 25
2.2.2 Productivity Benefits of Using Design Patterns 26
2.2.3 Parallel Pattern Languages 27

2.3 Framework Research . 27
2.3.1 Documenting Frameworks 28
2.3.2 Composing Frameworks 29
2.3.3 Instantiating Frameworks 33

2.4 Object–Oriented Modeling Languages 33
2.4.1 Generating Code from UML 33
2.4.2 The ROOM Modeling Language 35

2.5 Summary . 37

3 The Parallel Design Patterns Process 38
3.1 Overview of the PDP Process 40
3.2 A Detailed Look at the PDP Process 42

3.2.1 Selecting a Design Pattern 42
3.2.2 From Design Patterns to Design Pattern Templates . . 44
3.2.3 From Pattern Templates to Frameworks - The Patterns

Layer . 46
3.2.4 From Frameworks to Parallel Programs I - The Interme-

diate Code Layer . 58

3.2.5 From Frameworks to Parallel Programs II - The Native
Code Layer . 61

3.3 Benefits of the PDP Process 61
3.4 System Developer Issues in the PDP Process 63

3.4.1 Creating the Design Pattern Templates 63
3.4.2 Creating Frameworks 65

3.5 Summary . 66

4 CO2P3S: Correct Object–Oriented Pattern-based Parallel Pro-
gramming System 67
4.1 CO2P3S Overview . 68

4.1.1 Pattern Palette . 68
4.1.2 Program Pane . 70
4.1.3 Program Options Pane 71
4.1.4 Pattern Pane . 72
4.1.5 Compile and Run Dialogs 74

4.2 Parallel Design Patterns Supported by CO2P3S 77
4.2.1 Distributor . 78
4.2.2 Phases . 84
4.2.3 Pipeline . 87
4.2.4 Two–Dimensional Mesh 93

4.3 Comparing CO2P3S to Other Research 93
4.3.1 Evaluating CO2P3S . 94
4.3.2 Frameworks and the PDP Process 102
4.3.3 Object–Oriented Modeling Languages and the PDP Pro-

cess . 106
4.4 Summary . 109

5 Example Applications in CO2P3S 111
5.1 Parallel Sorting by Regular Sampling 112

5.1.1 Problem Description 112
5.1.2 Pattern Selection . 114
5.1.3 CO2P3S Solution . 116
5.1.4 Results . 118
5.1.5 Composing CO2P3S Frameworks 119

5.2 Solving the 15–Puzzle Using Parallel Iterative–Deepening A*
Search . 120
5.2.1 Problem Description 120
5.2.2 Pattern Selection . 125
5.2.3 CO2P3S Solution . 125
5.2.4 Results . 129

5.3 JPEG Compression . 133
5.3.1 Problem Description 133
5.3.2 Pattern Selection . 136
5.3.3 CO2P3S Solution . 137

5.3.4 Results . 139
5.4 Summary . 142

6 Assessing the Usability of CO2P3S 143
6.1 The Importance of Being Usable 144
6.2 Study Setup . 145

6.2.1 Design of the Usability Study 146
6.2.2 Threats to Internal Validity 146
6.2.3 Threats to External Validity 148

6.3 Results of the Usability Study 148
6.4 Problems with the Study . 150
6.5 Issues for Future Studies . 151

6.5.1 Study Environment . 151
6.5.2 Usability at Different Program Development Stages . . 152
6.5.3 Measuring the Learning Curve 153

6.6 Summary . 154

7 Conclusions and Future Work 155
7.1 Summary of Contributions . 155
7.2 Future Work . 156

7.2.1 New Patterns . 157
7.2.2 Adding and Changing Design Pattern Templates and

Frameworks . 157
7.2.3 Support Tools . 158
7.2.4 Supporting Different Architectures 158
7.2.5 Language Issues . 158
7.2.6 Preserving Low–level Changes During High–level Code

Regeneration . 159
7.2.7 Usability Studies . 160

7.3 Conclusion . 160

Bibliography 161

A Source Code for the Reaction–Diffusion Example Program 172
A.1 MorphogenPair.java . 172
A.2 Main.java . 174
A.3 Morphogen.java . 176
A.4 MorphogenDisplay.java . 180
A.5 GreyScaleDisplayWindow.java 183

B Design Pattern Template Description Format 186
B.1 Intent . 186
B.2 Motivation . 186
B.3 Applicability . 187
B.4 Design Pattern Template Parameters 187

B.5 Framework . 187
B.6 Known Uses . 187

C CO2P3S Design Pattern Template Documentation 188
C.1 Two–Dimensional Mesh Design Pattern Template 188

C.1.1 Introduction . 188
C.1.2 Intent . 189
C.1.3 Motivation . 189
C.1.4 Applicability . 190
C.1.5 The Mesh Pattern Template Parameters 192
C.1.6 The Mesh Framework 193
C.1.7 Known Uses . 208

D Material for the Usability Experiment 209
D.1 Assignment 3: Sequential Thermal Computation 209

D.1.1 Assignment Description 209
D.1.2 Comments on Design 211

D.2 Assignment 4: Parallel Thermal Computation 212
D.2.1 Assignment Description 212
D.2.2 Added Comments . 214

D.3 Assignment 5: Mould and Bacteria 216
D.3.1 Assignment Description 216
D.3.2 Notes and Clarifications 219

E Mesh Computations 221
E.1 Introduction . 221
E.2 General Mesh Computations 221
E.3 Regular Mesh Computations 223
E.4 Example: Solving the LaPlace Equation 224
E.5 Alternative Mesh Structures 227
E.6 Conclusion . 231

F Parallel Mesh Computations 232
F.1 Introduction . 232
F.2 Parallelization Strategy . 232
F.3 Partitioning the Mesh Data 233
F.4 Exchanging the Boundaries 235
F.5 Evaluating the Termination Conditions 238
F.6 Gathering the Final Results 240
F.7 Conclusion . 240

G Choice Points Used for the Usability Experiment 241

List of Figures

2.1 The four–level logical architecture of a UML–based system. The
dashed arrows indicate an instance–of relationship. 35

2.2 The conceptual framework of ROOM, taken from [93]. 36

3.1 An example texture generated by the reaction–diffusion texture
generation program. 42

3.2 Examples of the Mesh design pattern. 44
3.3 A screenshot of CO2P3S showing the reaction–diffusion appli-

cation using the Mesh pattern template. 46
3.4 Examples of parameters for the Mesh pattern template. 46
3.5 The main execution loop for each partition in the Mesh frame-

work. The italicized methods have corresponding hook methods
that can be implemented by the user. 49

3.6 The operation methods for the mesh computation in the four–
point Mesh framework for the reaction–diffusion example. . . . 51

3.7 The operation method calls for mesh elements in different posi-
tions, for each of the topologies from Figure 3.4(a). Note that
the above diagrams represent the complete mesh data, not a
single partition. 51

3.8 Generated and modified mainline code for the framework gen-
erated for the Mesh pattern template. 54

3.9 The complete implementation of the Mesh framework. The
classes that are visible to the user at the Patterns Layer are
shaded in gray. 60

4.1 Screenshots from CO2P3S. 69
4.2 The Pattern Palette, for selecting design pattern templates. . . 70
4.3 The Program pane, showing the set of selected design pattern

templates for a program. 71
4.4 The Program Options pane, showing the list of external classes

and program comments. 72
4.5 The Pattern pane, showing one of the design pattern templates

in a program. 73
4.6 The Viewing Template dialog for viewing and entering hook

method code into a generated framework. Underlined text are
hypertext links to sections of the class that can be edited. . . 75

4.7 The Editing Code dialog for entering hook method code. . . . 76
4.8 The Compile dialog, for compiling programs. 76
4.9 The Run dialog, for executing programs. 77
4.10 Distributing an array over a set of child objects. 79
4.11 Distribution schemes that can be applied to one–dimensional

array arguments in the Distributor pattern template. 81
4.12 A screenshot of CO2P3S showing the Distributor design pattern

template. 81
4.13 The dialog for entering parallel methods for the Distributor

template, including a list of the distribution options for one–
dimensional array arguments. 82

4.14 The class structure of the framework for the Distributor tem-
plate. The classes that are visible to the user at the Patterns
Layer are shaded in grey. 82

4.15 Finding the smallest element in an array using a tree–based
parallel reduction. 84

4.16 A screenshot of CO2P3S showing the Phases design pattern tem-
plate. 86

4.17 The class structure of the framework for the Phases template.
The classes that are visible to the user at the Patterns Layer
are shaded in grey. 87

4.18 An example of a pipeline. 87
4.19 An example of the State pattern using a simplified socket. . . 89
4.20 Pseudocode for the actions of each thread in the Work–pile–

based pipeline. 90
4.21 An example of the pipeline based on the State design pattern. 90
4.22 Pseudocode for the actions of threads in the modified Work–

pile–based pipeline. 92
4.23 A Java code example where statement reordering can change

the semantics of the program. 98
4.24 The user views of the Mesh framework, at both the Patterns

Layer and the Intermediate Code Layer. 107

5.1 An example of Parallel Sorting by Regular Sampling. 113
5.2 The shared memory version of PSRS, using ranges rather than

physically distributing data across processors. 115
5.3 A screenshot of the CO2P3S implementation of PSRS. 116
5.4 Examples of the 15–puzzle. The black square is empty. 120
5.5 A basic example of IDA* search, ignoring pruning. The solu-

tion, or goal node, is represented by node g. 122
5.6 The structure of the static part of the IDA* tree. 123
5.7 Expanding the frontier of the static tree in an IDA* search.

Two frontier nodes from Figure 5.6 have been expanded. . . . 124
5.8 Parallelizing IDA* using the Distributor pattern template. . . 125
5.9 A screenshot of the CO2P3S implementation of IDA*. 126

5.10 The implementation of searchFrontier() in the Search class,
which uses the parallel method search() (shown in Figure 5.11)
and reduces the return value. 127

5.11 The implementation of search() in the SearchChild class for
the Distributor. This method searches the subset of nodes
passed to it, which is the collected array of nodes on the frontier
with a striped distribution applied to it. 127

5.12 Parallel iterative deepening code from the InitialNode class.
The initial sequential iterations are handled separately. 128

5.13 The steps in JPEG compression. 133
5.14 An example of the quantization process on an 8 array of nor-

malized DCT coefficients. 135
5.15 The order in which the encodings for the subimages are ap-

pended together into a complete JPEG encoding. Each block
is an 8× 8 subimage. 135

5.16 The pipeline specification for JPEG compression, with an amal-
gamated encoding stage. 136

5.17 An alternate pipeline for JPEG compression, with the encoding
stage split into two separate stages. 137

C.1 Examples of both a general and a regular, rectangular mesh. . 190
C.2 Example decomposition of a general and a regular, rectangular

mesh. 191
C.3 Pseudocode for the structure of a parallel mesh computation. . 191
C.4 Dialogs from CO2P3S for specifying some of the Mesh pattern

template options. 193
C.5 The use of bounded arrays to share a single copy of an array. . 196
C.6 The main loop for each thread in the Mesh framework. 197
C.7 Signatures for the operation methods for a four–point mesh. . 199
C.8 Signatures for the operation methods for a eight–point mesh. . 200
C.9 The operation method calls for mesh elements in different po-

sitions, for each boundary condition from Figure C.4(a). . . . 201

D.1 An example of the convolution of a three by three mask over
two–dimensional data. The element that is being computed is
the grey element in the centre. 218

E.1 An example graph for a general mesh computation. 222
E.2 The structure of a general mesh computation. 222
E.3 A mesh for the region around an airfoil. 223
E.4 An example graph for a regular mesh computation. 223
E.5 Representing a regular mesh as a two–dimensional matrix. . . 224
E.6 The LaPlace equation solver at various stages of completion. . 228
E.7 Different topology options for a mesh. 228
E.8 A torus, which can be simulated using a folly–toroidal mesh. . 229

E.9 Different stencils for a mesh computation, used to compute a
new value for the grey element in the centre. 229

F.1 The overall structure of a parallel mesh computation. 233
F.2 The structure of a parallel mesh computation for an individual

processor. 234
F.3 Examples of partitioned meshes for a parallel implementation

of a mesh computation. 234
F.4 An example of exchanging boundaries using a ghost boundary.

The ghost boundaries are the right column in Processor 1 and
the left column in Processor 2. 236

F.5 Logically partitioning mesh data, by referring to a single copy
of the data but adding wrapper objects to set the bounds owned
by a processor. Partition 1 refers to the upper left quadrant,
and Partition 2 refers to the lower right quadrant. 236

F.6 A simple strategy for evaluating the termination conditions us-
ing shared memory. 239

List of Tables

2.1 Framework composition problems and their causes [75]. 31

3.1 The hook methods (except the operation methods, listed in Fig-
ure 3.6) for the instance of the Mesh framework used for the
reaction–diffusion example. 50

4.1 Speedups and wall clock times for the reaction–diffusion exam-
ple program. 100

5.1 Speedups and wall clock times for PSRS. 118
5.2 Speedups and wall clock times (in seconds) for parallel IDA*

search for selected problems, with different static tree depths
and frontier expansion thresholds. The number of parallel iter-
ations, always at the end of the search, is also provided. 130

5.3 Speedups and wall clock times (in milliseconds) for the parallel
JPEG encoder with JDK version 1.2. 140

5.4 Speedups and wall clock times (in milliseconds) for the parallel
JPEG encoder with JDK version 1.3. 141

6.1 Code measurements from the first part of usability study, for
the LaPlace Solver. 149

6.2 Code measurements from the first part of usability study, for
the reaction–diffusion problem. The set of subjects is the same
as in Table 6.1 but their roles are reversed. 149

Chapter 1

Introduction

1.1 Introduction and Motivation

Parallel programming offers the possibility of large performance benefits for
computationally–intensive problems for applications in areas such as compu-
tational biology, physics, chemistry, and computer graphics. Computational
problems from these domains can take hours, days, or even weeks of process-
ing time on a single processor. The turnaround time for these large programs
cannot be improved significantly by simply buying a faster computer or more
memory. Instead, this improvement must be achieved by splitting the problem
over multiple processors, each solving a different part of the overall problem
in parallel.

Unfortunately, it is often difficult to obtain the performance benefits of
using multiple processors. Expert programmers must design new, highly con-
current algorithms. These new algorithms must address concerns such as com-
munication and synchronization, which are not present in sequential programs.
These new algorithms must then be implemented properly, which is difficult
because they are more complex than sequential programs. Concurrent algo-
rithms can also be more difficult to debug because of problems such as non–
determinism. Finally, these algorithms must be tuned for efficiency, which may
require detailed knowledge of the hardware and software architecture of the
target platform. Overall, the process of writing a parallel program is usually
complex and error-prone.

Much like the sequential domain, though, many of the strategies for solv-
ing computationally intensive problems share a common structure. This com-
mon structure can be abstracted out to capture experience in building parallel
applications that can be shared among programmers. For example, parallel
programmers have a set of common structures that they start with when cre-
ating a new program, such as fork/join parallelism, pipelines, work farms, and
meshes. These basic design structures are not application–specific, but rather
can be used to solve a broad range of problems. In sequential object–oriented
programming, this idea is called a design pattern [37].

1

Design patterns name, describe, and evaluate solutions to recurring prob-
lems encountered in the design of object–oriented programs. A pattern’s name
provides a common vocabulary so programmers can quickly exchange relevant
design information. The description of a pattern provides a sketch of the solu-
tion structure in a generic form. This generic form can be adapted for use in
any number of problem domains. The evaluation covers several topics, includ-
ing when the pattern is applicable, which aspects of the design are improved
by applying the pattern, which aspects of the design are degraded by applying
the pattern, and alternative structures for the pattern that may be useful for
some problems.

While design patterns capture design experience, they fail to address code
reuse; a pattern must be reimplemented each time it is used. A programmer
may be able to find an older program that uses the pattern and can try to reuse
that code, but the pattern structure may contain application–specific code
that must be identified and removed. Further, the application–independent
structural code may need to be modified for the new program. This process is
time consuming and error–prone.

However, research in sequential object–oriented programming also provides
a solution to this problem. In this case, we can use object–oriented frameworks
to reuse the application–independent structural code [55, 37, 54]. One pos-
sible implementation of a framework is a set of abstract classes that provide
the application–independent class and object structure of an application in a
specific domain, such as a graphical user interface. This structural code de-
fines the flow of control through the objects, often taking over control of the
execution of the program. This flow of control is written in terms of primi-
tive or hook methods that are called from the structure but not defined by it.
A programmer creates an application by subclassing the abstract framework
classes and overriding the hook methods with an application–specific imple-
mentation. This is in direct contrast to a library system, which provides an
application–independent implementation of a set of primitive methods and re-
quires the programmer to create the application structure using these methods.
A programmer using a framework reuses not only the application–independent
structural code, but also the complete design of the application.

This is not the only form of an object–oriented framework. Other frame-
works also provide a library of pre–built components written by the framework
developer. These components are subclasses of the abstract framework classes
that provide implementations of hook methods that are common to different
applications. The programmer can create and use these classes rather than
writing their own subclasses. Another alternative is pluggable objects, in which
a pre–built component is parameterized with application–specific information
[55]. The pluggable object implements the hook methods required by the
framework using the application–specific objects as collaborators. For exam-
ple, a GUI framework may provide a pluggable view component that accepts
a menu in its constructor, which is displayed when the correct hook method
is invoked. Pluggable objects are easier for programmers to use than creating

2

framework subclasses provided the parameter set is not overly complex. Over
time, most frameworks evolve from requiring subclasses to providing compo-
nents and pluggable objects [88]. As well, some frameworks do not monopolize
the flow of control for the complete application. Instead, the framework pro-
vides the structure of a computation that the programmer specializes with the
hook methods. This computation can be launched by the programmer and
returns a result when it is finished.

Regardless of its form, the main benefit to a framework is that it can
reduce the effort required to build a program. This savings is mainly the
result of writing less code. Rather than develop a complete application, the
existing framework structure is specialized for the particular problem. To
obtain this benefit, the programmer must learn the framework design in order
to understand how write a program with it. However, this one–time investment
to learn the framework can be amortized over the many programs that can be
built using it.

Frameworks can be applied to the parallel programming domain. The
application–independent code in the abstract classes implements the parallel
structure. Writing an application would require the programmer to implement
a small set of hook methods. In the parallel domain, though, there is the
possibility of using the frameworks to reduce the possibility of user error. The
most difficult parts of implementing a parallel program are the communication
and synchronization code. However, this code is part of the structure of a
parallel program and can be placed into the abstract classes of the framework
that are not modified during application development. Since all of the the
parallel aspects of the application are now addressed by the framework code,
the application–specific hook methods can be sequential code, possibly taken
from an existing sequential code base.

This dissertation concentrates on applications that use parallel program-
ming to minimize turnaround time. As such, performance issues cannot be
ignored. Specifically, the code generated for a framework is intended to be
generic so that it can be applied to many different applications. As a result,
there may be overhead in the framework that is not needed for a specific appli-
cation. This overhead may limit the performance that can be obtained. There
must be some way of tuning the structure for better performance. This should
be done in a controlled manner, gradually exposing the minimum level of detail
needed to tune the performance. At the highest level, the details are limited
to the implementation of the framework. At the lowest level, the complete
source code, including all libraries used to support the provided abstractions,
should be available. The programmer can select an appropriate level so that
only those details relevant to the tuning problem are exposed.

Once again, there is a known solution to this problem: multiple program-
ming layers. This idea has been used to separate concerns and hide unnecessary
detail in many problems, such as computer network protocols. Applying layers
to the tuning process allows a programmer to focus on those details that will
improve the performance of an application without getting overwhelmed by

3

other, unnecessary details.

1.2 Contributions

This dissertation explores a design–pattern–based approach to parallel pro-
gramming. The approach also incorporates frameworks for a set of supported
patterns and programming layers to provide multiple abstractions for program
development and performance tuning. This approach is the result of a critical
examination of existing parallel programming systems research based on the
13 criteria for an ideal template–based (pattern–based) parallel programming
system. The contribution of this dissertation is to demonstrate that it is pos-
sible to construct a parallel programming system for building general parallel
applications that:

1. Provides a layered programming model with multiple user–accessible ab-
stractions for writing parallel programs. The breadth of existing parallel
programming models shows that no single abstraction applies to the
complete task of writing a parallel application. Instead, this task can
be split into its constituent parts, each with a relevant abstraction that
eases the task at hand by hiding unnecessary details.

2. Supports a design–pattern–based approach to parallel programming.
Rather than building a complete application by hand, the programmer
can start with a set of existing parallel program structures. This work
shows a method of using design patterns in a software development sys-
tem. In particular, it is important to note that a pattern is not a single
design solution, but rather a family of related solutions, each sharing the
same basic structure but with some variation to tailor the pattern to a
given problem. This shows that it is possible to express this family in
a programming system based on patterns. Also, it is possible for the
patterns to be composed, as an application can consist of more than one
pattern.

3. Generates a complete, correct structural framework for a parallel de-
sign pattern. All current parallel programming systems provide some
form of abstraction for writing programs, but still leave it to the user
to write part of the parallel structure (such as the exchange of messages
between processors). However, the parallel structural code is the most
difficult and error–prone part of a program to write and debug. Thus,
this dissertation describes tool support for the generation of the parallel
structure of a application. In generating a correct implementation of
the structure, the user is saved the effort of writing and debugging this
code, which eliminates an important class of potential errors in a parallel
program.

4

4. Provides access to the parallel structural code so that it can be changed,
to modify its structure and to improve its performance. Current parallel
programming systems provide a single programming model that must
be used for all programs. If the model cannot efficiently implement the
desired program, there is no provision for bypassing the model. This
limits both the range of problems that a system can efficiently solve
and the performance of any program written with that system. This
dissertation explores an avenue for gradually exposing the structure of a
program and run–time support provided by the system to address these
two problems.

5. Allows sequential code to be reused in a parallel application. Because all
parallel aspects for a given pattern are part of the structural framework
code, the application–specific parts of a program are written as sequential
code. This sequential code can be taken from an existing code base.

6. Reduces the possibility of programmer errors during parallel program
development. Traditionally, this means that the programs written using
a parallel programming system should exhibit some correctness guaran-
tees, such as freedom from deadlock. This work shows that tool support
can also reduce the probability of errors when developing applications
using object–oriented frameworks.

The result of this research is the CO2P3S
1 parallel programming system.

This system is based on three layers of abstraction. At the first layer, a
programmer selects a parallel structure from a set of design pattern templates,
which are then customized using a set of parameters. The customized pattern
template is then used to generate multi–threaded Java framework code, to
which the user adds application–specific hook method implementations. The
parallel structural code of the framework is encapsulated so that the user
cannot introduce errors. The next layer exposes the framework structure using
high–level constructs, so that this structure may be modified and optimized.
The final layer provides access to the implementation of all of the abstractions
in the framework so that they may be tuned for the execution environment.

An implicit goal in all parallel programming systems is usability; it should
be possible for real users to build working parallel programs that achieve per-
formance gains. However, with few exceptions [99, 96, 112], usability is not
measured by researchers in the parallel programming community. Usability
claims are typically based on anecdotal evidence provided by the developers
of the system. A further contribution of this dissertation is the results from a
usability study on CO2P3S, which compare parallel program development in
CO2P3S against parallel program development in Java.

1Correct Object–Oriented Pattern–based Parallel Programming System, pronounced
“cops.”

5

The end result of this work is the generalization of the CO2P3S application
development model into the Parallel Design Pattern (PDP) process. This
process is a tool–independent methodology that can be used as the basis for
pattern–based parallel programming systems, of which CO2P3S is just one
example. This process presents a series of abstractions aimed at improving
the state of parallel programming systems research by providing both high–
level programming models and low–level tuning capabilities to the complete
process of creating an application. Further, the high–level model provides tool
support for the most difficult aspect of writing a parallel program, creating
a correct implementation of the program structure. Programming systems
that are built using the PDP process will provide a flexible environment for
developing parallel, object–oriented programs.

1.3 Organization

Chapter 2 discusses the 13 ideal characteristics of a pattern–based program-
ming system and uses them to evaluate a representative sample of existing
parallel programming libraries, systems, and languages. It also discusses other
work in this area, including design patterns, pattern languages, frameworks,
and object–oriented modeling languages.

Chapter 3 presents the PDP process in detail. The chapter uses an example
program implemented using CO2P3S to concretely demonstrate the process
from the perspective of a user building a program. The chapter also discusses
issues that must be addressed by tool developers creating a system based on
the PDP process.

The CO2P3S parallel programming system is presented in more detail in
Chapter 4. Chapter 5 shows results from several example programs imple-
mented with CO2P3S. Chapter 6 examines the results of the usability study
performed on CO2P3S.

Chapter 7 gives the conclusions and suggests avenues for future research.
Appendix A provides the complete user code for the reaction–diffusion ex-

ample used in Chapter 3. Appendices B and C provide more detailed informa-
tion on some of the patterns supported by CO2P3S. Specifically, Appendix B
describes the format for our pattern description. It is based on the format
from [37]. Appendix C describes the Two–Dimensional Mesh pattern. Ap-
pendix D contains all reference material provided to the participants of our
usability study. Appendices E and F are background material describing se-
quential and parallel mesh computations respectively, which were distributed
to the subjects in our study. Finally, Appendix G provides more information
on choice points, which are used as a measure of application code complexity
in Chapter 6.

6

1.4 Publications

The format for the review of existing parallel programming systems in Chap-
ter 2 first appeared in the Journal of Parallel and Distributed Computing [69].
This paper also contains the first description of the PDP process.

CO2P3S has been described in several additional conference publications
[66, 67, 68]. The system has changed considerably since the first publication,
and continues to evolve as new research is conducted.

7

Chapter 2

Related Parallel Systems
Research

There has been considerable interest in developing parallel programming sys-
tems and tools for some time. This interest stems from the need to reduce
the complexity associated with parallel programming, and the desire of pro-
grammers and users to utilize the multiprocessor systems that are now more
readily available.

Section 2.1 evaluates related parallel systems research, including other par-
allel programming systems, libraries, and tools. Given the large amount of
research in this field, this survey does not cover all systems, but rather ex-
amines a selection of work that is representative of the range of research that
has been done. The basis for evaluation is the set of ideal characteristics of a
pattern–based parallel programming system identified in [96]. These charac-
teristics will show the strengths and weaknesses of earlier systems. Chapter 4
evaluates CO2P3S using these ideal characteristics to show how we have main-
tained the strengths of earlier research systems while addressing some of their
weaknesses.

Section 2.2 discusses other relevant research, mainly in design patterns and
pattern languages, that is also relevant to this work. Section 2.3 briefly sur-
veys other issues related to frameworks, such as documentation, composition,
and instantiation. Finally, Section 2.4 presents a small selection of modeling
languages for building object–oriented programs in other program domains.
Some of these languages use a layered approach to separate different program-
ming and modeling concerns, and others have been the target of tool support
that generates code from the user–supplied model.

2.1 Evaluating Parallel Programming Sys-

tems Research

To evaluate current parallel programming systems research, this dissertation
uses the ideal characteristics of pattern–based parallel programming systems

8

from [96]. These characteristics arose from insights and experience in building
and using template–based parallel programming systems, which were the pre–
cursors to the CO2P3S pattern–based approach.

The characteristics are broken up into three categories. Each category
emphasizes a different aspect of a pattern–based system. Each characteristic
is given a short name, provided in parentheses, that is used to refer to it
throughout the rest of this dissertation. Each characteristic is described and
followed by a discussion of existing research with respect to that characteristic.

2.1.1 Structuring the Parallelism

This category deals with the specification of parallelism for a user application.
There should be as few restrictions as possible.

1. Separation of Specification (Separation): There should be a clean sepa-
ration between the parallel structure of a program and the application
code. This key feature allows both parts of a parallel program to evolve
independently. It also allows for rapid prototyping of programs, and
permits users to quickly experiment with alternative parallel structures.

Code libraries fail to meet this concern. In all code libraries, the structure
of the parallelism is embedded directly in the application code via library
calls. This structure can only be changed by modifying the code, which
may involve significant programming effort. For instance, for message–
passing libraries such as PVM [38] and MPI [98], the parallel structure
is dictated by the communication structure. A program using pthreads
[103] or Java threads [7] must explicitly create the threads that will form
the parallel structure of the program. Systems such as PUL [20] (in
procedural mode) and archetypes [71] provide libraries with primitives
for implementing specific program structures such as mesh computations
and task farms. For instance, the libraries provided for mesh computa-
tions may include global reduction and boundary exchange communica-
tion primitives. In this case, the parallel structure is dictated by both
the insertion of the library calls and the selection of the library.

Most parallel programming languages and language extensions also suffer
from the same problem by using extra syntax for specifying parallelism in
the program code. For instance, Mentat [42], ABC++ [80, 6], JavaParty
[83] and Orca [9] support task parallelism by allowing a programmer to
annotate certain classes to execute in parallel. Mentat also includes an
extra statement to return a future [44] for the result of a parallel method
to the caller before that method has finished executing. Braid (an exten-
sion of Mentat) [109] and Orca [48], as well as the Java–based languages
Spar [106] and Titanium [116], support data parallelism by including
parallel loops (with a forall statement, for example) and syntax for
parallel array expressions. ABCL/1 uses syntactical constructs to dif-
ferentiate the different message–passing modes it supports for invoking

9

methods on other objects [118]. One mode is an express mode, which can
interrupt the processing of a message sent in ordinary mode and even
cancel the computation if desired. It also includes constructs for the par-
allel execution of a group of methods with an implicit barrier at the end.
Act3, a actor–based language, includes syntax for accepting incoming
requests, sending replies, and specifying replacement behaviours for an
object [2, 1]. Some parallel languages, such as High Performance FOR-
TRAN (HPF) [32] and OpenMP [26] mitigate the separation problem by
inserting parallel directives as comments that are used only by special
compilers. These directives can be added or removed with less effort.
The only parallel programming language that does not suffer from this
problem is P3L (Pisa Parallel Programming Language) [8], a pattern–
based programming language. A P3L program consists of a set of named
code fragments and a separate pattern description that indicates how
the fragments and patterns are composed into a larger program.

Many parallel programming systems separate the parallel structure from
the application code through indirection. In explicit message–passing
systems such as DPnDP [97], Tracs [10], and Parsec [31], all messages
are sent through channels via ports. The ports do not contain any refer-
ence to the process1 that will actually receive the data, and so decouple
the two communicating processes. Thus, a process may be freely inter-
changed with another that exchanges the same data. Parallel Architec-
tural Skeletons (PAS) [41] take a slightly different approach. They create
an additional process that serves as the fixed entry point to the pro-
cesses that make up the pattern (a representative in PAS terminology).
This fixed entry point allows a pattern to be replaced with another in a
seamless manner. In PAS, the rest of the processes needed to form the
pattern (the back end) only accept messages from either the representa-
tive or other peers in the same back end using a protocol dictated by the
selected pattern. This approach was pioneered in Enterprise [89], where
the representative was called a receptionist. Each protocol provides a
set of message–passing primitives that are tailored to the specific needs
of the protocol, so any change in pattern impacts the application code.
Another separation technique, used by CODE[77], HeNCE [12], VPE
[78], and Phred [13], is to use implicit process communication. Flagged
variables in a process are implicitly sent to other processes at the end of
its computation. Again, a process can be replaced with another that uses
the same data. Not all programming systems maintain this separation,
though. FrameWorks2 [95] introduces keywords to distinguish parallel
and sequential function calls, and requires the user to draw an external
graphical description of the parallel structure, both of which must agree.

1We will use the term process to denote any parallel activity. This may be an actual
process or a thread.

2The tool name should not be confused with generic object–oriented frameworks.

10

Enterprise requires the procedure calls in the application code to mirror
the selected parallel structure drawn by the user. However, Enterprise
does not require extra syntax to identify parallel function calls, so the
parallel structure can be changed by simply changing a graphical rep-
resentation, so long as the program code is consistent with the selected
structure.

Other parallel programming tools are based on Cole’s skeletons [24] or
object–oriented frameworks [37, 54]. Skeletons are much like frameworks
in that they provide a parameterized implementation of a particular par-
allel structure. However, where frameworks use inheritance in an object–
oriented language to insert application–dependent code, skeletons are
parameterized by a set of procedures that implement the application–
specific responsibilities. Both skeletons and frameworks must be instan-
tiated and the necessary procedures or objects must be assembled into
the final application. Further, the application–specific code must adhere
to the interface required by the structural code. These interfaces make
it difficult to directly reuse the application code, as the interfaces will
depend (at least partly) on the selected skeleton or framework.

2. Hierarchical Resolution of Parallelism (Hierarchy): A system should al-
low patterns to be composed hierarchically, refining the computation
within a given pattern using another pattern. In general, a single paral-
lel structure cannot be used to effectively parallelize all parts of a large
computation.

Since a user can generally place communication calls anywhere in appli-
cation code, message–passing and thread libraries meet this characteris-
tic. PUL and archetype libraries do not appear to have been composed,
so it is unclear if this criteria is met. Similarly, most programming lan-
guages allow a programmer to annotate additional classes for parallel
execution easily, allowing for hierarchical resolution of parallelism by al-
lowing a parallel class to use other parallel classes as collaborators. The
computation nodes in a P3L program can be replaced with another pat-
tern in a hierarchical fashion. This refinement is possible because all
P3L patterns have a single point of entry and exit, so substituting a pat-
tern for a computational node is seamless. In both HPF and OpenMP,
annotations can be incrementally added to procedures. However, HPF
does not support nested parallelism. The OpenMP specification permits
nesting, but individual implementations may not fully support it.

Most parallel processing systems provide a mechanism for hierarchically
specifying parallelism. The most common technique is identical to the
approach taken by P3L, replacing a simple computation node with an-
other pattern or graph structure. Again, the interface for both compu-
tation nodes and larger pattern or graph structures is identical (usually
a single entry and exit point), so the replacement is seamless. Some

11

systems, such as HeNCE, do not support hierarchical resolution. With-
out hierarchical resolution, the user must draw one large graph for the
structure of the complete program.

Programs built using skeletons or frameworks can experience composi-
tion problems for several reasons. The root cause of some of these prob-
lems is that frameworks and skeletons were created with the assumption
that only one would be used in a given application. Some skeletons
research is considering how skeletons can be safely nested. Framework
composition is discussed in more detail in Section 2.3.2.

3. Mutually Independent Patterns (Independence): There should be no
rules regarding how patterns can be composed. In other words, pat-
terns should be context insensitive with respect to one another.

Again, code libraries meet this concern because of their generality. For
example, message–passing library primitives can be placed anywhere in
application code, so long as the sends and receives are properly matched.
Without evidence of composition, there is no way to know if PUL and
archetype libraries are independent.

The patterns supported by P3L have no rules regarding their composi-
tion. Most other languages (save HPF, which does not permit nested
parallelism) have no restrictions on the composition of parallel processes
in their application programs.

Among the pattern–based programming systems (DPnDP, Enterprise,
FrameWorks, Parsec, Tracs, and PAS), only FrameWorks, the oldest
system, does not exhibit independence of patterns. Specific combina-
tions of structures could not be properly supported. Tracs patterns (or
architectural models, in their terminology) are independent of one an-
other, but require more work to compose. A Tracs architectural model
is an arbitrary program structure drawn by the user, which does not
have a fixed set of input and output ports. As a result, new ports may
have to be added to an architectural model before it can be composed
with another. HeNCE, VPE, and CODE represent programs as directed
graphs, which can create any necessary structure. Phred uses a context
insensitive graph grammar to construct the structure of a program.

As noted in the discussion on hierarchy, frameworks and skeletons have
outstanding issues with regard to composition. Again, these issues are
discussed in more detail in Section 2.3.2.

4. Extendible Repertoire of Patterns (Extendible): A user should be able
to incorporate new patterns into the tool. Ideally, these new patterns
should be indistinguishable from the patterns originally supplied with
the tool.

Code libraries that provide general support for parallel programming,
such as message–passing and thread libraries, can be used to create any

12

desired parallel structure. The libraries for PUL and archetypes imple-
ment primitives for specific, higher–level parallel structures. It is difficult
to use these libraries to implement new structures, but it is possible to
create new parallel structures using the underlying run–time facilities
(the CHIMP message passing system used in PUL, for instance).

Most parallel languages provide the means to implement new parallel
structures. However, the programming model supported by the lan-
guage can impose restrictions on the structures that can be supported
efficiently. HPF and OpenMP have poor support for task parallelism,
limiting the range of structures that can be efficiently implemented. The
patterns in P3L are fixed in the language, and cannot be extended.

CODE, VPE, and HeNCE satisfy this characteristic as they represent
program structures using directed graphs, which allow programmers to
create general structures. Phred programs are ultimately limited by the
graph grammar rules that are used to create the application structure,
but a programmer can create any structure within the rules. The rules,
though, are fixed.

Of the pattern–based systems, only DPnDP, Tracs, and PAS provide
any mechanism for creating new patterns. DPnDP provides a C++
framework that is used to create new patterns. The framework pro-
vides mechanisms for creating the process and communication structure
of the pattern. However, only the structure of the new pattern can be
specified; no behavioural parts of the pattern (such as synchronization
or pattern–specific communication) can be addressed automatically. If
a new pattern needs control messages (such as those needed between a
replicated worker and its manager process, which is automatically han-
dled by the pattern implementation supplied by DPnDP), the user code
in the processes making up that pattern will need to exchange these
messages explicitly. Tracs allows a programmer to create and save ar-
chitectural models, which can then be loaded into the user interface for
reuse. An architectural model is a graph with formal models for speci-
fying the task and communication structure, akin to formal parameters
in a procedure. This formal model names each part of the structure but
does not supply any implementation. These names must then be bound
to the specific models in the graph of the current application. A user can
create a library of architectural models for reuse. One weakness, though,
is that these models are static. A user cannot create a general architec-
tural model for an n–stage pipeline or an n–way replicated process. To
mitigate this problem, the Tracs interface provides operations to easily
build repetitive structures. PAS uses C++ templates to associate the
processes in a program with protocols that dictate the communication
structure. New protocols can be added as subclasses of existing proto-
cols. Unfortunately, it is unclear if the high–level specification language
provided for PAS can be updated with these new protocols. However,

13

the user can bypass the specification language and write programs in
standard C++, where added protocols will be available.

Neither frameworks nor skeletons are generally considered to be ex-
tendible. In general, it is difficult to modify an existing framework or
skeleton to support any type of computation beyond that for which the
framework was designed. Like PUL and archetypes, it is possible to
create new frameworks and skeletons. However, it may be difficult to
incorporate new skeletons into tools that support skeleton–based devel-
opment. For example, some skeleton systems use an external specifica-
tion language to create programs [40, 39]. New skeletons can only be
introduced if this language has a mechanism for integrating them.

5. Large Collection of Useful Patterns (Utility): The supplied patterns
should cover a broad range of applications.

Any systems that impose limits of the set of available parallel structures
will have problems meeting this concern. Pattern–based systems have
a limited number of supported patterns, which limit their applicability.
For example, Enterprise, DPnDP, and P3L do not support a pattern
for mesh computations. The libraries for PUL and archetypes, as well
as frameworks and skeletons, are targeted at specific parallel structures
and problem domains. Some languages provide only a particular type
of parallelism. For example, HPF and OpenMP are limited to data
parallelism.

The visual, graph–based tools and general–purpose libraries (HeNCE,
CODE, VPE, PVM, MPI, pthreads) meet this characteristic by virtue
of their generality. Other than the exceptions above, parallel program-
ming languages are also general enough to be applied to many problem
domains. However, this generality raises correctness concerns that are
discussed later.

In addition to the structured patterns, PAS provides a compositional
skeleton in which the programmer can write programs with a high–level
subset of a message–passing library. This skeleton serves as a catchall
that allows any process structure to be created when none of the patterns
suffice. Once again, the generality of this skeleton raises correctness
concerns.

6. Open Systems (Openness): The programmer should be able to access
low–level mechanisms, such as the underlying message passing system,
in their applications. Otherwise, the programmer is limited to devel-
oping applications that can be expressed using the available patterns.
Unfortunately, the implementation of the patterns may introduce unde-
sirable overhead into the program or the structure of the pattern may
not completely match that required by the application. With access to
the low–level features of a system, these problems can be corrected. We

14

augment openness to include access to run–time libraries and generated
code used by a tool, so that the programmer can modify the structure
and tune the performance of an application.

Openness, in this sense, favours abstraction over transparency [60].
Transparent systems, advocated by distributed systems researchers, close
off their designs from the end user. This is only reasonable when the
implementation is very brittle and should not be changed or when the
implementation is optimal and there is no need to change it. The main
benefit to transparency is that system developers can assume that cer-
tain events or problems cannot occur because they control the complete
implementation of the system. In contrast, abstraction encapsulates de-
tails so that they can be used in a transparent manner if desired, but
allows access to the details if it becomes necessary. However, this access
should be more than simply delivering source code. The details should
be provided using abstractions that are easy to understand and use, yet
still be flexible and sufficient to create a wide variety of alternative so-
lutions. Finding these abstractions is more difficult than simply closing
off the internals of a system.

Libraries can be considered open in the sense that any library that pro-
vides the correct interface can be used. A user can replace a library
with a better implementation. It is also possible to augment a library
by building new primitives by using the underlying facilities used in the
implementation of the library itself. This will likely require access to the
source code for the library. For instance, a programmer could add new
PVM primitives by using the underlying sockets.

Most of the parallel programming systems mentioned to this point are
closed. The abstractions in the programming model are transparent to
the user. There is no opportunity to expose these details for tuning.

The only programming systems mentioned thus far that can be consid-
ered open are DPnDP and PAS. They permit the programmer to use the
underlying message–passing system to send messages between any pro-
cesses in a program. However, this openness does not extend to providing
access to other run–time components, so there are no opportunities for
performance tuning. The remaining programming systems hide their
run–time systems by introducing special compilers or code generation,
which transform the user–supplied code into a parallel application. This
transformed code is hidden from the user. Parallel programming lan-
guages also use compilers to hide their run–time systems. PAS does not
provide access to the underlying message–passing library, but does allow
new protocols to be added to the system, possibly sacrificing the use of
the specification language in the process.

Frameworks and skeletons are both considered closed. With a frame-
work, it is possible to modify the structure by overriding structural code

15

in subclasses. However, the primary benefit to using a framework is the
reuse of this structure, so this is not normally done. In addition, the
structural code may not be written so that it can be easily changed; the
number and scope of the methods that have to be changed may be too
large. In a parallel framework, the inheritance anomaly can exacerbate
this problem even further [73].

2.1.2 Programming

This category deals with issues related to writing programs with a parallel
programming system. In particular, the programming model supported by a
system may force constraints on application code.

7. Program Correctness (Correctness): A good parallel programming sys-
tem should provide some correctness guarantees. For instance, a system
may guarantee that an application cannot deadlock. This characteristic
can be extended to include reducing the possibility of programmer errors
during application development as well. For instance, a tool can ensure
that the application matches the desired parallel structure or that the
correct type of data is sent and received between processes. However, no
tool can prevent a user from introducing logic errors into program code
or prevent the selection of an inappropriate parallel structure.

General–purpose libraries offer little correctness guarantees. Both mes-
sage passing and thread libraries require the programmer to correctly
create the application structure, and do not provide any mechanisms to
prevent synchronization or communication errors. The user of a message
passing library also has to marshal and unmarshal the data in messages
as well, which is a common source of errors. The libraries for PUL and
archetypes provide library primitives that better support the selected
parallel structure, but the user must still assemble the primitives into a
complete application. This leaves room for error. For instance, library
primitives for global communication or barrier synchronization need to
be executed by each process in the application at the same time. If not,
the program may deadlock.

Parallel programming languages normally implement marshaling as part
of the language, and can use compiler support to prevent any typing
errors. However, except for P3L, no language provides any mechanism
for ensuring that a programmer has correctly implemented the desired
parallel structure.

All pattern–based programming systems offer some correctness guaran-
tees. Unfortunately, most systems also leave some aspects of correctness
to the application programmer, leaving open the possibility of user er-
ror. The patterns supplied with DPnDP implement all communication

16

between processes that is specific to a pattern, such as control mes-
sages between a group of replicated workers and their manager process.
However, any remaining communication, including marshaling and un-
marshaling, must be implemented by the user. Further, the structure
of a DPnDP program is a directed graph, where each node can be im-
plemented using a design pattern. There is no mechanism for verifying
that the graph represents the structure that was intended by the pro-
grammer. The protocols in PAS help ensure that the communication
structure is correct, except for the composition skeleton which explicitly
has no structure. Further, while PAS has some support for marshaling
and unmarshaling objects, the user must still write some of the code. En-
terprise uses a precompiler to ensure that the application code matches
the desired parallel structure, generates correct communication code, and
guarantees that an Enterprise program is deadlock–free. FrameWorks,
Tracs, and Parsec require that all messages exchanged between processes
be user–defined structures. These systems can verify that both sending
and receiving ports are expecting the same structure. The user must fill
in the fields of this structure, which is less error–prone than marshaling
and unmarshaling.

Most graph–based parallel programming systems add type checking of
messages between processes, but offer no structural correctness guar-
antees. In some systems, some of the local variables in a process are
automatically forwarded to other processes, preventing marshaling and
unmarshaling errors. Phred also has the ability to determine if the pro-
gram is deterministic. Phred graphs describe both the application struc-
ture and access to shared repositories. The graph grammar supported
by Phred allows these graphs to be analyzed for conflicting accesses to
the data in the repositories. Unfortunately, this analysis was developed
for the Phred grammar; it is not clear if this can be extended to more
general graphs.

Skeletons and frameworks provide a correct structure that is used as
the basis for an application. The possibility of error can be reduced
by including all communication and synchronization that are specific
to the structure. However, there is no way to prevent the user from
adding application code that includes errors. In particular, the user
could add parallel code that conflicts with the existing communication
or synchronization policies used by the structural code.

8. Programming Language (Language): The system should use an existing,
commonly–used programming language. Ideally, the syntax and seman-
tics of the language should be unchanged so that users can directly reuse
their existing sequential code in parallel applications. Further, the sys-
tem can take advantage of expertise in an existing language.

All libraries and frameworks exhibit this quality. Both are code pro-

17

vided to the user for building larger applications. They do not alter
the programming language in any way. Some skeleton systems, such as
[40, 39], use a separate specification language to instantiate the skeleton
and provide application code. The application code in the specification
language may be code fragments. The use of code fragments violates
this characteristic, as the programmer is not writing normal code.

Parallel programming languages fail to meet this characteristic, of course.
The degree of failure differs greatly, though. Orca, ABCL/1, and Act3
are completely new languages, which will have a steep learning curve
for new users. In contrast, Mentat, ABC++, JavaParty, Titanium, and
Spar are extensions to existing languages, adding new language features
to support parallel programming. Because they are based on an exist-
ing sequential language, they can take partial advantage of existing code
bases and expertise. ABC++, JavaParty, Titanium, and Spar primar-
ily add new constructs to their base language, supporting features such
as active objects, parallel array expressions, and parallel loops. Mentat
includes new features as well, but also changes the semantics of method
invocations to parallel objects to introduce futures [44]. A future is a
variable whose value is the result of a parallel call that may not have
completed. The future is resolved when its value is accessed, which re-
quires the resolving process to wait for the parallel call to compute its
value. Futures hide synchronization between parallel processes by mak-
ing parallel calls appear as though they were simple sequential method
invocations, but the differences in semantics can lead to subtle user errors
that can affect program performance [99, 96]. This kind of subtle change
to language semantics is precisely what this characteristic is concerned
with. HPF and OpenMP make no changes to the base programming
language, but use comments in the language to add annotations. These
annotations are ignored by normal compilers, which generate a sequen-
tial program. However, the annotations are used to change the semantics
of the underlying language, for adding parallel constructs and changing
the visibility of certain variables (making them local to a given processor,
for example).

Some pattern–based parallel programming systems share many of the
failings already mentioned. Specifically, those systems that attempt
to preserve a sequential coding style in the programming model have
no alternative but to change existing language semantics. Enterprise,
like Mentat, uses futures for delaying synchronization with parallel calls.
FrameWorks uses a specification language for its programs, which also
includes extra keywords in the application code. PAS also uses a specifi-
cation language, but users can also write programs using standard C++
together with the class library provided by the system. The remaining
systems, DPnDP, Tracs, and Parsec, use explicit communication, which
does not require any language changes. Tracs has one exception in a

18

feature it supports for reusing existing sequential code. The sequential
procedure is automatically invoked in response to a message at the rele-
vant process and the return value is automatically forwarded along any
output ports, which is counter to the flow of data in normal program-
ming.

9. Language Non–Intrusiveness (Non–Intrusiveness): The application code
written by a programmer should not have to accommodate the program-
ming model provided by the system. A system can satisfy the language
characteristic yet still fail to meet this one. For instance, a message–
passing library does not impose any changes to the programming lan-
guage but may require the program to be restructured to accommodate
the extra communication calls that need to be inserted by the user. The
solution to both this problem and the language characteristic is to cre-
ate a compiler that parallelizes sequential code. Unfortunately, current
compiler technology does not do this well. In fact, this problem may
never be solved since for some problems (such as sorting) the optimal
parallel algorithm is not derived by parallelizing an existing sequential
algorithm [94].

All parallel systems suffer from this problem to some degree. General–
purpose libraries require significant code changes. Message–passing sys-
tems require communication primitives to be inserted into application
code. Both messages passing and thread libraries may require code to
be reorganized, mainly to distribute the application code over the pro-
cesses or threads used by the program. PUL and archetype libraries need
similar changes.

Parallel programming languages, particularly object–oriented languages,
introduce their own limitations and restrictions on application code. Like
libraries, these languages require that the code for an application be par-
titioned across parallel processes. In addition, ABC++, JavaParty, and
Mentat restrict the use of object–oriented language features, such as in-
heritance, exceptions, and static variables, to accommodate a distributed
memory model. Some of these languages restrict the argument types and
will not pass pointer arguments or reference arguments. For example,
ABC++ does not permit object parameters in method calls between
parallel objects. The use of futures in Mentat also requires code changes
to ensure that there is some work done between a parallel call and the
resolution of any futures the call creates. If this is not done, there will be
little to no parallelism. HPF and OpenMP programs need to be modi-
fied to create more parallelism by removing dependencies in loops. HPF
programs in particular need to be reorganized as all HPF directives con-
trolling a given parallel construct must appear in the same lexicographic
scope. For example, a barrier in a parallel loop cannot be placed in a
subroutine called from within a parallel loop.

19

Parallel programming systems exhibit many of the same problems as
parallel languages and libraries. DPnDP, Tracs, Parsec, and PAS ex-
plicitly exchange messages. Enterprise uses futures, much like Mentat.
Application code in CODE, HeNCE, VPE, and Phred needs to be split
over the nodes of the structural graph.

Frameworks and skeletons are intrusive by their nature. Both provide
a complete structure, including a fixed, limited number of points in the
design for introducing application–specific code. The design must be
accommodated in the creation of any application. The primary difficulty
in using any framework is the time needed to learn this design and how
to use the provided hook methods to implement a complete program
[54].

2.1.3 User Satisfaction

A system must satisfy performance and usability constraints if it is to be
accepted and used by programmers.

10. Execution Performance (Performance): It should be possible to achieve
the best possible performance for a program, subject to the selection of
the parallel patterns.

General–purpose parallel libraries can provide the best performance. The
use of library primitives can be optimized by a knowledgeable program-
mer to reduce communication and synchronization costs. The principal
drawback to libraries with respect to performance is that they inhibit
compiler optimizations. For instance, since the compiler does not under-
stand the semantics of the library calls, code motion or reordering cannot
be done safely. Higher–level libraries tend to have closed implementa-
tions. Closed systems generally have lower performance as they must be
more general, which introduces overhead that cannot be removed.

It is the closed nature of parallel languages that restricts their perfor-
mance. There is no opportunity to remove any run–time overhead intro-
duced in the abstractions that are provided by the language. Another
problem is the restricted programming model of some languages. HPF
and OpenMP only support data parallelism, so problems that need task
parallelism will have poor performance. Similarly, ABC++, P3L, Act3,
and JavaParty concentrate on task parallelism and have performance
problems on data parallel programs. Spar, Orca, ABCL/1, and Mentat
(specifically, Braid) address both data and task parallelism. It is also
possible to improve the performance of a parallel language with an op-
timizing compiler that works on the parallel code. However, building
such a compiler is difficult, and few languages invest the effort. Many of
the compilers for these languages translate the source to another inter-
mediate language and compile the intermediate language with a freely

20

available compiler. P3L differs in that its compiler gathers information
about the execution environment and uses this to generate an optimized
abstract machine for executing the program on the given computer sys-
tem.

Again, the closed nature of the run–time support for parallel program-
ming systems is a limiting factor in performance. Performance studies for
PAS, Enterprise, DPnDP, and CODE show slightly lower performance
than equivalent message–passing programs.

Skeletons and frameworks also have performance issues because of the
hidden structure. One method for improving performance is to limit
the domain of the framework, which can allow optimizations that are
not possible in more general frameworks. For example, Lea’s fork/join
framework implements parallel programs in which tasks are recursively
subdivided into independent subtasks that are executed in parallel [63].
The solutions of the subtasks are combined into the final result. Since the
framework assumes the subtasks are independent, they can be executed
in any order by any processor, enabling idle processors to steal tasks.
This improves load balancing and hence improves the performance of
the application.

11. Support Tools (Support): The system should provide a complete set of
tools for application development, including debugging and performance
tuning steps. The abstractions provided by the support tools should
mirror those in the programming model.

Libraries do not generally provide support tools. However, popular li-
braries are sometimes the topic of support tools research, so tools can
emerge. A brief survey of some tools for visualizing, monitoring, and
debugging PVM programs can be found in [14]. A similar survey for
MPI can be found in [28]. Similar profiling and debugging tools exist
for pthreads and Java threads. The higher–level libraries, skeletons, and
frameworks have no support tools, but rather must use standard profilers
and debuggers.

Parallel languages provide compilers but generally little else in terms of
support tools. The exceptions are HPF and OpenMP. A survey of HPF
tools can be found in [81]. Similar surveys can be found for OpenMP on
the World Wide Web.

Of the parallel programming systems, most provide a basic set of devel-
opment and compilation tools. Enterprise has the most complete tool set,
including not only development and compilation tools but also program
visualization [64], debugging (including an execution replay mechanism)
[50], and performance tuning tools [114]. They are integrated with the
Enterprise programming abstractions, so the user does not need to con-
sider new models when using these tools.

21

12. Tool Usability (Usability): The system should be easy to learn and use.
This is a crucial aspect of any tool research and must be addressed
before these systems are adopted by programmers. However, as shown
by the dearth of usability studies to assess usability (with Enterprise [99,
96], Orca [112], and PIE [86] being notable exceptions), few researchers
consider this issue. In their defense, usability studies are difficult and
time consuming to conduct.

Though they lack formal usability studies, the large number of appli-
cations built with PVM, MPI, HPF, and OpenMP can be taken as a
partial testament to their usability. It is clear that these systems can be
used by a wide variety of people to create parallel applications. How-
ever, message–passing and thread libraries are acknowledged as being
the lowest–level of abstraction for parallel programming, so most par-
allel systems research is directed at providing higher–level models to
simplify programming.

The PIE study compared graduate experiences in PIE against expe-
riences with MultiProcessor C (MPC) for two example programs [86].
The templates in PIE (or implementation machines (IMs) in their ter-
minology) have two representations: an analytical representation, to help
predict the performance of applications with the given machine, and a
pragmatic representation, which provides a modifiable template imple-
menting the selected machine. Their results suggest that the IM group
found the machines easy to understand, and that they were able to cre-
ate programs more quickly than the MPC subjects. Also, the average
execution times favoured the IM group. A closer examination of the
execution times for the four subjects in each group reveals that the best
execution times for each group were close, with identical results for the
first program and with the best IM solution 11.5% faster for the second
program. However, the worst performers in the MPC group were much
larger than the worst in the IM group, with execution times 37% and
21% larger respectively.

The usability studies in [99, 96] compared Enterprise to message–passing
libraries (PVM and NMP [70], a local message–passing library) and
PAMS [56], a high–level tool adding parallel regions and parallel loops
to C and FORTRAN. The experiment was conducted over several as-
signments in a graduate course on parallel programming. The identified
strengths of the two high–level tools were:

(a) Both systems prevented several common errors in writing parallel
applications. The errors that users did make only affected program
performance, not correctness.

(b) Programmers were able to quickly create a working parallel pro-
gram.

22

(c) In Enterprise, there was good tool support. In particular, the par-
ticipants in the study made use of the replay tool that allowed them
to visualize the execution of their program and identify performance
problems.

The study also found several weaknesses in the high–level tools:

(a) While programmers could quickly create a working program, the
closed programming model meant there was little they could do to
improve performance. Many participants spent considerable time
trying to circumvent the programming model, to no avail.

(b) The performance of programs written with the high–level tools was
poorer than their message–passing counterparts. In combination
with the lack of control over the high–level systems, this problem
frustrated many programmers.

(c) In Enterprise, the use of futures introduced subtle changes to nor-
mal C semantics. Programmers who failed to account for these new
semantics introduced performance problems in their code.

The study for Orca [112] is based on student experiences with the
Cowichan problem set for evaluating parallel programming systems [110].
The Cowichan problems are a set of six modestly–sized programs that
cover a broad range of application domains and parallel programming
idioms. Six students spent between three and seven months developing
sequential and parallel solutions to a given problem. The primary lessons
from this study can be summarized as follows:

(a) Orca was easy to learn and use. A programmer must still consider
synchronization and communication issues, but does not need to
include parallel code. Instead, parallelism in Orca is based on ex-
plicitly forked processes, and communication and synchronization
are based on shared data–objects with atomic functions.

(b) The programming model of a parallel programming language should
be general. The Orca model had two limitations that required sig-
nificant program changes to work around.

(c) Tools are an essential part of obtaining good performance. Since
Orca provides a high level of abstraction and uses an advance run–
time system, it is difficult to understand the performance behaviour
of a program. In particular, a programmer needs to be able to de-
termine if performance bottlenecks are the result of poor applica-
tion code or poor decisions made by Orca’s run–time system. For
instance, Orca tries to automatically replicate objects over differ-
ent processors if the object is read often but rarely changed. If

23

the replication decision is incorrect, performance suffers. Unfor-
tunately, performance problems created by this type of run–time
decision cannot always be corrected by the programmer.

Another interesting study related to usability was one undertaken to
assess the impact of design–pattern–based systems on parallel program
complexity and maintainability. This study was based on several appli-
cations written with MPI and contrasted them with equivalent programs
written with FrameWorks, Enterprise, and PAS [101, 100]. The study
compared 30 code complexity metrics and three maintainability models,
all based on static analysis of the application code from the applica-
tions. The study concluded that the programs written with the three
pattern–based systems were less complex and more maintainable than
the MPI equivalent. The study did not compare and contrast the differ-
ent pattern–based tools, though. As well, the study did not consider any
metrics for object–oriented programs as FrameWorks and Enterprise are
both based on the C programming language.

Frameworks and skeletons have a high learning curve because of the
structural details they encapsulate. The programmer must understand
the flow of control through the objects contained in the framework in
order to understand how and where to insert application–specific code.
However, like most software tools, as a user becomes more familiar with
a framework it becomes easier to create applications using it [54].

13. Application Portability (Portability): The system should allow appli-
cations to be ported to different architectures. The performance of a
program may suffer on an inappropriate architecture, but the applica-
tion should continue to run.

Most systems provide some degree of portability by simply recompil-
ing programs on the new architecture. Programs or programming sys-
tems built on message–passing libraries can generally be moved between
different architectures in this way. However, the process–to–processor
mapping may not be optimal, particularly on distributed memory ma-
chines with a distinct processor interconnect structure. Further, on
shared memory machines, message–passing systems continue to commu-
nicate using expensive network messages rather than taking advantage
of cheaper memory–based communication mechanisms. Thread libraries,
on the other hand, cannot be easily ported to a distributed memory sys-
tem without some additional software (such as a distributed memory
system like TreadMarks [5]). Another approach, taken by Enterprise, is
to support multiple communication managers, which abstract out the ac-
tual communication library or system, and can be configured at run–time
to use either message–passing or shared memory. P3L takes a similar ap-
proach, using the compiler and run–time system to create an abstract

24

machine to execute a program. This machine is customized to its exe-
cution environment, based on the program structure and the underlying
hardware. ABCL/1 has undergone several ports to new architectures,
ABCL/onEM–4 [115] and ABCL/onAP1000 [117], to improve the im-
plementation of the language for the different execution environments.

An important aspect of portability is the parallel algorithm used to solve
the problem. The programmer must ensure that the algorithm works well
on different architectures. The relative cost of communication and syn-
chronization can vary greatly across different machines, which can cause
the performance of a program to vary. Normally, a parallel program is
optimized for its execution environment by explicitly mapping the par-
allelism and data onto the physical processors, limiting its portability.
Portable parallel programs typically delegate this mapping to a run–time
system. However, this automatic mapping is based on general strategies
that may lower performance [61].

2.1.4 Summary

There are many parallel programming systems, tools, and languages, including
some that are not mentioned here. From the above evaluation, it is clear that
while some tools are better than others, all have some serious flaws. These
flaws have prevented the high–level tools from moving into wide–spread real–
world practice.

2.2 Design Pattern Research

2.2.1 Parallel Design Patterns

There are too many individual concurrent design patterns to enumerate here.
The most notable source of concurrent design patterns comes from the ACE
project [90], Lea [61], and the second volume in the Pattern–Oriented Software
Architecture series [91]. These patterns concentrate on creating and manag-
ing concurrency, and not on the performance aspects of parallel programming.
However, concurrency is a crucial aspect of parallel algorithms. Also, the struc-
tural patterns in these references are fine–grained, solving small and specific
design problems. A typical concurrent program would need several of these
patterns.

Common, larger–grained parallel structures, such as the work farm,
pipeline, and mesh, have been known for some time now. Details can be
found in the introductory parallel design and algorithm literature [33, 22].

There has also been some research in generating code for design patterns.
Budinsky et al. [21] have created a web–based tool that generates code for the
patterns in [37]. This tool also allows the user to select from the alternative
pattern implementations found in the pattern documentation and generate

25

appropriate code. The complete set of classes for the pattern are returned to
the user, who then adds application–specific functionality.

Other patterns research has focused on using patterns to verify that a
program implementation adheres to its design [92]. This is done by ensuring
that the interactions between the different elements of each pattern are correct.
Any interaction between objects that is not part of the pattern represents
a place where the implementation diverged from the original design, either
during initial development or subsequent maintenance. One result of the work
in this area is Pattern–Lint, a tool that uses a combination of static and
dynamic information to gather the collaboration structure of a program. This
tool was used to fix several errors introduced in several subsystems in an
object–oriented operating system. This work also suggests more proactive
approaches to verifying program design. First, they suggest generating code
for the design patterns to ensure that they are correct initially. Second, they
advocate inserting run–time assertions to prevent the pattern implementation
from diverging from its correct structure.

2.2.2 Productivity Benefits of Using Design Patterns

Advocates of design patterns have provided anecdotal evidence of their bene-
fits. These benefits include improved program design and improved commu-
nication between designers, developers, and maintainers of a software system.
These improvements are partially attributed to the vocabulary introduced by
the use of patterns; it is possible to exchange design information at a much
higher level than individual classes. However, much like the lack of usability
studies in parallel programming systems, there was no initial attempt to de-
termine if these benefits truly existed and, if so, to determine more precisely
how these benefits were accrued.

To answer these questions, some researchers conducted a series of controlled
experiments to ascertain the usefulness of design patterns [84, 85]. These
experiments were designed to determine if documenting the design patterns
used in a program improved its maintainability and to determine if programs
that used design patterns were more maintainable than equivalent programs
that did not.

The conclusions of the experiments are mixed. Explicitly documenting the
patterns in a program improved its maintainability. Maintenance tasks that
involved the patterns were performed faster and with less errors for those pro-
grams that included pattern documentation. However, the experiment also
revealed that the indiscriminate use of design patterns where a simpler so-
lution exists is sometimes detrimental. This effect may by a function of the
specific pattern, as some patterns are acknowledged to be more complex than
others. The use of a design pattern must be weighed against its simpler alter-
natives. However, when in doubt, a design pattern is the preferred alternative.
A pattern will increase the flexibility of the solution and may be helpful to
maintainers in non–obvious ways.

26

2.2.3 Parallel Pattern Languages

A design pattern is sometimes defined as a solution to a problem in a context.
One essential aspect of patterns is that they provide a common vocabulary for
communicating design information.

As the number of patterns grows, the application of some patterns naturally
leads to others. As these relationships between patterns grow, a structure
may emerge and form a cohesive set of rules for applying the patterns to solve
larger, more complex problems. These rules dictate the subset of patterns
that should be used and the order in which they should be applied to solve a
design problem. They provide a means of using a set of design patterns to deal
with problems that cannot be handled by any one pattern. This collection of
patterns and rules forms a pattern language.

A concrete example of a pattern language can be found in [72]. This
pattern language is targeted at finding the most appropriate parallel structure
for a given problem. The rules guide the designer through a set of analysis
patterns that are used to find the concurrency and identify how it should
be decomposed. At the end of this process, the analysis leads to a parallel
structure for the problem.

This design stage is absent in tools research. Tool developers assume that
the programmer is familiar with the design of parallel programs and concen-
trate on support for development stages.

2.3 Framework Research

Framework research is not limited to creating new frameworks and using them
to build applications. As frameworks become more prevalent, new issues have
become apparent.

One obvious issue is the documentation of frameworks. As already noted,
in order to build an application, the programmer must understand enough
about the flow of control through the objects to understand how and where
to insert application code. Without adequate documentation, this task could
prove impossible. Section 2.3.1 discusses work in framework documentation.

Another issue that was raised in Section 2.1 was the composition of frame-
works. Many applications span several problem domains, each with a useful
framework. Composing these frameworks may not be trivial, though. Sec-
tion 2.3.2 looks at some of the problems that can occur and their solutions.

Finally, another problem that arises in frameworks is how they are instanti-
ated. Normally, this instantiation requires the user to understand many archi-
tectural and implementation details of the framework. The number of classes
and objects that need to be created in some frameworks can be large, which
places a significant burden on the user. Section 2.3.3 looks at a language–based
solution to this problem.

Note that these are not the only problems related to object–oriented frame-

27

works that have been identified. Others include implicit architecture and
cross–framework dependencies [16], which are not discussed here.

2.3.1 Documenting Frameworks

In documenting frameworks, the objective is to provide sufficient detail so
that the programmer can determine how to use the framework to implement
an application. There have been two basic approaches: documenting how
the framework is designed and documenting how to use the framework to
accomplish a specific goal.

A number of methods have emerged to document the design of a frame-
work. One popular method is to document the framework in terms of the
design patterns that were used to implement it [53]. One of the improvements
that a design pattern can have on a software system is the introduction of
flexibility in the design. Each pattern allows some aspect of the design to
evolve over time, independently of other parts of the design. Often, under-
standing the design patterns used in some aspect of a framework can lead to
an understanding of how to specialize that aspect for a given application. The
Template Method and Factory Method patterns [37] require that a class be
subclassed and that certain primitive methods be overridden with new imple-
mentations. The Observer pattern [37] requires that observing objects register
to be notified whenever a subject object is changed, so that the observers can
be kept up–to–date. It also requires that a subject object must provide the
ability to register observers and must ensure that observers are notified of any
state changes that they are interested in. It has been noted that patterns de-
scribe not only the structure of the design of software, but also its architecture
and the reasoning behind it [11].

Rather than describing the design of the framework, hooks are intended
to show how to use a framework to to accomplish specific tasks that are part
of creating a complete application [35, 36]. Each hook shows which parts
of the framework must be changed or augmented to incorporate application–
specific functionality into a framework, including any constraints that must
be observed. A hook may also include the use of other hooks if the needed
changes are large enough. The developer of a framework supplies a complete
list of hooks showing how to specialize it. Hooks can be characterized using
two different axes: method of adaption and level of support. Level of support,
in particular, has three categories:

1. Option hooks. This level provides the most support. For some part
of the framework, the user has a choice of a number of different pre–
built components. A new component can be selected, without requiring
extensive knowledge of the framework design.

2. Supported pattern hooks. The framework developer has defined an in-
terface for fulfilling some part of the requirements of the framework, but
the implementation is application–dependent and must be filled in by

28

the user. This can be as simple as supplying parameters to some of the
framework classes or as difficult as creating new subclasses and overrid-
ing methods. The important characteristic of this category of hook is
that the framework was designed with the intent that these changes be
made. The user will need to know more about the framework to use
these hooks than is needed to use option hooks, but will not need a deep
understanding of the overall design.

3. Open–ended hooks. These hooks have the least amount of support.
These hooks show the user how to make changes that the framework
developer choose not to support or could not support. These hooks
can involve any type of changes to any of the classes and methods in the
framework, including changes to the structural classes. If an open–ended
hook is used frequently, this may be an indication that the framework
should be changed to make it an option hook instead.

2.3.2 Composing Frameworks

Frameworks were initially created with the assumption that only one would
be used in a particular program. This assumption has proved to be incorrect.
As programs grow larger in both size and scope, multiple frameworks are
needed to cover the complete problem domain. Unfortunately, composing
these frameworks into one large application can be difficult. This section
briefly examines the problems that have been identified, the underlying causes
of these problems, and potential solutions [75, 76].

In total, five primary composition problems have been identified. These
are:

1. Composition of Framework Control. Most frameworks define the flow of
control through the program. For example, GUI frameworks take over
the flow of control by going into an event loop and invoking user code
only in response to events in the user interface. Composing two such
frameworks together requires that the two separate flows of control be
merged.

2. Composition with Legacy Systems. Many frameworks rely on subclassing
framework classes to introduce application–specific code and to enforce
the interfaces between framework components. Legacy systems will not
be subclasses of framework classes and will probably not support the
correct interface needed by the framework. They will need to be adapted
for the framework.

3. Framework Gap. The composed frameworks may not cover the applica-
tion requirements.

4. Composition Overlap of Framework Entities. Two frameworks may each
have a representation of the same entity, implemented from its own per-

29

spective. These representations need to be composed as well. However,
the state in the representations may overlap, creating dependencies be-
tween different state elements that must be maintained. For example,
one framework could treat a sensor as a fire alarm that has either tripped
or not. Another framework might be using the same sensor to measure
temperature and pressure. When combined, there is a dependency be-
tween temperature and the status of the fire alarm. Any changes to the
temperature require that the status of the fire alarm also be updated.

5. Composition of Entity Functionality. This problem occurs when the
functionality of an entity requires the composition of parts of function-
ality from different frameworks. Changes to one part of the entity must
be propagated to all relevant framework functionality. For example, an
entity in an application framework may also need to be displayed on a
user interface and need to be persistent. A change in the entity will not
be automatically reflected in the other frameworks.

The four underlying problems at the root of each of these composition
problems have also been identified. These are:

1. Framework Cohesion. A class in a framework contains two types of func-
tionality, domain–specific behaviour to implement the necessary entities
for the problem domain, and interaction behaviour to exchange infor-
mation between framework components. The interaction behaviour is
cohesive in that it establishes how the framework classes operate to-
gether. It is not a function of the problem being solved, but is rather a
function of the framework structure. To replace a class in a framework, it
is necessary to properly implement both the domain–specific behaviour
and the interaction behaviour.

2. Domain Coverage of the Framework. Since there is no standard definition
of the complete domain for most problems, there is no way to ensure that
either the domain is covered or that the domain will not overlap with
other domains. Thus, frameworks built from these inexact specifications
can experience either framework gap or overlap.

3. Design Intention of the Framework Designer. The design intentions for
the framework are often not detailed enough to decide if it will be possible
to compose different frameworks. Some frameworks exhibit properties
that make them amenable to composition while others do not.

4. Lack of Access to the Source Code. Some of the changes needed to
address the composition problems are best addressed by modifying the
framework source code. If source code is not available, the user will have
to wrap framework objects inside other objects to change the behaviour
of the framework, at the expense of performance. Note that this effect
can happen if the source code for the framework is complex enough that
the user decides against trying to understand and change it.

30

Composition Composition Framework Overlap of Composition
of frame– with legacy gap entities of entity
work control components functionality

Cohesive Complicat– Primary – Complicat– Complicat–
behaviour ing factor cause ing factor ing factor
Domain – – Primary Primary –
Coverage cause cause
Design Primary Complicat– – Complicat– Primary
Intention cause ing factor ing factor cause
No source Complicat– Complicat– Complicat– Complicat– Complicat–
code access ing factor ing factor ing factor ing factor ing factor

Table 2.1: Framework composition problems and their causes [75].

Table 2.1 summarizes the causes of each of the composition problems.
Despite all of the problems with framework composition, there are a num-

ber of potential solutions to each of the five problems. Some of these solutions
are:

1. Concurrency. For the composition of framework control, it may be possi-
ble to use a different thread for each framework rather than merging the
control loops. This only works if the frameworks are independent (i.e.
no framework needs to be notified of any events in another framework).
However, this solution will require synchronization in any objects that
may be accessed by multiple sources.

2. Wrapping. The user can wrap a framework object inside another object.
This wrapper adds functionality to the object it replaces. For example,
when dealing with composition of framework control, the wrapper could
be used to propagate events between different frameworks. When deal-
ing with framework gap, the wrapped object can extend the framework
object with new functionality.

3. Adapters. Composing legacy code is an example of a problem for the
Adapter design pattern [37]. This pattern allows objects with different
interfaces to work together by translating between the two interfaces.

4. Aggregation. One option for combining framework representations is to
create a new aggregate class that holds an instance of each represen-
tation. This aggregate representation is used by all of the combined
frameworks. One drawback to this solution is that the aggregate class
must support the interface and interaction behaviour needed for each
framework. Another drawback is that the source code for each of the
composed frameworks may have to be modified to use the aggregate in-
stead of its own representation. This solution can be used to address the
overlap of entities and the composition of entity functionality.

31

5. Inheritance. It may be possible to compose the entities from different
frameworks using an inheritance relationship. Entities with disjoint and
independent representations of an entity can be composed using multiple
inheritance. This solution can address framework overlap and compo-
sition of entity functionality. Another possible use of inheritance is to
combine subclassing and aggregation. For two frameworks with different
representations of the same entity, a subclass of each representation is
created that contains a reference to an instance of the other. Any changes
to one representation can now be propagated. This can be applied to
framework overlap problems.

6. Observers. When handling problems with the composition of entity func-
tionality, the Observer design pattern [37] can be used to keep the dif-
ferent framework entities up–to–date. The observers register on events
in one framework and update the others to keep the composition con-
sistent. A variation of this solution is to use an event mechanism to
keep different entities informed of any changes. To allow the different
frameworks to enforce their constraints, each framework can publish an
event informing the other frameworks of a proposed change before it
takes place. Another framework can veto this change if it would violate
a constraint [29].

The Catalysis approach supports component development with compos-
able framework models [29]. A framework model is similar to the architectural
models in Tracs. The model defines an abstract specification of the framework
structure, providing generic types for the different components and generic
relationships for expressing the structure. These models can also include con-
straint information to ensure they are used properly. To apply these models,
the generic types and relationships are mapped onto the types and relation-
ships in existing code. To distinguish the part a class plays in a framework,
we say that a class plays a specific role in a given framework. Multiple frame-
works can be composed by mapping roles from different frameworks onto the
same class.

An alternative composition mechanism with Catalysis is to use plug–points.
These plug–points are objects or attributes shared by multiple frameworks that
glue them together. A plug–point can act as an adapter (described above),
invoked from one framework and in turn invoking methods on another. The
plug–point can also connect frameworks using an event mechanism, relaying
information between frameworks indirectly.

Despite these problems, frameworks have been successfully composed in
practice [75]. While we do not attempt to solve any of these problems in this
dissertation, we should be aware of the potential problems. This way, our
frameworks can attempt to avoid the problems that will limit composability.

32

2.3.3 Instantiating Frameworks

The last step to using a framework is to instantiate it, creating all of the objects
that are needed for an application and composing these objects to create the
necessary collaborations. This is not necessarily an easy problem, as there
can be many objects that need to be created and composed. In addition, it
typically falls to the user to create all of the necessary objects, which requires
knowledge about the entire structure of the framework.

To alleviate this burden, some researchers are investigating language sup-
port for object–oriented frameworks. On such example is CORRELATE, a
class–based concurrent object–oriented language based on active objects [74].
The run–time system for CORRELATE is a framework that implements a vari-
ation of the Active Object design pattern [59]. This framework provides an
activation queue and scheduler to process the pending method invocations. To
use the framework, though, a separate class must be created for each method
that can be invoked on the active object. For a class with many public meth-
ods, creating all of the necessary classes and instantiating the complete frame-
work is a considerable amount of work. Instead, the CORRELATE compiler
introduces extra syntax to indicate both active objects and invocations on
active objects. At compile time, this syntax is used to create the necessary
classes and instantiate the complete framework. To prevent the framework
from becoming closed, CORRELATE exposes the important abstractions (like
the activation queue and scheduler) using a metaobject protocol.

2.4 Object–Oriented Modeling Languages

Tools for object–oriented programming in other domains have also used code
generation and layered approaches. This section discusses a small selection of
such tools from the sequential and real–time systems domain.

2.4.1 Generating Code from UML

UML (Unified Modeling Language) provides a standardized graphical repre-
sentation for the design of object–oriented programs [15]. It is the amalga-
mation of several successful methodologies from early work in object–oriented
analysis and design.

As with patterns, one of the traditional problems with UML diagrams is
that they are design constructs. Implementation is a separate step in which
the model is translated into constructs in a chosen programming language. As
with patterns, this is a time–consuming process. Furthermore, it is possible for
the program to diverge from the design model, which reduces its benefits. In
response to these problems, researchers have developed several ways of using
the UML diagram in a more direct manner during program implementation.
Two examples of this work are code generation from a UML model and a UML
virtual machine that directly executes the model.

33

One example of generating Java code from a UML representation can be
found in [46]. This work is noteworthy because it places few constraints on
the models for which code can be generated. One problem with UML is that
it supports general object–oriented models without regard to the features of
a particular programming language. Typically, programmers are forced to
confine themselves to a subset of the modeling language that can be easily
translated into the chosen programming language. For example, the model for
a Java application would normally have to avoid multiple inheritance. How-
ever, the code generator in [46] is able to map a larger range of UML design
elements to Java code, providing the designer with more freedom to model
their application without the constraints imposed by Java.

With a code generation system, the application development cycle consists
of changing the model, regenerating code, then recompiling and running the
new program. For large systems, this cycle can take hours to complete. The
UML virtual machine avoids this cycle by interpreting and executing UML
models [87]. By avoiding this cycle, the programmer can quickly experiment
with alternative models. However, once a design has been selected, produc-
tion systems are created using code generation to avoid the overhead of the
interpreter.

The UML virtual machine uses a layered approach in its meta–model,
which is used to represent the logical architecture of the model. Each level
of the meta–model provides a description of the previous layer. These levels,
from lowest to highest, are:

M0 This level represents the objects in a currently executing program. These
objects are also called user objects or domain objects.

M1 This level consists of objects for the model of the currently running pro-
gram. These objects are the user classes or domain classes in the pro-
gram. These objects describe the M0–level objects.

M2 This level contain objects representing the modeling language itself, which
is UML in this case. This is also called the meta–model level.

M3 This level consists of objects that are used to describe the language in
which the modeling language is represented. It is also called the meta–
meta–model.

These levels are illustrated in Figure 2.1.
The benefits of these tools, with regards to the 13 characteristics, are the

same as those for visual parallel programming systems in Section 2.1. The
primary benefit is separation. The structure of the program is captured di-
agrammatically rather than being part of the user code. In addition, both
systems represent associations between design elements as objects, further in-
creasing the separation between them. These associations are similar to the
ports and channels used to separate different parallel entities. However, in

34

person12345

person34567

person98765person

class

student

student9731

student3579

(User Objects)
M0−LevelM3−Level

(Meta−Meta−Model)
M2−Level

(UML)
M1−Level

(User Classes)

metaClass

Figure 2.1: The four–level logical architecture of a UML–based system. The
dashed arrows indicate an instance–of relationship.

terms of pattern support, these two UML tools share the same drawbacks as
their visual parallel counterparts.

2.4.2 The ROOM Modeling Language

The ROOM3 modeling language is an object–oriented approach for designing
and implementing real–time systems [93]. The language is based on executable
models, much like the UML virtual machine.

The conceptual framework of ROOM is split into two modeling paradigms:
abstraction levels and modeling dimensions. These two paradigms classify
the modeling concepts and help the programmer navigate through the design
space.

The abstraction levels separate the modeling concepts for different scopes
of a software system. The different layers both complement and constrain each
other. Each layer deals with its own individual concerns, but lower layers must
still be consistent with the model created at the higher layers.

There are two abstraction levels in ROOM: the Schematic Level and the
Detail Level. The Schematic Level is used for issues such as concurrency and
distribution, as well as other high–level behavioural modeling. Concurrent
constructs at this level include ports, the bindings between ports, and actors
(a concurrent object whose internal state and behaviour are represented by
an extended finite state machine called a ROOMchart). The Detail Level is
concerned with the modeling and behaviour of the non–concurrent parts of a
system, such as data objects (such as strings, numbers, or records). These are
implemented using traditional programming languages.

For specific problem domains, it is possible to add more modeling layers to
the abstraction levels, either above the Schematic Level or below the Detail

3Real–Time Object–Oriented Modeling.

35

Schematic Level

Detail Level

Behaviour

Inheritance

Structure

Figure 2.2: The conceptual framework of ROOM, taken from [93].

Level. For example, languages for modeling hardware systems can be added
below the Detail Level if necessary.

The modeling dimensions paradigm partitions modeling concerns based on
structure and behaviour. The structure defines the components in a system
and their relationships. The behaviour defines how these components func-
tion. Since ROOM is an object–oriented modeling language, inheritance must
also be addressed. Although inheritance seems to be part of the structure of a
system, both the structure and behaviour of a system in ROOM are considered
at the object level. Inheritance expresses relationships between classes. Fur-
ther, it has been noted that it takes considerable effort to create well–formed
inheritance hierarchies. Thus, the modeling dimensions paradigm considers
structure, behaviour, and inheritance as separate concerns.

The complete conceptual framework of ROOM, showing the combination
of both paradigms, is given in Figure 2.2. Each concern in the modeling dimen-
sions paradigm must be considered by the two abstraction levels, although the
form differs. For example, the structure of a software system at the Schematic
Level is modeled in terms of actors connected by bound ports. At the Detail
Level, the behaviour of different components is given as C++ or Java code.
Each of the two levels deal with the structure of the system but at different
scopes. Similarly, the behaviour and inheritance dimensions are considered by
both of the abstraction levels in different ways.

It is important to note that these layers and abstractions are used to parti-
tion different modeling concerns. They are not used as a means of building up
high–level services based on a lower layer. Since the model of each layer repre-
sents the same system, each layer is interrelated and must be consistent. This
consistency is enforced by tools that support the ROOM modeling language.
Further, these tools can help a developer navigate through the modeling ac-
tivities that are necessary to create a software system.

36

2.5 Summary

This chapter used the 13 characteristics of ideal parallel programming systems
to critically evaluate a cross–section of related research in parallel program-
ming systems, languages, and frameworks. Each of these systems falls short
in one or more of the categories. As we will see later in this dissertation,
careful consideration of these 13 characteristics and the failings of existing
systems guided the creation of both the PDP process and the CO2P3S parallel
programming system. Other work in design patterns, pattern languages, and
frameworks was also discussed. Finally, a selection of modeling languages,
which also take advantage of code generation and layered approaches, were
also presented.

37

Chapter 3

The Parallel Design Patterns
Process

This chapter describes the Parallel Design Patterns (PDP) process, a new
pattern–based approach for building object–oriented parallel programs. The
process is novel in its approach to openness [96], which permits a user to access
low–level facilities in a parallel application. The process supports three layers
of user–accessible abstraction, where each layer provides successively lower–
level control over application development and tuning. In contrast, many
parallel programming systems are closed and do not permit the user to access
or tune system–specific code. Those systems that do provide openness typi-
cally strip away all abstractions immediately, leaving the user to contend with
a large number of implementation details that must be considered.

Over the course of this chapter, we will use the terms structurally correct
parallel program and semantically correct parallel program. Within the context
of this work, a structurally correct program refers to a parallel framework that
can be used to write a program with the following properties:

• It correctly creates all of the necessary parallelism based on framework
arguments.

• It correctly distributes data across the processes or threads used to exe-
cute the program.

• It provides a correct synchronization structure. There should be no race
conditions or unprotected accesses to shared resources or data encapsu-
lated by the program structure. Such data could include references to
objects that represent the state of a parallel computation. This synchro-
nization will be pessimistic, assuming the worst case.

• It provides a correct communication structure. Each process or thread
will send the correct data to the proper collaborator. In a shared memory
environment, there is no explicit communication so this characteristic
means that shared data is used correctly. For example, each process or

38

thread will correctly access only the data that are assigned to it. Again,
this communication may be pessimistic, sending too much data on some
occasions.

• Neither the synchronization nor the communication structure will cause
the program to deadlock.

• It will terminate properly and can shut down all of the parallelism. In
many cases, the framework is given a mechanism to detect completion
of its computation and will shut itself down. In other cases, where the
amount of work in a problem cannot be determined beforehand, the
framework provides the necessary means to release processes and threads
when the programmer indicates that the computation is over. However,
the parallelism should not be shut down until the work that currently
being processed has finished.

This definition does not take into account the user application code that is
inserted into the framework. It is possible for the programmer to write hook
method code that will cause the program written with the framework to fail to
meet some of these characteristics. For example, the data objects encapsulated
by the framework may include objects to which the programmer has added
hook method code. It is possible for these hook methods to include unprotected
accesses to shared data (by using a static variable, for example). The above
guarantee ensures that the structural code will properly access the object
references, but cannot guarantee that those objects do not in turn incorrectly
access shared data themselves. Unfortunately, such errors can be introduced
by library code, which can make them difficult to locate and correct.

A semantically correct parallel program is a complete program, consisting
of the structural code and user code, that has the above properties and solves
the desired problem. The definition of semantically correct considers cor-
rectness but not performance. Where appropriate, performance is addressed
separately. Note that a program is structurally correct but not semantically
correct if the selected parallel structure cannot be used to solve the problem
(either because of an incorrect parameter value or because the structure is
wrong for the problem).

Section 3.1 presents a brief overview of the PDP process, presenting the
three layers of abstraction and outlining the steps involved from the perspec-
tive of a user who is building a parallel application. To make the process
more concrete, Section 3.2 illustrates these steps by walking through the de-
velopment of an example application using the CO2P3S parallel programming
system. CO2P3S is one (of many possible) tool for implementing the PDP
process, and is described in more detail in Chapter 4. Section 3.3 outlines the
benefits that the PDP process offers parallel programmers.

In addition to considering how a programmer might use the PDP process
to write parallel applications, we must consider how tool developers might go

39

about developing and supporting the abstractions in the process. Section 3.4
discusses these issues.

3.1 Overview of the PDP Process

The complete PDP process consists of five steps that support three layers of
abstraction. The higher–level abstractions create structurally correct parallel
programs and enforce correctness using encapsulation. Lower–level abstrac-
tions gradually expose implementation details and give users the opportunity
to modify this structure and tune the performance of their applications.

The abstractions derived by the PDP process are:

The Patterns Layer This layer promotes the rapid development of struc-
turally correct parallel programs. The user selects a parallel design pat-
tern template from a palette of supported templates. This template
represents a family of frameworks for a given design pattern. The user
can select the member of this family that is best suited for an appli-
cation by specifying application–dependent template parameters. Once
the parameters have been specified, the template is then used to generate
object–oriented framework code implementing the pattern indicated by
the template. This code consists of abstract classes that correctly imple-
ment the parallel structure of the pattern template together with con-
crete subclasses that are used to insert application–dependent sequential
code (i.e., a structurally correct parallel program). Structural correct-
ness is ensured by restricting access to the abstract structural classes;
the user can only implement the hook methods in the concrete classes,
which do not require any parallel code to work properly. A complete
application consists of either a single framework or several frameworks
composed together.

The Intermediate Code Layer This layer provides a high–level, object–
oriented, explicitly-parallel programming language, a superset of an ex-
isting OO language1. The abstract structural classes are implemented
using this language and are made available to the user. The user can
modify the generated structure, write new application code, or tune the
structure.

The Native Code Layer At this layer, the intermediate language is trans-
formed into code for a native object-oriented language (such as Java or
C++). This code provides all libraries used to implement the interme-
diate code from the previous layer. The user can tailor the libraries for
the application requirements or for the execution environment.

1Not to be confused with the intermediate code used by compilers.

40

To place other research work into perspective, we can consider them in
terms of the above abstractions. Many systems are closed, providing an equiv-
alent to one of the above three layers (typically the Intermediate Code Layer)
and nothing more. The programming model provided by these systems pro-
vides an abstraction for creating parallel applications but hides the implemen-
tation details from the user. There is no opportunity to expose these details
for tuning. DPnDP, the only system that provides any degree of openness,
does not open up the implementation of its supported patterns. Rather, the
tool permits the user to pass messages between any processes using the under-
lying message–passing system, which is a weaker version of the Native Code
Layer. There is no possibility of tuning the run–time support for any of the
patterns in DPnDP. In contrast, the above three layers identify a set of ab-
stractions that open up the implementation of a parallel programming system
in a controlled manner. The Intermediate Code Layer exposes these details
using a high–level view that is conducive to making structural changes to the
generated framework code. By providing a high–level view, novice parallel
programmers may be comfortable enough with this layer to try tuning their
applications. More experienced users can use this layer for high–level changes
or they can use the Native Code Layer to examine and refine the low–level
run–time support.

The PDP process has five steps to develop a complete parallel application.
The first three steps are required and the last two steps are optional:

1. Identify the parallel design patterns that are required to parallelize the
application and select the corresponding design pattern templates.

2. Supply the application–specific parameters for the selected templates
and generate the framework code.

3. Implement the application–specific sequential hook methods in the gen-
erated frameworks, as well as any other application code. The Patterns
Layer is now complete. Check that the result is a semantically correct
parallel program. If not, return to Step 1.

4. If the performance of the parallel application is not satisfactory, use the
facilities of the Intermediate Code Layer to examine the structural frame-
work code. This code contains high–level synchronization and communi-
cation primitives. Any primitives that are not needed for the particular
application can be removed. The use of the remaining primitives can be
optimized (for instance, by changing their location in the framework).

5. If the performance of the parallel application is still not satisfactory,
specialize the implementation of the primitives at the Native Code Layer.
The new implementation can take into account the characteristics of
both the application and the target execution environment (machine
architecture, available libraries, etc.).

41

Figure 3.1: An example texture generated by the reaction–diffusion texture
generation program.

3.2 A Detailed Look at the PDP Process

To make the discussion on the PDP process more concrete, this section exam-
ines each step of the process in more detail by examining the development of
a simple parallel application using the CO2P3S parallel programming system.
The details of CO2P3S are presented in Chapter 4. For now, it is sufficient to
note that CO2P3S supports a Two–Dimensional Mesh pattern (referred to as
a Mesh pattern from this point on) and that the tool generates multi–threaded
Java frameworks for shared memory multiprocessors.

The example application is a reaction–diffusion texture generator from
computer graphics. This problem simulates the reaction and diffusion of two
chemicals called morphogens over a two–dimensional surface [113]. Starting
with random concentrations of each morphogen and the correct reaction and
diffusion parameters, the result of the simulation is a texture that approxi-
mates zebra stripes, as shown in Figure 3.1. Note that this texture can be
seamlessly tiled on a larger surface. Computationally, the simulation is simi-
lar to simultaneously solving two interacting LaPlace equations and is solved
using convolution. Each element on the surface computes its new values based
on its current concentration of both morphogens (reaction) and the concentra-
tions of its immediate neighbours (diffusion). To generate correct results, the
problem uses Jacobi iteration, where the new value is computed based on the
results of the previous iteration. The algorithm iterates until the change in
morphogen concentration at each point on the surface falls below a threshold.

3.2.1 Selecting a Design Pattern

A parallel design pattern encapsulates a strategy for solving a problem using a
familiar parallel structure. For a given problem, the user must determine which
combination of patterns will lead to the best solution. Note that there may be
many pattern combinations that work for an application. In a pattern–based

42

tool, the options may be limited to the patterns supported by the system2.
This selection problem, the first step of the PDP process, is not addressed

by this work. This is a difficult problem that requires the user to identify
the potential parallelism in the problem and understand how to exploit it.
Obviously the user’s understanding of the available parallelism is a limiting
factor in selecting the parallel patterns. The user might select an inappropriate
pattern for the problem. However, there are several methodologies for selecting
the most appropriate parallel structure for an application [22, 33]. A parallel
pattern language, such as the one described in Section 2.2.3, can also be used.

To keep the discussion simple, the reaction–diffusion example uses a single
instance of the Mesh parallel design pattern. Other design pattern combina-
tions can be used to solve this problem. The Mesh pattern naturally corre-
sponds to the structure of this problem. More often, a parallel program will
consist of several patterns, each responsible for parallelizing a different part
of the overall computation. Some applications of this kind are presented in
Section 5.

The Mesh parallel design pattern supports iterative computations over a
set of connected data. More precisely, the input data is a graph consisting
of nodes (or elements) and a set of edges connecting each node to a set of
neighbours. Each node computes a new value based on a combination of its
value and the values of some neighbourhood around it. To parallelize this
kind of computation, the graph is split into a set of partitions, each of which
is assigned to a process. The number of partitions (and hence processes) is
usually the number of processors that are to be used to solve the problem. An
example of a general mesh is shown in Figure 3.2(a). This solution requires
communication between the partitions to exchange the boundaries, which are
needed to compute new values for elements on the edge of a partition. The
primary difficulty in applying this pattern is to simultaneously minimize the
cost of the boundary exchange and balance the amount of computation for
each partition. An example of a parallel programming tool that supports this
type of computation is the PUL project. PUL includes a separate utility for
this partitioning task [104], with the results fed into the library supporting
mesh computations [105, 20].

The Mesh pattern can be applied to the reaction–diffusion problem in a
straightforward manner. Each node of the input graph represents a region of
the surface, and holds the concentration values of both morphogens. These
elements are arranged in a regular, two–dimensional array with each node
connected to its immediate neighbours. To generate a texture that can be
seamlessly tiled, the elements on the edges of the data are linked to elements
on the opposite edge in a toroidal fashion. This graph can be split into regular,
rectangular partitions. The result is shown in Figure 3.2(b).

2In some tools, it may be the case that a user can design an application with any desired
set of patterns, but will be responsible for implementing those patterns that are not directly
supported by the tool.

43

Partition 3Partition 2Partition 1

(a) An example of a general mesh with
three partitions.

Partition 3 Partition 4

Partition 1 Partition 2

(b) A regular, fully–toroidal mesh with
four partitions.

Figure 3.2: Examples of the Mesh design pattern.

3.2.2 From Design Patterns to Design Pattern
Templates

As noted earlier, a design pattern does not represent a single solution to a
given design problem, but rather embodies a family of potential solutions.
The main structure of the solution remains the same, but several variations
exist to tailor the pattern to the specific design problem at hand.

To incorporate this idea of a pattern being a family of solutions, the PDP
process includes the concept of a design pattern template. The template is a
design construct that represents the basic structure of the pattern, but includes
pattern template parameters to further specialize the template. After the user
has determined the most appropriate parallel design pattern for a problem, the
corresponding pattern template is selected. The values of the pattern template
parameters refine the template and select the member of the family of patterns
that is best suited for the problem. It is important to note, though, that a
template may be restricted to a subset of the complete family. The parameters
may not allow certain members to be selected.

For the reaction–diffusion example, a user would select the Mesh pattern
template using the CO2P3S user interface, shown in Figure 3.3. The Mesh
design pattern template in CO2P3S supports mesh computations with regular,
rectangular two–dimensional data. It does not support general mesh data
(such as that shown in Figure 3.2(a)). The parameters for this template,
specified through the interface, are:

44

1. The name for the class representing the mesh. In this application, the
name is RDMesh. The programmer uses this class for two purposes. First,
this class is instantiated to create all of the framework objects that im-
plement the pattern. Second, instances of this class are used to launch
the computation.

2. The class name for the elements that populate the two–dimensional mesh
structure. For this problem, the element class is called MorphogenPair.
The generated framework code for the Mesh template will create a two–
dimensional structure holding instances of these objects. The mesh com-
putation is executed on these objects, so this class holds application–
specific state for each element and provides a set of hook methods for
implementing the computation with respect to an individual element (or
node in the graph of Figure 3.2(b)). The hook methods are described
in Section 3.2.3. The MorphogenPair class in this example holds two
morphogens for a region of the simulated surface, and defines methods
for updating the concentration values of these morphogens using the
simulation parameters.

In addition, the user can also specify the superclass of this element class,
to fit the class into an existing inheritance hierarchy. In this application,
the mesh element class has no superclass so an appropriate default is
used. Since CO2P3S generates Java code, the default is Object.

3. The topology of the mesh. This parameter determines how elements on
the edge of the mesh structure are treated. A fully–toroidal mesh is used,
as shown in Figure 3.4(a), so that the generated textures can be tiled.
The Mesh template also supports non–toroidal, horizontal–toroidal, and
vertical–toroidal topologies.

4. The maximum number of neighbouring elements that each mesh element
uses to calculate its new value. This reaction–diffusion simulation dif-
fuses the morphogens in the horizontal and vertical directions. Thus, the
user picks a four–point mesh from the dialog in Figure 3.4(b). Eight–
point meshes, which include neighbouring elements on the diagonals,
are also supported for problems like the Game of Life or more complex
reaction–diffusion simulations.

5. The amount of synchronization for the computation. A mesh compu-
tation can be ordered or chaotic. In an ordered mesh, each element of
the mesh waits for the remaining elements to compute their new value
before starting the next iteration. In a chaotic mesh, each element starts
its next iteration as soon as it can, possibly using old data from neigh-
bours that have not completed earlier iterations. The specification of
the reaction–diffusion simulation requires Jacobi iteration to generate
the correct results, which requires that the mesh be ordered. If a chaotic
mesh is selected then this corresponds to using Gauss–Seidel iteration.

45

Figure 3.3: A screenshot of CO2P3S showing the reaction–diffusion application
using the Mesh pattern template.

(a) Mesh topologies. (b) The number of neighbours.

Figure 3.4: Examples of parameters for the Mesh pattern template.

This may produce a texture that looks “good enough” for its intended
use and takes less time to compute, although this would be changing the
original semantics of the problem. We have not investigated a chaotic
solution to this problem.

3.2.3 From Pattern Templates to Frameworks - The
Patterns Layer

After the programmer has specified values for the design pattern template pa-
rameters, the system gives the template to a code generator to create a frame-
work for the pattern, which is customized by the pattern template parameter
values. This framework is another example of an object–oriented framework,
with a set of abstract classes defining the application–independent flow of
control and a set of concrete subclasses that define the application–specific
functionality. This application–specific functionality is inserted into the flow

46

of control by overriding hook methods invoked from the abstract classes. The
generated framework includes both abstract classes and concrete subclasses.
The concrete classes available to the user include stubs with default implemen-
tations of the hook methods. This is important as the values of the pattern
template parameters can affect the set of available hook methods and their
signatures. Generating stubs for these methods saves the user from having to
derive this information from the parameter values.

The frameworks generated at the Patterns Layer exhibit certain character-
istics to make it easier to create a structurally correct parallel program. First,
to ensure correctness, the structural code is hidden from the user so that it
cannot be modified. Thus, the user starts with a correct parallel structure
for the selected pattern, and cannot introduce structural errors at this layer.
Second, as well as defining the flow of control, the abstract structural classes
contain all necessary parallel code, including communication and synchroniza-
tion. Specifically, the structure is implemented such that the hook methods
do not require any parallel code. The hook methods can be implemented as
normal, sequential methods. Last, the default hook methods implementations
allow the frameworks to be compiled and run immediately after they are gen-
erated. This allows an application to be developed incrementally.

An additional benefit to hiding the structural code is the simplification of
the frameworks from the user’s perspective. Only those abstractions that are
germane to implementing a problem need to be exposed. The user will not be
distracted by any abstractions or infrastructure for supporting the parallelism
in the selected pattern templates.

Another part of any tool implementing the PDP process is to track the last
layer that the user was working at for each template in a program, and display
that progress to the user in some way. In CO2P3S, this is accomplished using
colours in the graphical representation of the pattern templates. The green in
the nodes in the graphical representation of the Mesh template in Figure 3.3
indicates that this template has been used to generate framework code at the
Patterns Layer. If the framework code has not been generated or is out of
date (because the user has changed the value of a parameter), the nodes are
red. This ability to track which layer the user last used when working with
a template is vital for the lower layers, as any changes made there may not
be reflected by any changes at the code normally visible at higher layers. For
example, a change in the parallel structure may not cause any changes to
any of the classes that the user can access at this layer. If the tool does not
provide this information, users may forget about this structural change and
get unexpected results.

The generated framework code, together with the hook method code, com-
prise the Patterns Layer Code. The Patterns Layer is complete. The user now
has a complete structurally correct parallel program. This program can be
compiled and executed.

It is important to again emphasize the difference between a structurally
correct parallel program and a semantically correct parallel program. At this

47

stage of development, the user has framework code that correctly implements
the structure indicated by the combination of the selected design pattern tem-
plates and their parameters. The program is considered to be structurally
correct. However, there is no guarantee that this framework code can be used
as the basis for a semantically correct parallel program. The selected template
may not provide the parallelism needed for the problem or one of the parame-
ters of the template may have the wrong value. Even if the templates and their
parameters are correct, there is no guarantee that after the user edits the hook
methods, the code correctly implements the problem. There may be errors in
the user code, or the code may have been inserted in an inappropriate hook
method (and is thus being executed by the framework at the wrong time).

Consider the reaction–diffusion example in CO2P3S. After specifying the
parameters for the Mesh pattern template, CO2P3S generates framework code
for the template. The structural part of this code is hidden from the user so
that it cannot be compromised. Instead, the user’s view of the Mesh frame-
work consists only of the mesh element class. This class has the following
responsibilities:

• Creating an instance of itself by applying a user–supplied initializer ob-
ject.

• Determining if it has reached its final value.

• Computing its new value based on its current value and the values of the
available neighbouring elements.

• Gathering its final value into its final form by applying a user–supplied
reducer object.

The rest of the framework code uses these primitive operations to create a
complete mesh computation. Note that the user’s responsibilities are oriented
towards solving the problem, not supporting the parallelism in the generated
framework. The user can concentrate on how to implement these responsibil-
ities for each mesh element and not on how the framework will parallelize the
computation.

To make this example more concrete, consider the main loop of the mesh
computation for each process, given in Figure 3.5. This code is part of the
framework structure and is not available to the user at the Pattern Layer, but
it demonstrates the flow of control through the application. In particular, it
shows the order in which (most of the) hook methods are invoked. Some parts
of the computation are not present in this figure, notably data initialization
(which is done before the code in meshMethod()) and result gathering (which
is done after). The initialize(), prepare(), and postProcess() methods
invoke a method with the same name to each element in the partition. The
responsibilities of each of these methods is given in Table 3.1. The notDone()
method invokes a method with the same name on each element in the local

48

public void meshMethod() {
this.initialize() ;

while(this.notDone()) {
this.prepare() ;

this.barrier() ;

this.operate() ;

} /* while */

this.postProcess() ;

} /* meshMethod */

Figure 3.5: The main execution loop for each partition in the Mesh frame-
work. The italicized methods have corresponding hook methods that can be
implemented by the user.

partition, but also combines the return values for all processes to indicate if
the computation has finished computing. The barrier() call implements the
needed synchronization between the preprocessing of the mesh elements (in the
prepare() method) from the computation of new values (in the operate()

method, which is discussed later). In a chaotic mesh, this call is not present.
In a distributed memory environment, code to explicitly exchange boundaries
would appear before this barrier call. Since the frameworks generated by
CO2P3S use threads and shared memory, this exchange is implicit.

The operate() method in Figure 3.5 is different in that it does not invoke
an identically named method on each of the mesh elements in its partition.
Rather, this method invokes one of nine possible operation methods, listed in
Figure 3.6. The invoked method for a given mesh element is determined by the
location of the mesh element in the mesh data and the topology of the mesh, as
shown in Figure 3.7. The complete set of neighbours for a given mesh element
is determined by the number of neighbours used in the mesh computation.
The methods in Figure 3.6 are for a four–point mesh; an eight–point mesh
includes neighbours along the diagonal as well, changing the signatures of the
operation methods. The Mesh framework enumerates over the mesh elements
in a partition, determines the correct operation method, and invokes that
method with the correct neighbour information. To make the framework easier
to use, stubs are generated in the mesh element class for only those operation
methods that may be invoked. This saves the user from having to determine
both the correct subset of operation methods that must be implemented and
the proper signatures for those methods.

Using the supplied hook methods for the Mesh framework, the reaction–
diffusion is implemented as follows. The initializer object for the constructor
of the MorphogenPair class is a random number generator so that the two in-
stances of the morphogens can be created with random initial concentrations.
Note that the two–dimensional mesh data is created sequentially to guaran-

49

Table 3.1: The hook methods (except the operation methods, listed in Fig-
ure 3.6) for the instance of the Mesh framework used for the reaction–diffusion
example.
Hook methods with signature Implemented responsibility

MorphogenPair(int i,

int j,

int surfaceWidth,

int surfaceHeight,

Object initializer) ;

This method constructs a single instance of
the mesh element class at the location (i,
j) of the two–dimensional structure by ap-
plying the given initializer object supplied
by the programmer. The mesh elements
are created in another part of the gener-
ated structural code that executes before
the threads are created.

void initialize() ;

void prepare() ;

void postProcess() ;

These methods allow application code to
be inserted at various points in the mesh
computation. The barrier() call in Fig-
ure 3.5 implements the necessary synchro-
nization in the mesh structure, and is not
the user’s responsibility. It ensures that
all of the threads have finished any prepro-
cessing for an iteration (in the prepare()
call) before they compute the new value for
the mesh elements.

boolean notDone() ; This method evaluates the termination
condition for a single mesh element. The
computation continues until all mesh ele-
ments return false. The return value of
the notDone() method in Figure 3.5 is the
combined result for each of the calls of this
method on the individual mesh elements.

void reduce(int i,

int j,

int surfaceWidth,

int surfaceHeight,

Object reducer) ;

This method is responsible for applying the
user–supplied reducer object to gather the
results of the mesh computation after it
has completed. Like the constructor, the
calls to this method are in another part of
the structural code that executes after all
of the threads have finished computing.

50

void topLeftCorner(MorphogenPair right,

MorphogenPair down) ;

void topEdge(MorphogenPair left, MorphogenPair right,

MorphogenPair down) ;

void topRightCorner(MorphogenPair left,

MorphogenPair down) ;

void leftEdge(MorphogenPair right, MorphogenPair up,

MorphogenPair down) ;

void interiorNode(MorphogenPair right, MorphogenPair left,

MorphogenPair up, MorphogenPair down) ;

void rightEdge(MorphogenPair left, MorphogenPair up,

MorphogenPair down) ;

void bottomLeftCorner(MorphogenPair right,

MorphogenPair up) ;

void bottomEdge(MorphogenPair left, MorphogenPair right,

MorphogenPair up) ;

void bottomRightCorner(MorphogenPair left,

MorphogenPair up) ;

Figure 3.6: The operation methods for the mesh computation in the four–point
Mesh framework for the reaction–diffusion example.

bottomRightCorner()

rightEdge()

topRightCorner()topLeftCorner()

leftEdge()

bottomLeftCorner()

leftEdge()

. . .

. . .

. . .

.

rightEdge()

topEdge()

bottomEdge()

. . .

interiorNode()

topEdge()

interiorNode()

bottomEdge()

. . .interiorNode() interiorNode()

(a) Non–toroidal operations.

interiorNode()

. . .

. . .

. . .

.

interiorNode()

interiorNode()

interiorNode()

interiorNode() interiorNode()

interiorNode()

interiorNode()

. . .

interiorNode()

interiorNode()

interiorNode()

interiorNode()

. . .

interiorNode()

interiorNode()

interiorNode()

interiorNode()

(b) Fully–toroidal operations.

topEdge()

interiorNode()

bottomEdge()

. . .

. . .

. . .

.

topEdge()

interiorNode()

interiorNode()

bottomEdge()

. . .

topEdge()

bottomEdge()

interiorNode()

interiorNode()interiorNode()

. . .

topEdge()

bottomEdge()

interiorNode()

interiorNode()

(c) Horizontal–toroidal operations.

interiorNode()

. . .

. . .

leftEdge()

leftEdge()

interiorNode() rightEdge()

rightEdge()

interiorNode()

interiorNode()

.

leftEdge()

interiorNode() rightEdge()leftEdge()

rightEdge()

interiorNode()

interiorNode()interiorNode() . . .

. . .

. . .

(d) Vertical–toroidal operations.

Figure 3.7: The operation method calls for mesh elements in different positions,
for each of the topologies from Figure 3.4(a). Note that the above diagrams
represent the complete mesh data, not a single partition.

51

tee that the initialization is reproducible. It is important to note that each
morphogen keeps two concentration values: a read value that holds the value
from the previous iteration, and a write value for the result of the current
iteration. The default initialize() method stub, which does nothing, is
used as there is no additional initialization needed for each mesh element be-
fore the computation starts. The notDone() method for each element checks
for convergence by checking the difference between the read and write con-
centration values. The simulation ends when the changes in all morphogen
concentrations have fallen below a given threshold. The prepare() method
updates the read concentration value for the two morphogens with the write
value. This is required because the read value is used by neighbouring mesh
elements when calculating new values. To ensure that this update is completed
before new values are computed, the mesh needs to have the ordered param-
eter selected, which inserts the call to barrier() in the main loop. Without
this synchronization, it would be possible for a mesh element to compute its
new value based on outdated neighbour data, which yields incorrect results
for this algorithm. Given that this mesh is fully toroidal, the only operation
method that need be implemented is interiorNode(). In fact, since the user
selected the fully–toroidal parameter for the topology of the mesh, it is the
only operation method stub that is generated. This method computes a new
concentration value for each morphogen in the mesh element based on all four
neighbouring elements. The topology ensures that these four neighbours exist
for all mesh elements. The postProcess() method performs one final update
of the read values from write values before the results are gathered. Finally,
the reduce() method, not shown in Figure 3.5, gathers the final result into
an output array that can be used to display the final texture. This method is
invoked sequentially on the entire mesh data structure after the computation
has finished. All of the user code for implementing this program is given in
Appendix A.

In addition to the hook method implementations and required collaborator
classes (such as the Morphogen class for a single morphogen, which is taken
from the sequential version of the problem), the user must create a mainline
method to create and launch the computation. To help, the CO2P3S sys-
tem generates a sample mainline method that the user can modify for the
specific computation, given in Figure 3.8(a). The simplified mainline for the
reaction–diffusion example is given in Figure 3.8(b). This code is not the de-
fault mainline generated by CO2P3S, but rather is a version modified for this
program. Recall that the name of the class representing the mesh is RDMesh.
The mainline takes the size of the mesh data from the first two command line
arguments and the number of horizontal and vertical partitions from the third
and fourth arguments. The data is evenly distributed over the partitions and
each partition is assigned to a different process. The initializer and reducer
arguments needed for the sample problem, a random number generator and
a two–dimensional array of final concentration values, are created next. The
mesh framework is instantiated by creating an object of type RDMesh with the

52

needed constructor parameters. The computation is started by invoking the
launch() method on the mesh object. When this method returns, the com-
putation will be finished and the final results will be available in the reducer
object.

If a parallel application consists of several patterns composed together, the
user will also need to write code to take the output from one pattern and pass
it to the input of the next. Part of this process may be handled by additional
patterns available within the tool. In addition, the tool should have a method
for developing new classes or incorporating existing classes that can be used
in a parallel application. The latter, combined with the property that hook
methods contain sequential code, can promote the reuse of existing sequential
code. For instance, in the reaction–diffusion problem, the MorphogenPair

class includes two instances of the Morphogen class, which is reused directly
from the sequential code.

Once the hook methods and other necessary code are implemented, the
programmer has a parallel program that can be executed on a parallel machine.
While the user can introduce logic errors in the application–dependent code,
the parallel structure cannot be compromised. Thus, the user can concentrate
on the logic in the application and not on the parallel framework code that
executes it. This is an improvement over other parallel programming systems
that force users to consider parallel and concurrency issues during development
by requiring them to implement the parallel structure of their applications.

The two key aspects of the Patterns Layer are separation and correctness.
Separation refers to the clear distinction between the application–independent
parallel structural code and the application–specific sequential hook method
code. Maintaining this separation allows the structural code to evolve inde-
pendently of the application code. Correctness refers to the ability of the user
to write correct parallel programs. The remainder of this section examines
these two aspects in more detail, based on the reaction–diffusion example.

Separation

Separation is achieved by generating framework code for the supported pat-
terns. Application frameworks are built with the structural code, defining the
flow of control through a program, implemented in abstract classes. An appli-
cation is created by subclassing these abstract classes to implement methods
that are invoked by the structural code. This can also be considered an appli-
cation of the Generation Gap pattern [108], which separates generated code
from application code by placing the generated code into abstract classes. This
separation allows the application–independent classes to be regenerated with-
out affecting the application–specific classes. Generating framework code from
pattern specifications solves the same problem. However, the code generated
at the Patterns Layer is intended to be modified at lower layers of abstraction,
which is not part of the intent of the Generation Gap pattern.

For instance, consider the topology parameter in the Mesh pattern tem-

53

public static void main(String[] argv) {
int dataWidth = 1 ;

int dataHeight = 1 ;

int meshWidth = 100 ;

int meshHeight = 100 ;

Object initializer = null ;

Object reducer = null ;

RDMesh mesh = new RDMesh(surfaceWidth, surfaceHeight,

meshWidth, meshHeight, initializer, reducer) ;

mesh.launch() ;

// When mesh.launch() returns, the results will be

// available via the reducer object.

} /* main */

(a) The mainline code generated for the framework for the Mesh pattern template.

public static void main(String[] argv) {
int dataWidth = Integer.parseInt(argv[0]) ;

int dataHeight = Integer.parseInt(argv[1]) ;

int meshWidth = Integer.parseInt(argv[2]) ;

int meshHeight = Integer.parseInt(argv[3]) ;

Random initializer = new Random() ;

double[][] reducer =

new double[dataWidth][dataHeight] ;

RDMesh mesh = new RDMesh(surfaceWidth, surfaceHeight,

meshWidth, meshHeight, initializer, reducer) ;

mesh.launch() ;

// When mesh.launch() returns, the results will be

// available via the reducer object.

} /* main */

(b) Simplified mainline code for the reaction–diffusion example.

Figure 3.8: Generated and modified mainline code for the framework generated
for the Mesh pattern template.

54

plate. This parameter determines the set of operation methods that may be
applied to a mesh element. If this parameter is changed, it should be possible
to regenerate the framework without losing the implementation of any oper-
ation method that can still be invoked. The programmer should only have
to implement any new operation methods that can be invoked with the new
topology. Similarly, it should be possible for the number of neighbouring ele-
ments to change without losing application code. The programmer will need
to modify the operation methods to deal with the different set of neighbours,
but the remaining code should not be affected. This allows the structural code
to evolve and change relatively independently of the application code.

In general, changing parameter values should yield few code changes. While
the structural code changes, the interface between it and the application–
specific classes should be relatively stable. Changing patterns, on the other
hand, could give rise to substantial changes, as the new interface may be con-
siderably different. The interface between the structural code and application–
specific code depends on the problem that the framework is trying to solve, or
rather on the intent of the pattern that the framework is implementing in our
case. Patterns with different intents can have substantially different interfaces
to application–specific code.

Correctness

The Patterns Layer addresses correctness in several ways. These can be broken
down into three categories: parallel structural correctness, encapsulation of
structural code, and framework usability.

Parallel structural correctness is achieved by generating correct parallel
structural code in the abstract framework classes. Most parallel programming
systems provide a high–level programming model, but still require the pro-
grammer to create the complete structure of an application. Although the
programming model abstracts out some of the difficulties in writing parallel
programs, implementing the structure is an error–prone process. For instance,
in a message–passing environment, the sending and receiving of messages be-
tween different processes must match or processes may incorrectly block for-
ever. In a shared–memory environment, incorrect synchronization may result
in sporadic, non–deterministic errors. This problem is exacerbated by the lack
of good debugging tools and techniques. Given that writing this structure is
often difficult, it seems clear that tool support should be directed here. This
is the premise behind the Patterns Layer. Given a parallel design pattern
template, it is possible to generate a complete, correct parallel structure. The
user does not have to write or debug this code.

Another aspect to correctness at the Patterns Layer is the encapsulation
of the structural code such that it cannot be modified. At this layer, the user
can only supply sequential hook method implementations. This encapsulation
prevents the user from accidently introducing structural errors into the par-
allel code. Further, the frameworks should not rely on the user to correctly

55

implement any parallel code in the hook methods. This parallel code is part
of the structure of a parallel pattern, and should not be of concern to the user
at the Patterns Layer. As a result, the frameworks do not rely on hook meth-
ods to properly implement any parallel code in order to work correctly. The
structural code includes all necessary parallel code to ensure that the hook
methods can be written as normal, sequential methods.

For instance, consider the barrier synchronization required for the ordered
mesh (in Figure 3.5). The user specifies this synchronization via a Mesh pat-
tern template parameter, which affects the generated structural framework
code. The user is not responsible for inserting or implementing this code; it
is encapsulated in the framework. Further, the user cannot accidently remove
this barrier.

The final correctness aspect, framework usability, refers to reducing the
probability of user errors when implementing an application using the gener-
ated frameworks. Clearly, parallel structural correctness is part of this con-
cern. However, learning to write an application with a framework also entails
a learning curve. A programmer must understand three issues about a frame-
work in order to use it: how the hook methods in the framework can be used
to specialize the behaviour of the structure, which hook methods need to be
implemented for a given application (and, conversely, which can be left with
their default implementations), and how the different classes in the framework
must be composed into a complete application. Adequate documentation is
the solution to the first issue and part of the second. The remainder of the sec-
ond issue and the third can be addressed through conditional code generation,
again based on the parameters for the design pattern templates.

In some cases, a framework may present hook methods that may not be
used by the structural code. This can happen when the programmer selects a
different strategy than the framework uses in some part of its computation. For
example, a different framework for the mesh may include all nine operation
methods as hook methods, but only invoke a subset of them based on the
mesh topology. The programmer would then be responsible for determining
the correct subset of operation methods for the application. This can be the
source of errors if the programmer implements the incorrect methods. Also,
if the topology changes then it is possible for the programmer to forget to
implement any additional methods that may now be invoked. To prevent
these errors, CO2P3S generates concrete classes that include stubs for only
the hook methods that can be invoked. The topology for reaction–diffusion
example is fully–toroidal, so the only operation method that can be applied
to a mesh element is interiorNode(). When the framework is generated, the
mesh element class only includes a stub for this method and none of the others.
The user does not see any irrelevant hook methods, and so does not have to
derive the set of methods that need to be implemented based on the template
parameters. Instead, if the stub appears in the mesh element class, the method

56

can be invoked and should be implemented.3 Further, breaking down the mesh
operation into nine separate methods saves the user from having to write a
single, large operation method that must take the different topologies into
account. Although a single operation method would cut down on the number
of hook methods in the framework, the implementation of this method would
unnecessarily duplicate the topology information. If the topology changes, it
may not be clear if the single operation method is out of date. With multiple
operation methods, stubs for new methods appear in the mesh element class
and make it clear what new conditions are now possible and must be accounted
for. This is an example of using code generation to reduce the probability of
user errors.

Another problem when building applications from frameworks is the cor-
rect composition of the framework classes. The user not only needs to correctly
subclass the structural classes to implement hook methods, but also needs to
correctly compose both these subclasses and other collaborating classes into a
complete application. These other collaborating classes may implement poli-
cies or options in the framework. Again, the code generator can generate code
that automatically handles this composition without user intervention, based
on pattern template parameters. For instance, in the Mesh framework, an
instance of the Strategy pattern [37] is used to invoke the correct operation
methods on the mesh elements. In a normal framework, the user would have
to implement the mesh element class and then compose the other framework
classes into an application. This composition would include creating and using
the specific strategy for the topology. Since the topology is a Mesh pattern
template parameter, the appropriate Strategy object can be created and au-
tomatically composed into the framework. Further, the user interface can be
responsible for ensuring that a valid topology is selected.

The composition of framework classes can be further simplified by restrict-
ing the user’s view of the framework. The user is aware of only those classes
that are germane to creating an application. The remaining classes and respon-
sibilities are encapsulated by the pattern template, including their composition
into a complete application. This clarifies the responsibilities of the user by
removing unnecessary distractions from the development process. This is anal-
ogous to how behavioural patterns encapsulate complex object interactions.
These interactions are implicit when applying a behavioural pattern, allowing
the user to abstract out this detail and concentrate on the interaction between
the objects [37].

3It is, of course, not necessary to implement all hook methods, either to develop a
program incrementally or sometimes to achieve desired results. For instance, to implement
a mesh computation where the elements on the edge of the data structure are constant and
should not be updated, one can use an instance of the Mesh framework with a non–toroidal
topology and only implement the interiorNode() operation method.

57

3.2.4 From Frameworks to Parallel Programs I - The
Intermediate Code Layer

Ideally, the Patterns Layer would be sufficient to create an efficient parallel
program. Unfortunately, this is not possible for two reasons. First, it would
require the set of available pattern templates to cover the complete spectrum
of parallel programming structures, which is not possible. Second, not all
aspects of the pattern templates can be specialized. The parameters for a
given template may not allow certain alternative pattern implementations to
be specified. For instance, the Mesh pattern template does not support general
mesh computations. Further, the resulting frameworks for a given template
are conservatively correct, as the framework must be applicable to a broad
range of applications using the selected structure. Consequently, the gener-
ated frameworks may include synchronization that may not be necessary in
a particular application, or may serialize certain parts of a computation that
can be executed in parallel. As well, the framework may include generic code
that can be simplified for a given application.

To address these limitations, the PDP process includes additional layers
to support lower–level parallel programming and performance tuning. These
layers are also a response to the closed nature of existing approaches in par-
allel programming systems. With the exception of DPnDP, parallel systems
provide a single, closed programming model for writing programs. These mod-
els work well for certain problem domains, but any program outside of that
domain cannot be implemented efficiently. There is no provision for circum-
venting the model when a problem requires it. Even for problems within the
domain, though, the performance of a program is limited by the overhead in-
troduced by the programming model. Unfortunately, the closed nature of the
programming model in these systems prevents the programmer from removing
this overhead and improving the program. If the performance of an application
is not acceptable, the programmer usually has no choice but to find another
system that yields a more efficient program.

The second layer in the PDP process is the Intermediate Code Layer. This
layer provides a high–level, explicitly parallel object–oriented programming
language. This language may be an extension of an existing language such
as Java or C++ that includes high–level parallel constructs such as barri-
ers and parallel loops. The implementation of these new constructs, though,
is not accessible. In addition, this layer opens up the structural framework
code, making it available to the user. This code, written in our intermediate
language, can be modified or rewritten by the user.

The Intermediate Code Layer is intended to be a gentle transition from the
high–level patterns and frameworks at the Patterns Layer to the low–level run–
time support code. The structural framework code is supplied at a high level
of abstraction, making it easier to modify. These modifications can be used to
make application–specific changes or optimizations to the structure. The high
level of abstraction allows novice programmers to consider these changes.

58

For example, at the Patterns Layer the user can only see two classes in
the Mesh framework: the mesh class, which is only instantiated and used, and
the mesh element class, which implements a set of hook methods with respect
to the individual data element. A complete parallel mesh computation entails
the following responsibilities:

1. Creating the two–dimensional data structure and populating it with
mesh elements.

2. Creating the different partitions from the mesh data, assigning partitions
to processes, and starting the processes.

3. The mesh computation itself. This is a loop consisting of the following
steps, executed by each process for its local partition:

(a) Determine if the computation has finished (i.e. if the computed
values have converged in each partition).

(b) Exchange the boundaries of the partition with neighbouring parti-
tions.

(c) Compute new values for each node in the partition.

4. Gathering final results.

At the Patterns Layer, the most important aspect of the Mesh framework is
that all of the responsibilities above are implied by the Mesh pattern template,
and as such can be handled automatically by the system. The four respon-
sibilities above define the complete mesh computation in a generic way. The
system uses the template parameters, hook methods in the mesh element class,
and the constructor parameters for the framework to transform this generic
structure into the specific mesh computation desired by the user.

At the Intermediate Code Layer, the implementation of the responsibilities
is opened. For the reaction–diffusion example, the complete implementation
of the generated framework is given in Figure 3.9. The classes that are visible
to the user at the Patterns Layer are shaded in gray. The MorphogenPair

class is the mesh element class, with user–supplied hook method implementa-
tions. The RDMesh class is the class that is instantiated to create and launch
the computation. The RDMesh class creates the two–dimensional data (the
BoundedMorphogenPairArray object, which consists of MorphogenPair ob-
jects), the partitions of the mesh data (the RDMeshBlock objects), and the
threads for the computation. Since CO2P3S frameworks are Java code with
shared memory, the partitions are actually implemented in the bounded ar-
ray objects by sharing one copy of the large data set and providing accessor
methods that use offsets to provide access to a subset of the data. Finally, the
RDMeshBlockStrategy class is part of the Strategy pattern [37] used during
the computation of new values to determine which operation method to invoke
and which neighbours to pass as parameters.

59

RDMesh

MorphogenPair

Abstract
RDMesh

Block
RDMesh

RDMesh
Abstract

Block

RDMeshBlock
Strategy

Bounded
MorphogenPair

Array

Thread

Figure 3.9: The complete implementation of the Mesh framework. The classes
that are visible to the user at the Patterns Layer are shaded in gray.

As a concrete example of a task for the Intermediate Code Layer, consider
the gathering of the end result in the Mesh framework in CO2P3S. This gath-
ering is done by applying a reducer object to each mesh element sequentially,
after the final values have been computed. This is necessary because, in gen-
eral, it is not possible to guarantee that this gathering can be done in parallel.
In the reaction–diffusion example, the reduction copies the final concentration
value into an output array. However, in this case, the operation can be done
in parallel as each value in copied to a unique array element. Since the pro-
grammer now has access to the structural code in the Mesh framework, this
change can be made.

To make the process of changing the structure of the generated framework
easier still, this structural code can itself be implemented as a framework,
complete with hook methods. This makes it easier to make simple changes to
the structural code. If the changes are beyond the scope of the hook methods,
the code in the abstract classes can be edited directly. The drawback to this
approach is that the code is overwritten if the framework is regenerated.

An important feature of the Intermediate Code Layer is that the interme-
diate language is a parallel programming language in its own right and can be
used to write parallel applications. In fact, a user can decide not to use any
patterns at the Patterns Layer and instead write a complete application at
the Intermediate Code Layer. This is particularly useful if no pattern in the
tool provides the parallel structure needed for an application. For example,
a programmer could use the intermediate language to solve a general mesh
computation, which is not supported in CO2P3S.

60

It must be noted that any modifications to the structure can result in an
incorrect program. Starting with this layer, the programmer is responsible for
the correctness of both the structural code and the application code. However,
if errors are introduced into the structure, it is possible to explicitly regenerate
the structure and begin again with the Pattern Layer Code.

3.2.5 From Frameworks to Parallel Programs II - The
Native Code Layer

If the performance of the application is not acceptable after modifying its
structure at the Intermediate Code Layer, it is possible to further improve per-
formance by modifying the implementation of the primitives using the Native
Code Layer. Where the Intermediate Code Layer permits application–specific
tuning, the Native Code Layer permits system–specific tuning. This is the last
abstraction in the PDP process.

This layer presents the underlying object–oriented programming language
together with any libraries used to provide the abstractions at the higher
levels. These libraries also include any architecture–dependent attributes of
the system. All of this support code can be modified by the programmer. For
example, barrier synchronization has several implementations that take into
account parallel architecture (shared memory versus distributed memory) and
the amount of expected contention. The implementation of the barrier can
be rewritten with another version that is more appropriate for the application
and its execution environment.

3.3 Benefits of the PDP Process

The first and most obvious benefit to the PDP process is the separation of
concerns inherent in layered software. The layers in this process correspond
the different phases of program development, from initial development (the
Patterns Layer) to high–level program tuning and structural changes (the In-
termediate Code Layer) to low–level system tuning (the Native Code Layer).
Each development phase can benefit from different abstractions, which can
now be applied separately.

The PDP process offers a unique approach to building correct parallel ap-
plications through code generation and encapsulation at the Patterns Layer.
Current parallel programming systems generate support code for an applica-
tion, but still require the user to implement the structure of an application.
However, writing and debugging this structure is often the most difficult part
of parallel programming. By generating a debugged version of this structural
code, the Patterns Layer promotes the rapid development of parallel programs.
The user does not need to write and debug the structural code, and can instead
concentrate on application logic. Further, encapsulating the structural code
into a set of abstract classes that are not available for modification prevents

61

users from accidently introducing errors. This encapsulation leads to another
useful property of the Patterns Layer: the decomposition of a parallel applica-
tion into sequential and parallel code. The abstract structure contains all the
needed parallel and synchronization code such that application–specific code
is written as sequential code. This allows for the reuse of existing sequential
code to the extent that is possible in an application.

In the Patterns Layer of the PDP process, framework code is specifically
generated for the pattern template, rather than reusing a single implemen-
tation. In our case, generating code has several advantages that would be
difficult to achieve otherwise. These advantages are:

• With pattern template parameters, it is possible to add application–
specific methods to the generated framework code. This is not necessary
in the Mesh template, as its interfaces are fixed. However, the frame-
works for other pattern templates, the Distributor (Section 4.2.1) and
the Phases (Section 4.2.2), include application–specific methods in their
interfaces. With a single, static pattern template framework, these meth-
ods would be difficult to incorporate into a program.

• Generating the code simplifies the class and object structure of the re-
sulting framework. The framework implements the pattern structure
indicated by the pattern template parameter values supplied by the user
rather than being a generic implementation. A single implementation
would need to introduce indirection into the code to accommodate dif-
ferent pattern variations. For instance, the Strategy pattern [37] could
be used to specify policies in the framework. At the Patterns Layer,
these policies are good examples of pattern template parameters, which
guide the framework generation process. Rather than including a Strat-
egy object, the correct code can be generated and inserted directly into
the framework structure, reducing the number of objects and classes in
the code.

• The generated frameworks may have better performance. By reducing
the amount of indirection in the framework (as indicated above), it may
execute faster.

• The structural code is further simplified by only including relevant hook
methods in the framework. For example, in the Mesh framework, we only
include the subset of operations methods that are relevant. Otherwise,
it would be necessary to include all possible operation methods in the
structural code (18 in total), which might be confusing to the user. In
addition, the signatures for the relevant hook methods are included in
the concrete subclasses that are supplied to the programmer. This saves
the user from having to enter these signatures and reduces the possibility
of introducing compilation or logic errors into the hook method code.

62

• Additional support code can be generated and tailored to the pattern
structure. For example, the code for instantiating the framework (since
the structure is encapsulated at the Patterns Layer) is generated specif-
ically for the selected pattern structure.

• Generating code for each pattern template allows each framework to be
treated in isolation at lower layers. Each can be optimized indepen-
dently. Otherwise, it would be difficult to tune programs as any struc-
tural changes would have to be applicable to all uses of the framework
in the application.

Further, the combination of the layers in the PDP process promote open-
ness to allow performance tuning and structural modifications, which is cur-
rently lacking in most research systems. Unlike DPnDP, which provides limited
access to the low–level facilities, the PDP process provides several layers of ab-
straction to gradually expose implementation details. Dividing performance
tuning over multiple abstractions offers usability advantages. A programmer
can make changes at an appropriate layer of abstraction based on what is being
tuned. For instance, simple structural changes should not involve details on
how synchronization structures are implemented, as this detail is not relevant
to the task. Further, users can select an abstraction based on how comfortable
they are with it. Novice parallel programmers may wish to work at the Inter-
mediate Code Layer, while experienced programmers may want access to the
complete system while tuning. By providing both abstractions, the PDP pro-
cess provides performance tuning opportunities for all users. This graduated
approach leads to a system where the performance of a parallel program is
commensurate with programmer effort. Tools implementing this process will
provide a flexible environment for building parallel object–oriented programs.

3.4 System Developer Issues in the PDP Pro-

cess

To this point in this chapter, the focus has been on how a programmer uses
a tool based on the PDP process to implement a parallel program. However,
this process is also intended to guide parallel systems developers in creating
new tools. This section examines several issues that system developers must
address in any tool that supports the PDP process.

3.4.1 Creating the Design Pattern Templates

The Patterns Layer provides a set of design pattern templates that are used
by the programmer to describe the parallel structure of a program. However,
these templates must first be created by the tool developer. Many pattern
templates can be created for use in CO2P3S, and each template brings with it

63

a number of questions that need to be answered. Is the template necessary, or
is it already addressed by existing templates? How useful will the template be
in practice? How general should it be? What parameters should be available
for the template? What restrictions should it have? How efficiently can it be
implemented? These issues are for the tool developer, not the tool user. This
section examines the process of creating design pattern templates.

Recall that a pattern is a description of a good solution to a recurring
design problem. These solutions are the direct result of experience in design
by experts in the field. The primary purpose of a pattern is to describe and
discuss the benefits and drawbacks of the proposed solution and to provide a
common lexicon of design terms for software developers. From this abstract
idea, the more concrete design pattern template is created.

Design pattern templates take advantage of the commonality of different
design pattern implementations. Although part of a pattern description fo-
cuses on alternative implementations, each implementation shares a set of
common features. For example, the Composite pattern [37] lists nine imple-
mentation concerns that can shape the final use of the pattern. However, the
basic strategy of maintaining a tree-like container structure based on compo-
sitions of containers and leaf nodes is common across all implementations.

The first step in creating a pattern template is to identify this common
structure in the pattern. For instance, in the Mesh pattern, the common
structure is an iterative computation over a set of elements distributed over
different processes, where each element uses the values of some neighbourhood
around it to determine its new value.

Once the common structure has been identified, the pattern template can
be refined to narrow the scope of the pattern. For instance, the Mesh pattern
applies to general, undirected graphs. However, the Mesh pattern template
in CO2P3S narrows the scope of this pattern to regular, rectangular two–
dimensional meshes (from Figure 3.2(b)) where each element computes its new
value using data from its immediate neighbours. Imposing this structure on
the mesh data makes it easier to represent the data (using a two–dimensional
array) and generate partitions (by blocking the data). It further simplifies the
computation as the neighbourhood around a mesh element is fixed. The next
section shows how we can take advantage of this structure when generating
code for the Mesh design pattern template.

Finally, after the fixed portion of the template has been determined, the
parameters to the template must be decided upon. There are two considera-
tions that must be addressed in selecting the template parameters. First, they
should permit a variety of implementation options with respect to the fixed
portions of the template. For instance, given a Mesh pattern template that
supports regular, rectangular two–dimensional data, the pattern parameters
and supported hook methods can be used to create a number of different mesh
computations. In contrast, a general mesh template would need additional
parameters or hook methods for partitioning the data across processes.

The second consideration is related to the amount of effort needed to change

64

parameters for a template, particularly after framework code has been gener-
ated. The framework must be regenerated if any of the template parameter
values are changed, since the parameters dictate the structure of the frame-
work. For some parameters, this effort is warranted and even necessary. For
example, changing the boundary conditions in the Mesh template will add and
remove some of the operation methods from the mesh element class, since the
boundary conditions are a fundamental part of the structure of a mesh com-
putation. In addition, the structural code must be modified to recognize the
new conditions and call the proper operation methods. For other parameters,
though, this regeneration unnecessarily limits the application built using the
framework. The size of the mesh data and the number of partitions in the
Mesh template are examples of parameters that should not require regenera-
tion. Fixing these values in the structural part of the framework makes it too
difficult to experiment with different numbers of processors and different data
sets. In addition, it is straight–forward to generate framework code that can
properly create the data and partition it at run–time based on these values. As
a result, these two values are supplied in constructors at run–time, as shown
in Figure 3.8(b).

When constructing a pattern template from a design pattern, it is impor-
tant to balance generality against usefulness. Adding more template param-
eters makes a pattern template more general by allowing more members of
the solution family to be specified. However, these additional parameters can
make the complete specification of the template more difficult. In contrast,
though, fewer template parameters require more of the basic pattern structure
to be fixed, which can limit the usefulness of the template by restricting the
range of problems to which it can be applied. These considerations have to be
evaluated on a pattern–by–pattern basis.

3.4.2 Creating Frameworks

After creating a pattern template for a design pattern, the framework imple-
menting that pattern structure must be created. This task will be the most
difficult and time–consuming. Much like pattern templates, frameworks must
balance simplicity against generality. A framework must be simple enough to
use that a programmer will choose to use it over writing the complete appli-
cation. A framework must also provide sufficient flexibility that its structure
can be used across a broad range of applications.

The process of creating and evolving an object–oriented framework has
been captured in a pattern language [88], like the pattern language for parallel
programming from Section 2.2.3. The initial creation of a framework is guided
by generalizing across several example problems. For the parallel structures
provided by the framework generated by the pattern templates, this means
examining several problems that use the parallel structure and identifying
the common structure and abstractions. Subsequent patterns in this pattern
language cover the organization and decomposition of framework classes, in

65

particular concentrating on providing flexible ways of introducing application–
specific functionality into the framework.

Frameworks for the PDP process have three other concerns that must be
addressed as well. The first concern is the choice of programming language.
The process itself is independent of the programming language that will be
used to develop applications. Different languages have different facilities for
concurrency and parallelism. Languages with no facilities will need support
libraries to augment their capabilities. In using Java, CO2P3S can use the
existing thread facilities to write parallel programs. A system built on C++
will need a library to provide parallelism (such as pthreads or MPI).

The second concern is the type of architecture that the framework will
support. CO2P3S is targeted at shared memory multiprocessors, and takes
this into consideration in the frameworks it generates. For example, the data
for the Mesh framework is shared among all of the threads in the program (via
the BoundedMorphogenPairArray object). A distributed memory system will
need to use a distributed shared memory system or need to generate message
passing code and distribute data over the processors.

The final concern is the means used to support framework composition.
This issue must be considered as even small parallel programs may consist of
several patterns, which requires that the generated frameworks must be com-
posed into a complete application. Section 2.3.2 listed the potential problems
and possible solutions to this problem. As frameworks become more preva-
lent, we expect that both lists will grow, as we encounter more problems but
create new methods of dealing with them. Thus, the means of framework
composition is not dictated by the PDP process, but is instead left to the tool
developer.

3.5 Summary

This chapter examined the PDP process, a pattern–based approach to the
development of parallel programs. From a programmer perspective, the pro-
cess consists of five steps that support three layers of abstraction. The layers
support the complete task of developing and tuning a parallel program. The
complete process was demonstrated using a reaction–diffusion texture gener-
ation program, which was parallelized using the Mesh parallel design pattern
template in CO2P3S.

The PDP process is also a target for parallel systems developers. In creating
such a system, there are several issues that must be addressed regarding the
creation of design pattern templates and the frameworks generated for the
templates. This chapter also examined these issues.

66

Chapter 4

CO2P3S:
Correct Object–Oriented
Pattern-based Parallel
Programming System

The previous chapter detailed the PDP process, a new methodology for creat-
ing design–pattern–based parallel programs. To make the process more con-
crete, it was illustrated using a reaction–diffusion example implemented with
the CO2P3S parallel programming system. In the example, CO2P3S was used
to highlight the use of design pattern templates to specify the structure of
the program, the use of pattern template parameters to refine that structure,
and the generation of framework code for this structure. This framework code
provides a correct implementation of the selected parallel structure, which is
augmented with application–specific hook methods to create a complete par-
allel program.

While the PDP process outlines the basic development methodology, it does
not fully specify how a tool should support all of the abstractions provided by
the three layers of the process. A tool can address other aspects of correctness
in framework programming, and must consider usability issues. By leaving
some of these details out of the process, future tools can explore new ideas for
presenting these abstractions and supporting framework programming.

This chapter covers the CO2P3S parallel programming system in more de-
tail, showing how the tool addresses the different aspects of the PDP process
and general program development. Again, CO2P3S is an example of a tool pro-
viding the abstractions in the PDP process. Other tools may choose different
mechanisms for presenting the abstractions to the user.

Section 4.1 gives a more complete overview of the CO2P3S system, in-
cluding the program editing, compilation, and execution facilities. It uses the
reaction–diffusion example to show how the tool implements some of the fea-
tures of the PDP process. The patterns supported by CO2P3S are briefly de-
scribed in Section 4.2. Section 4.3 puts CO2P3S into perspective with respect

67

to related research. The system is evaluated using the 13 characteristics of
ideal pattern–based parallel programming systems to show that it meets more
of them than other systems. Finally, some of the abstractions in CO2P3S
are correlated with research in object–oriented frameworks and modeling lan-
guages.

4.1 CO2P3S Overview

This section details the features in the graphical user interface for CO2P3S. We
concentrate on features that enhance framework usability beyond that already
discussed in Section 3.2.3. There, framework usability was addressed by en-
capsulation and conditional code generation. Encapsulation hides the details
of the framework so the programmer can concentrate on only those portions
of the framework that are needed to build an application, and prevents users
from introducing errors into the structural code. Conditional code generation
allows the user to refine the structure of the supported patterns using tem-
plate parameters. The generated code also includes concrete classes needed to
insert application–specific functionality, with appropriate stubs for the hook
methods used by the framework. This section shows how the CO2P3S user
interface can further improve framework usability and reduce the probability
of user error.

Two screenshots from CO2P3S, showing different panes on the right side,
are shown in Figure 4.1. We will examine each pane in the interface in the
following subsections. The compilation and execution facilities in CO2P3S are
also examined.

4.1.1 Pattern Palette

The Pattern Palette, shown in Figure 4.2, presents the user with the pattern
templates supported by CO2P3S. In the figure, the templates, from top to
bottom, are

1. the Two–Dimensional Mesh,

2. the Phases,

3. the Distributor, and

4. the Pipeline.

These patterns will be covered in more detail in Section 4.2.
The number of supported patterns at the time of this dissertation is small,

but was driven by the needs of the example applications that have been created
with CO2P3S, which are discussed in Chapter 5. Similarly, the capabilities of
the frameworks for the current pattern templates were driven by the needs
of these programs. The development philosophy behind this work, much like

68

(a) A screenshot of CO2P3S with the Program Options pane on the right.

(b) A screenshot of CO2P3S with the Pattern pane on the right, from Figure 3.3.

Figure 4.1: Screenshots from CO2P3S.

69

Figure 4.2: The Pattern Palette, for selecting design pattern templates.

that for Extreme Programming [102], was to create what we needed when we
needed it and little more. As more applications are created, the set of patterns
and the capabilities of the generated frameworks will grow.

A user includes an instance of a template in an application program by
clicking on it. The new instance will appear in the Program pane (Sec-
tion 4.1.2). In addition, the user can access pattern template documentation
through a popup menu on the templates in the palette.

The most interesting aspect of the pattern palette is the use of the reflec-
tive capabilities of Java to add the templates. The list of template names to
be included in the palette is part of a configuration file (.copsrc, in the user’s
home directory). The name corresponds to a class representing the template,
which is instantiated by the user interface. One of the responsibilities of this
class is to provide access to its help and to provide a small graphical represen-
tation of itself for the palette. By using the reflective capabilities, it is possible
for users to easily customize the set of available pattern templates. More im-
portantly for future research is that this approach allows new templates to be
integrated into the interface without requiring any changes to existing code
in the system. To add a template (assuming that the classes implementing it
are available), the user need only add the name to the list of templates in the
configuration file.

4.1.2 Program Pane

The Program pane shows the current set of pattern templates that the user has
selected for the parallel structure of a program. It also shows the program name
and provides access to the Program Options pane (Section 4.1.3). Figure 4.3

70

Figure 4.3: The Program pane, showing the set of selected design pattern
templates for a program.

shows the pane for the reaction–diffusion application.
The topmost item in the list, with the CO2P3S logo, represents the com-

plete program. The text beside the logo is the name of the program, entered
when the program is created. Selecting this item causes the Program Options
pane to appear to the right, resulting in the screenshot in Figure 4.1(a).

Underneath the topmost item is a list of the pattern templates that have
been selected for this program. Each pattern is indicated by a small version
of its icon and the name of the template. The name of the template is taken
from one of the class names in the parameters for that template. Since these
names must be unique for a given program, the user can distinguish between
different instances of the same template. In the Mesh pattern, the template
name is the name of the mesh class, which was set to RDMesh (Section 3.2.2).
If the user has not yet entered this class name, the name of the template is
used. Clicking on one of the templates in the list in the Program pane causes
the pane to the right to become an instance of the Pattern pane (Section 4.1.4)
displaying the selected template, yielding the screenshot from Figure 4.1(b).

4.1.3 Program Options Pane

The Program Options pane allows the user to supply options that apply to
the entire program. This pane is shown in Figure 4.4.

The top section of the Program Options pane allows the user to manage
any additional user classes that are used by the program but are not generated
with the frameworks for the pattern templates. CO2P3S supports the inclusion
of these auxiliary classes because users should be able to reuse their existing

71

Figure 4.4: The Program Options pane, showing the list of external classes
and program comments.

code where possible. Specifically, since the hook method implementations
for the generated frameworks are sequential code, we should make provisions
for creating additional classes or including existing classes, possibly from a
sequential implementation of the program. These classes can be added, edited
(with the user’s choice of editor), and removed from a program using the three
buttons in the pane.

The bottom section of the Program Options pane is a text field that allows
the user to add comments to the program. These comments may document
the command line options, as in this example, or provide additional design
information for program maintenance.

4.1.4 Pattern Pane

The Pattern pane shows the current state of the design pattern template that
is currently selected in the Program pane. This pane is used to manipulate
the template. The Pattern pane for the instance of the Mesh template is given
in Figure 4.5.

The graphical representation of the pattern template indicates the current
state of the template so that it is clear to the user at a glance. The state of
a template includes the values of its parameters and the layer at which the
template was last manipulated. In Figure 4.5, the parameters for this partic-
ular mesh are apparent. The mesh is fully–toroidal (indicated by the arcs),
four–point (as the centre node has only four nodes), and ordered. The class
names are RDMesh for the mesh and MorphogenPair for the mesh elements.
The green nodes indicate that this pattern has been used to generate frame-

72

Figure 4.5: The Pattern pane, showing one of the design pattern templates in
a program.

work code at the Patterns Layer. If framework code has not been generated
or is out of date (because a template parameter has changed), the nodes will
be red. At a glance, the user can determine the state of the selected template.

The parameters for the templates can be modified through popup menus
in this pane. Each template can add menu items specific to itself for its
parameters.

The Pattern pane also performs some error checking for the pattern tem-
plates. For instance, it verifies that there will not be any class name conflicts
between the different templates. Each template must provide a means of de-
termining if a given class name will conflict with any of the classes that may
be generated for its framework, including those classes that are not visible to
the user at the Patterns Layer. The interface does not permit any conflicts.
The template parameters are also split into two categories: those that have
legitimate default values that can be used when a framework is generated, and
those that must be supplied by the programmer. The boundary conditions of
the Mesh template are an example of the former; the default conditions are
non–toroidal. The class name parameters are examples of the latter. They
must be supplied before framework code is generated for a pattern template.
The user interface can enforce this constraint.

The Pattern pane also allows the user to view the classes that provide
hook methods for the template and insert code into these classes. Figure 4.6
is an example of the template viewer in CO2P3S, which provides access to the
MorphogenPair class code for this example. This class holds default stubs for
all of the hook methods provided in the framework. Application code that

73

has already been entered for the hook methods is also visible. The viewer is
a modified HTML viewer, where the links in the document are places that
the user can insert application code. The most common links are method and
constructor signatures, where the user enters code for the body. In addition,
we include links to allow the user to enter code in other sections of the class.
One such link is at the top of the code for adding import statements, which
we used to import the java.util.Random class. There is also a link after the
stubs for the hook methods that allows other methods and instance variables
to be added to this class, that is not shown in Figure 4.6.

The viewer has two other useful features. First, any code displayed in the
viewer is the output of a code formatter, so that the results are consistently
indented and readable. This is particularly important since the user does not
have complete control over the indenting of the application code. The second
feature is the Show Line Numbers check box in the bottom right corner. When
this is checked, the line numbers appear at the left side of the source code.
This makes is easy for the user to quickly track down any compile errors, which
are referenced by source code line number.

When the user clicks on a link in the viewer, the code editor dialog appears.
This dialog is shown in Figure 4.7. The editor shows the signature of the
method or constructor being edited, with a text area for entering application
code below it. If code has already been entered for the method, it will appear
in the dialog. If the code changes are accepted by the user, the code in the
viewer will update.

The combination of the viewer and code editor dialogs reduces the prob-
ability of programming errors in two ways. First, the user does not have to
type in the signatures. The class displayed in the viewer is part of the gener-
ated framework, which includes stubs for the needed hook methods. Second,
the user cannot accidently change the signatures. These signatures are impor-
tant as they are part of the interface used by the abstract structural classes
to invoke the application–specific code provided in the concrete classes. Any
changes to the signatures can cause the concrete classes to become incompat-
ible and the framework may no longer work correctly. The combination of
the viewer and the code editor prevent the user from modifying the method
signatures, which prevents this type of error.

4.1.5 Compile and Run Dialogs

Any good programming system must not only support the development of
programs, but also support compilation and execution. CO2P3S is no different.
The Compile dialog for CO2P3S is shown in Figure 4.8, and the Run dialog is
shown in Figure 4.9.

The Compile dialog allows common compilation options to be selected
using the checkboxes. Additional flags for the compiler can be specified in the
Flags text field. The Compile button compiles the complete program. The
output of the compile appears in the text area at the top of the dialog. The

74

Figure 4.6: The Viewing Template dialog for viewing and entering hook
method code into a generated framework. Underlined text are hypertext links
to sections of the class that can be edited.

75

Figure 4.7: The Editing Code dialog for entering hook method code.

Figure 4.8: The Compile dialog, for compiling programs.

76

Figure 4.9: The Run dialog, for executing programs.

Clean button removes all Java .class files for an application. Finally, an
executing compilation can be stopped with the Abort button.

The Run dialog is similar to the Compile dialog. Again, program output
appears in the large text area at the top of the dialog. The most common run–
time options appear as check boxes and the heap size text fields. Extra options
can be entered in the Flags text field. The mainline class and command line
parameters are entered in the bottom text field. Finally, there are buttons for
executing the program and aborting the current execution.

Because CO2P3S is targeted at shared memory multiprocessors, there is
no facility for configuring which computers will take part in a computation.
Tools that will execute programs on networks of workstations or clusters of
distributed memory machines will need to include this configuration data. This
can be part of the Run dialog or may be part of the general tool configuration.

4.2 Parallel Design Patterns Supported by

CO2P3S

A crucial aspect of any design–pattern–based system is the set of patterns it
supports. This will determine the range of problems that can be efficiently
implemented with the tool.

This section gives more details on the parallel design pattern templates
supported by CO2P3S at this time. These templates are:

• Two–Dimensional Mesh. This template supports iterative computations
for a regular, rectangular two–dimensional set of data, where this data
is decomposed into a set of regular, rectangular partitions that are dis-
tributed over a set of threads. This template is discussed here only briefly
as it was covered in detail in Chapter 3.

77

• Distributor. This template supports data–parallel style computations
by forwarding methods from a parent object to a fixed number of child
objects, all executing in parallel.

• Phases. This template supports the creation of phased computations by
invoking an ordered sequence of methods on a Facade [37] object.

• Pipeline. This template supports pipeline computations. These compu-
tations consist of a series of independent stages that process a stream of
input items, where each stage refines its input and forwards its output
to the next stage. Since the stages are independent, each can be refining
a different item in parallel with the other stages.

The details of these templates are specific to CO2P3S. Other systems may
choose different templates, or may choose different alternatives for the above
templates (for example, a different Mesh template may include support for
irregular meshes or may have a different set of parameters).

The descriptions of each template describes what it does and how to use
it. Fully documenting a template should include several motivational sections
that are part of normal pattern documentation, such as Intent, Motivation,
and Applicability. Appendix B gives the format for our complete template
description, and Appendix C is an example of the documentation using the
Two–Dimensional Mesh. This documentation is intended for users at the
Patterns Layer, and so is intended to provide information on how to use the
template to create a program rather than on how the generated frameworks
are implemented.

Note that we devote more attention to the Pipeline than the other tem-
plates in this section. We have a new formulation of the Pipeline that addresses
some of the weaknesses in more traditional versions. This new formulation is
based on a combination of the State pattern [37], a separation between the
concurrency and the object structure, and a careful examination of the nec-
essary ordering between items as they progress through the pipe. These are
used to address the load balancing problems that cause many programmers to
avoid this pattern in their programs.

4.2.1 Distributor

The Distributor pattern template provides a data–parallel style of computa-
tion. The pattern consists of a parent object that encapsulates a fixed set of
child objects. Methods are invoked on a parent object. Some of these meth-
ods, as indicated by the user, will invoke a method with the same name on a
fixed number of child objects in parallel, each child operating independently.
Optionally, one–dimensional array arguments can be automatically distributed
across the children using one of four supported distribution strategies.

The crucial property of this pattern template is the encapsulation of the
child objects. The children should not be visible outside of the parent object,

78

Parent

Child 1 Child 2 Child 3

Figure 4.10: Distributing an array over a set of child objects.

so all methods must be invoked on the parent. In addition, to enforce their
independence, the children should not have references to one another. Thus,
all references to the child objects must be done indirectly via the parent object,
which can control access to them.

This template is particularly effective when state can be split into indepen-
dent parts and distributed over the child objects. Methods that manipulate
this state can be executed in parallel where possible. The most obvious exam-
ple is an array that can be split into subarrays and distributed over the child
objects, as in Figure 4.10. Operations on the data in the array are invoked on
the parent. If this operation has been identified as being a parallel method,
the operation is forwarded to each child, which performs the operation on its
portion of the array in a data parallel fashion.

Some of these methods may not be able to execute in parallel though.
The granularity of the method may be too small to warrant parallel execution
or the method may have data dependencies that prevent concurrency. For
the Distributor, this does not present a problem; the user can add sequential
methods to both the parent and child classes. These methods can manipulate
the state of the children or can operate on state in the parent that could
not be split into independent pieces. This provides the user the freedom to
determine where parallelism can be best applied inside the object structure
for the Distributor.

The parameters for the Distributor design pattern template are:

1. The class name for the parent class. The class name for the child class
will have “Child” appended to the end of this class name.

2. A list of methods that will be executed in parallel on the child objects.
This list has the following elements:

(a) The return type of the child implementation of the method. The
parent returns an array of these objects, one per child, unless this
type is void.

(b) The method name.

79

(c) The arguments to the parent implementation of the method. Op-
tionally, one–dimensional array arguments can have a distribution
scheme applied to them. The distributions are:

Pass through distribution Each child gets a reference to the
whole array (Figure 4.11(a)). This is the default distribution.

Block distribution The array is split into n contiguous subarrays,
where n is the number of children. Each child gets a unique
subarray (Figure 4.11(b)).

Striped distribution Each child i will receive an array containing
the elements at indices (i, i + n, i + 2n, . . .), where n is the
number of children (Figure 4.11(c)).

Neighbour distribution The ith child gets a 2–element array
consisting of elements i and i+1 from the argument array (Fig-
ure 4.11(d)). This distribution scheme is used in the parallel
sorting example discussed in Section 5.1.

All other arguments are passed through. The child implementation
of the method will have the same arguments as the parent, passing
an array of elements even if only one element is actually passed.

The number of child objects is a parameter to the constructor in the framework
generated for this template so that it can be set at run–time.

The Distributor template, as it appears in CO2P3S, is shown in Figure 4.12.
The left side of the Pattern pane graphically depicts the object structure
of this template, with the parent and child class names (DistExample and
DistExampleChild respectively). The Method List on the right side of the
pane shows the current set of methods that will be executed in parallel (in
this case, the single method initialize()). The red nodes and red rectangle
around the list of parallel methods indicate that framework code has not been
generated for this template.

The dialog for entering parallel methods for the Distributor template is
shown in Figure 4.13. The dialog provides the means of specifying all of the
elements of the method list (the second template parameter) in a controlled
manner. The distribution scheme can be applied only if the corresponding
argument is a one–dimensional array, indicated by the presence of “[]” at
the end of either the argument type or the argument name. The figure shows
the drop–down menu for the available schemes that the user can select. For
arguments that are not arrays, the only available option is pass through.

The structure of the framework generated for the Distributor design pattern
template is shown in Figure 4.14. The user’s view of the framework consists
of the two classes shaded in grey, the concrete class for the parent and the
concrete class for the child. The programmer instantiates the framework by
creating an instance of the parent class. This creates the child objects, the
number of which is an argument to the constructor. The hook methods in
the framework are the child implementations of the parallel methods, which

80

Array argument

Child 1 Child 2

(a) Pass through.

Array argument

Child 1 Child 2

(b) Block distribution.

Array argument

Child 1 Child 2

(c) Striped distribution.

Array argument

Child 1 Child 2

. . .

Child 3

(d) Neighbour distribution.

Figure 4.11: Distribution schemes that can be applied to one–dimensional
array arguments in the Distributor pattern template.

Figure 4.12: A screenshot of CO2P3S showing the Distributor design pattern
template.

81

Figure 4.13: The dialog for entering parallel methods for the Distributor tem-
plate, including a list of the distribution options for one–dimensional array
arguments.

the user enters through the viewer from Section 4.1.4. The strategy objects
implement the various distribution schemes, except for pass through.

When using this framework, all methods are invoked on the parent object.
The abstract superclass provides an implementation of each of the parallel
methods listed in the pattern parameters, which does the following:

1. The correct arguments for the child method are assembled. This may
require the use of the strategy objects implementing the distribution
schemes.

2. A set of threads is created, one per child, to execute the method on the

Distributor
Parent

Distributor
Child

Abstract
Distributor

Parent

Abstract
Distributor

Child

DistributorParent
Distribution

Strategy

DistributorParent

Distribution
Strategy

Block
DistributorParent

Distribution
Strategy

NeighbourStriped
DistributorParent

Distribution
Strategy

Figure 4.14: The class structure of the framework for the Distributor template.
The classes that are visible to the user at the Patterns Layer are shaded in
grey.

82

children. They are augmented Java threads that use reflection to find
the correct method (based on a method name and the best match of the
supplied parameters) and provide return values when they are joined
[65].

3. The parent waits for the threads to finish. The results, if any, are put
into a result array. These results are returned to the caller.

The granularity of the child methods must outweigh the cost of creating the
threads. There are times when a method does not warrant parallel execution,
such as distributing data across the children in an existing instance of the
Distributor framework. In this case, it is possible to add additional sequential
methods to both the parent and child classes (the latter of which must be
invoked indirectly through the parent). These added sequential methods are
not part of the parallel structure of the framework, so no code is generated
for them and no hook methods are created. Instead, the Distributor template
provides viewers for both the concrete parent and concrete child classes, which
can be used to add new methods and constructors.

Additional sequential methods can also be used in cases where there is
state information that logically belongs in the parent object but cannot be
distributed across the children, possibly because of dependencies in the data.
This state can be stored in the parent and manipulated using methods added
to the parent class.

Two example uses of sequential methods in the Distributor framework are
the control of parallelism and the implementation of simple parallel reductions.
In the first example, consider a method arrayOperation() that distributes
an array argument over the children and performs some operation on it. The
granularity of this method depends on the size of the input array. If the array
is too small, then the operation should be done sequentially by the parent.
This can be implemented by creating another method in the parent object
that first checks the length of the input array and, if the array is long enough,
calls the parallel method arrayOperation() with the array. Otherwise, the
operation is performed directly on the input array.

The second example, parallel reduction, processes a collection of data and
reduces it to a single value. Finding the smallest number in an array is a
good example. Reductions can be implemented using a tree–like approach.
The input data is spread over a set of processors, each of which computes the
reduction for its portion of the data. These partial results are combined and
the global value is determined.1 Figure 4.15 shows how to find the smallest
number using a tree of depth one. The basic Distributor framework can do
part of the reduction but not all of it. The return value of a parallel method in
the Distributor framework is an array of results, one per child, where the final
result of a reduction should be the reduced value of this array. To implement

1The operation must be commutative for a parallel reduction to work properly.

83

1514 1312 11 109 876 54 3 21
Parent

14 129 64
Child 1

11 105 31
Child 2

1513 87 2
Child 3

Local min: 4 Local min: 1 Local min: 2

(a) The parent distributes the array
over the children, each of which finds
the minimum element of their portion
of the array.

Parent

Child 1
Local min: 4

Child 2
Local min: 1

Child 3
Local min: 2

4 1 2
Local results

Final result: 1

(b) The parent takes the partial results
from each child and finds the global
minimum.

Figure 4.15: Finding the smallest element in an array using a tree–based
parallel reduction.

the reduction properly, the user can add a sequential method to the parent
object. This method invokes the parallel reduction, allowing the children to
find the local result, and then finds the global result by reducing the local
results.

The other obvious implementation for this framework is to use a fixed pool
of threads, which execute requests for the parent object. Another option is to
use an implementation of a forall construct, such as [82], which reduces the
cost of thread creation and provides better support for data parallelism. The
primary benefit to the current implementation is that it is simple to build and
understand, and hence easier to modify at lower layers. Also, the applications
that we address typically execute for a sufficiently long time that any overhead
introduced by the creation of threads and reflection represent an insignificant
fraction of the total run time. The sorting example in Section 5.1, which uses
two instances of this template, takes several minutes to execute, which absorbs
the overhead of thread creation and reflective method lookup.

4.2.2 Phases

Both the Two–Dimensional Mesh and Distributor patterns concentrate on cre-
ating and using concurrency for executing problems in parallel. Clearly this is
a crucial aspect for parallel programming. Equally important is synchroniza-
tion. The concurrency must be controlled in some cases to ensure that certain
operations are not performed by multiple processes simultaneously. Without
this control, these operations could conflict and result in errors.

Another application of synchronization is the creation of phased algorithms,
in which the necessary parallelism varies as the algorithm progresses. This is
in direct contrast to the assumption of early skeleton and framework research,
which assumed that a single structure was all that was necessary in a given
application (Section 2.1.1, the hierarchy and independence characteristics).

84

For example, the sorting example is Section 5.1 has a clearly defined set of
phases that must be completed in a specific order, with a subset that are
expensive enough to warrant the use of parallel pattern templates.

In creating phased algorithms, there must be a mechanism for passing data
generated in one phase to other phases that need it. However, this data may
be intermediate results that should not be exposed outside of the phases that
create or consume it. Encapsulating this data should be part of creating a
phased algorithm.

The Phases design pattern template provides a specialization of the Facade
design pattern [37] that supports an extendible means for creating phased
algorithms. This facade invokes an ordered set of methods, respecting the
necessary ordering so that a phase is only invoked when the previous phases
have completed. The facade can also encapsulate temporary results which can
then be supplied to subsequent phases.

In its simplest form, the Phases pattern is an ordered sequence of method
invocations, where each method represents a different phase of the overall com-
putation. This assumes that all parallel activities in a given phase are finished
at the end of each method. In more general cases, one can imagine a directed
acyclic graph of method dependencies that allow independent phases to exe-
cute in parallel. While the Phases template uses the former implementation
in its generated framework (as the concurrency in our parallel frameworks is
finished at the end of the computation), the latter implementation can be
constructed by assigning threads to execute each phase and adding a barrier
or rendezvous to ensure that a given phase does not start executing until the
ones it depends on have finished.

The parameters for the Phases template are:

1. The name of the Phases class.

2. An ordered list of the names of the methods that will execute each phase.
These methods have no parameters and return no results.

The Phases design pattern template in CO2P3S is shown in Figure 4.16.
Graphically, it simply lists the different phases. The Method List Editor,
which allows the user to enter the phases, is also shown in the figure.

The structure of the framework generated for the Phases template is shown
in Figure 4.17. The user’s view of the framework consists of the concrete class
shaded in grey, which contains the stubs for the methods listed in the second
template parameter. In addition, extra state and constructors can be entered
into this class. To use the Phases framework, the user instantiates the Phases
class and invokes the executeSequence() method on this object.

The key to this pattern template is that each phase can be implemented
separately. This can be done using another parallel design pattern template or
using sequential code. This template provides no concurrency or parallelism
on its own.

85

Figure 4.16: A screenshot of CO2P3S showing the Phases design pattern tem-
plate.

86

Abstract
Phases

firstPhase()
secondPhase()
thirdPhase()
. . .

Phases

firstPhase()
secondPhase()
thirdPhase()
. . .

executeSequence()

Figure 4.17: The class structure of the framework for the Phases template.
The classes that are visible to the user at the Patterns Layer are shaded in
grey.

Work
Item 1

Stage 4

Work
Item 2

Stage 3

Work
Item 3

Stage 2

Work
Item 6

Stage 1

Work
Item 4

Work
Item 5

Input

Work
Item 7

Work
Item 8

Output

Figure 4.18: An example of a pipeline.

4.2.3 Pipeline

Pipelines are ubiquitous in both computing applications and real–life situa-
tions. Pipelines are used by all modern processors to speed up the decoding
and execution of instructions. Factories use assembly lines to speed up their
manufacturing processes. A pipeline structure is a simple strategy for improv-
ing application performance.

A pipeline is shown in Figure 4.18. It is an ordered sequence of stages,
where each stage refines its input and sends its output to the next stage. This
transfer is usually handled by some form of buffer, shown between the stages
in the figure. The computation of each stage, however, is independent. The
parallelism in this structure comes from the ability to have different stages
processing different requests simultaneously. This allows each stage to be
assigned to a different processor. For example, in Figure 4.18, each stage is
concurrently executing a different work item. This allows an input stream of
work items to be processed efficiently. In the ideal case, the speedup obtained
from using the pipeline is equal to the number of stages.

87

Weaknesses of the Pipeline

Achieving the optimal speedup from a pipeline is difficult for several reasons.
First, there is a ramp–up and ramp–down time for the pipeline. When the first
few requests are being processed, later stages are idle as the pipeline is not full.
A similar problem occurs when the pipeline is emptying; early stages are idle
as they have exhausted all work. Second, load balancing is critical to obtaining
good performance. Any stage that is not in balance with the remaining stages
causes performance problems. A stage that does more work than other stages
will starve subsequent stages. A stage that does less work than other stages
will be idle waiting for work from earlier stages. For instance, from Figure 4.18,
assume that the first stage has a shorter execution time than the other stages.
It is already executing the sixth work item while the next stage is still on the
third item. The first stage will quickly exhaust the input stream and then sit
idle as there are no more work items to process. This reduces the number of
processors that are effectively working on the problem and thus reduces the
performance of the application. This problem can sometimes be addressed by
replicating expensive stages, which improves the throughput of those stages.
For example, to balance the pipe in Figure 4.18, some of the later stages can
be replicated to improve their throughput and balance the entire pipe.

Because of these problems, experienced parallel programmers generally
avoid pipeline computations, especially for coarse–grained parallel programs
where load balancing problems are exacerbated. To quote Randy Crawford
[25],

If the time spent in each stage of the pipeline is the same, then
no stage will starve while waiting for its predecessor to finish. But
that’s pretty optimistic. IMHO [In my humble opinion], you’d be
better off with a ‘workpile’ model in which you break up the work
to be done into small pieces and then dispatch a new thread each
time you have more work to do.

However, for novice parallel programmers, the pipeline is a natural solution
to some problems. For these users, we would like to provide a template that
can be programmed as a pipeline but addresses the load balancing problems.
To do this, we show how to transform a pipeline program to a work pile by
applying the State pattern [37]. The result is a design pattern template that
appears to be a pipeline from the user’s perspective but executes using the
work pile model to address the balancing problems.

Executing the Pipe as a Work Pile

Most object–oriented pipelines simply replace the stages in Figure 4.18 with
active objects. Active objects use their own thread of control to execute any
methods that are invoked on them [59]. This basic pipeline can be extended
by considering the differences between an earlier stage pushing data to later

88

Client Socket

open()
close()
send()
receive()

SocketState

open()
close()
send()
receive()

OpenSocket

open()
close()
send()
receive()

ClosedSocket

open()
close()
send()
receive()

state

open() {
 throw new
 IOException();
}
close() {
 return new
 ClosedSocket();
}
send() {
 /* send data */
}
receive() {
 /* receive data */
}

open() {
 return new
 OpenSocket();
}
close() {
 throw new
 IOException();
}
send() {
 throw new
 IOException();
}
receive() {
 throw new
 IOException();
}

open() {
 state = state.open();
}
close() {
 state = state.close();
}
send() {
 state.send();
}
receive() {
 state.receive();
}

Figure 4.19: An example of the State pattern using a simplified socket.

stages and a later stage pulling data from earlier stages [107]. However, the
basic transformation from a basic pipe to an object–oriented pipe by mapping
stages to objects remains the same.

Instead, let us consider the State pattern [37]. The State pattern represents
a set of states that an entity can be in using different classes. The implemen-
tation of the methods in each of these classes differs depending on the current
state of the entity. For example, consider the simple socket example given in
Figure 4.19. This simple socket can be opened or closed, and data can be sent
through it or received from it. The two states for the socket, open and closed,
are represented by the classes OpenSocket and ClosedSocket. The Socket

class hides state transitions from classes using the socket. Each of the state
classes implements the four operations in a manner consistent with the current
state of the socket. For example, ClosedSocket allows a socket to be opened,
but throws exceptions if the socket is used or closed again. The benefits to
the State pattern are separation of concerns and simplifying the Socket class.
Each state is a separate class and can be examined and changed individually.
The Socket class does not need complicated control flow statements to manage
the separate states. This makes it easier to add new states.

The first step in the transformation from a pipe to a work pile is to formu-
late the pipe as an instance of the State pattern. To do so, we can consider the

89

while (not finished) {
Find a work item w from one of the buffers.

nextStage = w.transform() ;

Place nextStage into the appropriate buffer.

} /* while */

Figure 4.20: Pseudocode for the actions of each thread in the Work–pile–based
pipeline.

Stage 1

transform() {
 return new
 Stage2();
}

Stage 2

transform() {
 return new
 Stage3();
}

Stage 3

transform() {
 return new
 Stage4();
}

Stage 4

transform() {
 return new
 Output();
}

WorkType

transform()
Input
Buffer

Output
Buffer

Figure 4.21: An example of the pipeline based on the State design pattern.

pipeline as a sequence of stages that each accept an input object and transform
it to an output object of a different type. These transformations can be recast
as the transformation from one state to the next, much like the change of an
open socket to a closed socket in Figure 4.19. We can use polymorphism to
ensure that the same method, transform(), is used for the transformation.

The first step defines the transitions but does not address concurrency. We
need some mechanism to allow multiple processors to work on the different
work states. For this, the second step in the transformation relies on the work
pile model. First, we add buffers for holding the results of each stage, much
like the buffers in Figure 4.18. After a stage transforms its input object to an
output object, the output is placed into the correct buffer. A group of worker
threads executes the pseudocode from Figure 4.20, repeatedly searching the
buffers, executing the next transformation that is found, and placing the result
into the correct buffer. The last buffer is designated the output buffer and
contains the results of the final transformation. Therefore, it is not one of the
buffers searched by the worker threads. Because the same method implements
the transform for any stage (through polymorphism), the threads need no
special information to execute any request regardless of the actual stage type.
The complete Work–pile–based pipeline is shown in Figure 4.21.

An important aspect of the pipeline that we have not dealt with is ordering.

90

In a normal pipeline, the buffers for the stages are all first–in–first–out (FIFO),
and a stage can only execute one request at a time. This preserves the order
of requests through the entire pipe. In a modern processor, the instruction
pipeline must preserve this ordering. In a software pipe, we can allow stages
to be replicated. However, if the order of the requests must be preserved at
each stage, some additional mechanism must be used. Enforcing this ordering
can be another factor that limits performance. We will examine this issue
later, and show that removing ordering where it is not needed can improve the
performance of the pipeline.

Evaluating the Work–pile–based Pipeline

The benefits of the Work–pile–based pipeline are the result of separating the
threads from the stage objects. In other pipeline implementations, each stage
object has a thread assigned to it that can only process work for that stage. If
there is no work for the stage then the thread sits idle. This forced mapping
of threads to stages has two side effects on the pipeline. First, any imbalance
in the amount of processing in the stages causes threads to be idle while
they wait for work from earlier stages. Second, load imbalances can only be
addressed by replicating expensive stages to improve the throughput of the
stage. This solution is ineffective in cases where individual stages are only
slightly imbalanced relative to one another, but the overall pipeline suffers.
Also, it cannot address cases where the source of the imbalance changes over
time.

Separating the threads from the stages provides improved load balancing
and scalability. The threads in theWork–pile–based pipeline search the request
queues for outstanding work (the details of this search are discussed later in
this section). This is analogous to a work pile with multiple work queues.
Over time, the buffers for expensive stages will tend to have more work in
them while less expensive stages will tend to have less. As a result, more
threads will naturally find and process work for the expensive stages, and
thus resources will be naturally dedicated to the expensive stages. Should
the expensive stage change over time, as it does during ramp–up and ramp–
down for the pipe, the threads will adjust accordingly. The result is improved
load balancing. Scalability is improved because the execution model of the
Work–pile–based pipeline is a pool of threads searching a set of queues for
outstanding work to be processed. The number of threads in this pool is not
dependent on the number of queues or number of stages. If there are relatively
few processors, the user can select fewer threads than stages. If there are
many processors, additional threads can be added into the thread pool. These
threads will dedicate themselves to expensive stages automatically because of
the balancing properties of the work pile execution model.

These benefits do have a cost to them, though. The first cost is that each
stage in this new pipeline in an object, which must be instantiated for each
request that arrives at the stage. Object instantiation can be slow, which can

91

while (not finished) {
Find the next work item w from one of the buffers.

nextStage = w.transform() ;

while (no buffer for output of nextStage) {
nextStage = nextStage.transform() ;

} /* while */

Place nextStage into the appropriate buffer.

} /* while */

Figure 4.22: Pseudocode for the actions of threads in the modified Work–pile–
based pipeline.

be exacerbated if the heap lock must be obtained first.2 Each work item must
also be removed from and placed into a thread–safe buffer in the correct order,
which also adds to the processing overhead. The next section discusses how
this overhead can be reduced.

Refinements of the Work–pile–based Pipeline

The basic Work–pile–based pipeline can be refined by carefully noting the
necessary ordering of work through the pipeline and only introducing ordering
when it is necessary. This ordering can be implemented by adding ordering
tags to each request and ensuring that a stage request will only be executed
after all preceding ones have finished.3 More importantly, it is possible to
remove buffers between stages that have no ordering requirements, instead
allowing the current thread to continue executing subsequent stages for the
request. This reduces the cost of buffering work items as they flow through
the pipeline.

This refinement is possible because the threads are separate from the stage
objects. A thread in the basic Work–pile–based pipeline takes a work item
from a buffer, executes the transform, and places the result into the next
buffer. The key observation is that if there is no ordering needed between
the requests for the result stage and its next stage, then the current thread
can simply continue to execute the next stage as well. Buffers need only
be introduced when ordering is required. To demonstrate the difference, the
pseudocode for the worker threads in this modified Work–pile–based pipeline
is shown in Figure 4.22.

If there is a long or expensive section of the pipeline that has no ordering,
the modified pipeline may create a smaller number of large work items. The
work pile execution model does not work well under these conditions. To create

2Some Java virtual machines provide a thread local heap for allocating small objects,
and allocations to it do not require the heap lock to be obtained [27].

3This requires that the ordering tags have no gaps in them.

92

a larger number of smaller grained work items, non–ordering buffers can be
inserted between stages. These buffers create additional work items for the
threads but do not introduce any ordering between them. These buffers serve
only as an optimization for a pipeline, and are not needed for correctness.

Thread Scheduling in the Work–pile–based Pipeline

One issue that has not been addressed is how to select a work item from
the buffers. The most obvious choices are to enumerate over the buffers either
forwards (checking buffers from left to right in Figure 4.21) or backwards (right
to left).

Clearly, this choice affects the behaviour of the pipeline. Checking the
buffers forwards favours new requests over those that have had a small amount
of processing. Checking backwards favours requests that are already in the
pipeline. Other schedulers could even assign a priority to the buffers to favour
some stages over others. The best scheduling of the worker threads may depend
on the needs of the application.

The Pipeline in CO2P3S

The Work–pile–based Pipeline has not yet been implemented in CO2P3S. As
a result, the final form of the pattern template and the generated framework
are not available. We are currently evaluating implementations of this new
pipeline formulation.

4.2.4 Two–Dimensional Mesh

The Two–Dimensional Mesh pattern template provides support for mesh com-
putations on regular, rectangular two–dimensional data. Typical mesh com-
putations iteratively compute values for each data element based in its current
value and the values of elements in some neighbourhood around it. This com-
putation is repeated until the values converge to a final answer. Chapter 3
and Appendix C.1 provide considerable detail on this pattern template, and
Appendix A provides complete source code for the reaction–diffusion example.

4.3 Comparing CO2P3S to Other Research

In Section 2.1 we examined other parallel programming research, and evaluated
it using a set of 13 ideal characteristics of pattern–based parallel programming
systems. Section 2.3 looked at relevant background work in object–oriented
frameworks. This section compares and contrasts the PDP process and the
CO2P3S parallel programming system with this other research.

Section 4.3.1 evaluates CO2P3S using the same 13 characteristics from Sec-
tion 2.1. Section 4.3.2 relates the research in object–oriented frameworks to

93

different aspects of our work in CO2P3S and the PDP process. Finally, Sec-
tion 4.3.3 draws parallels between our work and research in object–oriented
modeling languages.

4.3.1 Evaluating CO2P3S

One of the goals of this research was to build a tool that meets as many of
the ideals of pattern–based parallel programming systems as possible. We
believe that tools meeting these characteristics will have a better chance of
being adopted by the programmer community.

This section evaluates CO2P3S using the same characteristics that we used
to evaluate other parallel programming systems research in Section 2.1. We
show how either the tool or the PDP process that it implements addresses
these concerns.

Structuring the Parallelism

1. Separation: The PDP process preserves separation between the parallel
structure and the application code by using frameworks. The generated
frameworks encapsulate all of the application–independent parallel code
into a set of abstract classes that invoke the application–specific code
entered into the concrete classes by the user. The implementation of the
parallel structure can evolve independently of the user application.

Ultimately, the application code is tied to the parallel structure through
the interface for the hook methods. For instance, the interface for the
hook methods in the Distributor framework is different from the interface
for the hook methods in the Mesh framework. These interfaces are tied
to the pattern semantics, which in turn must match the application
semantics in order to successfully create a parallel program with the
template. Unfortunately, there may be a mismatch between the interface
for the hook methods in the framework and existing sequential code
that implements the problem. This is most easily remedied by using
an Adapter pattern [37] to translate method invocations on objects in
the generated framework to method invocations on objects from existing
sequential code. This was the approach taken in the reaction–diffusion
example program. This is also one of the suggestions for addressing the
problem of composition with legacy code in Section 2.3.2.

2. Hierarchy : The frameworks in the PDP process rely on object composi-
tion to hierarchically create larger parallel structures. The hook methods
for any given framework can instantiate other frameworks and use these
as normal collaborating objects through delegation, just as in normal
sequential programming.

This method of composition works because the generated frameworks do
not monopolize the flow of control over the whole application, but rather

94

manipulate data using a specific parallel structure and return the results.
This style of interaction avoids some framework composition problems.
The remaining composition problems are discussed in Section 4.3.2.

3. Independence: The frameworks generated for CO2P3S help ensure inde-
pendence by encapsulating all of the details of the parallelism behind a
well–defined interface. Encapsulating these details prevents a framework
from relying on the internal details of another, making them independent
of one another.

4. Extendible: There is nothing inherent in the PDP process to prevent
users from adding their own patterns to a system. This is a function
of the system itself. CO2P3S itself is implemented as a framework to
allow new pattern templates to be added to the system. To simplify
the process, CO2P3S will include tool support for creating new pattern
templates [18]. This work will improve upon the extendibility provided
in DPnDP by allowing pattern–specific behaviour to be added to the
abstract framework classes.

In contrast, the patterns supported by other pattern–based systems are
usually fixed by the tool. If the problem cannot be efficiently solved with
some combination of the supported patterns, the programmer is forced
to find a different tool. DPnDP provides some support for extending
its set of patterns, but the functionality of the new patterns is limited
compared to the patterns supplied with the tool.

5. Utility : The initial set of patterns supported by a tool will dictate the
range of problems that can be solved. This initial set must cover a broad
range of problems even if the tool allows new patterns to be added.
New users will expect to be able to use the tool to solve their problems
immediately; only advanced users will take the time to add new pattern
templates.

We continue to improve the utility of CO2P3S by mining parallel de-
sign patterns from new applications. Design pattern templates can be
created from these mined patterns and incorporated into CO2P3S. Once
tool support is in place and users are able to create (and possibly even
exchange) their own patterns, the bottleneck will be in identifying the
patterns, not implementing them.

We can also use new applications to evolve our existing pattern templates
and frameworks. These applications may require alternative structures
that cannot be expressed with the set of parameters, or may require
additional hook methods that are not provided by the framework code.
We may wish to modify the templates and frameworks to accommodate
these needs.

95

6. Openness: The layered programming model used by the PDP pro-
cess supports our augmented definition of openness, where programmers
should be able to access the complete system to modify and improve their
programs. The Patterns Layer concentrates on the creation of correct
parallel programs by encapsulating many of the details of the parallel
structure. This approach generally sacrifices performance, though. The
structural code is generic as it must be applicable to a broad range of
applications. The Intermediate Code Layer provides access to the struc-
ture of an application in a high–level parallel programming language,
which can be used to both tune the application or create structures that
cannot be expressed using the pattern templates and their parameters.
Finally, the Native Code Layer provides access to all code supporting
the abstractions at the layers above it.

The primary benefit of the layers is the structured manner in which
they expose the details of the system to the programmer. Each layer
hides the details of the one underneath. Thus, programmers can select
an appropriate layer based on the problem they are experiencing and
work at that layer without becoming overwhelmed with irrelevant details.
Thus, the layered approach should benefit both novice and experienced
users.

In contrast, the closed implementations and closed programming models
of other systems prevents programmers from making the kinds of changes
that are permitted in our open model. The implementation of a given
parallel structure cannot be improved or tailored for the specific program,
which limits performance and restricts the set of problems that can be
implemented.

Programming

7. Correctness : The Patterns Layer in the PDP process addresses correct-
ness using a combination of code generation and encapsulation.

Code generation is used to create correct framework code for the pattern
templates selected by the user. The resulting program is guaranteed to
match the selected parallel structure. Also, the framework code correctly
implements all of the parallel code, including concurrency, communica-
tion, and synchronization. This saves the user from having to write and
debug this difficult and error–prone code. Further, the hook methods
for the framework can be implemented as normal sequential code. The
structural code does not rely on the user to correctly implement any
parallel code for it to work correctly. The user can concentrate on their
problem rather that the parallel structural code that will execute it.

Encapsulation hides both the parallel structure and the implementation
details of this structure from the user. The abstract classes in the gen-
erated framework code contain all of the parallel structural code, which

96

cannot be accessed at the Patterns Layer. This prevents the programmer
from accidently changing this code and introducing errors. Further, the
framework instantiates all of the necessary objects that it needs rather
than relying on the programmer to do this. The user does not need to
be concerned with the implementation details of the parallel structure
unless the lower layers are used.

The CO2P3S user interface also addresses correctness concerns beyond
supporting the basic characteristics of the Patterns Layer. The user
interface ensures that all template parameter values are valid before
the template is used to generate code. In particular, the interface en-
sures that all necessary parameters are specified, all class names are
unique, and all other parameters have reasonable default values. This
way, the generated frameworks will always correctly implement a given
structure. The user interface can also help enforce encapsulation. Code
viewers (Section 4.1.4) are offered on only those classes that contain any
hook methods or might otherwise need to have methods added to them.
The remaining classes (the abstract structural classes and possibly other
helper classes) cannot be modified through the interface. The CO2P3S
interface can also prevent other, more general programming errors. For
instance, the combination of the viewers and code editor dialogs (Sec-
tion 4.1.4) provide stubs for the hook methods, so the user does not need
to determine the correct methods and their signatures. These dialogs also
provide no opportunity for the user to edit the signatures and introduce
any incompatibility between the application–independent structure and
the application–specific classes implementing hook methods.

8. Language: Before we evaluate the use of an existing, familiar program-
ming language, note that the PDP process is independent of the pro-
gramming language and underlying parallel architecture. The frame-
works and tool interface may change to accommodate other concerns in
different languages and architectures, but the process remains the same.

We purposefully stray from the ideal of preserving the syntax and seman-
tics of the original programming language as this can limit the potential
concurrency in a program [119]. In languages that support run–time ex-
ceptions, for example, statements in a program must generally execute
in order so that an exception handler can correctly determine the state
of the program. Some reordering of instructions is possible, but an in-
struction that can potentially throw an exception cannot be moved past
another such instruction. If it is, then the optimized program may throw
the wrong exception from the perspective of the programmer. Unfortu-
nately, an analysis of Java programs suggests that a large percentage of
instruction can potentially throw exceptions, limiting code motion [43].
For example, in Figure 4.23, the two statements in the try block can-
not be reordered without changing the semantics of the program. As

97

int[] array = new int[5] ;

Object obj = null ;

try {
// Should throw ArrayIndexOutOfBoundsException

array[5] = 1 ;

// Should throw NullPointerException

obj.toString() ;

} catch (ArrayIndexOutOfBoundsException aioobe) {
. . .

} catch (NullPointerException npe) {
. . .

}

Figure 4.23: A Java code example where statement reordering can change the
semantics of the program.

written, the code should throw an ArrayIndexOutOfBoundsException.
If the statements are reordered, a NullPointerException is thrown in-
stead. However, the program should never reach the second statement,
so this is the wrong exception.

A concurrent program can execute statements that would not have been
executed in the sequential program, resulting in similar problems. How-
ever, this concurrency is necessary for high performance parallel pro-
grams, so changes to the semantics of the programming language are
unfortunate but necessary.

There has been some compiler research aimed at removing this order-
ing restriction for instructions that throw exceptions at the cost of more
expensive exception handling when errors occur [43]. The compiler gen-
erates two versions of the code. The optimized code ignores dependencies
caused by exceptions, which enables other optimizations to be applied
more aggressively than would normally be possible. This handles the
common case where no exceptions occur. However, if an exception is
thrown, the optimized code may throw the wrong one (as would happen
in Figure 4.23) and the program state may be different than the original
code. To correct this, the compiler also generates compensation code as
an exception handler for the optimized code. This compensation code
fixes the program state and throws the exception that would have been
thrown by the original code. The compensation code is generated based
on an analysis of the live variables in the exception handler body, and
takes advantage of the fact that most exception handlers display simple
error messages and stack information, and never access program state.

98

It can be argued that we will not violate this characteristic in program-
ming languages that directly support threads and have existing semantics
for concurrency, such as Java, unless a system requires additional seman-
tics to support its programming model. However, from the perspective
of programmers who write sequential code, it can be argued that the se-
mantics have changed to accommodate concurrency. Java programmers
that do not use threads will not immediately see the need for synchro-
nized methods, for example. This latter viewpoint cannot be ignored
as it will be common in users who are new to parallel programming.
Further, not all programming languages have semantics for concurrency.
Thus, from the perspective of the overall process, we must consider the
semantic differences between sequential and concurrent programming.
Individual implementations of the PDP process may leverage existing
concurrent semantics in the chosen base language if they are available.

9. Non–Intrusiveness: The use of frameworks prevents the PDP process
from meeting this characteristic. Frameworks are intrusive by nature,
imposing a design structure that is an integral part of the framework and
hence is difficult to change. However, in exchange, frameworks provide
the possibility of large–scale reuse, reusing the design over many different
programs. This design determines what objects are part of the program,
how they collaborate, the set of hook methods that the framework makes
available, and the location of these hook methods in the overall flow of
control through the structural code.

User Satisfaction

10. Performance: The layered programming model helps address the per-
formance characteristic. The generated frameworks are correct but con-
servative in their implementation, so that they can be used across a
broad range of applications. The lower layers in the PDP process pro-
vide openness, allowing access to the framework structure and the class
libraries used to support this structure so knowledgeable users can locate
and remove any performance bottlenecks. In contrast, other systems are
closed, not allowing users to tune any system–specific code.

While the frameworks generated at the Patterns Layer must be con-
servatively correct, they must still provide some performance benefits.
Without performance gains at the highest layers of a tool, there is little
incentive for users to expend effort to learn to use it. We cannot expect
users, particularly novice users, to be required to use lower layers of the
PDP process to produce parallel speedups for applications. However, we
can expect the performance gains to be commensurate with the amount
of effort that the user puts in.

To show that CO2P3S templates can provide speedups at the Pattern
Layer, even without tuning, we present the performance results from the

99

Table 4.1: Speedups and wall clock times for the reaction–diffusion example
program.

Processors 2 4 8 16
1680 by Speedup 1.75 3.13 4.92 6.50
1680 Time (sec) 5374 3008 1910 1448
surface Std. dev. 229 96 105 97

reaction–diffusion example from Chapter 3 in Table 4.1. These results
were gathered using a native–threaded Java implementation from SGI
(Java Development 3.1.1, using Java 1.1.6) with both optimizations and
JIT turned on. The program was executed on on SGI Origin 2000 with 44
195MHz R10000 processors and 10GB of memory. The virtual machine
(VM) was started with 512MB of heap space. The speedup numbers
are based on wall clock times, compared to a sequential implementation
of the same problem executed using a green–threaded VM. We initially
believed that using a native–threaded VM might have extra overhead
that would cause the sequential program to have longer execution times
and skew the results. However, the performance of both VMs on a single
thread was identical. The times for the green–threaded VM was used
because there is more performance data for that version.

Note that the times in Table 4.1 include only the computation time; ini-
tialization and output are not included. The problem scales up to about
four processors, but performance starts falling off as more processors are
added. The problem is granularity; as more processors are added, the
amount of work assigned to each falls until synchronization costs begin
to limit the overall performance. Larger computations, with a larger
surface size or with a more complex computation for each mesh element,
will yield better speedups for larger numbers of processors. Using an
unordered mesh would remove some of the synchronization costs at the
expense of non–determinism in the results and possible difficulties in
evaluating the termination conditions.

11. Support : Since CO2P3S is a relatively new system, it does not have a
complete set of support tools. It currently has tools for compiling and
running programs, but lacks support for debugging and performance
evaluation. These tools will be the subject of future research.

12. Usability : The speedup numbers for the reaction–diffusion example are
not necessarily the best that can be achieved. It is tempting to be
disappointed with the results. However, they do show that the Mesh
pattern template can produce performance benefits even without any
tuning.

Another important consideration, also generally ignored by the parallel

100

programming systems community, is the development costs of writing
parallel programs. In particular, the time needed to develop an ap-
plication is rarely considered by tool developers [111]. Outside of the
parallel programming systems community, programmers are interested
in the answers generated by their programs, not the speedup obtained
by the parallel version. These users will not spend the time to write
a parallel program if the development costs outweigh the performance
benefits.

For our example, the complete, correct parallel structure was generated
within minutes using the Mesh pattern template. Using classes from an
existing sequential version of the program, the complete application was
finished in several hours. For this limited effort, the performance results
are encouraging.

We have gathered additional data on the usability of CO2P3S from a user
study. The experiment and the results are discussed in detail in Chap-
ter 6. The results suggest that users write significantly less application
code using CO2P3S compared to writing a Java solution, mainly because
the parallel structure is generated. Also, the application code written by
CO2P3S users is less complex than that written for an equivalent Java
program.

The results of the usability study reinforce our experiences with the
reaction–diffusion example. The complete program, including the gen-
erated code, was 489 lines of Java code4, of which 236 (48%) is user
application code. Over half of the code is dedicated to the parallel struc-
ture. A correct implementation of this code is generated for a CO2P3S
user. Of the 236 lines of application code, 183 lines (78%) was reused
directly from the existing sequential version. We must point out that
these numbers are a function of the problem being solved, and are not
an inherent property of all programs written using CO2P3S.

13. Portability : There are two ways that this research can address the porta-
bility problem.

First, different versions of the Native Code Layer can be supplied for dif-
ferent parallel architectures. The benefit to this solution is that the pro-
grammer can change architectures by simply linking in a different version
of the Native Code Library. There are several issues with this approach.
It will require that the interface to the Native Code Layer be fixed so
that the different implementations are easily interchangeable. Also, the
framework code must be written independently of the architecture. For
example, all data exchanges will need to be done through explicit com-
munication primitives, even in shared–memory machines where this can

4Lines of code is determined by counting semicolons in source code that is stripped of
comments. This does not correct for for statements, which count as two lines of code.

101

be done through shared variables. Finally, this solution limits the possi-
bility of applying different optimizations for different architectures. Only
optimizations that apply to all architectures can be safely applied to the
frameworks at the Patterns Layer.

The second possibility is to generate different framework code for each
architecture. The target architecture can be an extra parameter for each
pattern template or a setting in the tool. The primary benefit to this
approach is that the framework code can be better optimized for its ex-
ecution environment. This is similar to the use of architecture–specific
information in P3L (Section 2.1.1, the portability characteristic). A draw-
back of this approach is that the framework code must be regenerated
for each architecture. This regeneration will overwrite any changes made
to the structural code made at either the Intermediate Code or Native
Code Layers. If a program must execute on multiple architectures, the
user may keep different versions of the program, which can lead to main-
tenance problems.

This section demonstrated how CO2P3S, implementing the PDP process,
satisfies more of the 13 characteristics of ideal pattern–based parallel program-
ming systems than existing systems. In particular, this work advances the state
of parallel programming systems research with regards to the openness and
correctness concerns. Also, even though CO2P3S is still in the early stages of
development, we are considering its usability in the hands of real users so that
it can be improved.

Even our approach is incomplete with respect to these criteria though.
The language and non–intrusiveness characteristics are not satisfied, and the
utility of the system will be under constant improvement.

4.3.2 Frameworks and the PDP Process

This section relates the PDP process to the research in object–oriented frame-
works from Section 2.3. Note that the framework research can be related to
aspects of the PDP process other than the frameworks generated at the Pat-
terns Layer. The rest of this section explores this relationship in more detail.

Documenting Frameworks

In Section 2.3.1, hooks were discussed as a means of documenting how to use
a framework to accomplish a specific task in an application program. One of
the characteristics of a hook is the level of support that the framework has for
it. To recap, the levels of support, from most support to least, are:

1. Option hooks. The user can supply one of a number of pre–built com-
ponents for some aspect of the framework.

102

2. Supported pattern hooks. The framework defines an interface for ful-
filling some requirement, but the implementation of that interface is
application–specific and must be provided by the user.

3. Open–ended hooks. These hooks show the user how to make changes to
the framework that are not supported by either of the other two types of
hooks. These changes may involve structural changes to the framework
classes.

These levels of support can be related to different parts of the PDP process
spanning the three layers. The relationship is:

1. Option hooks. The hooks correspond to the pattern template param-
eters in the Patterns Layer. The values of these parameters are used
to generate framework code for that specific version of the template.
The framework generator may generate a different implementation of a
component in the structural code to accomplish this, such as generating
different Strategy objects for different topologies in the Mesh framework
(Section 3.2.4). Alternately, the framework generator can conditionally
include different method bodies and signatures for different parts of the
framework. The result is that the template parameters alter the struc-
ture of the generated framework in an analogous manner to supplying a
different pre–built component when instantiating a framework.

For tools supporting the PDP process, the user needs to know nothing
about the internal details of the framework to use these hooks. The
changes to the frameworks are handled by conditional code generation
and are generally limited to classes that are not accessible to the user at
the Patterns Layer. This is not true of all frameworks, though. There
may be other effects of parameter changes that appear in the hook meth-
ods in a given framework. For example, in the Mesh framework the set of
operation methods and their signatures are determined by a combination
of two template parameters, the topology and the number of neighbours.

2. Supported pattern hooks. The supported pattern hooks correspond to
the hook methods in the generated frameworks. The structural part
of the framework code defines the expected interface, which the user
implements in an application–specific way. In CO2P3S, a class with stub
methods for this interface is generated. This class is displayed in the
code viewers from Section 4.1.4.

The use of these hooks requires more detailed knowledge about the in-
ternal details of the framework. For the Mesh framework, it is important
to understand how the hook methods are invoked in the overall flow of
control through the mesh computation. A user will not be able to write
applications using the framework without this information. However,
the user does not need all of the details regarding how the methods are

103

invoked; the relative order is sufficient. When implementing the opera-
tion methods for the Mesh, the user need only know when they are called
relative to the other hook methods. It is not necessary for the user to
understand the use of the Strategy pattern, which helps determine the
correct method to execute for a given mesh element, to write this code.

3. Open–ended hooks. As with other frameworks, there is no specific sup-
port for open–ended hooks in CO2P3S frameworks. These hooks can
only be introduced through additional documentation describing the im-
plementation of the frameworks, which will need to be supplied with
CO2P3S. Unlike other parallel programming systems research, the Inter-
mediate Code and Native Code Layers provide access to the structural
framework code, which permits the user to make changes for these hooks.

This relationship reinforces an aspect of tool support for programming with
frameworks that we have already discussed, which is providing the means
to use option hooks without any knowledge of the framework structure. In
normal framework programming, option hooks still require some knowledge of
the structure so that the appropriate objects can be created and assembled
into a complete program. The template parameters, which correspond to the
option hooks, can be used to guide a code generator to address this problem
automatically. As well, tool support can help ensure correctness; the tool can
ensure that the user selects one option out of the set of legal ones, which
reduces the probability of error.

We can also apply tool support to reduce the probability of user error for
supported pattern hooks. Generating concrete subclasses for the framework
and stubs for the hook methods saves the user from having to derive this infor-
mation about the framework. More importantly, it saves the user from having
to enter this code. For the Mesh frameworks, it may be difficult to determine
both the set of operation methods that are needed and their signatures. The
signatures present an additional problem in that the order of the parameters
may be important. For instance, a user could write

void interiorNode(MorphogenPair up,MorphogenPair down,

MorphogenPair left,MorphogenPair right) ;

as the signature of the interiorNode() hook method. The parameters in this
signature are in the wrong order. The correct order, from Figure 3.6, is right,
left, up, and down. The compiler will not be able to catch this error as the
argument types match. If the computation depends on the location of the
neighbour (for example, in an anisotropic reaction–diffusion example, where
the morphogens diffuse at an angle rather than horizontally and vertically),
the results will be incorrect. We further reduce programmer errors by using
template viewers and code editors, so the user cannot accidently modify these
signatures.

104

Composing Frameworks

Although the work in this dissertation does not specifically address frame-
work composition, we must consider the issues involved. Even small parallel
programs may require multiple parallel design patterns to create an efficient
implementation, and this will require the composition of multiple frameworks.
This section examines properties of the frameworks created by CO2P3S that
can alleviate composition problems. Some of these properties are a function
of the PDP process while others are specific to CO2P3S.

The five primary compositions problems, from Section 2.3.2, are:

1. composition of framework control,

2. composition with legacy systems,

3. framework gap,

4. composition overlap of framework entities, and

5. composition of entity functionality.

Composition of framework control is addressed by the nature of the frame-
works in CO2P3S. Parallel programs, just like their sequential counterparts,
accept input, compute results, and create output (normally the computed re-
sults). The primary difference is the use of multiple processors to compute the
results. In the end, though, the results must be made available. As a result of
this style of computing, no single framework will monopolize the flow of con-
trol for the complete lifetime of the program. Thus, composing frameworks is
done by allowing the hook methods in one framework to instantiate and use
another.

Composition with legacy systems is best addressed using adapters, just as
originally discussed in Section 2.3.2. The reaction–diffusion example took this
approach, using the generated MorphogenPair class as an adapter for classes
from the sequential version of the program.

In the context of the PDP process, framework gap would refer to the in-
ability to create the desired parallelism for some portion of an application.
This can be addressed at lower layers by inserting the extra parallelism. More
generally, though, this indicates either a missing design pattern or a gap in
the pattern template parameters that prevents the user from selecting a useful
member of the pattern family. Ongoing research in allowing users to add pat-
terns, which also includes the ability to modify existing ones, may also address
framework gap.

Composition overlap of framework entities is primarily the result of the lack
of a standard definition of the domain of a framework. Most frameworks define
semantics for real–world entities in the application, which leads to overlap
when different frameworks define conflicting semantics for the same entity. The
frameworks for CO2P3S define the concurrency in a manner that is independent

105

of the semantics of the entities in the final application. The Mesh framework,
for instance, defines the concurrency for a mesh computation but does not
define the semantics of the data on which the computation is applied. If the
other frameworks in CO2P3S also exhibit this characteristic, the possibility of
overlap is reduced.

Finally, the composition of entity functionality is not addressed. If neces-
sary, the user can apply the existing solutions at a lower layer.

Instantiating Frameworks

Section 2.3.3 discussed CORRELATE, a concurrent object–oriented language.
The interesting feature of this language was the use of language support to
create necessary classes and instantiate the Active Object framework used to
provide the concurrency. The concern was that the large number of classes
used in the framework would be difficult for a user to manage and would require
knowledge of the framework structure. To address this problem, extra syntax
was introduced to indicate both the active objects and any method invocations
on these objects. This syntax was used by a preprocessor to create the com-
plete framework for each active object and transform all method invocations
on these objects. In addition, CORRELATE provides a metaobject protocol
to expose other important abstractions in the Active Object framework to the
user.

CO2P3S has similar concerns with its frameworks, particularly at the Pat-
terns Layer. The premise behind this layer is that the user should be able to
concentrate on their problem and not on the parallelism that will be used to
execute the final program. This idea extends to the process of instantiating
the framework. The internals of the frameworks should be encapsulated until
they are needed at the lower layers.

The difference is in our approach to the problem. Rather than using extra
syntax and a metaobject protocol, we use a combination of encapsulation and
conditional code generation to solve this problem. Our generated frameworks
use encapsulation to limit the user’s view of the internal structure, and gen-
erate code to instantiate all of the needed objects without requiring any user
code. Like CORRELATE, we still need to expose some of the abstractions
in the encapsulated code. Rather than a metaobject protocol, we again use
conditional code generation to specialize the framework based on the values of
the pattern template parameters.

4.3.3 Object–Oriented Modeling Languages and the

PDP Process

This section relates CO2P3S and the PDP process to the research in object–
oriented modeling languages discussed in Section 2.4.

106

RDMesh MorphogenPair

(a) The user view of
the Mesh framework at
the Patterns Layer.

RDMesh

MorphogenPair

Abstract
RDMesh

Block
RDMesh

RDMesh
Abstract

Block

RDMeshBlock
Strategy

Bounded
MorphogenPair

Array

Thread

(b) The user view of the Mesh framework
at the Intermediate Code Layer.

Figure 4.24: The user views of the Mesh framework, at both the Patterns
Layer and the Intermediate Code Layer.

CO2P3S and UML Tools

The primary difference between CO2P3S and the UML modeling tools is that
CO2P3S models are patterns and not the more general models supported by
UML. Patterns have much more context and structure than general models.
Through encapsulation, we ensure this structure matches the chosen pattern
during the initial stages of program development. Lower layers open up the
details of the framework for the user. A UML model does not have the same
contextual information.

Another way to view the distinction is to consider the user model of the
frameworks at different development layers, particularly the Patterns Layer
and the Intermediate Code Layer. At the Patterns Layer, the model of the
framework for a pattern template consists of only a few classes, such as the
Mesh example in Figure 4.24(a). This model is specialized using pattern
template parameters rather than by modifying the classes in the model di-
rectly. The programmer is limited to adding hook method bodies to the Mesh
Element class and instantiating instances of the Mesh class. The Intermediate
Code Layer expands this model to include more detail, shown in Figure 4.24(b).
At this lower level, the generated code can be considered as a UML model that
a programmer can change and manipulate directly.

Unlike the work in generating code from UML given in Section 2.4.1, we
are generating code from a pattern specification. This pattern specification
describes a strategy for parallelizing an application. It does not describe the
implementation of that pattern. At the Patterns Layer, the important char-
acteristic of a pattern template is its behaviour, not its implementation. The
implementation of the pattern is not important until the user enters a lower
layer that exposes it.

107

Since we are generating code from a pattern, rather than a general UML
model, we do not need to support the full range of design elements found
in UML. This simplifies our code generation task. However, it is possible to
take advantage of the ability to generate code from UML designs by creating
a UML model from a pattern template (and its parameter values) and then
generating code from the model. It may be possible to use the same UML
model to generate code in different programming languages. However, trans-
lating the design elements to different languages may incur overhead based on
the available language features. Further, this translation may result in code
that does not conform to generally accepted programming practices for a given
language. For example, the Java code generated for a UML model that uses
multiple inheritance will likely appear awkward to a Java programmer, who
would not have designed the program that way in the first place. Since the
target of our generated code is the programmer, this is undesirable. It is im-
perative that the programmer be able to understand and modify the generated
code at lower layers.

We have chosen the code generation approach over the executable model
approach in this work. Parallel programming is a performance–driven field,
and the overhead of executable models is unacceptable for final, production
code. However, the executable model approach could still be used to quickly
explore different pattern templates for a problem during initial design stages.

Recall that the UML virtual machine used four layers to describe its archi-
tecture, where each layer describes the previous layer. The PDP process uses
layers in the more traditional sense, where each layer builds up higher–level
services or abstractions using the previous layer. However, it is possible to
consider the layers as a description of the generated frameworks as described
earlier. Each lower layer provides a more accurate description of the details of
the generated code. The difference is that the highest layer of the UML virtual
machine describes its modeling language, where our layers only describe the
individual frameworks.

The PDP Process and the ROOM Modeling Language

The conceptual framework of ROOM is the combination of two paradigms
that partition the modeling and implementation space of a real–time, object–
oriented application. Parts of this framework have parallels in the PDP pro-
cess, but there are also some important differences.

One similarity at the abstraction levels paradigm is the use of separate ab-
stractions for different aspects of a system. Within ROOM, these abstractions
separate concurrency considerations from the development of data structures.
Within the PDP process, each layer provides abstractions specifically targeted
at different stages of program development.

The modeling dimensions paradigm of ROOM can also be applied to the
PDP process. Each of the modeling dimensions (structure, behaviour, and
inheritance) are applied to the abstractions level in a different way. Simi-

108

larly, these three dimensions are applied to the PDP layers differently. At
the Patterns Layer, these dimensions are specified by the pattern template
parameters, which control code generation. Behaviour is further specified by
the hook methods provided by the frameworks. At lower levels, as the im-
plementation of the frameworks is opened, these dimensions come under the
control of the programmer.

The navigational aspects of the conceptual framework of ROOM have
analogies to the layers of the PDP process. The layers provide the programmer
with a path from a high–level view of the patterns (at the Patterns Layer) to
successively lower–level views (the Intermediate Code and Native Code layers).
Following this path eases the transition to the low–level run–time support code
for programmers.

An important difference between the ROOM modeling language and the
PDP process is in how the different abstractions are used during program de-
velopment. The paradigms (and associated layers) in ROOM partition the
modeling space. The designer can incrementally work through the modeling
space during the creation of a system, but must address all of the concerns for
each paradigm to complete the system. In contrast, the programmer decides
which layers of the PDP process are applicable based on the requirements of
the program. For example, the programmer only needs to work at the Inter-
mediate Code Layer if the Patterns Layer Code does not meet performance
requirements or does not support a needed pattern structure.

Another difference is that the concerns for each paradigm in ROOM are
interrelated. Each describe the same system, and as such must be consistent
with each other. In the PDP process, the lower layers expose details that
are initially consistent with the higher–level view. However, the program-
mer is able to change the implementation at lower layers. As a result, while
the lower–level code should still implement the same pattern, the code is no
longer constrained by the pattern template parameters and thus may not be
consistent with code that can be generated at the Patterns Layer.

4.4 Summary

This chapter examined the CO2P3S parallel programming system in more de-
tail. CO2P3S is our concrete implementation of the PDP process. An impor-
tant aspect of the PDP process is that it does not dictate every aspect of any
system that implements it. Each system must make some choices regarding
how it will support different aspects of the process. CO2P3S demonstrates
some of our choices, but different systems will make different choices.

This chapter started by highlighting the graphical user interface of CO2P3S,
showing some of the ways a tool can address correctness issues beyond those
specifically addressed in the PDP process. The design patterns supported by
CO2P3S were discussed next. Finally, CO2P3S was compared to the research
from Chapter 2. The system was evaluated using the 13 characteristics of an

109

ideal design–pattern–based system, where we showed that it addresses more of
these concerns than existing systems. We also examined our tool with respect
to the work in object–oriented frameworks and modeling languages, and found
relationships between that work and different aspects of both CO2P3S and the
PDP process.

110

Chapter 5

Example Applications in
CO2P3S

One of the characteristics of a good pattern–based parallel programming sys-
tem is its utility, which means that the patterns supplied with a system should
cover a broad range of applications. In systems that are intended for writing
general–purpose parallel applications, such as CO2P3S, this characteristic has
the added caveat that the patterns cannot be limited to a particular applica-
tion domain. In essence, the patterns supported by a system must exhibit the
utility characteristic themselves.

The previous two chapters covered the PDP process and the CO2P3S par-
allel programming system. To this point in this dissertation, both the devel-
opment process and our implementation of that process have been illustrated
with a single application, the reaction–diffusion texture generator written us-
ing the Mesh design pattern template. This chapter discusses three additional
applications developed using CO2P3S that show the other pattern templates
and illustrate the composition of the generated frameworks. Each application
was written using the facilities available at the Patterns Layer. These appli-
cations were run on several different shared memory systems to ensure that
CO2P3S works on a variety of architectures.

Section 5.1 presents an implementation of the Parallel Sorting by Regu-
lar Sampling algorithm [94]. This example serves two purposes. First, it is
an explicitly parallel sorting algorithm with no sequential equivalent. This
demonstrates that CO2P3S is not limited to parallelizing existing sequential
code. Second, it demonstrates the composition of CO2P3S frameworks, as this
application uses two instances of both the Distributor and Phases templates.

Section 5.2 details a program that solves instances of the 15–puzzle using
parallel iterative–deepening A* search [58]. The program uses the Distributor
template to parallelize the search for a given depth, together with a dynamic
frontier to help with load balancing.

Section 5.3 discusses an implementation of parallel JPEG compression [51].
This example uses the Work–pile–based pipeline from Section 4.2.3 to convert
GIF files into JPEG files. This new pipeline is also compared to the tradi-

111

tional pipeline (Figure 4.18, page 87) to show that the Work–pile–based model
improves performance.

5.1 Parallel Sorting by Regular Sampling

5.1.1 Problem Description

Parallel Sorting by Regular Sampling (PSRS) is a parallel sorting algorithm
that provides good performance over a broad range of parallel architectures
[94]. The primary strength of this algorithm lies in its load balancing strategy,
which samples the data to try to find pivot values that evenly distribute the
data across the processors.

An important aspect of PSRS is that is it an explicitly parallel algorithm
that has no acceptable sequential counterpart. Parallel versions of good se-
quential sorting algorithms, such as Quicksort and Mergesort, have proven to
be suboptimal solutions. For example, the performance of straightforward par-
allel versions of the Quicksort algorithm are limited by two problems. First,
the initial partition of the complete data set is a large sequential operation
that limits the speedup, as anticipated by Amdahl’s Law [4]. Second, it takes
time before all of the processors are involved in the computation. In naive
implementations, only about half of the processors are actually sorting while
the rest wait for results. This idle time also limits the speedup. Because of
these problems, the speedup that can be achieved is limited to around 5 or 6
regardless of the number of processors used. In contrast, PSRS has no initial
sequential stage, but rather divides work among all processors at the very be-
ginning of the algorithm. The load balancing strategy reduces the idle time of
the processors.

The PSRS algorithm consists of four phases, illustrated in Figure 5.1. Each
phase must be completed before the next starts. The phases, executed on p
processors, are:

1. In parallel, divide the input array into p contiguous lists and sort each
list using Quicksort. Select p − 1 evenly spaced sample elements from
each sorted list.

2. Select a designated processor to sort the complete set of sample elements.
Choose p − 1 evenly spaced pivot elements from the sorted sample set.

3. In parallel, partition each sorted list into p sublists using the pivot values.

4. In parallel, merge the partitions and store the results back into the orig-
inal array.

This implementation of PSRS differs slightly from the above description to
take into account a shared memory execution environment in two ways. First,
the data does not need to be physically partitioned but can instead be split

112

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1819 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Final sorted list:

16 2 17 24 33 28 30 1 0 27 9 25 34 23 19 18 11 7 21 13 8 35 12 29 6 3 4 14 22 15 32 10 26 31 20 5

1 02 3 4 567 89 1011 1213 14 1516 17 1819 2021 222324 25 262728 2930 313233 34 35

Initial unsorted list:

162 17 24 3328 3010 279 25 34231918117 21138 3512 29 63 4 14 2215 3210 26 31205

16 27 2313 2210

Processor 1 Processor 2 Processor 3

Sort local list Sort local listSort local list

Local samples Local samples Local samples

Phase 2 Processor 1

16 27 2313 2210

16 272313 2210

Gather samples

Sort samples

Pivot values
13 22

Partition data
13 22

Partition data
13 22

1918 21117 138 12 3423 352916 17210 9 24 3328 302725 3226 3114 2215 2063 4 105

Partition data
13 22

Phase 4

Processor 1 Processor 2 Processor 3

Get partitions

From self

From Proc 3

117 138 12

210 9

63 4 105

Merged partitions
210 9 117 138 1263 4 105

Processor 1

From Proc 1

From self

From Proc 3

Get partitions

1918 21

16 17

14 2215 20

Merged partitions
16 17 1918 2114 2215 20

Processor 2

From self

From Proc 1

Get partitions

3423 3529

24 3328 302725

3226 31

Merged partitions
24 3328 302725 3423 3529 3226 31

Processor 3

Phase 3

Phase 1

From Proc 2From Proc 2

Figure 5.1: An example of Parallel Sorting by Regular Sampling.

113

using ranges, which are analogous to the bounded arrays used in the Mesh
framework (Section 3.2.4). The range is defined by a pair of indices, lower
and upper, which define a subarray on a much larger array. Each range shares
a copy of the original data. Accesses to the data elements in the range are
translated to data elements in the original array based on the lower range
index. These ranges can be used to divide the input array without copying it.

Second, the third and fourth phases can be implemented differently as
each processor has access to the complete data array. The last two phases are
rewritten as:

3. In parallel, using the values of two consecutive pivot values, find the
range in each sorted sublist that is bounded by the two pivots. Markers
are prepended and appended to the pivots to indicate the first and last
values. Note that, unlike the previous version of PSRS, this phase does
not require interprocessor communication because the data is no longer
physically partitioned across the processors. Instead, each processor has
access to the complete data array, and can create the necessary ranges
by scanning the lists created in the first phase.

4. In parallel, merge the data in the list of ranges created in the previous
phase and store the results back into the original array. In a shared
memory environment, this phase has a data dependency that must be
considered. A processor cannot start writing data back to the original
array until the merge is complete. Otherwise, the merging phase can
read incorrect data. This phase needs to be rewritten as two subphases:

4.1. In parallel, merge the ranges into a temporary buffer.

4.2. In parallel, store the results in the original array by copying the
temporary buffer.

The previous example, using the new formulation of PSRS, is illustrated in
Figure 5.2.

5.1.2 Pattern Selection

The parallelism in this algorithm is clearly specified in the algorithm descrip-
tion from Section 5.1.1. PSRS consists of a set of phases, with some executing
in parallel. For the parallel phases, a fixed number of processors execute the
same operations on different portions of the data.

The implementation of this program uses two instances of the Distribu-
tor pattern template and two instances of the Phases pattern template. The
first instance of the Phases template, PSRSPhases, creates the unsorted data,
implements the four phases of PSRS, and verifies the results. The last phase
of the PSRS algorithm in PSRSPhases creates and uses the second Phases
template, MergePhases, to implement the two subphases. Alternately, the

114

16 2 17 24 33 28 30 1 0 27 9 25 34 23 19 18 11 7 21 13 8 35 12 29 6 3 4 14 22 15 32 10 26 31 20 5
Initial unsorted list:

162 17 24 3328 3010 279 25 34231918117 21138 3512 29 63 4 14 2215 3210 26 31205

Processor 1 Processor 2 Processor 3
Data Range(0,11) Data Range(12,23) Data Range(24,35)

Local samples

Sort local range Sort local range Sort local range

16 27 2313 2210
Local samples Local samples

Gather samples
16 27 2313 2210
Sort samples

16 272313 2210

13 22

Processor 1

Phase 1

Phase 2

24 3328 302725 3423 3529 3226 3116 17 1918 2114 2215 20210 9 117 138 1263 4 105
Final sorted list:

Phase 3

Phase 4

Merge partitions in buffer
210 9 117 138 1263 4 105

Processor 1
Merge partitions in buffer

16 17 1918 2114 2215 20

Processor 2
Merge partitions in buffer

24 3328 302725 3423 3529 3226 31

Processor 3

Pivot values

13 22

Partition data 13
Partition 1: Range(0,3)
Partition 2: Range(12,16)
Partition 3: Range(24,28)

Processor 1

Partition data 22

Processor 3

Partition data 13 22
Partition 1: Range(4,5)
Partition 2: Range(17,19)
Partition 3: Range(29,32)

Processor 2

− −

− −

Add markers

Partition 1: Range(6,11)
Partition 2: Range(20,23)
Partition 3: Range(33,35)

Figure 5.2: The shared memory version of PSRS, using ranges rather than
physically distributing data across processors.

115

Figure 5.3: A screenshot of the CO2P3S implementation of PSRS.

program could use one Phases template with 5 phases. However, our imple-
mentation is consistent with the original description of the algorithm. It also
provides an example of pattern template composition.

The two instances of the Distributor template are created and used
by the two Phases templates. The first phase of PSRSPhases instantiates
PSRSDistributor and uses it to provide the parallelism in the first phase.
The third phase of PSRSPhases creates the second instance of the Distributor,
MergeDistributor. This Distributor provides the parallelism for the third
phase and the two subphases.

5.1.3 CO2P3S Solution

A screenshot of the CO2P3S solution, showing the two instances of the Dis-
tributor and Phases templates, is shown in Figure 5.3.

This program uses JGL, the Java Generic Library, in its implementation
[79]. JGL provides a set of classes for different types of collections and generic
algorithms for these collections. In particular, JGL provides array collections,
ranges over a subset of an array, iterators over a given range, and a generic
Quicksort algorithm for a given range. However, it was necessary to make one
change to the library to implement PSRS. Operations on ranges and iterators
in JGL synchronize on the underlying collection to ensure thread safety. In
PSRS, this synchronization is unnecessary since each processor works on a
disjoint range of the data. Unfortunately, this synchronization removes most
of the parallelism as well, and was removed from the library.1

1A common problem when writing parallel Java code is excessive synchronization inside
the standard class library, which reduces performance. This synchronization is included to
help make the library thread–safe, which is desirable for most multi–threaded applications
but not for parallel programs. The problem is exacerbated by the fact that the standard

116

This program takes advantage of the ability to add sequential methods to
the parent and child classes in the Distributor framework. For example, this
is used to access state in the children, such as the local samples generated in
the first phase and to initialize the ranges in the children of PSRSDistributor
before the first phase. It also takes advantage of the ability to encapsulate
intermediate data from a program in the Phases frameworks. The samples and
pivots are internal to the sort and should not be available with the results.

The implementation of the program is sketched out below. Of the six
phases, the middle four phases implement the PSRS algorithm. The first and
last phases, creating the data and verifying the sort, complete the application.
For PSRSPhases, the list of phases and their implementation is:

1. initializeData: This phase creates an array of Integer objects to be
sorted. Once the data is created, the framework for the first instance of
the Distributor, PSRSDistributor, is instantiated. An added construc-
tor in the parent class for this framework creates the ranges for the child
objects and statically distributes these to the children using a sequential
initialization method.

2. sortPartitions: Using a parallel method in the PSRSDistributor

template, each child uses the Quicksort method from JGL to sort the
array elements inside of its defined range. Once the array is sorted,
each child takes a set of samples from its range, which are stored in an
instance variable.

3. getPivots: A sequential method defined by the parent in
PSRSDistributor collects and collates the complete array of samples
from the children. The samples are sorted and sampled again to obtain
pivot values. An array of pivot values is created, with markers (in this
case, null objects) added to the start and end of the array.

4. partitionData: This phase partitions the data in the sorted sublists
based on the pivot values. To do this, the MergeDistributor framework
is instantiated and initialized in parallel. This initialization uses the
neighbour distribution to partition a pair of consecutive pivots to each
child. In parallel, each child obtains an array of ranges, one per sorted
sublist in the children of PSRSDistributor, that are bounded by the
two pivots. These ranges are computed by a sequential method added
to the PSRSDistributor framework.

5. mergeData: This phase instantiates the MergePhases framework. The
phases in this framework, described below, are executed.

documentation for Java classes does not indicate which methods are synchronized, and that
a programmer cannot be sure that an unsynchronized method does not call a synchronized
one in its implementation.

117

Table 5.1: Speedups and wall clock times for PSRS.

Processors 2 4 8 16
12.5 million Speedup 1.67 3.38 6.29 11.18
Integer objects Time (sec) 531 ± 16 262 ± 6 141 ± 11 79 ± 2

6. verifyResults: This last phase verifies the sort using a parallel method
defined in the PSRSDistributor framework.

The fifth phase in PSRSPhases implements the last phase of the PSRS
algorithm. To do so, it creates and uses an instance of the second Phases
template, MergePhases. The phases in this instance of the template and their
implementations are:

1. mergePartition: In parallel, each child in the MergeDistributor

framework creates a temporary buffer and merges the data in the ranges
created in the fourth phase into that buffer.

2. mergeFinalArray: First, an array of offsets where each child should
merge its temporary buffer into the original array is computed sequen-
tially. A parallel method in the MergeDistributor framework dis-
tributes these offsets using a block distribution scheme. The child im-
plementation of this method copies its temporary buffer into the original
array based on the offset it receives.

5.1.4 Results

The performance results for PSRS, collected using the same execution envi-
ronment as the reaction–diffusion example (see Section 4.3.1, under the “Per-
formance” characteristic on page 99), are given in Table 5.1. These results are
only for sorting; neither data initialization nor sort verification are included.
The speedup is calculated with respect to the JGL Quicksort algorithm using
the same data.

The choice of 12.5 million objects was dictated by memory constraints;
this was the largest problem that could be run with a heap size of 512MB.
Results with smaller data sizes showed a small drop in speedup as the number
of processors increased, consistent with a loss in problem granularity, so only
the single data point is presented.

In contrast to the reaction–diffusion application, this program scales well to
16 processors. The difference is that this program does much less synchroniza-
tion; there are five synchronization points in the entire program, as opposed to
two barriers per iteration of the reaction–diffusion computation (which takes
hundreds to thousands of iterations to converge).

Because PSRS is an explicitly parallel algorithm, it took more effort to
write this program. The only code that was used from the sequential version

118

was the Quicksort from JGL, which is only used as part of the first phase.
The code for the remainder of the first phase (segmenting the input array into
sublists) and the rest of the phases had to be written specifically for the parallel
version. Not including the Quicksort code, the complete PSRS program was
631 lines of Java code, of which 352 lines (56%) is user code. Once again, the
structural code represents a large portion of the complete program. Again,
though, this code is generated automatically.

5.1.5 Composing CO2P3S Frameworks

The PSRS example used a total of four design pattern templates. In our expe-
rience, many parallel programs need to use multiple patterns to be efficiently
parallelized. Different parts of a parallel program can have different char-
acteristics and requirements, which cannot usually be addressed by a single
pattern.

In CO2P3S, a program that uses multiple pattern templates will generate
a framework for each instance of each template. These frameworks must be
composed into a single application. We explored some of the problems with
this composition for general frameworks in Section 2.3.2. Again, this work
does not address these problems directly, but they still need to be considered.

In Section 4.3.2, we noted that the frameworks generated by CO2P3S do
not monopolize the flow of control of an application for its lifetime. Instead,
the frameworks execute their computation (as dictated by the hook method
implementations) and, when finished, return their results and program control
to the user. The application code can now go on to do other work using these
results. The framework may provide a single large computation, as in the
Mesh template, or it may provide parallelism for a set of individual methods
in a class, as in the Distributor template. Regardless, the call/return style of
use allows the frameworks to be easily incorporated into an application.

In addition, CO2P3S frameworks use encapsulation to hide the internal
objects in the frameworks. This encapsulation takes the form of a single class
that allows the framework to be instantiated and used more easily. This class
also serves as a single point of entry to a framework, which can be saved in
an instance variable or passed as a parameter in method calls. Without this
single entry point, the programmer would need to understand the internal
details of the framework to know what objects are present and what respon-
sibilities these objects have in the overall computation in order to correctly
compose the frameworks. This encapsulation can also hide the parallelism in
a framework. As much as possible, the use of parallelism is an attribute of the
implementation of the object that is the point of entry to the framework. Ide-
ally, collaborating objects should not need to be aware of the use of parallelism
at all.

These characteristics of CO2P3S frameworks, encapsulation and the
call/return style of use, allow the frameworks to be composed using normal
object composition. Frameworks can be instantiated in user application code,

119

13 1189

7 1263

15 45

14 1210

(a) An unsolved exam-
ple of the 15–puzzle.

13 1189

7

12

63

15 45

14 1210

(b) A valid move,
swapping a cell adja-
cent to the empty cell
with the empty cell.

13

118 9

7

12

6

3

15

4 5

14

1 2

10

(c) The goal state for
the 15–puzzle.

Figure 5.4: Examples of the 15–puzzle. The black square is empty.

either in the hook methods of other frameworks (as in the mergeData phase
in PSRSPhases, which instantiated the MergeDistributor framework) or in
auxiliary classes (such as the mainline class for the reaction–diffusion example,
which instantiated the RDMesh framework). The framework objects can also
be passed as parameters to method calls, which is used several times in the
PSRS implementation. For instance, in the data partitioning phase, the ini-
tialization method for each child in theMergeDistributor framework is passed
the instance of the PSRSDistributor framework class so the partitions can be
computed.

5.2 Solving the 15–Puzzle Using Parallel

Iterative–Deepening A* Search

5.2.1 Problem Description

The 15–puzzle is the most common instance of sliding tile puzzles. This puzzle
consists of a set of 15 cells, each labeled with a unique value between 1 and
15, arranged on a 4 × 4 square grid with one empty cell. An example is given
in Figure 5.4(a). To play, the player makes moves by selecting a labeled cell
adjacent to the empty cell and swapping the two, as shown in Figure 5.4(b).
The objective is to reach the goal state, in Figure 5.4(c), in the minimum
number of moves.

To solve this problem, we used depth–first iterative–deepening A* (IDA*)
search [58], which is based on A* search [47]. A* search maintains a list of
unexplored nodes in a search and expands the most promising one. This is
the node n with the lowest heuristic evaluation, based on the formula

f(n) = g(n) + h(n)

120

where g(n) is the cost of the path from the initial position to node n and h(n)
is the estimated cost from n to the closest goal. If h(n) never overestimates
the cost to a goal node (in heuristic search terminology, if h(n) is admissible),
then A* is guaranteed to find the solution with the lowest cost. The principle
weakness of A* is the large amount of memory and processing time dedicated to
managing the lists of unexplored and explored search nodes (needed to prevent
duplicate searches). These two lists contain all nodes that are examined over
the course of the search.

To address these problems, IDA* iteratively performs depth–first searches
to find a solution. The search is controlled using a cost threshold t, initially
set to h(s) of the initial position s. IDA* searches to find a solution with cost
t. Each branch is searched in a depth–first manner until either a solution is
found or h(n) > t for the current node n in the branch. Assuming that h(n)
is admissible, this condition means that there is no possible solution with cost
t in the subtree rooted at node n. The current branch of the search tree is
pruned and searched no further. If no solution is found (i.e. all branches
have been pruned), t is incremented and the search is repeated with the new
threshold. Again assuming that h(n) is admissible, IDA* returns an optimal
solution. An example of IDA* search, where the cost of a node is its depth in
the tree, is given in Figure 5.5. The depth–first nature of IDA* reduces the
amount of memory used as only the path from the root to the current node
will be in memory.

In the 15–puzzle, g(n) is the depth of the node in the search tree. A
common heuristic function h(n) is the sum of the Manhattan distances for
each of the labeled tiles. The Manhattan distance for a labeled tile is the sum
of the horizontal and vertical distances from the current position of the tile to
its position in the goal.

To parallelize this problem, we change the search algorithm to statically
build the top part of the search tree, as shown in Figure 5.6. The root of
the tree, in black, is the InitialNode or puzzle instance being solved. The
interior nodes are MasterNodes, and fill in the positions in the interior of the
subtree. The leaves of the subtree are instances of FrontierNode. To search
this modified tree in parallel, a main thread traverses initial and master nodes
in a depth–first manner. This traversal is used to compute the values of g(n)
and h(n) and propagate them down the tree to the frontier nodes. The frontier
nodes use the IDA* search algorithm on their position, using the g(n) and h(n)
values from its parent.2 Each frontier node search is independent, though, and
can be assigned to another thread running on a different processor.3 After the
main thread has traversed the static subtree and distributed the frontier nodes

2The h(n) value, or Manhattan distance, can be computed without any need for data
from the parent. However, it is faster to use a table that computes the change in h(n) based
on the value from the parent and the move that results in the child node.

3This program does not have any search enhancements that could introduce any depen-
dencies between the frontier nodes.

121

s

(a) Start by setting the depth threshold to h(s), where s is the initial position at the
root of the tree. For this example, the initial threshold h(s) is 3. The search does not
find a solution.

s

(b) Increment the depth threshold to 4 and search the tree again. There is still no
solution.

s

g

(c) At depth 5, a solution is found.

Figure 5.5: A basic example of IDA* search, ignoring pruning. The solution,
or goal node, is represented by node g.

122

InitialNode

MasterNode

FrontierNode

Legend

Figure 5.6: The structure of the static part of the IDA* tree.

to other processors, it waits for the results of the search. If a solution is found,
the search stops. Otherwise, the cost threshold is increased and the search is
repeated. Thus there is a synchronization point at each iteration.

The g(n) and h(n) values for the initial and master nodes never change.
Once these values are propagated to the frontier nodes, there is no need to
traverse the static subtree again. Instead, the search can iterate over the set
of frontier nodes, assigning each to different processors and waiting for the
results.

One of the biggest problems in parallel search is load imbalance. In a typi-
cal search, a small number of branches are responsible for most of the work. In
the context of Figure 5.6, this means that a few of the frontier nodes may be
expensive to search while the rest are quickly shown to have no solution [49].
To balance the workload across the processors, expensive frontier nodes can be
expanded [17]. The frontier node is replaced with an equivalent master node,
and its children are generated and added to the frontier.4 Figure 5.7 shows an
example where two of the frontier nodes from Figure 5.6 are expanded. Ex-
panding the frontier in this way creates additional nodes that are less expensive
to search individually. Partitioning this new frontier over a set of processors
can result in better load balancing if the new frontier nodes, which may all be
expensive to search, are distributed to different processors. To decide when to
expand a frontier node, the time needed for the last search of the node can be
kept. The node is expanded when this time exceeds a threshold.

Another important aspect of the frontier is its size. This is dictated by the
size of the static part of the search tree. If the tree is too small, there will be
few frontier nodes and load distribution may be skewed. With enough time,
an expanding frontier will be able to correct this problem, but it may take
several iterations to expand the frontier enough to balance the load. A deeper
static tree generally provides a more balanced load.

Another common solution to the load balancing problem is to use work–

4To reduce the size of the search tree, a node will never generate a child node that is a
duplicate of its parent. This requires that each child node keep a copy of its parent position.
However, the static part of the search tree is sufficiently small that all of it is kept.

123

InitialNode

MasterNode

FrontierNode

Legend

Figure 5.7: Expanding the frontier of the static tree in an IDA* search. Two
frontier nodes from Figure 5.6 have been expanded.

stealing. When a processor runs out of work, rather than becoming idle it
attempts to find and take outstanding work from another processor. Work–
stealing is part of the basis for efficient fork/join implementations that rely on
lightweight executable tasks, such as the framework by Lea [63] and Cilk [34].
It is also part of many parallel search algorithms, such as APHID [17].

Another problem with parallel IDA* search is that the first few iterations
are usually inexpensive, typically searching only a few nodes. The parallel
search should not be started until the iterations are expensive enough to war-
rant it. This decision can be made in two ways. First, the initial sequential
iterations of IDA* can be timed. When this time becomes large enough, the
parallel search completes the problem. Second, if an expanding frontier is used,
the search can be done sequentially until a frontier node is expanded and is
parallel thereafter. However, it may be necessary to lower the threshold for
expansion for deeper static subtrees. Otherwise, it will take more iterations
before any frontier node needs to be expanded, which delays the use of the
parallel search and reduces overall performance.

To improve the overall performance of a parallel search, it is common to
cancel the searches at all other processors once a solution is found. This can
cause the last iteration of the search to finish quickly. In contrast, the time
needed for the last iteration of a sequential search program can vary greatly,
depending on the order in which the branches are traversed. This variation in
both sequential and parallel search algorithms can cause the achieved speedups
to vary considerably, and sometimes even results in superlinear benefits. This
variance is normally addressed by examining a large sample of searches. With
enough samples, the variance balances out and the results are representative
of the expected performance of the program on a typical search.

124

InitialNode

MasterNode

FrontierNode

Legend

Processor 1 Processor 2 Processor 3

Figure 5.8: Parallelizing IDA* using the Distributor pattern template.

5.2.2 Pattern Selection

The Distributor pattern template can be used to parallelize this problem. The
frontier nodes can be collected into an array, which can be distributed over a set
of processors using a parallel method in the Distributor framework. Figure 5.8
illustrates this strategy.

To expand the frontier, the frontier nodes track the time for the last search.
If the time for this search exceeds a threshold, the node is expanded. A new
array of frontier nodes is collected and used for the next iteration of the search.

To effectively distribute work across the processors, the array of frontier
nodes is distributed using a striped distribution. Frontier nodes in adjacent
array positions will be distributed to different processors. This is important
as the frontier nodes for a given branch of the tree will be in a contiguous
portion of the array. This means that the expensive frontier nodes for the
same branch will be clustered in a small region of the array. If the array were
block distributed, there is a higher probability that these expensive frontier
nodes would be assigned to the same processor and the load could become
imbalanced.

Note that because the children of the Distributor template are independent,
work–stealing is not used for this program. Such a change could, however, be
made at the Intermediate Code Layer. A better solution would be to introduce
a lightweight task design pattern template into CO2P3S.

5.2.3 CO2P3S Solution

A screenshot of the CO2P3S solution to the IDA* search problem is given in
Figure 5.9.

125

Figure 5.9: A screenshot of the CO2P3S implementation of IDA*.

The CO2P3S solution is straightforward. The single instance of the
Distributor, Search, provides a method search() that takes an array of
FrontierNode objects (stripe–distributed over the children) and the cost
threshold for the current iteration. The children implement this method by
iterating over the subset of nodes that are passed to them and execute a depth–
first IDA* search on the positions to the given cost threshold. The return value
is a Boolean indicating whether the solution has been found in the subset of
frontier nodes.

The search() method in the Search instance of the Distributor will re-
turn an array of Booleans, one per child. To provide a better interface to
the frontier search, the parent class in Search provides a sequential method
searchFrontier(), which takes the same arguments as search(). This
method calls the parallel search() method and then reduces the array of
results into a single Boolean value indicating if the frontier search has found a
solution. This code is shown in Figure 5.10. The child implementation of the
search() method is given in Figure 5.11.

The complete IDA* program starts by building the static subtree and prop-
agating the value for g(n) and h(n) to the frontier nodes. The frontier is then
collected into an array. The search starts sequentially, iterating until at least
one frontier node exceeds its expansion threshold. The frontier is expanded and
the parallel search is started. The parallel search uses the searchFrontier()
method in the Search framework for each iteration of IDA*, expanding and
recollecting the frontier as necessary after each iteration. The parallel search is
shown in Figure 5.12. The sequential search is similar but calls the search()
method defined for the FrontierNode objects directly.

This program does not cancel the searches at other processors. The children
in a Distributor are intended to be independent. As a result, all processors
except the one that finds the solution search to the full threshold depth, which
is the worst case for a parallel program. Simple strategies, such as a static
completion flag, will help. In this implementation, we have chosen to maintain
the independence of the children.

126

public boolean searchFrontier(FrontierNode[] frontier, int threshold)
{

// Use the search() method defined for the Distributor to
// distribute the frontier nodes and search them in parallel.
boolean[] results = this.search(frontier, threshold) ;

// Reduce the answer to a single true/false value.
boolean foundAnswer = false ;
int noChildren = this.getNoChildren() ;
for(int i = 0;i < noChildren;++i) {

if (results[i]) {
foundAnswer = true ;
break ;

} /* if */
} /* for */
return(foundAnswer) ;

} /* searchFrontier */

Figure 5.10: The implementation of searchFrontier() in the Search class,
which uses the parallel method search() (shown in Figure 5.11) and reduces
the return value.

public boolean search(FrontierNode[] frontier, int threshold)
{

int len = frontier.length ;
boolean solved = false ;

for(int i = 0;i < len;++i) {
solved = frontier[i].search(threshold) ;
if (solved) {

break ;
} /* if */

} /* for */
return(solved) ;

} /* search */

Figure 5.11: The implementation of search() in the SearchChild class for the
Distributor. This method searches the subset of nodes passed to it, which is
the collected array of nodes on the frontier with a striped distribution applied
to it.

127

public void parallelIterativeDeepening(int noChildren, int initialThreshold)
{

boolean solved = false ;
int threshold = initialThreshold ;
FrontierNode[] frontier ;
int frontierSize ;
boolean recollectFrontier = false ;

frontier = this.collectFrontierNodes() ;
frontierSize = frontier.length ;

// Create the Distributor instance for the parallel search.
Search search = new Search(noChildren) ;

// Don’t go to the bottom, use the maximum depth.
for(;threshold <= this. maxDepth;threshold += 2) {

if (recollectFrontier) {
frontier = this.collectFrontierNodes() ;
frontierSize = frontier.length ;
recollectFrontier = false ;

} /* if */

solved = search.searchFrontier(frontier, threshold) ;

for(int i = 0;i < frontierSize;++i) {
count += frontier[i].getNodeCount() ;
if (frontier[i].shouldExpandFrontier()) {

frontier[i].expandFrontier() ;
recollectFrontier = true ;

} /* if */
} /* for */

} /* for */
} /* parallelIterativeDeepening */

Figure 5.12: Parallel iterative deepening code from the InitialNode class.
The initial sequential iterations are handled separately.

128

The synchronization point in this application is at the end of each itera-
tion. An iteration of IDA* should only start after the previous iteration has
finished, as the next iteration of the search cannot be canceled if it is started
speculatively. This synchronization is implemented using the call/return style
of use in the Distributor framework. The searchFrontier() method performs
a single iteration of IDA* search, creating the necessary threads for the par-
titioned frontier. The method returns after all of the threads have completed
their search of the partitioned frontier. The application code iteratively calls
this framework method with a growing threshold parameter.

To better evaluate the performance of the Distributor pattern, the search
is cut off before the last iteration is started. This avoids the variance in the
search at the last iteration of IDA*.

5.2.4 Results

The performance results for this program were collected on an SGI Origin 2100
with 4 350MHz R12000 processors and 1 GB of memory. The program was
run on the Java 1.3 VM using native threads, and compared to a sequential
program run with green threads. The sequential program does not use the
static tree, but rather performs a recursive depth–first search on the puzzle
positions.

Both the depth of the static part of the search tree and the time threshold
for frontier node expansion are parameters to the program. The program was
run with the static tree depth set to three, five, and seven. The expansion
thresholds used were 250ms and 500ms. The program was run on a set of 100
problems [58], which have sequential search time varying from a 0.1 seconds to
84 minutes. The reported speedups, given in Table 5.2, are based on a sample
of problems that show the tradeoffs between both the threshold and the depth
of the static tree.

Problems 47 and 48 (Tables 5.3(a) and 5.3(b)) are two moderately sized
problems, running in about 33 seconds each. These two problems show that,
for smaller problems, the combination of frontier node expansion threshold and
static tree depth can have a large impact on the performance. The number of
parallel iterations of IDA* are affected. For example, with a 250ms threshold
for both problems, the last two iterations of IDA* are parallel with a static
tree depth of three, but deeper trees only execute the last iteration in parallel.
In most cases, the extra parallelism provides substantially better results. With
a 500ms threshold, the depth of the tree determines whether any iterations of
the search are parallel; with a static tree of depth seven, none of the frontier
nodes are expanded so the parallel search is never triggered.

These two problems also help show the dynamic nature of search algo-
rithms. For example, in Problem 48, the two worker case with a 250ms
threshold exhibits only a small drop in performance when the depth of the
static tree increases from three to five, despite the loss of a parallel iteration.
The last parallel iteration at depth three tends to be unbalanced, whereas

129

Table 5.2: Speedups and wall clock times (in seconds) for parallel IDA* search
for selected problems, with different static tree depths and frontier expansion
thresholds. The number of parallel iterations, always at the end of the search,
is also provided.

Workers 2 4 8
Depth 3 Time 17.35 11.37 10.85
250 ms Speedup 1.9 2.9 3.04

Par. Iterations 2 2 2
Depth 5 Time 19.87 14.17 13.36
250 ms Speedup 1.66 2.33 2.47

Par. Iterations 1 1 1
Depth 7 Time 20.19 13.43 13.25
250 ms Speedup 1.63 2.45 2.49

Par. Iterations 1 1 1
Depth 3 Time 19.36 13.58 13.07
500 ms Speedup 1.7 2.43 2.52

Par. Iterations 1 1 1
Depth 5 Time 19.63 14.48 15.74
500 ms Speedup 1.68 2.27 2.09

Par. Iterations 1 1 1
Depth 7 Time 32.4 32.5 32.96
500 ms Speedup 1.02 1.01 1

Par. Iterations 0 0 0

(a) Problem Number 47 with four processors.

Workers 2 4 8
Depth 3 Time 19.55 12.86 10.53
250 ms Speedup 1.76 2.68 3.28

Par. Iterations 2 2 2
Depth 5 Time 21.07 15.64 14.1
250 ms Speedup 1.64 2.21 2.45

Par. Iterations 1 1 1
Depth 7 Time 20.81 13.44 13.9
250 ms Speedup 1.66 2.57 2.48

Par. Iterations 1 1 1
Depth 3 Time 23.78 17.54 15.12
500 ms Speedup 1.45 1.97 2.28

Par. Iterations 1 1 1
Depth 5 Time 22.17 15.87 14.89
500 ms Speedup 1.56 2.17 2.32

Par. Iterations 1 1 1
Depth 7 Time 33.81 33.91 34.41
500 ms Speedup 1.02 1.02 1

Par. Iterations 0 0 0

(b) Problem Number 48 with four processors.

130

Workers 2 4 8
Depth 3 Time 611 347 311
250 ms Speedup 1.89 3.32 3.7

Par. Iterations 4 4 4
Depth 5 Time 601 309 300
250 ms Speedup 1.92 3.74 3.85

Par. Iterations 3 3 3
Depth 7 Time 611 321 315
250 ms Speedup 1.89 3.59 3.66

Par. Iterations 3 3 3
Depth 3 Time 606 327 336
500 ms Speedup 1.9 3.52 3.43

Par. Iterations 3 3 3
Depth 5 Time 584 340 318
500 ms Speedup 1.97 3.39 3.63

Par. Iterations 3 3 3
Depth 7 Time 610 339 345
500 ms Speedup 1.89 3.4 3.34

Par. Iterations 2 2 2

(c) Problem Number 96 with four processors.

Workers 2 4 8
Depth 3 Time 2696 1445 1446
250 ms Speedup 1.88 3.49 3.51

Par. Iterations 4 4 4
Depth 5 Time 2657 1425 1322
250 ms Speedup 1.91 3.56 3.84

Par. Iterations 4 4 4
Depth 7 Time 2642 1362 1365
250 ms Speedup 1.92 3.72 3.72

Par. Iterations 3 3 3
Depth 3 Time 3031 1625 1399
500 ms Speedup 1.67 3.12 3.63

Par. Iterations 4 4 4
Depth 5 Time 2757 1466 1393
500 ms Speedup 1.84 3.46 3.64

Par. Iterations 3 3 3
Depth 7 Time 2675 1416 1361
500 ms Speedup 1.9 3.58 3.73

Par. Iterations 3 3 3

(d) Problem Number 100 with four processors.

131

the only parallel iteration at depth five is much more balanced. Combined
with the fact that the first parallel iteration at depth three is still relatively
inexpensive, taking about three seconds, it becomes easier to see why so little
performance is lost. In contrast, with four or eight workers, the load balancing
for the last parallel iteration is about equal, so the extra parallel iteration with
the static tree of depth three provides better performance.

These load balancing issues appear in other tests. We expect that as the
depth of the static tree increases, with the same number of parallel iterations,
the performance should increase. A deeper static tree increases the number
of frontier nodes and reduces the amount of computation for each node. On
average, distributing these nodes over a set of threads should yield better load
balancing. In Problem 48 this is the case. For those problems with identical
numbers of parallel iterations, performance uniformly improves with a deeper
static tree. Problem 47, however, does not exhibit this characteristic, particu-
larly with the larger threshold value. The load balancing becomes skewed and
performance suffers.

This load imbalance experienced in Problem 47 may be a result of a bad
distribution of frontier nodes. Unlike the workpile model, which allocates work
to processors based on demand, the Distributor template statically distributes
the array of frontier nodes to processors. The workpile model is better suited
to the dynamic nature of search algorithms [17].

The two remaining problems, 96 and 100 (Tables 5.3(c) and 5.3(d)), repre-
sent two of the best results on two of the largest problems. These two exam-
ples highlight two points. First, they show the upper bound on the achievable
speedups for this problem. In spite of the potential for load imbalance due to
static frontier node distribution, these large problems show that near–linear
speedups are still achievable, noting that the problems were run on a four–
processor machine. Many of the speedups exhibited by the two problems
speedups are within 10% of ideal. Second, the two problems also highlight the
dynamic nature of search. A rule of thumb in parallel programming is that
larger problems on the same number of processors will improve performance.
From the two tables there are several cases where the smaller program achieves
better performance.

The complete parallel IDA* search program was 486 lines of code. 393
lines (81%) of this is user code for the problem. The parallel framework code
consists of a single instance of the Distributor with a single parallel method,
which is 93 lines of code. Of the 393 lines of user code, 117 (30%) were
taken from the sequential version of the program (which was 188 lines of
code itself). The extra code in the parallel version is needed to create and
manipulate the static subtree. The sequential program, on the other hand,
consists mainly of a single recursive method that does a depth–first search
on a position, which is reused in the sequential version to search the frontier
nodes. In addition, both versions of the program have a table to compute the
incremental change in Manhattan distance, a table that has precomputed all
of the possible placements of the blank tile in the children of a given position,

132

Input

RGB
Image

Convert
to YCbCr

Down sample
Cb, Cr

Discrete Cosine
Transform

Quantize DCT
Coefficients

JPEG
Encoding

Output

Encoded
Image

Figure 5.13: The steps in JPEG compression.

and a class to parse the input file with the 100 problems.

5.3 JPEG Compression

5.3.1 Problem Description

The last application program in this chapter is parallel JPEG compression.
This program takes an RGB image, read from a GIF image using classes in
the Java standard library, compresses it using the baseline JPEG standard,
and saves the result in the JPEG File Interchange Format (JFIF) [45].5

The compression process consists of six steps, illustrated in Figure 5.13.
These stages are:

1. Convert RGB input to YCbCr. JPEG compression does not work on
RGB images, but rather works in a luminance/chrominance colour space.
The first step converts the RGB data to one such space, YCbCr.

2. Downsample. JPEG is lossy compression; the compression is achieved
by selectively filtering out information about the image and not stor-
ing it, so the resulting JPEG image is not a perfect reproduction of
the original image.6 The human visual system can tolerate a certain
amount of degradation before an image appears distorted. In a lumi-
nance/chrominance colour space, the visual system can tolerate the loss
of chrominance information. This stage, which is optional in JPEG com-
pression, downsamples the Cb and Cr components of the image from the
previous step. The downsampling takes an N × N component and pro-
duces an N

2
× N

2
output where each element is the average of a 2 × 2

portion of the original. The luminance component, Y, is not downsam-
pled.

5The JPEG standard, now over 10 years old, specified how to compress and encode image
data but did not specify how the image and associated information was to be stored. JFIF
is still the defacto standard in spite of the creation of the SPIFF file format standard by
the JPEG Working Group in 1997 [52].

6There is a version of the JPEG standard for lossless compression for images that cannot
tolerate any degradation, such as medical images.

133

3. Discrete Cosine Transform (DCT). The Discrete Cosine Transform con-
verts from the spatial domain to the frequency domain. The pixel values
are normalized to the range [−127, 128] and the transform is done on
each 8 × 8 pixel subimage of each of the Y, Cb, and Cr components of
the down sampled image.7 The two–dimensional DCT replaces each 8×8
subimage with an 8× 8 array of DCT coefficients. The first coefficient,
at location (0, 0), is called the DC coefficient. The remaining 63 are the
AC coefficients.

4. Quantize the DCT coefficients. Quantization provides the compression
in the JPEG standard. This process filters the DCT frequency coef-
ficients using a quantization table. The quantization table is an 8 × 8
table of factors that are applied to the corresponding 8×8 array of DCT
coefficients, illustrated in Figure 5.14. This table determines the accu-
racy with which each of the frequency coefficients should be preserved.
The smaller the value in the quantization table, the better preserved
that frequency will be in the compressed image. Higher values preserve
less information and provide better compression at the expense of image
quality. In many image compression programs, the quality metric for
a JPEG image refers to a factor that is applied to each element of the
quantization table.

5. JPEG encoding. After an 8 × 8 subimage has been quantized, it is en-
coded as a stream of bits. The zero values are encoded very compactly,
compressing the image. The encoding uses variable length Huffman en-
coding. The AC and DC components are encoded differently and use
their own separate Huffman codes. The DC component is encoded as
the difference between the DC component of the current subimage and
the DC component of the previous subimage. The 63 AC components are
encoded using a zig–zag pattern that encodes the frequency coefficients
that are most important, near the top left corner, first. The less impor-
tant higher frequencies, which have a high probability of being filtered
out and thus do not need to be stored, are encoded last.

The complete image is encoded by appending the encodings for each
subimage for the Y, Cb, and Cr components in the order illustrated in
Figure 5.15. Recall that the Cb and Cr components were down sampled
in the second stage. The encoding for each 8×8 subimage is the encoded
DC component followed by the encoded AC components.

7Images with dimensions that are not multiples of eight (or, rather, 16 to account for
the down sampling) are padded, and the actual dimensions of the image, stored in the JFIF
file, are used to crop the extra data.

134

236 −11

−23 18

12 −5

6 −3

2 −2

−3 0

−3 1

0 −1

−11

−7 −1

−2 2

0 0

0 −1

2 1

−1 0

0 0

−1 0

2 0

2 2

2 0

−1 1

−1 2

−1 2

1 −1

−1 1

−3 2

0 −2

−4 −2

−1 2

2 −1

1 −1

1 −2

9

(a) An 8× 8 array of DCT
coefficients.

⇒ Q(i, j) = DCT (i,j)
QT (i,j)

⇒
16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

(b) An example quan-
tization table.

−1 0 0 0 0 0

−2 2 0 0 0 0 0 0

−1 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

15

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0 0 0 0 0 0 00

1

(c) Resulting quantized
coefficients, rounded to
the nearest integer.

Figure 5.14: An example of the quantization process on an 8 array of normal-
ized DCT coefficients.

Cb component Cr componentY component

1 2

3 4

5 67 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

Figure 5.15: The order in which the encodings for the subimages are appended
together into a complete JPEG encoding. Each block is an 8× 8 subimage.

135

RGB
Image

YCbCr
Image

DownSampled
Image

DCT
Image

Quantized
Image

Output

JPEG
Encoder

Legend:
Unordered buffer

Ordered buffer

Figure 5.16: The pipeline specification for JPEG compression, with an amal-
gamated encoding stage.

5.3.2 Pattern Selection

With the exception of the encoding process, each of the steps in JPEG com-
pression can be executed independently on any 16×16 subimage of the original
input image. The DCT and JPEG encoding are performed independently on
8 × 8 subimages, but the second stage takes the 16 × 16 Cb and Cr compo-
nents and downsamples them to 8 × 8 components. Further, no ordering is
needed between the subimages until the encoding and output stages. Using the
Work–pile–based pipeline, the program can be implemented using the pipeline
in Figure 5.16.

It is important to understand how the ordered buffers in Figure 5.16 oper-
ate. An ordered buffer does not preclude the stages at both ends of the buffer
from executing concurrently. One part of an image can be quantized while
another part is simultaneously being encoded while yet a different output re-
sult is being processed. An ordered buffer simply ensures that the work items
exit in the sequence, regardless of the order in which they enter the buffer.
The buffer tracks the sequence number of the work items that have been pro-
cessed and only allows the next item to be removed when the previous item
has finished processing. For instance, the encoding stage will always receive
the subimages in the correct order. Note too that this ordering does not affect
the operation of the stage that is placing data into the buffer. For example,
the quantization process can still process work items out of order, and can be
busy even if the encoding process is waiting for the next item in the sequence.

It is also possible to split the encoding process into two stages, one for
encoding the AC components and one for encoding the DC components. The
AC component of each of the subimages can be encoded independently. Only
the DC component has a dependency, with the DC component of the previous
subimage. This revised pipeline is given in Figure 5.17. While splitting the
encoding creates more parallelism by adding an extra stage, it requires extra

136

RGB
Image

YCbCr
Image

DownSampled
Image

DCT
Image

Quantized
Image

JPEG
AC Encoder

JPEG
DC Encoder

Output

Legend:
Unordered buffer

Ordered buffer

Figure 5.17: An alternate pipeline for JPEG compression, with the encoding
stage split into two separate stages.

copying of the encoded subimages to create the final bit stream of JPEG data.
This occurs regardless of the order in which the encoding stages are placed in
the pipeline.

5.3.3 CO2P3S Solution

Since the Work–pile–based pipeline has not yet been implemented in CO2P3S,
these results are based on a hand–coded implementation of a possible pipeline
framework. The framework implements the Work–pile–based pipeline de-
scribed in Section 4.2.3. The ordered buffers are implemented using the con-
current priority queue from the util.concurrent class library [62], with the
ordering based on a work item tag that is assigned to the stream of input
items as they enter the pipe and is maintained by each subsequent stage. In
addition, a stage with an ordered input buffer has a reference to the last work
item that was executed. As a result, the execution of ordered stages is guarded
by a mutex lock to ensure that no work item is processed before the previous
one has finished. Stages with no ordering between them have no buffers at all;
the next stage is simply executed by the current thread until ordering becomes
necessary.

Regardless of which of the two pipeline solutions is used, there are two or-
dered stages. The first ordering point is before the DC component is encoded,
either in a separate pipe stage or as part of the complete encoding process.
The output stage is also ordered so the mainline program will receive the out-
put items in the correct sequence. This is needed to correctly assemble the bit
streams of encoded JPEG data into the final encoded image. Since variable
length encoding is used, this dependency cannot be avoided.

The input to the pipeline is contiguous stripes of 16 rows of the input
image. If the number of rows in a stripe is not a multiple of 16, some stages
(notably the downsampling, DCT transform, and AC encoding) will require
data from other work items (see Section 5.3.2 for details). The work items
in the pipeline would no longer be independent, so ordering buffers would

137

be required between every stage and performance would suffer. To keep the
program simple, stripes of 16 rows are used. It is also possible to partition
each stripe into blocks. Again, this is easiest if the number of columns in these
blocks is a multiple of 16.

One of the potential problems with the Work–pile–based pipeline, noted
in Section 4.2.3, is contention for the heap lock when creating objects for each
request for each stage. Through profiling, we were able to verify that this
is indeed a problem in the pipeline framework. To reduce contention, the
JPEG compression program was written to reuse as much storage as possible
by performing each stage in place on the image data. To further cut down
on contention, and allow us to test our pipeline rather than the ability of
the virtual machine to create objects, the memory for each stage object was
preallocated. These objects were stored in a memory pool that was accessed
by the work item tag, so the preallocated objects could be retrieved without
any locking. It may be possible for a pipeline framework to include similar
preallocated object pools.

Both variations of the encoding stage were implemented. The differences
between the two versions are restricted to three classes:

1. a class internal to the framework that is responsible for creating the
pipeline structure (namely the buffers between the ordered stages). This
class needs to be generated with the pattern template parameters that
indicate the classes and ordering in the pipeline, so this change was
expected. This class also provides an accessor to the stream of output
objects for the pipeline results. In this framework, these objects are
instances of the last stage, which will be one of the two encoding stages.
The return type of this method also had to be changed.

2. the QuantizedImage class, which had to be changed to create the desired
encoding stage as the next stage in the pipeline.

3. the mainline class. The mainline class reads the stream of output objects
from the pipeline. This class had to be changed to read the correct output
type.

The fact that changing the structure of the pipeline has such localized effects on
the framework suggests a good separation of concerns and encapsulation. For
example, the threads executing the pipeline do not need to explicitly account
for any changes in the pipeline stages; this is handled by the polymorphic calls
to the stage objects based on methods defined by an abstract superclass. Also,
the search for work items iterates over a collection of buffers between stages.
While the contents of this collection will change with different pipelines, the
search itself is the same.

One potential optimization for the pipeline was to insert unordered buffers
into the pipeline to create more work items. This optimization was applied,
adding an unordered buffer between the down sampling and DCT transform.
The performance of the program was unaffected.

138

In this program, the worker threads search for work from the last stage
and work backwards towards the input queue. Since the only buffers in the
program are just before the encoding stage and the input buffer, this policy
gives a higher priority to encoding image data than to processing new work
items. Scheduling work from the input queue forward can cause many work
items to queue up before the DC encoding stage, which can only be executed
by a single thread at a time. The remaining threads would be idle, reducing
the performance of the program.

As expected in the Work–pile–based pipe, changing the number of threads
for the different experiments requires no change to the structure of the pipeline.
More worker threads are started, but these new threads can process work for
the stages as it becomes available. The structure of the stages does not need to
be changed to accommodate the new threads. The number of worker threads
is an argument to the constructor for the pipeline framework.

5.3.4 Results

The speedups and wall clock times for the parallel JPEG compression applica-
tion are given in Table 5.3 for JDK 1.2 and Table 5.4 for JDK 1.3. Results are
included for both implementations of the encoder (the amalgamated encoding
stage and the split encoding stage) using the Work–pile–based pipeline. The
programs were executed on a Sun server with four 450MHz Sparc processors
and 4GB of memory.

In addition, results are provided for the traditional pipeline from Fig-
ure 4.18 (page 87). Again, there are two implementations for this pipe, with
an amalgamated encoding stage and with a two split encoding stages. Each
stage in the pipe is assigned to a separate thread. This requires six worker
threads for the amalgamated encoding solution and seven worker threads for
the split encoding solution.

The times in the tables include both JPEG encoding and writing the re-
sulting JFIF file to disk. Reading the GIF file and memory preallocation are
not included. The number of threads listed is the number of workers created
by the pipeline, which does not include the main thread. This thread is still
active, but is limited to getting results from the output queue of the pipeline
and does little computation.

To provide fair results, the sequential program was changed to preallocate
its heap storage as well. Although there is no heap lock contention, the creation
of objects still takes processing time. Including this time in the sequential code
would skew the results.

The first trend that is apparent from the results is that the addition of new
threads to a program using a Work–pile–based pipeline almost always improves
its performance. The cases where performance suffers are when the number
of threads is greater than the number of processors in JDK 1.3. Since the
number of threads in the Work–pile–based pipe is independent of the stages of
the pipeline, though, it is straightforward to find and use the optimal number of

139

Table 5.3: Speedups and wall clock times (in milliseconds) for the parallel
JPEG encoder with JDK version 1.2.

Workers 2 4 6 8
1024× Speedup 1.64 2.31 2.41 2.72
896 Time 2286±18 1626±13 1555±39 1381±29
3212× Speedup 1.7 2.56 3.08 3.47
3600 Time 30204±320 20117±194 16691±258 14831±97

(a) Results with an amalgamated encoding stage in a Work–pile–based pipeline
with four processors.

Workers 2 4 6 8
1024× Speedup 1.6 2.21 2.52 2.81
896 Time 2338±42 1697±57 1488±47 1335±20
3212× Speedup 1.14 1.52 1.72 1.85
3600 Time 45312±479 33754±265 29845±192 27798±163

(b) Results with the encoding split over two stages in a Work–pile–based pipeline
with four processors.

Encoder Amalgamated Split
encoding encoding

1024× 896 image Speedup 1.97 1.92
Time 1902±41 1959±32

3212× 3600 image Speedup 2.04 1.3
Time 25270±371 39622±128

(c) Results using a traditional pipeline with six stages executing on
four processors.

140

Table 5.4: Speedups and wall clock times (in milliseconds) for the parallel
JPEG encoder with JDK version 1.3.

Workers 2 4 6 8
1024× Speedup 1.63 2.24 2.03 1.65
896 Time 4358±84 3163±88 3499±80 4300±141
3212× Speedup 1.71 2.87 3.14 3.12
3600 Time 45512±300 27046±179 24744±249 24905±450

(a) Results with an amalgamated encoding stage in a Work–pile–based pipeline with
four processors.

Workers 2 4 6 8
1024× Speedup 1.83 2.5 2.51 2.35
896 Time 3872±45 2831±73 2826±42 3012±46
3212× Speedup 1.34 1.97 2.17 2.22
3600 Time 57914±538 39391±223 35709±275 35004±317

(b) Results with the encoding split over two stages in a Work–pile–based pipeline
with four processors.

Encoder Amalgamated Split
encoding encoding

1024× 896 image Speedup 2.0 2.16
Time (msec) 3547±29 3275±64

3212× 3600 image Speedup 1.86 1.46
Time (msec) 41750±333 53324±388

(c) Results using a traditional pipeline with seven stages executing on four
processors.

141

worker threads. In contrast, the number of threads in the traditional pipeline
is a function of the structure of the stages, which would need to be adjusted. In
addition, the improved performance obtained with the Work–pile–based pipe
over the traditional pipe, even with an equivalent number of threads, shows
that the threads are being used more effectively in our new formulation.

Another trend is that the amalgamated encoding solution yields better
results as the image size increases. Even though the amalgamated encoding
solution restricts concurrency (as the encoding for a complete stripe of the
input image is done by a single thread at a time), the extra copying in the split
encoding solution turns out to be more expensive. For small images, though,
the extra concurrent stage present in the split encoding solution outweighs the
extra copying. Using JDK 1.3, the split encoding pipeline outperforms the
amalgamated encoding pipe. With JDK 1.2, the difference between the two
versions is small.

One further trend is that the execution times for JDK 1.3 are larger. We
have not found an explanation for this behaviour.

In terms of the implementation, parallel JPEG compression with an amal-
gamated encoding stage totals 1149 lines of Java code, where 911 lines (79%)
of this is user code. For the pipeline with the split encoding, the program is
1256 lines of code, with 1016 lines (81%) of user code. For reference, the se-
quential program totaled 708 lines of code. The principle change between the
two versions was that each stage of the compression process had to be modified
to work with a subimage. This was simplified by the use of a bounded image
in the sequential version, which operates exactly like the bounded arrays in
the Mesh framework. In addition, the parallel version has classes for some
stages that were not implemented as classes in the sequential version.

5.4 Summary

This chapter examined three additional applications developed with the
CO2P3S parallel programming system. These three applications, sorting, IDA*
search, and JPEG compression, come from different problem domains. Each
design pattern template currently supported by CO2P3S was used in at least
one of these problems. The sorting example was also noteworthy in that it
used four pattern templates and composed the generated frameworks into a
complete application. These applications help demonstrate the utility of both
CO2P3S and the pattern templates it supports.

142

Chapter 6

Assessing the Usability of
CO2P3S

Many tools are built and used by the same group of researchers. All usability
claims about these tools are the product of anecdotal evidence from the sys-
tem developers, and the possibility of inadvertent bias cannot be discounted.
Because the system developers are so familiar with their tool, most usability
information must be considered as the best case. This includes the information
derived from the example programs written by the author of this dissertation.
For instance, the developers of a system understand the inner workings of their
tool and may use that knowledge when tuning an application. The resulting
program may obtain better performance than a normal user could expect. As
well, the developers will better understand the programming model provided
by their system and thus be able to write programs more quickly than other
users. For example, new CO2P3S users have to learn how to use the design
pattern template parameters to specialize a given template for a program and
how to use the hook methods in the generated frameworks to build an appli-
cation. As the creator of the pattern templates and frameworks, the author
did not suffer from this learning curve.

To assess the usability of CO2P3S, we conducted a usability study modeled
after the studies for Enterprise [99, 96]. The study compared parallel program-
ming with the CO2P3S parallel programming system against programming in
Java using threads. The subjects for the study are a group of novice parallel
programmers from an undergraduate class on object–oriented programming
languages. This chapter describes the study and its results.

Section 6.1 lists some aspects of usability and discusses its importance.
The design of the study is described in Section 6.2. Section 6.3 presents the
results of the study, derived from application code metrics. Over the course of
the study, we encountered several problems that limited the data we were able
to collect. Section 6.4 describes these problems. Finally, Section 6.5 concludes
this chapter with suggestions for future studies, to obtain more data and to
correct some of the errors in this study.

143

6.1 The Importance of Being Usable1

Despite its importance, the usability of the tools produced in parallel pro-
gramming systems research is rarely considered. Usability covers many issues,
including (but not limited to):

• The learning curve for the system. A system should be easy to learn for
both novice users and experienced parallel programmers.

• The effort required to create a working program using the system.

• Compatibility with existing software. Legacy code cannot be ignored.
A parallel programming system should allow a user to integrate existing
code into an application.

• The probability of programming errors. Some systems, such as Enter-
prise and CO2P3S, use a combination of user interface and program-
ming model to reduce this probability. Other systems, most notably
message–passing libraries, opt for flexibility at the expense of increasing
the probability of user error.

• The performance of programs created with the system. A parallel pro-
gramming tool that cannot produce applications with improved perfor-
mance is of no use to programmers.

• The functionality of the system. The system must provide access to basic
development facilities, such as a compiler and an editor.

• The toolset available in the system. Even though the abstractions in
the programming model of a parallel programming system reduce the
development effort, tools are still needed for debugging and performance
tuning.

• How useful the system is for both novice users and experts. Ideally we
would like a system to meet the needs of both groups of users. With
both groups using the same tools, they can collaborate more effectively
and novices can more easily graduate to experts.

• The ability to perform incremental tuning. Users should be able to
concentrate their tuning efforts on just those parts of a program that are
causing performance problems, without having to consider the complete
application structure.

• Suitability for large–scale software engineering. Most parallel program-
ming systems use several small– to medium–sized programs to demon-
strate its features. The problems that real users want to solve can be

1With apologies to Oscar Wilde.

144

much larger in scope, involving months or years of development time. A
system should be able to support large projects.

It is critical that the usability of a system be assessed with respect to end
users and not its developers. The primary reason, which is surprisingly easy
to overlook, is that the goal of parallel programming systems research is to
create tools that other programmers can use to solve their problems. It is the
needs of these programmers that must be considered as researchers create new
abstractions and tools.

With the exception of the studies discussed in Section 2.1.3 (under the
usability characteristic), we are aware of no other research that assesses the
experiences of real users with a parallel programming system. These assess-
ments will be necessary if parallel programming systems developers hope to
produce the kinds of systems that programmers will use. Although system
developers have preconceptions about the benefits their systems offer to users,
usability studies almost invariably uncover additional benefits and weaknesses
that were not anticipated. Uncovering this data will be crucial if the next
generation of parallel programming systems are to succeed.

6.2 Study Setup

The best way to evaluate the usability of a parallel programming system is to
run a controlled experiment. Subjects are split into two groups, and each are
given a set of problems to solve. One group uses the parallel programming
system and the other does not. The experiences of both groups are compared
to determine the strengths and weaknesses of the tested system. However,
preparing and executing a study to quantitatively assess the usability of a
tool is not a simple matter, which is why few research groups have attempted
it. The experimenters must determine what measurements they wish to take
and find ways to take them, which involves instrumenting the programming
environment for both groups of subjects. The experiment should be held in
a controlled environment so that correct measurements can be taken, which
takes time to construct. The problems for subjects to solve must be chosen
carefully. The problems cannot be too small or too simple or they will not
be representative of actual program development. In addition, the problems
should cover a range of different parallel programming styles to evaluate the
utility of the system.

This section describes the design of a study to assess the usability of
CO2P3S. Since we were unable to control the environment, it cannot be said
that we conducted an experiment. All materials used in the study are given
in Appendices C through F. Appendix C is the documentation for the Mesh
pattern template that was supplied to the subjects. Appendix D provides the
assignment descriptions used for the study. Appendices E and F are back-
ground material on sequential and parallel mesh computations respectively,
that were also distributed to the subjects.

145

6.2.1 Design of the Usability Study

The subjects for the study were undergraduate students enrolled in CM-
PUT 425, a course on implementation issues in object–oriented programming
languages. There were 20 students in this class, which were broken into two
groups of 10.

The study consisted of two smaller studies. In the first study, both groups
implemented a variation on the LaPlace solver. One group used the Patterns
Layer of the CO2P3S parallel programming system. The other group used
non–CO2P3S Java with native threads, and were given an implementation of
barrier synchronization that they could use in their parallel program.

In the second study, the two groups switched programming environments.
The problem was the same reaction–diffusion example used in Chapter 3.2

Both of the problems used in this study are examples of mesh computa-
tions. The subjects were given background material on parallel and sequen-
tial versions of mesh problems. They were also instructed to consider both
performance and object–oriented design in their assignments. In particular,
they were encouraged to attempt to maintain some separation between the
application–independent structure and the application–specific computation.

Each subject was given a computer account that they were to use during
the study. The shell on these accounts was instrumented to log all commands.
In addition, a modified CO2P3S interface logged all user activity. The subjects
were informed that their actions were being monitored, but were not told what
was being measured.

Because of problems monitoring the subjects, the results for the study are
derived from metrics that can be measured from the application code for the
two programs. From the study, we expected the following:

• CO2P3S programmers would write less code than non–CO2P3S Java pro-
grammers.

• CO2P3S users would write less complex application code than non–
CO2P3S Java programmers.

6.2.2 Threats to Internal Validity

Internal validity is the degree to which the data collected during a study are
the result of the intended experimental factors, and not the result of other
outside factors. Consider an experiment comparing user productivity in two
different programming environments. If both groups of users use the same
operating system, the only difference will be the programming environment
so the study will be more internally valid. If the two groups used different

2The problem description (in Appendix D) was rewritten as a reaction and diffusion of
mould and bacteria over a decomposing donut, but the problem was identical.

146

operating systems, then some of the observations may be the result of this
difference instead, making the study less internally valid.

The threats to internal validity in this study are:

• The subjects knew that they were being monitored and so they could
change their normal work habits.

• The new accounts for the study were created on the same environment
as the undergraduate accounts that the subjects used on an everyday
basis. Subjects could inadvertently use their normal accounts, which
were not instrumented, to work on their assignments. The result would
be that we would have incomplete data on the development activities of
these subjects, which would limit the conclusions we could draw from
the study. Note that this threat only applies to subjects writing non–
CO2P3S Java programs, as the JVM and compiler were available to the
subjects in their undergraduate accounts. While these subjects would
not be able to access the supplied barrier code, this problem would not
become apparent until the subjects attempted to compile their (already
developed) programs and found they could not import the needed classes.
In contrast, CO2P3S subjects could only run the system when logged on
with their study accounts. This means that any underestimation in
measurement for this factor would weaken the case for CO2P3S.

• The subjects could change the shell in their study accounts. Only the
one shell was instrumented to log the activities of the subjects, so any
change would prevent us from monitoring development activities. The
subjects were instructed not to change the shell. Again, this error would
weaken the case for CO2P3S.

• When developing non–CO2P3S Java programs, it was possible for the
subjects to access and use the parallel structural code generated by
CO2P3S rather than writing it themselves (particularly if the subjects
used CO2P3S for first part of the study). Although code reuse is usually
laudable, it does mean that our measurements will not accurately reflect
program development with non–CO2P3S Java. Even if subjects do not
reuse code, they may be influenced by the design of the framework. This
situation would also weaken the case for CO2P3S. This is an example of
a confounding variable in experiment design. The results of the second
study may be influenced by the first study.

• In all studies, there is the possibility of mortality, which refers to the loss
of participants in a study. In this case, it refers to subjects who do not
complete the assignments. This situation would not favour non–CO2P3S
Java or CO2P3S.

Note that none of the threats to internal validity promote CO2P3S. There-
fore this is a conservative study with respect to internal validity.

147

6.2.3 Threats to External Validity

External validity is the degree to which the results of a study are generalizable
and can be used to predict the outcome for a different group of subjects. For
example, a study with too few participants may not be externally valid as it
may not accurately predict the results for larger populations.

The threats to external validity in this study are:

• The size of the study is too small. There are not enough sample points to
be certain that any conclusions drawn from the study can be generalized.

• The two problems for the study require only a single design pattern.
Larger problems will likely require multiple CO2P3S pattern templates.
There may be additional difficulties in composing pattern templates (and
the generated frameworks) that will affect the usability of CO2P3S.

• The subjects were told which pattern to use in their solutions to the
problems in the study. This removes a critical part of the creation of
a program in a pattern–based system: selecting the most appropriate
pattern. It is not clear what the impact of a pattern–based tool will
have on the design process.

• Our usability study only considers novice parallel programmers. It is not
clear how these results will generalize to more advanced users [99].

6.3 Results of the Usability Study

The results of our usability study are summarized in Tables 6.1 and 6.2. Note
that the same set of subjects participated in both studies but their roles were
reversed (non–CO2P3S Java students in the first study became CO2P3S stu-
dents in the second and vice versa). The CO2P3S group wrote fewer lines of
code for both applications, 40% less for the LaPlace solver and 53% less for
the reaction–diffusion program. The CO2P3S subjects also used fewer classes,
40% fewer for LaPlace and 30% less for reaction–diffusion. The difference is
the structural code generated for the Mesh pattern template in CO2P3S. In
contrast, the non–CO2P3S Java solutions had to write this structure them-
selves. Not only is this code difficult to write, it is a considerable portion of
the complete application for these two problems. It is important to mention
that we did not check the submissions for correctness, so we expect that some
of the submitted programs contain errors.

However, the fact that CO2P3S users wrote less code does not necessarily
translate to a reduction in overall development effort. A small amount of
complex code can be more time consuming to develop than a large amount
of straightforward code. For example, recursive programs can be quite small,
but some programmers (particularly novices) find them difficult to write and
understand. Thus, a measure of the complexity of the application code is

148

Table 6.1: Code measurements from the first part of usability study, for the
LaPlace Solver.

CO2P3S students Non–CO2P3S Java students
No. of Avg. Avg. Avg. No. of Avg. Avg. Avg.
Programs Lines No. of No. Programs Lines No. of No.

of Classes Choice of Classes Choice
Code Points Code Points

10 171.6 4.1 20.0 8 274.9 6.6 52.6

Table 6.2: Code measurements from the first part of usability study, for the
reaction–diffusion problem. The set of subjects is the same as in Table 6.1 but
their roles are reversed.

CO2P3S students Non–CO2P3S Java students
No. of Avg. Avg. Avg. No. of Avg. Avg. Avg.
Programs Lines No. of No. Programs Lines No. of No.

of Classes Choice of Classes Choice
Code Points Code Points

6 131.0 4.2 11.8 6 278.5 6.0 46.5

needed to obtain a more complete picture of the amount of effort required to
write a program in CO2P3S.

One such complexity measure is choice points. Choice points are places
in a program where the flow of control can be altered and may no longer be
sequential. Examples of choice points are selection control statement (such
as if and switch statements) and loops (which contain conditions to decide
what code is executed next). Other examples of choice points can include
boolean operators or exception handling. A complete list of the choice points
used in this dissertation is given in Appendix G. The philosophy behind this
complexity measure is that errors in programs tend to occur when the wrong
code is executed after a decision point. In contrast, a program that is a simple
sequence of operations will usually contain fewer errors since there are less
decisions that can go wrong.

Table 6.1 shows that the CO2P3S programs in this study contained fewer
choice points than non–CO2P3S Java solutions, 62% less on the LaPlace solver
and 75% less in the reaction–diffusion problem. The structural code generated
for the Mesh template contains most of the choice points in these applications.
Recall that the application–specific code for the Mesh framework consists of
methods implementing operations at the level of an individual mesh element.
The iteration required for controlling the computation for the two–dimensional
set of mesh elements is contained in the generated framework code, which
accounts for many of the choice points in a mesh computation.

149

6.4 Problems with the Study

The results for the study are based on static measurements from the applica-
tion code submitted by the subjects. There are other interesting aspects of
usability that we would have liked to measure, such as the number of com-
pilations, the number of program executions, and the amount of time users
spent working on the problems. These measurements could have provided
quantitative data on the amount of effort needed to create a parallel program
in CO2P3S and non–CO2P3S Java. Unfortunately, several of the threats to
internal validity described in the previous section were realized, so no conclu-
sions could be drawn from the instrumentation. In addition, other factors that
interfered with this study are discussed.

Problems with the login accounts was the principal reason that we were
unable to monitor the development activities of the participants. In particular,
these accounts were created in the same environment in which the subjects
normally work. As a result, many subjects used their normal accounts out of
habit, only switching to their study accounts when they discovered they were
missing facilities needed to complete an assignment. This problem affected
the non–CO2P3S Java group, who could have a completely developed program
before they noticed any missing facilities (namely the barrier implementation).
The CO2P3S group did not suffer from this problem since the user interface
could only be started from the study accounts.

In the results from Table 6.1, the rate of mortality increased significantly
for the second part of the study. This was the result of errors in the assignment
specification. In particular, one problem with the reaction–diffusion specifi-
cation was only uncovered the day before the assignment was due. Coupled
with the fact that the assignment was only worth 3% of their final grade, some
students gave up in frustration.

There were two other, smaller problems affecting only individual partic-
ipants. First, while none of the subjects changed the shell for their study
accounts, one did start another shell on the command line and bypassed our
instrumentation. Given the more general problems with the study accounts,
this problem did not affect the results. Second, another subject submitted
a non–CO2P3S Java program that was influenced by the Mesh framework
generated by CO2P3S. Some of the design and structural code mirrored the
framework code. However, it was clear that the subject had tailored the code
to the particular problem.

More generally, the environment prepared for the study was too uncon-
trolled. The subjects could accidently leave or avoid the instrumented en-
vironment without being aware that they had done so. Since we could not
observe the subjects throughout the study, there was no way to correct this
situation before it became a problem. Future studies must either have a more
controlled environment or must monitor the participants more closely to ensure
similar problems do not occur.

Although it was not a threat to the validity of the study, a further factor

150

that we did not consider was how the working habits of students has changed
since the usability studies of Enterprise. High speed networks to the home,
such as cable modems and DSL service, have had a dramatic impact on the way
students complete their assignments. In the past, students had no choice but
to work in laboratories on campus. Today, many students take advantage of
their Internet access to work from home in one of two ways. First, they can log
into computers on campus from home. Since X Window servers can be found
for all major operating systems, students can remotely display applications
running on university computers on their home machines. The second way
students can work from home is to download the software they need and install
it locally. The available bandwidth of high–speed Internet access means that
downloading large software packages is no longer an obstacle. In contrast,
when the Enterprise studies were undertaken, home networking was limited
to 9600 baud modems, so students had to work on campus. Students today
expect a larger degree of freedom in accessing resources and software that they
can use to complete course assignments.

Unfortunately, it was not possible to give the students this flexibility when
participating in our study, especially when they were using CO2P3S. For tech-
nical reasons, the CO2P3S interface cannot be remotely displayed over a net-
work.3 Instead, the interface must be run on the local machine. In addition,
the instrumentation we put into the interface to monitor user activity required
access to file systems on campus, so we could not make it available to the stu-
dents for download. The non–CO2P3S Java subjects had more flexibility; while
they were asked to work in their study accounts, they could do so by logging
in from home.

6.5 Issues for Future Studies

This study considered the usability of the Patterns Layer of CO2P3S in the
hands of a group of novice parallel programmers. This is only one layer of the
PDP process; the other layers also need to be assessed. As well, the environ-
ment for our study failed to provide reliable data even for our limited study.
This section discusses issues that should be considered by future studiess.

6.5.1 Study Environment

Conducting usability studies for parallel programming systems as course as-
signments seems like a good idea. Most students have little or no experience
in the subject, but are willing to learn and use new tools. Assignments are
usually done over the course of about two weeks, allowing the study to use
larger problems that are more comparable to real–world software development.

3This appears to be a limitation in the Swing graphical user interface components.

151

Unfortunately, the environment for this study failed to provide us with the
usability data we wanted to measure for subjects writing programs in non–
CO2P3S Java. This failure was the result of three factors:

1. The study used the same laboratory that the students used normally.
Out of habit, many subjects used their existing accounts rather than the
instrumented accounts created for them for the study.

2. The laboratory had a Java installation that students could use from their
normal accounts.

3. Over the course of a two week assignment, it was not possible to monitor
students as they worked in the laboratory.

These factors combined to allow students to develop their Java programs in
an uninstrumented environment, preventing us from collecting any data on
their development efforts. In addition, the students were concentrating on
completing their assignments, not on their participation in the study, so it is
understandable that they would forget to use the environment created for the
study when it was not necessary.

However, the Enterprise studies were more successful at gathering usability
information during student assignments. The difference is that the software
for those studies was not widely available outside of the environment created
for the study. The participants had to use the instrumented environment to
complete their assignments. This added an additional measure of control over
the participants in the study that we were unable to apply because of the
ubiquity of Java installations.

Future studies need to concentrate on improving control over their environ-
ment so that more data can be collected. One way of providing better control
is to use volunteer of paid subjects. These programmers will be more aware
that they are participating in a study and will be less likely to circumvent any
instrumentation. Even so, subjects should work where they can be observed
to ensure they do not accidently leave the setup for the study.

The drawback to this new environment is that it limits the size of the
problem that can be used. It will be difficult to find subjects willing to spend
more than one or two days on a study. Larger problems, such as the reaction–
diffusion example, take time to fully understand and implement properly. This
time can be reduced by providing library code for the subjects to use.

6.5.2 Usability at Different Program Development

Stages

The reported usability studies have a common theme: they measure the effort
needed to develop a complete, working parallel application by a group of novice
programmers. This is an important measure of the usability of a parallel pro-
gramming system. However, it fails to address two important considerations.

152

First, these studies fail to consider the needs of more experienced parallel
programmers. It is not clear if usability results from novice users will generalize
to experts. Novice programmers will be most concerned with the abstractions
for expressing parallelism and synchronization provided in the programming
model of the tool. They will spend most of their time just trying to create
a working program. Expert programmers have different expectations from
their tools. Since they already have experience with a variety of parallel pro-
gramming models, experts are usually more concerned with performance and
flexibility. They expect a system that will allow them to implement the paral-
lel structure that they feel is best for their program and to tune that structure
for optimal performance. Expert programmers can become frustrated with
high–level tools that do not give them control over their application code [96].

Putting this into perspective with the abstractions in the PDP process,
novice users will spend most of their time working in the Patterns Layer, the
highest layer of abstraction. The high–level abstractions at the Patterns Layer
are invaluable to these users since they are not familiar with the difficulties of
low–level parallel programming. In contrast, experts will spend more time at
the Intermediate Code and Native Code layers trying to get more performance
out of their programs.

The second consideration that these studies fail to consider is differences
in usability at different stages of application development. Abstractions that
support one stage of development may hinder efforts at other stages. For
example, automatic data replication policies supports rapid application de-
velopment, but hampers performance tuning if the chosen policy cannot be
overridden when the choice results in poor performance.

The importance of this consideration is highlighted by the layered model
in the PDP process, in which different abstractions are provided for each stage
of program development. Studies for tools supporting the process, including
CO2P3S, should assess the abstractions for each layer.

Another consideration is that previous usability studies considered pro-
gram development as one large process. Instead, it consists of several smaller
processes, such as the learning phase, initial development of the program, and
performance tuning. Usability measurements should consider each of these
phases separately [99].

6.5.3 Measuring the Learning Curve

An important usability aspect that has not been adequately addressed is mea-
suring the learning curve for a parallel programming system. The usual bench-
mark for the learning curve is the time it takes for users to write their first
working parallel program. Systems that require substantial time and effort to
write even a simple program will probably not succeed.

An interesting question is how prior parallel programming experience in-
fluences the learning curve of a user [99]. Is it easier to use a high–level tool
such as CO2P3S after writing parallel programs in non–CO2P3S Java? Does

153

access to the parallel structural code generated by CO2P3S help users write
parallel programs in non–CO2P3S Java, by providing a good example to start
from? The answers to these questions can lead to better methods of teaching
parallel programming.

6.6 Summary

This chapter examined the design and results of a study to assess the usability
of the CO2P3S parallel programming system. This study was conducted over
three programming assignments in an undergraduate class on the implemen-
tation of object–oriented programming languages. Because of problems in the
setup, described in detail, the results are derived from static measurements
that were taken from the code submitted for each of the assignments. Sug-
gestions for future studies, that both avoid the errors in this study and cover
different usability concerns, were also presented.

154

Chapter 7

Conclusions and Future Work

7.1 Summary of Contributions

This dissertation described the PDP process, a new process for developing par-
allel applications based on three techniques from sequential object–oriented
programming: design patterns, frameworks, and multiple programming lay-
ers. This new process improves upon existing work by emphasizing correct-
ness and openness concerns. It is intended as a basis for the next generation
of pattern–based parallel programming systems, which will provide a flexible,
open, and extendible environment for writing high–performance parallel ap-
plications. The CO2P3S parallel programming system provided a concrete ex-
ample of a tool implementing the process. In addition, CO2P3S demonstrated
additional tool support for programming with frameworks.

In more detail, the contributions of this thesis are:

• A survey of the field of parallel programming systems (Chapter 2).
These systems were compared and contrasted using the 13 characteristics
of ideal template–based (pattern–based) parallel programming systems.
The survey also included related research on design patterns, object–
oriented frameworks, and object–oriented modeling languages.

• A complete description of the PDP process for developing pattern–based
parallel programs (Chapter 3). The process supports three layers of
abstraction. The topmost layer, the Patterns Layer, supports pattern–
based program development through framework code generation. The
code generation is guided by a user–supplied description of a pattern
structure using a design pattern template. The template allows the user
to refine the pattern structure using pattern template parameters. This
layer emphasizes correctness by generating correct structural code for the
pattern and encapsulating it in an object–oriented framework to prevent
the user from introducing errors. The Intermediate Code Layer provides
a high–level, explicitly parallel object–oriented programming language.
This layer emphasizes openness by providing access to the code generated

155

at the previous layer. The last layer, the Native Code Layer, provides
access to the implementation of the abstractions from the higher layers.
These abstractions can be tuned for the execution environment.

• A discussion of issues that will be faced by tool developers when creating
new programming systems based on the PDP process (Chapter 3).

• A description of CO2P3S, one implementation of the PDP process (Chap-
ters 3 and 4). As well as supporting the process, CO2P3S includes addi-
tional tool and code support for using the frameworks generated from the
design pattern templates. CO2P3S was evaluated using the 13 character-
istics of ideal pattern–based parallel programming systems (Chapter 4).
This evaluation showed that CO2P3S advances the state of the art in
parallel programming systems by considering openness and correctness
without sacrificing advances in other characteristics.

• A description of the design pattern templates currently supported by
CO2P3S (Chapter 4): the Two–Dimensional Mesh, the Distributor, and
the Phases. A proposed fourth template, the Pipeline, was also de-
scribed. The Pipeline is unique in that is addresses the load balancing
problems that plague traditional pipelines.

• A demonstration that the pattern templates can be used to create work-
ing parallel programs that provide performance gains. The Mesh was
used to implement a reaction–diffusion texture generator (Chapter 3).
The Distributor was used to write a parallel IDA* search program and a
parallel sorting algorithm (in conjunction with the Phases pattern tem-
plate) (Chapter 5). A prototype framework for the Pipeline was used to
create a parallel JPEG encoder (Chapter 5).

• The results of a usability study on the CO2P3S system in the hands of
novice users (Chapter 6). This study showed that CO2P3S users write
fewer lines of code and that this code is less complex than an equiva-
lent solution in non–CO2P3S Java using threads. Unfortunately, several
problems in the study limited the amount of data that could be reliably
obtained. These problems, and suggestions for ways to avoid them in
the future, were also presented.

7.2 Future Work

The CO2P3S parallel programming system is intended as more than a concrete
implementation of the PDP process. It is also intended as the basis for new
research in pattern–based parallel programming systems. This section exam-
ines some of the research that remains to be done, and some of the work that
is already underway.

156

7.2.1 New Patterns

The most obvious direction for continued research is to find more design pat-
terns to add to CO2P3S as templates. The only way to find new patterns is to
write parallel applications and abstract out the common structural elements
(also called pattern mining). This work will improve the utility of CO2P3S
by increasing the range of possible applications that can be created with the
system.

Currently, work is underway to add a Flow design pattern template, which
will add wavefront or systolic computations to CO2P3S. This template effi-
ciently parallelizes the FastLSA algorithm for aligning DNA or protein se-
quences [23].

7.2.2 Adding and Changing Design Pattern Templates
and Frameworks

A recurring problem in pattern–based systems is that users are limited to the
set of patterns provided by the tool. If the system does not support the best
pattern for a given application, then the user will either have to settle for a
suboptimal solution or implement the structure manually.

To address this weakness, Steven Bromling has created MetaCO2P3S. This
tool allows users to create new pattern templates and frameworks that inte-
grate seamlessly with CO2P3S [18, 19]. These new templates can be shared
with other CO2P3S users, who can import them into the user interface and use
them in applications. In fact, the existing templates (the Two–Dimensional
Mesh, Distributor, and Phases) have been rewritten using MetaCO2P3S. In
contrast, the patterns supplied with DPnDP were special cases and cannot be
reproduced using its framework for adding new patterns.

When MetaCO2P3S is released to the general user community, program-
mers will have an extendible parallel programming system that is not limited
to the templates supplied by its designers. The user community will be able to
contribute their own experiences in parallel programming to CO2P3S, adding
new templates and modifying existing ones. The next logical step is to cre-
ate a mechanism that fosters collaboration and allows users to exchange their
work. One possible mechanism is a Web–based pattern repository. CO2P3S
could include an interface to this repository so users could query for relevant
templates and download the ones they wish to use in their application. They
could also upload new or revised templates for use by other programmers. This
kind of collaboration will improve the utility of CO2P3S by providing a much
larger selection of pattern templates. Further, a user community can create
templates at a much faster pace than we could by ourselves.

157

7.2.3 Support Tools

In addition to MetaCO2P3S, the CO2P3S system would benefit from the ad-
dition of other support tools. The tools created for Enterprise, such as the
distributed debugger [50] and performance monitoring toolset [114], provide
an excellent starting point for this work. However, the tools for a program-
ming system should provide similar abstractions to those supported by the
programming model, so users do not need to learn new concepts to use them.
Since the PDP process supports several layers of abstraction, it follows that
the support tools should also support different abstractions. Specifically, a
support tool should not expose any features of a lower layer.

Another possible support tool would be a pattern language system for de-
signing parallel programs. CO2P3S, like most parallel programming systems,
has no support for the design phase of application development. The system
assumes that the user already has a design and concentrates on supporting
the implementation phase. A design tool would greatly improve the usability
of CO2P3S in the hands of novice parallel programmers. Also, as the number
of pattern templates grows (possibly through the repository discussed in the
previous section), they must be organized so that users can easily find the
best template. A design tool based on a pattern language can provide this
organization.

7.2.4 Supporting Different Architectures

Currently, CO2P3S generates multi–threaded Java framework code that is
targeted at shared–memory multiprocessors. Work is underway to create a
distributed–memory version of the CO2P3S frameworks for networks of work-
stations using Java Remote Method Invocation and Jini. Ideally, this port
will only affect the structural framework code, and have no effect on the set of
pattern templates or the set of hook methods. However, there are performance
issues that must be addressed.

7.2.5 Language Issues

The work presented in this dissertation concentrated on the Patterns Layer.
The Intermediate Code and Native Code layers are still active research areas.
Some of the problems that have yet to be resolved are:

• What high–level primitives should be included at the Intermediate Code
Layer?

• How should these be translated to the Native Code Layer?

• How do we permit users to introduce new high–level primitives to the
Intermediate Code Layer?

158

The last problem is the most interesting. In keeping with the spirit of
openness in CO2P3S, advanced users should be free to customize and extend
the system to meet their needs at all of the layers supported by the PDP
process, not just the Patterns Layer.

Another language issue to consider is the addition of features at the In-
termediate Code Layer to support frameworks, in addition to supporting par-
allelism and synchronization. The language changes introduced by CORRE-
LATE (Section 2.3.3) to simplify framework instantiation are an example.
Other language features, such as multi–method dispatch [30], adding source
code to interfaces, and aspects [57] could also be included. These features may
make it easier to modify or augment the generated framework code, enhancing
the usability of the lower layers of CO2P3S.

7.2.6 Preserving Low–level Changes During High–level
Code Regeneration

The implicit assumption in the layered programming model in the PDP process
is that the user starts at the Patterns Layer and always works downward, to
the Intermediate Code Layer and finally to the Native Code Layer. We have
only considered one scenario where the user moves upward through the layers.
In this scenario, if a user introduces errors into the structure of an application
while tuning it at a lower layer, then the correct structure can be regenerated
at the Patterns Layer from the pattern template (Section 3.2.4).

However, it is possible to envision a scenario where a user may need to
modify some part of a pattern template and regenerate some of the structural
code while preserving optimizations made at lower layers. For example, a user
may generate a Mesh framework and optimize it by adding a parallel reduction
to gather the results of the computation. Later, the user may discover that
they selected the wrong topology for the problem, and would like to change
it without losing the implementation of the reduction when the framework is
regenerated.

One possible solution to this problem is use MetaCO2P3S to add the op-
timization as a parameter in the Mesh pattern template. The code for the
parallel reduction would then be generated at the Patterns Layer, where the
topology can be changed easily. However, this solution is best with commonly
recurring optimizations. Otherwise, the pattern template can become clut-
tered with many parameters for options that are rarely used, making it more
difficult to use.

For those cases when the user does not change the pattern template, there
should be a mechanism for partially regenerating the structural code. This
mechanism should separate the different aspects of a framework and allow a
user to specify which parts of the structure should be replaced when regener-
ating code for a pattern template.

159

7.2.7 Usability Studies

The usability study from Chapter 6 provides some data on the benefits of
CO2P3S and, by association, the benefits of the PDP process. Clearly, more
thorough usability studies are needed. In particular, an experiment that avoids
the problems from Section 6.4 should be undertaken. The suggested improve-
ments from Section 6.5 will also provide better experiments that should reveal
more interesting aspects of pattern–based parallel programming with CO2P3S.

7.3 Conclusion

Parallel architectures provide the opportunity for large performance benefits
to programmers who can take advantage of them. Unfortunately, harness-
ing this processing power is difficult. Parallel programs are harder to write
and debug than sequential programs. They must include communication and
synchronization code, which is difficult to implement correctly. They may be
non–deterministic, which can hamper debugging efforts. Finally, they should
be tuned for efficiency, which requires knowledge of the parallel architecture.

The best way to contend with the added complexity of parallel program-
ming is by providing tools, such as parallel programming systems and lan-
guages. These tools can provide abstractions that address some of this com-
plexity, simplifying the task of creating parallel applications.

The PDP process provides a basis for a new generation of pattern–
based parallel programming systems based on design patterns, object–oriented
frameworks, and multiple programming layers. Tools supporting this new pro-
cess will provide an open, flexible environment for writing high–performance
parallel programs. The CO2P3S parallel programming system demonstrates
the feasibility of this process, and will also serve as the basis for future research
in this area.

160

Bibliography

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[2] G. Agha and C. Hewitt. Concurrent programming using actors. In
A. Yonezawa and M. Tokoro, editors, Object–Oriented Concurrent Com-
puting, pages 37–53. MIT Press, 1987.

[3] S. Alpert and R. Lam. The ultimately publishable computer science
paper for the latter ’90s: A tip for authors. Communications of the
ACM, 40(1):94, 1997.

[4] G. Amdahl. The validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the 30th Conference
of the American Federation of Information Processing Societies, pages
483–485, 1967.

[5] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu,
and W. Zwaenepoel. TreadMarks: Shared memory computing on net-
works of workstations. IEEE Computer, 29(2):18–28, 1996.

[6] E. Arjomandi, W. O’Farrell, I. Kalas, G. Koblents, F. Ch. Eigler, and
G. Gao. ABC++: Concurrency by inheritance in c++. IBM Systems
Journal, 34(1):120–136, 1995.

[7] K. Arnold, J. Gosling, and D. Holmes. The Java Programming Language.
Addison–Wesley, third edition, 2000.

[8] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi.
P3L: A structured high level parallel language and its structured support.
Concurrency: Practice and Experience, 7(3):225–255, 1995.

[9] H. Bal, M. Kaashoek, and A. Tanenbaum. Orca: A language for parallel
programming of distributed systems. IEEE Transactions on Software
Engineering, 18(3):190–205, 1992.

[10] A. Bartoli, P. Cosini, G. Dini, and C. Prete. Graphical design of dis-
tributed applications though reusable components. IEEE Parallel and
Distributed Technology, 3(1):37–51, 1995.

161

[11] K. Beck and R. Johnson. Patterns generate architecture. In Proceed-
ings of the 8th European Conference on Object–Oriented Programming
(ECOOP’94), volume 821 of Lecture Notes in Computer Science, pages
139–149. Springer–Verlag, 1994.

[12] A. Beguelin, J. Dongarra, A. Giest, R. Manchek, and K. Moore. HeNCE:
A heterogeneous network computing environment. Technical Report UT-
CS-93-205, University of Tennessee, 1993.

[13] A. Beguelin and G. Nutt. Visual parallel programming and determinacy:
A language specification, an analysis technique, and a programming tool.
Journal of Parallel and Distributed Computing, 22(2):235–250, 1994.

[14] A. Beguelin and V. Sunderam. Tools for monitoring, debugging, and
programming in PVM. In Proceedings of the Third European PVM Con-
ference (EuroPVM’96), volume 1156 of Lecture Notes in Computer Sci-
ence, pages 7–13. Springer-Verlag, 1996.

[15] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Lan-
guage User Guide. Addison–Wesley, 1999.

[16] J. Bosch. Design pattern and frameworks: On the issue of language sup-
port. In Object–Oriented Technology (ECOOP’97 Workshop Reader),
volume 1357 of Lecture Notes in Computer Science, pages 133–136.
Springer–Verlag, 1997.

[17] M. Brockington and J. Schaeffer. APHID: Asynchronous parallel game–
tree search. Journal of Parallel and Distributed Computing, 60(2):247–
273, 2000.

[18] S. Bromling. Meta–programming with parallel design patterns. Master’s
thesis, Department of Computing Science, University of Alberta, 2001.

[19] S. Bromling, D. Szafron, J. Schaeffer, S. MacDonald, and J. Anvik. Gen-
eralising pattern–based parallel programming systems. Parallel Comput-
ing, 2001. To appear.

[20] R. Bruce, S. Chapple, N. MacDonald, A. Trew, and S. Trewin. CHIMP
and PUL: Support for portable parallel computing. In Proceedings of
the Fourth Annual Conference of the Meiko User Society, 1993. Also
available at http://www.epcc.ed.ac.uk/epcc-projects/PUL/dox.html.

[21] F. Budinsky, M. Finnie, J. Vlissides, and P. Yu. Automatic code gener-
ation from design patterns. IBM Systems Journal, 35(2):151–171, 1996.

[22] K. Mani Chandy and S. Taylor. An Introduction to Parallel Program-
ming. Jones and Bartlett Publishers, 1992.

162

[23] K. Charter, J. Schaeffer, and D. Szafron. Sequence alignment using
FastLSA. In Proceedings of the 2000 International Conference on Math-
ematics and Engineering Techniques in Medicine and Biological Sciences
(METMBS’2000), pages 239–245, 2000.

[24] M. Cole. Algorithmic Skeletons: A Structured Approach to the Manage-
ment of Parallel Computation. MIT Press, 1988.

[25] R. Crawford. Usenet posting in comp.parallel, 1999.

[26] L. Dagum and R. Menon. OpenMP: An industry-standard api for shared-
memory programming. IEEE Computational Science & Engineering,
5(1):46–55, 1998.

[27] R. Dimpsey, R. Arora, and K. Kuiper. Java server performance: A
case study of building efficient, scalable JVMs. IBM Systems Journal,
39(1):151–174, 2000.

[28] J. Dongarra, S. Browne, and K. London. Review of performance
analysis tools for MPI parallel programs. NHSE Review, 3(1), 1998.
http://www.nhse.org/NHSEreview.

[29] D. D’Souza and A. Wills. Objects, Components, and Frameworks With
UML: The Catalysis Approach. Addison–Wesley, 1998.

[30] C. Dutchyn, P. Lu, D. Szafron, S. Bromling, and W. Holst. Multi–
dispatch in the java virtual machine: Design and implementation. In
Proceedings of 6th Usenix Conference on Object–Oriented Technologies
and Systems (COOTS’2001), pages 77–92, 2001.

[31] D. Feldcamp and A. Wagner. Parsec – a software development envi-
ronment for performance oriented parallel programming. In Proceedings
of the Sixth Conference of the North American Transputer Users Group
(NATUG 6), pages 247–262, 1993.

[32] High Performance FORTRAN Forum. High performance FORTRAN
language specification version 2.0. Technical Report CRPC–TR92225,
Center for Research on Parallel Computation, Rice University, 1997.

[33] I. Foster. Designing and Building Parallel Programs. Addison–Wesley,
1995.

[34] M. Frigo, C. Leiserson, and K. Randall. The implementation of the cilk–5
multithreaded language. ACM SIGPLAN Notices, 33(5):212–223, 1998.
Proceedings of the 1998 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’98).

163

[35] G. Froehlich, H. J. Hoover, L. Liu, and P. Sorenson. Hooking into object–
oriented application frameworks. In Proceedings of the 19th International
Conference on Software Engineering (ICSE’97), pages 491–502, 1997.

[36] G. Froehlich, H. J. Hoover, L. Liu, and P. Sorenson. Reusing hooks.
In M. Fayad, D. Schmidt, and R. Johnson, editors, Building Applica-
tion Frameworks: Object-Oriented Foundations of Framework Design,
chapter 9, pages 219–236. Wiley, 1999.

[37] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object–Oriented Software. Addison–Wesley, 1994.

[38] A Geist, A Beguelin, J Dongarra, W Jiang, R Manchek, and V Sun-
deram. PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial
for Networked Parallel Computing. MIT Press, 1994.

[39] D. Goswami, A. Singh, and B. Priess. Architectural skeletons: The re-
usable building-blocks for parallel applications. In Proceedings of the
1999 International Conference on Parallel and Distributed Processing
Techniques and Applciations (PDPTA’99), pages 1250–1256, 1999.

[40] D. Goswami, A. Singh, and B. Priess. Using object–oriented techniques
for realizing parallel architectural skeletons. In Proceedings of the Third
International Scientific Computing in Object-Oriented Parallel Environ-
ments Conference (ISCOPE’99), volume 1732 of Lecture Notes in Com-
puter Science, pages 130–141. Springer–Verlag, 1999.

[41] D. Goswami, A. Singh, and B. Priess. Building parallel applications us-
ing design patterns. In H. Erdogmus and O. Tanir, editors, Advances in
Software Engineering: Topics in Comprehension, Evolution and Evalu-
ation. Springer–Verlag, 2000.

[42] A. Grimshaw. Easy to use object–oriented parallel programming with
mentat. IEEE Computer, 26(5):39–51, 1993.

[43] M. Gupta, J. Choi, and M. Hind. Optimizing java programs in the pres-
ence of exceptions. In Proceedings of the 14th European Conference on
Object–Oriented Programming (ECOOP 2000), volume 1850 of Lecture
Notes in Computer Science, pages 422–446. Springer–Verlag, 2000.

[44] R. Halstead. Multilisp: A language for concurrent symbolic compu-
tation. ACM Transactions on Programming Languages and Systems,
7(4):501–538, 1985.

[45] E. Hamilton. JPEG File Interchange Format, Version 1.02, 1992. Avail-
able at http://www.w3.org/Graphics/JPEG.

164

[46] W. Harrison, C. Barton, and M. Raghavachari. Mapping UML designs
to java. ACM SIGPLAN Notices, 35(10):178–187, 2000. Proceedings of
2000 Conference on Object–Oriented Programming Systems, Languages,
and Applications (OOPSLA 2000).

[47] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[48] S. Ben Hassen, H. Bal, and C. Jacobs. A task and data parallel pro-
gramming language based on shared objects. ACM Transactions on
Programming Languages and Systems, 20(6):1131–1170, 1998.

[49] W. Hui, S. MacDonald, J. Schaeffer, and D. Szafron. Visualizing object
and method granularity for program parallelization. In Proceedings of the
Twelfth IASTED International Conference on Parallel and Distributed
Computing and Systems (PDCS 2000), pages 286–291, 2000.

[50] P. Iglinski. An execution replay facility and event–based debugger for the
enterprise parallel programming system. Master’s thesis, Department of
Computing Science, University of Alberta, 1994.

[51] ISO/IEC JTC1 SC29 Working Group 1 (Joint Photographic Experts
Group). Digital Compression and Coding of Continuous–Tone Still
Images, Part 1: Requirements and Guidelines, ISO/IEC International
Standard 10918–1 (Also ITU–T T.81), 1992.

[52] ISO/IEC JTC1 SC29 Working Group 1 (Joint Photographic Experts
Group). Digital Compression and Coding of Continuous–Tone Still Im-
ages, Part 3: Extensions, ISO/IEC International Standard 10918–3
(Also ITU–T T.84), 1997.

[53] R. Johnson. Documenting frameworks using patterns. ACM SIG-
PLAN Notices, 27(10):63–76, 1992. Proceedings of the 1992 Conference
on Object–Oriented Programming Systems, Languages, and Applications
(OOPSLA’92).

[54] R. Johnson. Frameworks = (components + patterns). Communications
of the ACM, 40(10):39–42, 1997.

[55] R. Johnson and B. Foote. Designing reusable classes. Journal of Object–
Oriented Programming, 1(2):22–35, 1988.

[56] W. Karpoff and B. Lake. PARDO–a deterministic, scalable programming
paradigm for distributed memory parallel computer systems and work-
station clusters. In Proceedings of Supercomputing Symposium, pages
145–152, 1993.

165

[57] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold. An overview of AspectJ. In Proceedings of the Fifteenth Eu-
ropean Conference on Object–Oriented Programming (ECOOP’01), vol-
ume 2072 of Lecture Notes in Computer Science, pages 327–353. Spring–
Verlag, 2001.

[58] R. Korf. Depth–first iterative–deepening: An optimal admissible tree
search. Artificial Intelligence, 27(1):97–109, 1985.

[59] R. Lavender and D. Schmidt. Active object: An object behavioral
pattern for concurrent programming. In J. Vlissides, J. Coplien, and
N. Kerth, editors, Pattern Languages of Program Design 2, chapter 30,
pages 483–499. Addison–Wesley, 1996.

[60] D. Lea. Six misconceptions about reliable distributed
computing. Distributed Objects Mailing List Archive,
http://www.distributedcoalition.org/mailing lists/dist-
obj/msg01163.html, 1998.

[61] D. Lea. Concurrent Programming in Java: Design Principles and Pat-
terns. Addison–Wesley, second edition, 1999.

[62] D. Lea. Overview of package util.concurrent Release 1.2.6, 1999.
Available at http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/-
util/concurrent/intro.html.

[63] D. Lea. A java fork/join framework. In Proceedings of the 2000 ACM
Java Grande Conference, pages 36–43, 2000.

[64] G. Lobe. The enterprise user interface and program animation compo-
nents. Master’s thesis, Department of Computing Science, University of
Alberta, 1993.

[65] S. MacDonald. MethodThread Version 3.0, 1998. Available at
http://www.cs.ualberta.ca/∼stevem/MethodThread/index.html.

[66] S. MacDonald, J. Schaeffer, and D. Szafron. Pattern–based object–
oriented parallel programming. In Proceedings of the First International
Scientific Computing in Object-Oriented Parallel Environments Confer-
ence (ISCOPE’97), volume 1343 of Lecture Notes in Computer Science,
pages 267–274. Springer–Verlag, 1997.

[67] S. MacDonald, D. Szafron, and J. Schaeffer. Object–oriented pattern–
based parallel programming with automatically generated frameworks.
In Proceedings of the 5th USENIX Conference on Object–Oriented Tech-
nology and Systems (COOTS’99), pages 29–43, 1999.

166

[68] S. MacDonald, D. Szafron, J. Schaeffer, and S. Bromling. Generating
parallel program frameworks from parallel design patterns. In Proceed-
ings of the 6th International Euro–Par Conference, volume 1900 of Lec-
ture Notes in Computer Science, pages 95–104. Springer–Verlag, 2000.

[69] S. MacDonald, D. Szafron, J. Schaeffer, and S. Bromling. From patterns
to frameworks to parallel programs. Journal of Parallel and Distributed
Computing, 2001. Under submission.

[70] T. Marsland, T. Breitkreutz, and S. Sutphen. A network multi–processor
for experiments in parallelism. Concurrency: Practice and Experience,
3(1):203–219, 1991.

[71] B. Massingill. Experiments with program parallelization using
archetypes. In Parallel and Distributed Processing: Workshops held
in conjunction with the 12th International Parallel Programming Sym-
posium and the 9th Symposium on Parallel and Distributed Processing
(IPPS/SPDP’98), volume 1388 of Lecture Notes in Computer Science,
pages 844–856. Springer–Verlag, 1998.

[72] B. Massingill, T. Mattson, and B. Sanders. A pattern language for paral-
lel application programs. Technical Report CISE TR 99–022, University
of Florida, 1999.

[73] S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in
object-oriented concurrent programming language. In G. Agha, P. Weg-
ner, and A. Yonezawa, editors, Research Directions in Concurrent
Object-Oriented Programming, pages 107–150. MIT Press, 1993.

[74] F. Matthijs, W. Joosen, B. Robben, B. Vanhaute, and P. Verbaeten.
Multi–level patterns. In Object–Oriented Technology (ECOOP’97 Work-
shop Reader), volume 1357 of Lecture Notes in Computer Science, pages
112–115. Springer–Verlag, 1998.

[75] M. Mattsson and J. Bosch. Framework composition: Problems, causes,
and solutions. In Proceedings of the Twenty–Third International Confer-
ence on Technology of Object–Oriented Languages and Systems (TOOLS
USA’97), pages 203–214, 1997.

[76] M. Mattsson and J. Bosch. Composition problems, causes, and solutions.
In M. Fayad, D. Schmidt, and R. Johnson, editors, Building Application
Frameworks: Object-Oriented Foundations of Framework Design, chap-
ter 20, pages 467–487. Wiley & Sons, 1999.

[77] P. Newton and J. Browne. The CODE 2.0 graphical parallel program-
ming language. In Proceedings of the 6th ACM International Conference
on Supercomputing, pages 167–177, 1992.

167

[78] P. Newton and J. Dongarra. Overview of VPE: A visual environment for
message–passing. In Proceedings of the Fourth Heterogeneous Computing
Workshop, pages 85–92, 1995.

[79] ObjectSpace, Inc. ObjectSpace JGL: The Generic Collection Library for
Java Version 3.0, 1997. http://www.objectspace.com.

[80] W. O’Farrell, F. Eigler, S. Pullara, and G. Wilson. ABC++. In G. Wil-
son and P. Lu, editors, Parallel Programming Using C++, chapter 1,
pages 1–42. MIT Press, 1996.

[81] J.-L. Pazat. Tools for high performance FORTRAN: A survey. In
The Data Parallel Programming Model, volume 1132 of Lecture Notes
in Computer Science, pages 134–158. Springer–Verlag, 1996.

[82] M. Philippsen. Data parallelism in java. In Proceedings of the 12th An-
nual Symposium on High Performance Computing Systems (HPCS’98),
pages 85–99. Kluwer Academic Press, 1998.

[83] M. Philippsen and M. Zenger. Javaparty – transparent remote objects
in java. Concurrency: Practice and Experience, 9(11):1225–1242, 1997.

[84] L. Prechelt and B. Unger. A series of controlled experiments on design
patterns: Methodology and results. Softwaretechnik–Trends, 18(3):53–
60, 1998.

[85] L. Prechelt, B. Unger, W. Tichy, P. Brössler, and L. Votta. A controlled
experiment in maintenance comparing design patterns to simpler solu-
tions. IEEE Transactions on Software Engineering, 2000. To appear.

[86] M. Rao, Z. Segall, and D. Vrsalovic. Implementation machine paradigm
for parallel programming. In Proceedings of Supercomputing’90, pages
594–603, 1990.

[87] D. Riehle, S. Fraleigh, D. Bucka-Lassen, and N. Omorgbe. The architec-
ture of a UML virtual machine. In Proceedings of the 2001 Conference
on Object–Oriented Programming Systems, Languages, and Applications
(OOPSLA 2001), pages 327–341, 2001.

[88] D. Roberts and R. Johnson. Patterns for evolving frameworks. In
R. Martin, D. Riehle, F. Buschmann, and J. Vlissides, editors, Pattern
Languages of Program Design, volume 3, chapter 26, pages 471–486.
Addison–Wesley, 1998.

[89] J. Schaeffer, D. Szafron, G. Lobe, and I. Parsons. The enterprise model
for developing distributed applications. IEEE Parallel and Distributed
Technology, 1(3):85–96, 1993.

168

[90] D. Schmidt. The ADAPTIVE communication environment: Object-
oriented network programming components for developing client/server
applications. In Proceedings of the 12th Sun Users Group Con-
ference, 1994. A list of the individual patterns can be found at
http://www.cs.wustl.edu/∼schmidt/patterns-ace.html.

[91] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern–Oriented
Software Architecture: Patterns for Concurrent and Networked Objects,
volume 2. Wiley & Sons, 2000.

[92] M. Sefika, A. Sane, and R. Campbell. Monitoring compliance of a
software system with its high–level design models. In Proceedings of
the 18th International Conference on Software Engineering (ICSE-18),
pages 387–396, 1996.

[93] B. Selic, G. Gullekson, and P. Ward. Real–Time Object–Oriented Mod-
eling. Wiley & Sons, 1994.

[94] H. Shi and J. Schaeffer. Parallel sorting by regular sampling. Journal of
Parallel and Distributed Computing, 14(4):361–372, 1992.

[95] A. Singh, J. Schaeffer, and M. Green. A template–based approach to
the generation of distributed applications using a network of worksta-
tions. IEEE Transactions on Parallel and Distributed Systems, 2(1):52–
67, 1991.

[96] A. Singh, J. Schaeffer, and D. Szafron. Experience with parallel pro-
gramming using code templates. Concurrency: Practice and Experience,
10(2):91–120, 1998.

[97] S. Siu, M. De Simone, D. Goswami, and A. Singh. Design patterns for
parallel programming. In Proceedings of the 1996 International Confer-
ence on Parallel and Distributed Processing Techniques and Applications
(PDPTA’96), pages 230–240, 1996.

[98] M. Snir, S. Otto, S. Hess-Lederman, D. Walker, and J. Dongarra. MPI:
The Complete Reference. MIT Press, 1996.

[99] D. Szafron and J. Schaeffer. An experiment to measure the usability of
parallel programming systems. Concurrency: Practice and Experience,
8(2):147–166, 1996.

[100] L. Tahvildari. Assessing the impact of using design–patterns–based sys-
tems. Master’s thesis, Department of Electrical and Computer Engineer-
ing, University of Waterloo, 1999.

169

[101] L. Tahvildari and A. Singh. Impact of using pattern–based systems on
the qualities of parallel applications. In Proceedings of the 2000 Inter-
national Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA’00), pages 1713–1719, 2000.

[102] The C3 Team. Chrysler goes to “extremes”. Distributed Computing,
pages 24–28, October 1998.

[103] Technical Committee on Operating Systems and Application Environ-
ments of the IEEE. Portable Operating System Interface (POSIX) – Part
1: System Application Programming Interface (API), 1996. ANSI/IEEE
Std. 1003.1, 1995 Edition, including 1003.1c: Amendment 2: Threads
Extension [C language].

[104] S. Trewin. PUL–SM prototype user guide. Technical Report EPCC–
KTP–PUL–SM–PROT–UG, Edinburgh Parallel Computing Centre,
University of Edinburgh, 1993.

[105] S. Trewin, R. Baxter, and R. Davey. PUL–MD prototype user guide.
Technical Report EPCC–KTG–PUL–MD–PROT–UG, Edinburgh Par-
allel Computing Centre, University of Edinburgh, 1996.

[106] K. van Reeuwijk, A. van Gemund, and H. Sips. Spar: A programming
language for semi-automatic compilation of parallel programs. Concur-
rency: Practice and Experience, 9(11):1193–1205, 1997.

[107] A. Vermeulen, G. Beged-Dov, and P. Thompson. The pipeline design
pattern. In Proceedings of OOPSLA’95 Workshop on Design Patterns
for Concurrent, Parallel, and Distributed Object-Oriented Systems, 1995.
http://www.cs.wustl.edu/∼schmidt/OOPSLA-95/index.html.

[108] J. Vlissides. Pattern Hatching: Design Patterns Applied. Addison–
Wesley, 1998.

[109] E. West and A. Grimshaw. Braid: Integrating task and data parallelism.
In Proceedings of the 5th Symposium on the Frontiers of Massively Par-
allel Computation (Frontiers’95), pages 211–219, 1995.

[110] G. Wilson. Assessing the usability of parallel programming systems: The
cowichan problems. In Proceedings of the IFIP Working Conference on
Programming Environments for Massively Parallel Distributed Systems,
pages 183–193, 1994.

[111] G. Wilson. High performance programming for computational scientists.
In High Performance Computing Systems and Applications (Proceedings
of the 13th Annual Symposium on High Performance Computing Sys-
tems (HPCS’99)), volume 541 of The Kluwer International Series in
Engineering and Computer Science, pages 7–14, 2000.

170

[112] G. Wilson and H. Bal. Using the cowichan problems to assess the us-
ability of orca. IEEE Parallel and Distributed Technology, 4(3):36–44,
1996.

[113] A. Witkin and M. Kass. Reaction–diffusion textures. Computer Graphics
(SIGGRAPH ’91 Proceedings), 25(4):299–308, 1991.

[114] D. Woloschuk. Enterprise performance monitoring tools. Master’s thesis,
Department of Computing Science, University of Alberta, 1996.

[115] M. Yasugi, S. Matsuoka, and A. Yonezawa. ABCL/onEM-4: A new
software/hardware architecture for object-oriented concurrent comput-
ing on an extended dataflow supercomputer. In Proceedings of the 6th
ACM International Conference on Supercomputing, pages 93–103, 1992.

[116] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krish-
namurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken.
Titanium: A high-performance java dialect. Concurrency: Practice and
Experience, 10(11–13):825–836, 1998.

[117] A. Yonezawa, S. Matsuoka, M. Yasugi, and K. Taura. Implementing
concurrent object–oriented languages on multicomputers. IEEE Parallel
and Distributed Technology, 1(2):49–61, 1993.

[118] A. Yonezawa, E. Shibayama, T. Takada, and Y. Honda. Modelling and
programming in an object–oriented concurrent language ABCL/1. In
A. Yonezawa and M. Tokoro, editors, Object–Oriented Concurrent Com-
puting, pages 55–89. MIT Press, 1987.

[119] A. Zubiri. An assessment of java/rmi for object–oriented parallelism.
Master’s thesis, Department of Computing Science, University of Al-
berta, 1997.

171

Appendix A

Source Code for the
Reaction–Diffusion Example
Program

This appendix contains all of the user code for the reaction–diffusion example
program. It does not include the code generated for the Mesh framework.
The MorphogenPair class is generated with the rest of the framework. The
remaining classes are not part of the framework, but rather are additional
classes taken from the sequential implementation of this problem.

A.1 MorphogenPair.java

This class provides all of the hook methods for the Mesh framework. It is
generated by CO2P3S but has application–specific code inserted by the user.
For this application, this class represents a pair of morphogens for a given
region on a two–dimensional surface.

The user–supplied application code is indicated by bars on the left. Recall
that the signatures of the hook methods are generated with this class, and are
not written by the user.

import java.lang.* ;
// Enter additional imports here.
import java.util.Random ;

public class MorphogenPair
extends Object

{
public MorphogenPair(int i, int j, int surfaceWidth, int surfaceHeight,

Object initializer)
{

Random gen = (Random) initializer ;

this. morphogen1 = new Morphogen((1.0d − (gen.nextDouble() * 2.0d)),
XDIFFUSION1, YDIFFUSION1) ;

172

this. morphogen2 = new Morphogen((1.0d − (gen.nextDouble() * 2.0d)),
XDIFFUSION2, YDIFFUSION2) ;

} /* MorphogenPair */

public void initialize()
{
} /* initialize */

public boolean notDone()
{

return(!(this. morphogen1.hasConverged() &&
this. morphogen2.hasConverged())) ;

} /* notDone */

public void prepare()
{

this. morphogen1.updateConcentration() ;
this. morphogen2.updateConcentration() ;

} /* prepare */

public void interiorNode(MorphogenPair left, MorphogenPair right,
MorphogenPair up, MorphogenPair down)

{
this. morphogen1.simulate(left.getMorphogen1(),

right.getMorphogen1(),
up.getMorphogen1(),
down.getMorphogen1(),
this. morphogen2, 1) ;

this. morphogen2.simulate(left.getMorphogen2(),
right.getMorphogen2(),
up.getMorphogen2(),
down.getMorphogen2(),
this. morphogen1, 2) ;

} /* interiorNode */

public void postProcess()
{

this. morphogen1.updateConcentration() ;
} /* postProcess */

public void reduce(int i, int j, int surfaceWidth, int surfaceHeight,
Object reducer)

{
double[][] array = (double[][]) reducer ;

array[i][j] = this. morphogen1.getConcentration() ;
} /* reduce */

// Enter additional user code here.
public final Morphogen getMorphogen1()
{

return(this. morphogen1) ;
} /* getMorphogen1 */

173

public final Morphogen getMorphogen2()
{

return(this. morphogen2) ;
} /* getMorphogen2 */

protected Morphogen morphogen1 ;
protected Morphogen morphogen2 ;

protected static final double XDIFFUSION1 = 2.0d ;
protected static final double YDIFFUSION1 = 1.0d ;
protected static final double XDIFFUSION2 = 2.0d ;
protected static final double YDIFFUSION2 = 1.5d ;

} /* MorphogenPair */

A.2 Main.java

This class is the full mainline method for the reaction–diffusion problem. At
the end of the computation, the final results may be displayed in an output
window.

import java.lang.* ;
import java.util.Random ;

public class Main
{

public static void main(String[] argv)
{

int surfaceWidth = 0 ;
int surfaceHeight = 0 ;
int meshWidth = 0 ;
int meshHeight = 0 ;
long startTime ;
RDMesh mesh ;

startTime = System.currentTimeMillis() ;

if (argv.length < 2 | | argv.length > 3) {
Main.usage() ;
System.exit(−1) ;

} /* if */

try {
surfaceHeight = Integer.parseInt(argv[0]) ;
surfaceWidth = surfaceHeight ;
meshWidth = Integer.parseInt(argv[1]) ;
if (argv.length == 3) {

meshHeight = Integer.parseInt(argv[2]) ;
} else {

meshHeight = meshWidth ;
} /* if */

174

} catch (NumberFormatException ne) {
System.err.println("Illegal integer argument given.") ;
System.exit(−1) ;

} /* try */

// Set morphogen constants for the simulation.
Morphogen.setMorphogenConstants(1.0d, 1.0d, 0.02d, 1.0d) ;

Random initializer = new Random(1) ;
double[][] reducer = new double[surfaceWidth][surfaceHeight] ;

mesh = new RDMesh(surfaceWidth, surfaceHeight,
meshWidth, meshHeight, initializer, reducer) ;

System.out.println("Starting simulation at time " +
(System.currentTimeMillis() − startTime) +
". . .") ;

mesh.launch() ;

System.out.println("Simulation converged.") ;

if (Main.USEWINDOW) {
Main.createWindow(reducer, surfaceWidth, surfaceHeight) ;
Main.getWindow().popupWindow() ;
Main.getWindow().setSurface(reducer) ;
Main.getWindow().redisplayContents() ;

} /* if */
} /* main */

public static MorphogenDisplay getWindow()
{

return(Main. window) ;
} /* getWindow */

protected static void usage()
{

System.out.println("Main surfaceSize meshWidth <meshHeight>\n") ;
System.out.println(" Surface height and width are set to " +

"surfaceSize.") ;
System.out.println(" Mesh height defaults to meshWidth if not" +

" specified.") ;
} /* usage */

protected static void createWindow(double[][] surface,
int surfaceWidth, int surfaceHeight)

{
Main. window = new MorphogenDisplay("Reaction-Diffusion", surface,

surfaceWidth, surfaceHeight,
DISPLAY SCALE) ;

} /* createWindow */

protected static MorphogenDisplay window ;
protected static final boolean USEWINDOW = true ;

175

protected static final int DISPLAY SCALE = 2 ;
} /* Main */

A.3 Morphogen.java

This class represents a single morphogen. It is responsible for computing a
new value for itself based on its current concentration, the concentration of its
neighbours, and the concentration of the other morphogen.

import java.lang.* ;

public class Morphogen
{

/**
* Static constants for this simulation.
***/

// Dissipation, reaction, and diffusion rates are constants for this
// program, so they are saved as static variables. Also, several
// other “constant” terms (i.e. those that are constant given the
// set of constants) are also precomputed and stored. So, to ensure
// these are consistent, clients of this class must use the
// setMorphogenConstants() method to set the value of all constants at
// once.
// Be careful in here; there are various constants that are also
// included, so be sure you don’t accidently include other terms.
public static void setMorphogenConstants(double dissipation,

double reaction,
double timeStep,
double distance)

{
Morphogen.setDissipation(dissipation) ;
Morphogen.setReaction(reaction) ;
Morphogen.setTimeStep(timeStep) ;
Morphogen.setDistanceTerm(2.0d * distance * distance) ;
Morphogen.setDistanceTermTimesDissipation(Morphogen.getDissipation()

* Morphogen.getDistanceTerm()) ;
} /* setMorphogenConstants */

public static double getDissipation()
{

return(Morphogen. dissipation) ;
} /* getDissipation */

public static double getReaction()
{

return(Morphogen. reaction) ;
} /* getReaction */

public static double getTimeStep()
{

176

return(Morphogen. timeStep) ;
} /* getTimeStep */

public static double getDistanceTerm()
{

return(Morphogen. distTerm) ;
} /* getYDiffusionTerm */

// Another constant term used regularly.
public static double getDistanceTermTimesDissipationTerm()
{

return(Morphogen. distTermTimesDissipation) ;
} /* getDistanceTermTimesDissipation */

protected static void setDissipation(double dissipation)
{

Morphogen. dissipation = dissipation ;
} /* setDissipation */

protected static void setTimeStep(double timeStep)
{

Morphogen. timeStep = timeStep ;
} /* setTimeStep */

protected static void setReaction(double reaction)
{

Morphogen. reaction = reaction ;
} /* setReaction */

// Note that the distance term is calculated once from the distance,
// so that this term doesn’t need to be calculated multiple times.
protected static void setDistanceTerm(double distanceTerm)
{

Morphogen. distTerm = distanceTerm ;
} /* setDistanceTerm */

protected static void setDistanceTermTimesDissipation(double term)
{

Morphogen. distTermTimesDissipation = term ;
} /* setDistnaceTimesDissipation */

protected static double dissipation ;
protected static double reaction ;
protected static double timeStep ;
protected static double distTerm ;
protected static double distTermTimesDissipation ;

/**
* Instance state and operations.
***/

public Morphogen(double initialConcentration,
double xDiffusion, double yDiffusion)

{

177

this.setConcentration(initialConcentration) ;
this.setReadConcentration(initialConcentration + 2.0d) ;
this.setXDiffusionTerm(2.0d * xDiffusion * xDiffusion) ;
this.setYDiffusionTerm(2.0d * yDiffusion * yDiffusion) ;
this.setTotalDiffusion(−2.0d * (this.getXDiffusionTerm() +

this.getYDiffusionTerm())) ;
} /* Morphogen */

public final void simulate(Morphogen leftMorph, Morphogen rightMorph,
Morphogen upMorph, Morphogen downMorph,
Morphogen otherChemMorph, int morphNumber)

{
double newValue ;
double current = this.getConcentration() ;
double left = leftMorph.getConcentration() ;
double right = rightMorph.getConcentration() ;
double up = upMorph.getConcentration() ;
double down = downMorph.getConcentration() ;
double otherConcentration = otherChemMorph.getConcentration() ;

double xDiff = this.getXDiffusionTerm() ;
double yDiff = this.getYDiffusionTerm() ;

newValue = xDiff * right ;
newValue += xDiff * left ;
newValue += yDiff * up ;
newValue += yDiff * down ;

newValue += current * (this.getTotalDiffusion() −
Morphogen.getDistanceTermTimesDissipationTerm()) ;

newValue += newValue / Morphogen.getDistanceTerm() ;

if (morphNumber == 1) {
if (current > otherConcentration) {

newValue += Morphogen.getReaction() ;
} /* if */

} else {
if (otherConcentration > current) {

newValue += Morphogen.getReaction() ;
} /* if */

} /* if */

newValue *= Morphogen.getTimeStep() ;
this.setConcentration(current + newValue) ;

} /* simulate */

public final boolean hasConverged()
{

return(Math.abs(this. concentration −
this.getConcentration()) < THRESHOLD) ;

} /* hasConverged */

public final double getConcentration()

178

{
return(this. readConcentration) ;

} /* getConcentration */

protected final void setConcentration(double value)
{

this. concentration = value ;
} /* setConcentration */

protected final void setReadConcentration(double value)
{

this. readConcentration = value ;
} /* setReadConcentration */

protected final double getXDiffusionTerm()
{

return(this. xDiffTerm) ;
} /* getXDiffusionTerm */

protected final double getYDiffusionTerm()
{

return(this. yDiffTerm) ;
} /* getYDiffusionTerm */

// Return the sum of the x and y diffusion terms.
protected final double getTotalDiffusion()
{

return(this. totalDiffTerm) ;
} /* getTotalDiffusion */

protected void setXDiffusionTerm(double term)
{

this. xDiffTerm = term ;
} /* setXDiffusionTerm */

protected void setYDiffusionTerm(double term)
{

this. yDiffTerm = term ;
} /* setYDiffusionTerm */

protected void setTotalDiffusion(double term)
{

this. totalDiffTerm = term ;
} /* setXDiffusion */

public void updateConcentration()
{

this. readConcentration = this. concentration ;
} /* updateConcentrations */

protected double concentration ;
protected double xDiffTerm ;
protected double yDiffTerm ;
protected double totalDiffTerm ;

179

protected double readConcentration ;

protected static final double THRESHOLD = 0.02d ;
} /* Morphogen */

A.4 MorphogenDisplay.java

This class translates the final concentration values to grey–scale values for the
generic display window.

public class MorphogenDisplay
{

public MorphogenDisplay(String title, double[][] surface,
int surfaceWidth, int surfaceHeight, int scale)

{
this.setWindow(new GreyScaleDisplayWindow(title, surfaceWidth,

surfaceHeight, 2)) ;
this.setSurface(surface) ;
this.setWidth(surfaceWidth) ;
this.setHeight(surfaceHeight) ;

} /* MorphogenDisplay */

public void popupWindow()
{

this.setPixels() ;
this.getWindow().popupWindow() ;

} /* popupWindow */

public void redisplayContents()
{

this.setPixels() ;
this.getWindow().redisplayContents() ;

} /* redisplayContents */

public void setPixels()
{

// Use single-element arrays to simulate arguments-by-reference.
double[] minConcentration = new double[1] ;
double[] maxConcentration = new double[1] ;
double base ;

this.findMinMaxConcentration(minConcentration, maxConcentration) ;
base = this.setBaseGreyLevel(minConcentration[0],

maxConcentration[0]) ;
this.setWindowPixels(base, minConcentration[0]) ;

} /* setPixels */

// Use single-element arrays to simulate arguments-by-reference.
protected void findMinMaxConcentration(double[] minimum, double[] maximum)
{

int i ;

180

int j ;
double[][] surface ;
int width ;
int height ;
double concentration ;
double min ;
double max ;

surface = this.getSurface() ;
width = this.getWidth() ;
height = this.getHeight() ;

min = surface[0][0] ;
max = min ;
for(i = 0;i < width;++i) {

for(j = 0;j < height;++j) {
concentration = surface[i][j] ;
if (concentration > max) {

max = concentration ;
} else if (concentration < min) {

min = concentration ;
} /* if */

} /* for */
} /* for */
minimum[0] = min ;
maximum[0] = max ;

} /* findMinMaxConcentration */

protected double setBaseGreyLevel(double min, double max)
{

double base ;

// Set the base level (50% grey). The first condition should
// never occur in a randomly initialized surface, but is included
// to be safe.
base = max − min ;
if (base < 0.001) {

base = 2.0d ;
} /* if */
return(base) ;

} /* setBaseGreyLevel */

protected void setWindowPixels(double base, double min)
{

int i ;
int j ;
GreyScaleDisplayWindow window ;
int width ;
int height ;
double[][] surface ;
double nGreys ;

surface = this.getSurface() ;
width = this.getWidth() ;

181

height = this.getHeight() ;
window = this.getWindow() ;
nGreys = (double) GreyScaleDisplayWindow.getNumberOfGreys() ;

for(i = 0;i < width;++i) {
for(j = 0;j < height;++j) {

window.setPixel(i, j, (int)
(((surface[i][j] − min) * nGreys) / base)) ;

} /* for */
} /* for */

} /* setWindowPixels */

protected double getSurface(int i, int j)
{

return(this. surface[i][j]) ;
} /* getSurface */

public void setSurface(int i, int j, double value)
{

this. surface[i][j] = value ;
} /* setSurface */

public int getWidth()
{

return(this. width) ;
} /* getWidth */

public int getHeight()
{

return(this. height) ;
} /* getHeight */

protected double[][] getSurface()
{

return(this. surface) ;
} /* getSurface */

public void setSurface(double[][] surface)
{

this. surface = surface ;
} /* setSurface */

protected void setWidth(int width)
{

this. width = width ;
} /* setWidth */

protected void setHeight(int height)
{

this. height = height ;
} /* setHeight */

protected GreyScaleDisplayWindow getWindow()
{

182

return(this. window) ;
} /* getWindow */

protected void setWindow(GreyScaleDisplayWindow window)
{

this. window = window ;
} /* setWindow */

protected GreyScaleDisplayWindow window ;
protected double[][] surface ;
protected int width ;
protected int height ;

} /* MorphogenDisplay */

A.5 GreyScaleDisplayWindow.java

This class provides a generic grey–scale display window for visualizing the final
result of the computation.

import java.lang.* ;
import java.awt.* ;

public class GreyScaleDisplayWindow
{

// Constant for the number of greys available to display.
public static int getNumberOfGreys()
{

return(NUM GREYS) ;
} /* getNumberOfGreys */

protected static int NUM GREYS = 255 ;

public GreyScaleDisplayWindow(String title, int width, int height,
int scale)

{
this. canvas = new DisplayCanvas(new Dimension(width, height),

scale) ;
this. frame = new FrameDisplay(title, this. canvas) ;

} /* GreyScaleDisplayWindow */

public void popupWindow()
{

this. frame.display() ;
} /* display */

public void redisplayContents()
{

Graphics g = this. canvas.getGraphics() ;
this. canvas.paint(g) ;
g.dispose() ;

183

} /* redisplay */

public void setPixel(int x, int y, int intensity)
{

this. canvas.setPixel(x, y, intensity) ;
} /* setPixel */

protected DisplayCanvas canvas ;
protected FrameDisplay frame ;

} /* GreyScaleDisplayWindow */

class FrameDisplay extends Frame
{

public FrameDisplay(String title, DisplayCanvas canvas)
{

super(title) ;
this.setLayout(new FlowLayout()) ;
this.add(canvas) ;

} /* FrameDisplay */

public void display()
{

this.pack() ;
this.show() ;

} /* display */
} /* FrameDisplay */

class DisplayCanvas extends Canvas
{

public DisplayCanvas(Dimension size, int scale)
{

int i ;
int j ;

this.setSize(new Dimension(size.width * scale,
size.height * scale)) ;

this. scale = scale ;
this. size = size ;

// Make a set of flyweight colors.
int nGreys = GreyScaleDisplayWindow.getNumberOfGreys() + 1 ;
this. colours = new Color[nGreys] ;
for(i = 0;i < nGreys;++i) {

this. colours[i] = new Color(i, i, i) ;
} /* for */

this. cells = new Color[this. size.width][this. size.height] ;
for(i = 0;i < this. size.width;++i) {

for(j = 0;j < this. size.height;++j) {
this. cells[i][j] = this. colours[nGreys − 1] ;

} /* for */
} /* for */

} /* DisplayCanvas */

184

public void paint(Graphics g)
{

int i ;
int j ;

for(i = 0;i < this. size.width;++i) {
for(j = 0;j < this. size.height;++j) {

g.setColor(this. cells[i][j]) ;
g.fillRect(this. scale * i, this. scale * j,

this. scale, this. scale) ;
} /* for */

} /* for */
} /* paint */

public void setPixel(int x, int y, int intensity)
{

this. cells[x][y] = this. colours[intensity] ;
} /* setPixel */

protected int scale ;
protected Dimension size ;
protected Color[][] cells ;

// Make a set of flyweight colours.
protected Color[] colours ;

} /* DisplayCanvas */

185

Appendix B

Design Pattern Template
Description Format

This appendix describes the format for documenting the design pattern tem-
plates in CO2P3S. It follows the traditional for design patterns from [37] at
the beginning, which preserves the instructional nature of design patterns.
However, this documentation format diverges to discuss the pattern template
parameters supported by CO2P3S and to describe the framework generated at
the Patterns Layer. This documentation does not include information about
the frameworks for the Intermediate Code and Native Code layers. Note that
the example documentation in Appendix C also includes an introduction sec-
tion. The introduction is not part of normal documentation, but was used to
introduce several concepts to CO2P3S users.

B.1 Intent

This section introduces the rationale behind the pattern template. It should
explain, at a high level, what kind of computation is supported by the tem-
plate.

B.2 Motivation

This section briefly presents a problem that can be solved using this template.
Unlike other patterns documentation, this section does not sketch out the
object structure of a solution. However, it may include some details on the
decomposition of the problem into parts that can be executed in parallel.

The motivation may include some discussion on the more general pattern
structure than is supported by the pattern template. If this is done, then the
documentation must state exactly which subset of the pattern structures can
be created with the template.

186

B.3 Applicability

This section describes scenarios in which the pattern template is applicable.

B.4 Design Pattern Template Parameters

This section describes the parameters that can be set to specialize the pattern
template, to make it more specific to the problem being solved.

B.5 Framework

This section describes the framework generated for the pattern template from
the perspective of the Patterns Layer. It does not include any details on
the structure of the framework. This section is broken down into several
subsections:

Structure This section shows a simplified object diagram of the framework
that shows only those classes that are accessible to the user at the Pat-
terns Layer.

Participants This section lists the classes and/or objects that are part of the
framework, and describes their responsibilities.

Collaborations This section describes the interactions between the partici-
pants.

Hook Methods The hook methods provided by the framework are described
in detail.

Using the Framework This section describes how to instantiate the frame-
work and launch the computation.

Sample Code A simple example is described in detail. The values for the
pattern template parameters are listed, and the user code for the appli-
cation is provided.

B.6 Known Uses

This section lists some real–life uses of the pattern template.

187

Appendix C

CO2P3S Design Pattern
Template Documentation

This appendix gives a concrete example of the documentation of a CO2P3S
design pattern template. The example in the Two–Dimensional Mesh tem-
plate. This documentation was distributed to the subjects in the usability
experiment desribed in Chapter 6.

C.1 Two–Dimensional Mesh Design Pattern

Template

C.1.1 Introduction

This report details the Two–Dimensional Mesh design pattern template for
CO2P3S

1 [67, 68]. This documentation is based on the pattern description
format from Gamma et al. [37], but we diverge from this format in several
ways. The main reason for these changes is that this document is not in-
tended to fully describe a Two–Dimensional Mesh design pattern. Instead,
this document shows how to use the Two–Dimensional Mesh design pattern
template (also referred to as the Mesh) and how to write an application us-
ing the frameworks generated at the Patterns Layer in CO2P3S. Given that
the main benefit of the Patterns Layer in CO2P3S is the encapsulation of the
structural code for the generated frameworks, this document does not describe
any implementation details beyond those needed to use the frameworks. How-
ever, many of the motivational section are needed to know when to apply this
pattern template, so they still appear.

It is important to note that a design pattern template is a construct that
is derived from a design pattern. The pattern template fixes parts of the
implementation of a pattern. Like the patterns they are based on, though,

1Correct Object–Oriented Pattern–based Parallel Programming System, pronounced
“cops.”

188

pattern templates represent a family of solutions to a given design problem.
The pattern describes this family by presenting implementation options, much
like an abstract data type has different implementations. The pattern template
provides a family of solutions through a set of template parameters that can be
used to select common alternatives and options. These affect the framework
code generated for the template. The differences between these two constructs
is important – the two terms are not interchangeable, and you should pay close
attention to which is being referred to in this document.

Currently, CO2P3S pattern templates generate multi–threaded Java frame-
work code targeted at multiprocessor computers with shared memory. While
the implementation of the frameworks may take advantage of this architec-
ture, these structural decisions have no effect on the use of the templates or
the application code written by the user for the framework.

The generated frameworks work as normal object–oriented frameworks.
The structure of a complete application, including all classes and the flow of
control through them, is defined by a set of abstract classes. These classes are
implemented in terms of primitive methods or hook methods that are invoked
by this structural code. A programmer subclasses the abstract classes and pro-
vides an implementation of these primitive methods, changing the application
while reusing the structure. This is the opposite of a library–based approach
to building applications, where the programmer provides the structure of the
application and the library provides the primitive methods. A framework pro-
vides design reuse by clearly separating the application–independent structure
from the application–specific code. The use of frameworks can reduce the ef-
fort needed to develop applications by allowing the programmer to concentrate
on the application–specific code since the structure is provided.

C.1.2 Intent

The Two–Dimensional Mesh pattern template supports mesh computations
on regular, rectangular two–dimensional data. These computations use neigh-
bouring data (also called a stencil) to calculate new data values. The Mesh
template supports a four–point stencil (using the neighbours on the four com-
pass points) or an eight–point stencil (also including neighbours along the
diagonal). The program can use either Jacobi or Gauss–Seidel iteration, but
must use local termination conditions.

C.1.3 Motivation

Mesh computations are common in parallel programming. Applications such
as weather forecasting and particle simulations can be parallelized using this
approach. In the most general two–dimensional case, the mesh is defined as a
graph, shown in Figure C.1(a). The nodes of the graph are the elements of the
mesh, which contain the data values that are to be computed, and the edges
show which elements interact with one another. Alternatively, a more regular

189

(a) An example of a general mesh. (b) An example of a regular mesh.

Figure C.1: Examples of both a general and a regular, rectangular mesh.

structure can be used for many problems, which simplifies both the structure
of the mesh data and the implementation of the computation. Such a regular
mesh is shown in Figure C.1(b).

A typical mesh computation repeatedly iterates over the mesh elements and
computes new values for each one. This new value is a function of the value
in the current element and the values in the elements in some neighbourhood
around it. This continues until the final value for the elements is reached.

To parallelize this kind of application, the mesh data is usually spatially
decomposed into a set of distinct partitions. Example partitions for the two
meshes from Figure C.1 are shown in Figure C.2. Each partition is assigned
to a processing unit that computes new values for the mesh elements in its
partition. The communication structure of the resulting program is defined by
the need for the partitions to exchange their boundaries to compute new values
for the elements on the edge of the partition. The structure of a complete
parallel mesh program is shown in Figure C.3. This brief description does not
even begin to address the issues involved in writing a program to implement
such a computation. Such a description is beyond the scope of this document.

The Two–Dimensional Mesh design pattern template supported by
CO2P3S simplifies the creation of parallel mesh programs for regular, rect-
angular mesh data.

C.1.4 Applicability

The Two–Dimensional Mesh pattern template is applicable to problems that
consist of elements evenly spaced over a rectangular two–dimensional surface
or plane. Each element should use the values from neighbouring elements
when calculating a new value, and should be able to determine when it has
reached its final value based only on its own state. Aside from requiring the

190

(a) An example of a decomposed gen-
eral mesh.

(b) An example of a decomposed reg-
ular mesh.

Figure C.2: Example decomposition of a general and a regular, rectangular
mesh.

Part 1: Create the mesh data.
Decompose the mesh data into a set of partitions.
Distribute the partitions over a set of

processing units.
Part 2: Each processing unit executes the following loop:

Preprocess data if necessary.
While (computation has not finished)

Preprocess data before use.
Exchange the boundary between

adjacent partitions.
Compute the new value for the local

mesh elements.
End while
Postprocess data if necessary.

Part 3: Merge the results.

Figure C.3: Pseudocode for the structure of a parallel mesh computation.

191

values from neighbouring elements, there must not be any other dependencies
between the elements (for example, there can be no dependencies that require
that new values for the elements be computed in a particular order).

C.1.5 The Mesh Pattern Template Parameters

After selecting the Mesh pattern template from the CO2P3S graphical user
interface, you must specify the template parameters. These parameters allow
some aspects of the framework to be specialized for your application. The
parameters for the Mesh template, and their default values when applicable,
are:

Mesh Class Name This is the name of the class that represents the entire
mesh. You create and use instances of this class to create and execute a
computation.

Mesh Element Class Name This is the name of the class whose instances
are the mesh elements that populate the two–dimensional data for the
computation. This may also be referred to as the mesh state class.

Mesh Element Superclass Name This is the name of the class that is the
application–specific superclass of the Mesh Element class. This allows
the class to be fit into an existing inheritance hierarchy. The default, for
Java code, is Object.

Boundary Conditions The boundary conditions, or topology, indicates how
mesh elements on the edges of the mesh data are to be handled. Re-
member, though, that the data is still two–dimensional. The options
supported by the Mesh template are shown in Figure C.4(a). These are
(left to right, top to bottom):

Non–toroidal None of the edges wrap around. This is the default
value.

Fully–toroidal All edges wrap around to the opposite edge, so each
element has access to all neighbours. The two–dimensional data
can be treated as a torus or donut.

Horizontal–toroidal The horizontal edges of the data wrap around.
Elements on the left and right edges (except the corners) will have
access to all neighbours, but the elements on the top and bottom
edges (including the corners) will be missing the top and bottom
neighbour (respectively). The data can be treated as a cylinder.

Vertical–toroidal Similar to horizontal–toroidal except that the verti-
cal edges wrap around.

192

(a) The available op-
tions for the boundary
conditions.

(b) The available op-
tions for the mesh sten-
cil.

(c) The available op-
tions for mesh ordering.

Figure C.4: Dialogs from CO2P3S for specifying some of the Mesh pattern
template options.

Number of Neighbour Elements This parameter defines the stencil that
is used to compute new values for a mesh element (barring missing neigh-
bours because of the selected boundary conditions). The two options
supported by CO2P3S, a four–point and an eight–point stencil, are shown
in Figure C.4(b). The default is the four–point stencil.

Mesh Ordering The mesh ordering indicates the amount of synchronization
in the framework code generated for the template. The two available
options, ordered and chaotic, are shown in Figure C.4(c). This synchro-
nization is one of the necessary parts of choosing between Jacobi iteration
(an ordered mesh) and Gauss–Seidel iteration (a chaotic mesh). Jacobi
iteration also has restrictions on which data is used to compute new
values, which must be addressed in the application code. However, this
allows intermediate forms of iteration to be implemented. The default
value for this parameter is an ordered mesh.

C.1.6 The Mesh Framework

After the parameters to the Mesh pattern template have been supplied, the
template is used to generate framework code implementing the selected struc-
ture. At the Patterns Layer of CO2P3S, the structural parts of the code are
hidden from the user. Only those classes that are germane to writing an ap-
plication can be accessed. This section explains the responsibilities of these
classes and shows how they can be used to create a working mesh application.

193

Structure

Mesh Element

launch()

Mesh Class

Operation Methods

prepare()
notDone()
prepare()

postProcess()
reduce()

Participants

Mesh Element Instances of this class populate the two–dimensional mesh
data structure. This class implements the following operations for an
individual mesh element:

• creating a single instance by applying an initializer object,

• evaluating the termination condition,

• implementing the mesh operation, and

• gathering the final result by applying a reducer object.

Mesh Class You use this class to create and execute your mesh computation.
The class is responsible for:

• creating the two-dimensional mesh data structure and populating
it with mesh element objects,

• creating and starting the threads that execute the mesh computa-
tion,

• partitioning the data structure and distributing the partitions to
the threads,

• evaluating the termination conditions for each iteration of the com-
putation, stopping the computation when all mesh elements have
finished, and

• gathering the final results and returning them to the user.

Most of these responsibilities are implemented by iterating over the mesh
elements and invoking the appropriate operation for each one. The com-
plete mesh computation, handled by this class, is built up from the
individual operations in the Mesh Element class.

Collaborations

The mesh application is created and executed using the Mesh Class. The appli-
cation is defined by operations implemented for the individual mesh elements
in the Mesh Element class. The Mesh Class uses these individual operations
to execute a mesh computation over the entire mesh data.

194

Hook Methods

Each of the three parts from Figure C.3 have different hook methods. Each
of these hook methods described here are defined for the Mesh Element class.
In CO2P3S, these methods are accessed using the template viewers that are
available via the context–sensitive pop–up menus on the mesh nodes (after the
framework code has been generated, of course).

Hook Methods for Part 1 From Figure C.3 In the first part, the hook
method is the constructor for a single mesh element. This constructor is used
by the structural code to create the complete mesh data.

The signature for the constructor for a mesh element of type MeshElem2 is:

public MeshElem(int i, int j, int dataWidth, int dataHeight,
Object initializer) ;

The arguments to the constructor are:

i and j These two arguments are the indices of the mesh element in the two–
dimensional data structure. These values are provided so that location–
specific initialization can be done. For instance, the values along the
border of the data structure may be set to specific, constant values.

dataWidth and dataHeight These two arguments are used in conjunction
with the previous arguments. These are the size of the full mesh data.
More precisely, the index i ranges over [0, dataWidth − 1] and index j

ranges over [0, dataHeight − 1].

initializer This parameter is a general object supplied to the constructor
of the mesh class (discussed further in Section C.1.6, “Using the Mesh
Framework”, page 202). This object is applied to each mesh object as it
is created. For example, the user can pass in a random number generator
to initialize the mesh data to random values, or a stream object to read
data from a file. This object must be downcast to a more appropriate
type before it can be used in the constructor.

The mesh elements are stored in a two–dimensional array and are con-
structed in the following order for indices [i][j] (where width and height

refer to dataWidth and dataHeight):

[0][0] [0][1] . . . [0][height − 1]
[1][0] [1][1] . . . [1][height − 1]

. . .
[width− 1][0] [width − 1][1] . . . [width− 1][height − 1]

2In your program, MeshElem would be replaced with the mesh element class supplied in
the Mesh template parameters.

195

2D data

BoundedArray 1
data
startX = 0
endX = 5
startY = 0
endY = 5

BoundedArray 2 BoundedArray 3 BoundedArray 4
data
startX = 6
endX = 11
startY = 0
endY = 5

data
startX = 0
endX = 5
startY = 6
endY = 11

data
startX = 6
endX = 11
startY = 6
endY = 11

Figure C.5: The use of bounded arrays to share a single copy of an array.

This order is specified so that the initial values can be input from a file in the
correct order.

It is also important to make a few notes on how the mesh data is stored,
particularly with regard to how the partitions are stored and distributed. As
already noted, the mesh data is stored in a two–dimensional array rather
than as a graph. However, the frameworks generated by CO2P3S also take
advantage of the shared memory model. Rather than making a separate copy
of each partition for each thread in the computation, the frameworks use the
idea of a bounded array, shown in Figure C.5. The instances of the bounded
array share a common (usually large) array and have instance variables that
define the subarray that they can access. The bounded array then provides a
set of accessor methods that allow access to the subarray using local indices
(ranging from 0 to the size of the subarray) and translate these requests to
global indices. This obviates the need for making copies of the array for each
partition, so larger problems can be solved. Further, there is no need to copy
data for the boundary exchange; a thread can be allowed to read outside of
its partition and access this data directly.

Bounded arrays are not without their drawbacks, though. You must be
more aware of the concurrency in your application. This is especially true
when implementing a problem using Jacobi iteration. This requires that both
the current value (computed during the current iteration) and the previous
value (computed during the previous iteration and read by other mesh ele-
ments during the current iteration) be kept for each mesh element. Further,
the previous value must be updated at the beginning of each iteration. How-
ever, these two values must be retained if the problem iterates until the data
converges to a final result. The generated framework makes it easy to retain
and update these values correctly while still giving enough flexibility to cre-
ate solutions that use other iteration styles that do not require such careful
handling of the data.

Hook Methods for Part 2 From Figure C.3 The second part of a mesh
computation is the loop executed by each thread. This loop is responsible

196

public void meshMethod() {
this.initialize() ;

while(this.notDone()) {
this.prepare() ;

this.synchronize() ;

this.operate() ;

} /* while */

this.postProcess() ;

} /* meshMethod */

Figure C.6: The main loop for each thread in the Mesh framework.

for properly computing new values for the mesh elements. The code for each
thread is shown in Figure C.6. In general, each method in the figure is imple-
mented by iterating over the mesh elements in the local partition and invoking
the identically named method on each element. Note that the order in which
the methods are invoked on the elements of a partition is not defined. The two
exceptions are synchronize() and operate(). The synchronize() method
implements the synchronization dictated by the Mesh template parameter.
For an ordered mesh, this method calls a barrier. For a chaotic mesh, this
method does nothing. The operate() method invokes one of several methods
on the mesh element, as explained below.

The hook methods for this part of the computation, including signatures,
are listed below. The default implementation of each of these methods, unless
otherwise noted, is empty. Again, all of these methods are defined for the
mesh element class.

public void initialize() This method is used to implement any prepro-
cessing of the mesh elements that can be done in parallel.

public boolean notDone() This method evaluates the termination condi-
tion for a single element. A return value of false indicates that the
computation for the given element has finished, and true indicates that
the element requires further iterations. Each thread iterates over its
local partition to determine if the elements have finished and then ex-
changes this information with the other threads to determine if the entire
computation has finished. The global termination decision is the return
value of the notDone() method in Figure C.6. All threads continue
computing new values for all of the elements in their partition until all
elements return false. This method returns false by default so that
the framework will not execute the loop body and the computation will
end3.

3By doing this, a framework with the default hook method bodies can be compiled and
run immediately after it has been generated, without having to write any code.

197

Note that the invocations to this method for a given partition are short–
circuited; if an element in the partition returns true, the iteration stops
and the assigned thread reports that it has not finished computing. Thus,
it is important that this method not be used as another form of prepro-
cessing as there is no guarantee that it will be invoked on each mesh
element in each iteration (except the last iteration, of course).

The synchronization level of the mesh also affects the evaluation of the
termination condition. An ordered mesh adds barrier synchronization
when the threads exchange their termination status. This ensures that
all of the threads finish evaluating the termination conditions for a given
iteration before computing new values. In a chaotic mesh the barriers
are not used, so a thread may be using the termination status of an older
or more recent iteration. This makes it difficult to be sure that the mesh
data has converged to its final answer, so extra measures must usually
be taken to ensure that the termination conditions have been met.

Finally, be aware that the termination condition is checked before the
first iteration of the computation. The initial conditions for the mesh
element must ensure that the termination condition will not be true the
first time the condition is checked.

public void prepare() This method is used for any preprocessing required
in each iteration of the computation. If the mesh is ordered, each
thread will finish this preprocessing before any thread begins to com-
pute new values (because of the barrier used in the implementation of
synchronize() in Figure C.6). This method can be used to update the
read value before the next iteration begins to compute new data values.

The operation methods These methods define the mesh operation for a
single mesh element. There are up to nine different methods that can
be invoked on a given element, depending on its location in the mesh
data and the selected boundary conditions. Further, the signatures of
the methods vary depending on the choice of a four–point or an eight–
point stencil. The complete list of operation methods for a four–point
stencil is shown is Figure C.7, and the list of operation methods for an
eight–point stencil is in Figure C.8.

The structural framework code is responsible for determining the correct
operation method to invoke and for supplying the correct neighbouring
mesh elements for the arguments. The operation methods for the dif-
ferent elements for each boundary condition are shown in Figure C.9.
This figure shows the calls for the complete mesh data; a given partition
will call the relevant methods for the subset of elements that have been
assigned to it. To make using the framework easier, CO2P3S generates
stubs for each relevant operation method. This means that you do not
have to determine either the signatures or the correct set of operation
methods.

198

public void topLeftCorner(MeshElem right, MeshElem down)
public void topEdge(MeshElem left, MeshElem right,

MeshElem down)
public void topRightCorner(MeshElem left, MeshElem down)
public void leftEdge(MeshElem right, MeshElem up,

MeshElem down)
public void interiorNode(MeshElem left, MeshElem right,

MeshElem up, MeshElem down)
public void rightEdge(MeshElem left, MeshElem up,

MeshElem down)
public void bottomLeftCorner(MeshElem right, MeshElem up)
public void bottomEdge(MeshElem left, MeshElem right,

MeshElem up)
public void bottomRightCorner(MeshElem left, MeshElem up)

Figure C.7: Signatures for the operation methods for a four–point mesh.

public void postprocess() This method, the complement to
initialize(), is used to implement any postprocessing of the
mesh elements that can be done in parallel. For instance, this method
can update the read value of a mesh element one last time, before the
results are gathered.

Hook Methods for Part 3 From Figure C.3 The last part of the mesh
computation is to gather the results so that they can be returned to the user.
The framework implements this gathering as a sequential operation that is
performed after the computation, as there is no way to be certain that it can
be safely done in parallel.

The gather operation operates in a similar fashion to the constructor for the
mesh element from Section C.1.6 (“Hook Methods for Part 1 From Figure C.3”,
page 195). The signature for this method, defined on the mesh element class,
is:

public void reduce(int i, int j, int dataWidth, int dataHeight,
Object reducer) ;

Note that this is not a proper parallel reduction, but rather reduces the final
mesh data to a single object that can be returned as the result of the program.

The arguments to this method are:

i and j These two arguments are the indices of the mesh element in the two–
dimensional data structure. These values are provided so that location–
specific gathering can be implemented. For instance, if the values along
the edges of the mesh data are constant and not part of the overall
solution, they may not be gathered.

199

public void topLeftCorner(MeshElem east, MeshElem southeast,
MeshElem south)

public void topEdge(MeshElem east, MeshElem southeast,
MeshElem south, MeshElem southwest, MeshElem west)

public void topRightCorner(MeshElem south, MeshElem southwest,
MeshElem west)

public void leftEdge(MeshElem north, MeshElem northeast,
MeshElem east, MeshElem southeast, MeshElem south)

public void interiorNode(MeshElem north, MeshElem northeast,
MeshElem east, MeshElem southeast, MeshElem south,
MeshElem southwest, MeshElem west,
MeshElem northwest)

public void rightEdge(MeshElem north, MeshElem south,
MeshElem southwest, MeshElem west,
MeshElem northwest)

public void bottomLeftCorner(MeshElem north,
MeshElem northeast, MeshElem east)

public void bottomEdge(MeshElem north, MeshElem northeast,
MeshElem east, MeshElem west, MeshElem northwest)

public void bottomRightCorner(MeshElem north, MeshElem west,
MeshElem northwest)

Figure C.8: Signatures for the operation methods for a eight–point mesh.

200

bottomRightCorner()

rightEdge()

topRightCorner()topLeftCorner()

leftEdge()

bottomLeftCorner()

leftEdge()

. . .

. . .

. . .

.

rightEdge()

topEdge()

bottomEdge()

. . .

interiorNode()

topEdge()

interiorNode()

bottomEdge()

. . .interiorNode() interiorNode()

(a) Non–toroidal operations.

interiorNode()

. . .

. . .

. . .

.

interiorNode()

interiorNode()

interiorNode()

interiorNode() interiorNode()

interiorNode()

interiorNode()

. . .

interiorNode()

interiorNode()

interiorNode()

interiorNode()

. . .

interiorNode()

interiorNode()

interiorNode()

interiorNode()

(b) Fully–toroidal operations.

topEdge()

interiorNode()

bottomEdge()

. . .

. . .

. . .

.

topEdge()

interiorNode()

interiorNode()

bottomEdge()

. . .

topEdge()

bottomEdge()

interiorNode()

interiorNode()interiorNode()

. . .

topEdge()

bottomEdge()

interiorNode()

interiorNode()

(c) Horizontal–toroidal operations.

interiorNode()

. . .

. . .

leftEdge()

leftEdge()

interiorNode() rightEdge()

rightEdge()

interiorNode()

interiorNode()

.

leftEdge()

interiorNode() rightEdge()leftEdge()

rightEdge()

interiorNode()

interiorNode()interiorNode() . . .

. . .

. . .

(d) Vertical–toroidal operations.

Figure C.9: The operation method calls for mesh elements in different posi-
tions, for each boundary condition from Figure C.4(a).

201

dataWidth and dataHeight These two arguments are used in conjunction
with the previous arguments. These are the size of the full mesh data.
More precisely, the index i ranges over [0, dataWidth − 1] and index j

ranges over [0, dataHeight − 1].

reducer This parameter is a general object supplied to the constructor to the
mesh class (see Section C.1.6, “Using the Mesh Framework”, page 202).
It is applied to each mesh element, and is returned to the user as the
result of the mesh computation. Thus, this object will be modified via
side effects to hold the final value. For example, the reducer can be
a container object into which the data is copied. It may also be an
accumulator so that the sum of the mesh data can be returned.

The gather is performed in the following order for indices [i][j] (where
width and height refer to dataWidth and dataHeight):

[0][0] [0][1] . . . [0][height − 1]
[1][0] [1][1] . . . [1][height − 1]

. . .
[width− 1][0] [width − 1][1] . . . [width− 1][height − 1]

Like the constructor, this order is provided so that the results can be written
to a file if the reducer is a stream object.

Using the Mesh Framework

The last step in writing an application using the Mesh framework is to instan-
tiate the computation and execute it. As you might expect, this is done by
creating and using an instance of the mesh class.

The constructor for the mesh class MeshClass4 is:

public MeshClass(int dataWidth, int dataHeight,
int meshWidth, int meshHeight,
Object initializer, Object reducer) ;

The arguments to the constructor are:

dataWidth and dataHeight These two arguments are the size of the mesh
data. The indices for the two–dimensional array that will hold the data
will range from [0][0] to [dataWidth − 1][dataHeight − 1].

meshWidth and meshHeight These arguments are the number of partitions
in the horizontal and vertical direction respectively. The mesh data is
always decomposed into rectangular partitions. A separate thread will
be created for each partition. The number of partitions should be at

4In your program, MeshClass would be replaced with the mesh class name supplied in
the Mesh template parameters.

202

least the number of processors that you want to use. It is also possible
to create more threads than processors; you will need to experiment on
your machine to determine the best ratio of threads to processors.

initializer This is the initializer object that is applied in the constructor
for each mesh element. Any type of object can be used.

reducer This is the reducer object that is applied during the gathering of
results. Any type of object can be used. The final result is placed into
this object by side effects in the gather part of the computation.

To execute the mesh computation, the method

public void launch() ;

should be invoked on the instance of MeshClass. This method returns when
the mesh computation has completed. The final results will be available in the
reducer object.

Sample Code

As an example of the use of the Mesh pattern template and generated frame-
work, we will show a specification and implementation of the Game of Life.

The game is a simple cellular automata simulation. A group of cells on a
two–dimensional surface live and die based on the following rules:

1. If a cell is dead but has three neighbours, then it is brought to life.

2. If a cell is alive and has two or three neighbours, it survives. If it has
less than two neighbours, it dies of loneliness. If the cell has more than
three neighbours, it dies of overcrowding.

This particular version of the game uses Jacobi iteration on a non–toroidal
surface. The initial state of the cells is determined randomly. The simulation
continues for a fixed number of iterations, and the state of the cells is drawn
to a graphical window.

For this problem, the following parameter values are used for the Mesh
pattern template:

Mesh Class Name Set to LifeMesh.

Mesh Element Class Name Set to LifeElem.

Mesh Element Superclass Name Left with the default, Object.

Boundary Conditions Set to non–toroidal.

Number of Neighbour Elements Set to an eight–point stencil.

Mesh Ordering Set to an ordered mesh.

203

LifeElem Class Implementation The implementation of the LifeElem

class follows. There are some things to note about the LifeElem code. First,
note the use of a read and write value for each element. The new state of a
cell is computed based on the read value. However, the read value must be
updated during each iteration, before the new states are calculated. This is
done in the prepare() method.

import java.lang.* ;
// Enter additional imports here.
import java.util.Random ;

public class LifeElem
extends Object

{
public LifeElem(int i, int j, int surfaceWidth, int surfaceHeight,

Object initializer)
{

Random generator = (Random) initializer ;
this.setValue((int) (generator.nextDouble() + 0.5)) ;

} /* LifeElem */

public void initialize()
{

this.updateReadValue() ;
} /* initialize */

public boolean notDone()
{

return(this.getIteration() <= MaxIterations) ;
} /* notDone */

public void prepare()
{

this.updateReadValue() ;
this.incrementIteration() ;

} /* prepare */

public void interiorNode(LifeElem north, LifeElem northeast, LifeElem east,
LifeElem southeast, LifeElem south, LifeElem southwest,
LifeElem west, LifeElem northwest)

{
int sum = north.getValue() + northeast.getValue() + east.getValue() +

southeast.getValue() + south.getValue() + southwest.getValue() +
west.getValue() + northwest.getValue() ;

this.evaluateCell(sum) ;
} /* interiorNode */

public void topEdge(LifeElem east, LifeElem southeast, LifeElem south,
LifeElem southwest, LifeElem west)

{
int sum = east.getValue() + southeast.getValue() + south.getValue() +

204

southwest.getValue() + west.getValue() ;
this.evaluateCell(sum) ;

} /* topEdge */

public void bottomEdge(LifeElem north, LifeElem northeast, LifeElem east,
LifeElem west, LifeElem northwest)

{
int sum = north.getValue() + northeast.getValue() + east.getValue() +

west.getValue() + northwest.getValue() ;
this.evaluateCell(sum) ;

} /* bottomEdge */

public void leftEdge(LifeElem north, LifeElem northeast, LifeElem east,
LifeElem southeast, LifeElem south)

{
int sum = north.getValue() + northeast.getValue() + east.getValue() +

southeast.getValue() + south.getValue() ;
this.evaluateCell(sum) ;

} /* leftEdge */

public void rightEdge(LifeElem north, LifeElem south, LifeElem southwest,
LifeElem west, LifeElem northwest)

{
int sum = north.getValue() + south.getValue() + southwest.getValue() +

west.getValue() + northwest.getValue() ;
this.evaluateCell(sum) ;

} /* rightEdge */

public void bottomLeftCorner(LifeElem north, LifeElem northeast, LifeElem east)
{

int sum = north.getValue() + northeast.getValue() + east.getValue() ;
this.evaluateCell(sum) ;

} /* bottomLeftCorner */

public void topLeftCorner(LifeElem east, LifeElem southeast, LifeElem south)
{

int sum = east.getValue() + southeast.getValue() + south.getValue() ;
this.evaluateCell(sum) ;

} /* topLeftCorner */

public void bottomRightCorner(LifeElem north, LifeElem west, LifeElem northwest)
{

int sum = north.getValue() + west.getValue() + northwest.getValue() ;
this.evaluateCell(sum) ;

} /* bottomRightCorner */

public void topRightCorner(LifeElem south, LifeElem southwest, LifeElem west)

205

{
int sum = south.getValue() + southwest.getValue() + west.getValue() ;
this.evaluateCell(sum) ;

} /* topRightCorner */

public void postProcess()
{

this.updateReadValue() ;
} /* postProcess */

public void reduce(int i, int j, int surfaceWidth, int surfaceHeight, Object reducer)
{

LifeDisplayWindow win = (LifeDisplayWindow) reducer ;
win.setPixel(i, j, this.getValue()) ;

} /* reduce */

// Enter additional user code here.
// Apply the rules of the Game of Life based
// on the number of alive neighbours.
public void evaluateCell(int numNeighbours)
{

// If the cell is already alive. . .
if (this.getValue() == 1) {

if (numNeighbours < 2 | | numNeighbours > 3) {
this.setValue(0) ;

} /* if */

// Else, if the cell was dead. . .
} else {

if (numNeighbours == 3) {
this.setValue(1) ;

} /* if */
} /* if */

} /* evaluateCell */

// Value read by neighbours.
public int getValue()
{

return(this. readValue) ;
} /* getValue */

// Update the read value with the write value.
public void updateReadValue()
{

this.setReadValue(this.getWriteValue()) ;
} /* updateReadValue */

// Set the current value (the write value).
// Only used by the current element.
protected void setValue(int value)
{

this. writeValue = value ;
} /* setValue */

206

protected int getWriteValue()
{

return(this. writeValue) ;
} /* getWriteValue */

protected void setReadValue(int value)
{

this. readValue = value ;
} /* setReadValue */

protected int getIteration()
{

return(this. iterations) ;
} /* getIterations */

protected void incrementIteration()
{

++this. iterations ;
} /* incrementIteration */

// Instance variables.
private int readValue ;
private int writeValue ;
private int iterations = 0 ;

// Constants.
private static final int MaxIterations = 100 ;

} /* LifeElem */

Mainline Class Implementation The mainline for the complete applica-
tion follows. The only thing to note about this class in that all of the sizes
are fixed. In a real program, some of the values would be provided on the
command line. Otherwise, changing the size of the mesh data or the number
of threads to use requires the class to be modified and recompiled.

import java.lang.* ;
import java.util.Random ;

public class LifeMain
{

protected final static int SurfaceSize = 100 ;
protected final static int NumberPartitions = 2 ;

public static void main(String[] args)
{

// Create the initializer and reducer.
Random initializer = new Random(1) ;

207

LifeDisplayWindow reducer = new LifeDisplayWindow(SurfaceSize,
SurfaceSize) ;

// Create the mesh and execute the computation.
LifeMesh mesh = new LifeMesh(SurfaceSize, SurfaceSize,

NumberPartitions, NumberPartitions,
initializer, reducer) ;

mesh.launch() ;

// The data has been gathered into the display window.
// Show it now.
reducer.show() ;

System.out.println("Program finished.") ;
} /* main */

} /* LifeMain */

C.1.7 Known Uses

The Two–Dimensional Mesh pattern template can be used for a number of
applications. There are many variations of programs with structures like the
LaPlace solver, including some image processing applications such as image
skeletonization (thinning all line segments in an image to be a single pixel wide
while preserving the connectivity of the original line segments, typically done
as the first step in handwriting analysis), that can be solved using this pattern
template.

208

Appendix D

Material for the Usability
Experiment

This appendix contains the descriptions of the three assignments that made
up the usability experiment. In the course, they were the third, fourth, and
fifth assignments. Also included is any additional documentation given to the
students for the assignment. The pattern template description for the Mesh,
in Appendix C.1, was also distributed as part of the assignments.

Note that Assignment 5 is a version of the reaction–diffusion program
with the terminology changed (the assignment refers to a mould and bac-
teria spreading over the surface of a donut rather than morphogens on an
unspecified surface).

The “Mesh Computations” document referenced in Section D.1 can be
found in Appendix E. The “Parallel Mesh Computations” document refer-
enced in Section D.2 is in Appendix F.

D.1 Assignment 3: Sequential Thermal Com-

putation

D.1.1 Assignment Description

Read the “Mesh Computations” document to learn about computations on
meshes. Then solve the following problem in Java

Consider a rectangular piece of alloy consisting of three different metals,
each with different thermal characteristics. For each region of the alloy, there
is a fixed amount (expressed in terms of a percentage) of each of the three base
metals. The top left corner (at the mesh element at index [0,0]) is heated at
S degrees Celsius and the bottom right corner (index [width - 1,height - 1]) is
heated at T degrees Celsius. The temperature at these points is constant and
does not change.

Your assignment is to calculate the final temperature for each region on the
piece of alloy. The new temperature for a given region of the alloy is calculated

209

using the formula:

temp =
3∑

m=1

Cm ∗
(∑

n∈N

tempn ∗ pm
n

)
/|N |

where m represents each of the three base metals, Cm is the thermal constant
for metal m, N is the set representing the neighbouring regions, tempn is the
temperature of the neighbouring region, pm

n is the percentage of metal m in
neighbour n, and |N | is the number of neighbouring regions. Think about how
the neighboring regions should be defined after reading the “Mesh Computa-
tions” document. This computation must be repeated until the temperatures
converge to a final value or a reasonable maximum number of iterations is
reached.

The values for S, T , C1, C2, C3, the height and width of the mesh, and
the threshold should be parameters to the program. The percentage of each
metal in the alloy at each region can be the output of a random number
generator (simply take three random numbers between 0 and 1 and calculate
the percentages of each relative to the sum of the three numbers). However,
you should fix the initial seed for the generator to 0 so that your results are
deterministic and reproducible.

subsectionClarifications
First, as stated above, the parameters to the program should be given on

the command line. This will probably be easiest for all involved. Make sure
you read the list of parameters carefully so your program accommodates all of
them. There are 8 in total.

Second, I have found that, although the assignment doesn’t mention this,
setting the initial temperature of the mesh data to a random value between S
and T provides good results in a reasonable amount of time.

Third, the output of your program should be the final temperatures on the
surface. Just print this out to standard out using println(). Each row should
be a single line in the output, such as

[0][0] [0][1] . . . [0][height − 1]
[1][0] [1][1] . . . [1][height − 1]

. . .
[width− 1][0] [width − 1][1] . . . [width− 1][height − 1]

Don’t worry about the size or readability of the output - it’s not intended
to be read, but rather it’s going to be used to plot a graph, which is why it is
important to make sure each row is on a single output line. Also, make sure
you don’t print any other output in your final version. When you run your
program, capture this data by redirecting your program’s output to a file:

java ThermalMesh 0 1 1.0 1.0 1.0 100 100 0.05 > output

To produce a graph, take this small script (between the dashes but not includ-
ing them) and save it as “gunplot.commands”:

210

set terminal png color

set output "plot.png"

set cntrparam linear

set surface

set hidden3d

set dgrid3d width,height

set ticslevel 0

splot "output" matrix notitle with lines

Change width and height in the 6th line to the width and height of your mesh
(100,100 for the example above). You can plot the graph with the following
command:

gnuplot gunplot.commands

The plot will be in the file “plot.gif”, which you can view using xv or your
favourite image viewer.

Finally, the above set of parameters produces a plot that is similar to
the one in the “Mesh Computations” document (possibly oriented differently
depending on the order in which you print your data). My program takes
about 270 iterations to converge. Don’t be alarmed if your program takes a
different number of iterations. This should be a good check to see if you’re on
the right track.

If you want to experiment with different parameters, I have a couple of
suggestions. The problem has the best chances of converging if all three ther-
mal constants are close to 1.0 and C1 ∗ C2 ∗ C3 is around 1.0. You should see
fluctuations in the temperature over the surface of the metal as some regions
will have larger amounts of particular metals and thus retain more heat than
others.

Some other observations: Any thermal constant above 1.0 would be best
described as exothermic - it introduces heat into the alloy, which makes con-
vergence less likely (the temperatures may never settle as more heat is being
introduced during each iteration of the program). Low values (even as low as
0.9) tend to be rather endothermic - they absorb the heat. With these, the
middle portion of the metal has a very low temperature since the heat from
the corners dissipates before it can reach these parts of the alloy.

D.1.2 Comments on Design

A number of people have considered taking the example mesh computation
from the “Mesh Computations” document and replacing the loop bodies with
the computation in the assignment description. Remember that this course is
about object-oriented design and programming. You should be applying these
practices to this program as well. Some things to consider are:

• How easy would it be to change the problem being solved without chang-
ing the structure of the mesh?

211

• How easy would it be to introduce some of the alternative mesh struc-
tures without having to change the mesh element structure?

The example in the “Mesh Computations” document does not address
either of these problems. The structure of the mesh computation and the
computation itself are tied together. Changing either will require considerable
effort, and neither can really be changed individually. Although you may not
achieve a complete separation between the two aspects of this program, a
partial separation should definitely be possible.

D.2 Assignment 4: Parallel Thermal Compu-

tation

D.2.1 Assignment Description

Read the “Parallel Mesh Computations” document to learn about parallel
mesh computations. Then solve the following problem in Java.

Your assignment is to write a parallel version of the first assignment. If
you wish, you may use this example implementation of the first assignment.
If possible, though, use your own assignment. However, you should add two
more command line parameters at the end of the parameter list in this order:
the number of horizontal partitions and the number of vertical partitions. For
example, if you partition a grid of width 12 nodes and height 8 nodes into
blocks of 6 by 2 nodes, the number of horizontal partitions would be 4 and
the number of vertical partitions would be 2. You could then use 8 threads to
solve the problem, one thread for each 6 by 2 block of nodes.

You must also make one other change to Assignment 3. If you initialize
the concentrations of the three metals to different random values in different
regions, the computation does not converge very well for many parameter
values. Therefore, pick a single set of random concentrations for the three
metals and use these same concentrations in all regions.

You have been given temporary accounts to work in for this assignment.
You will need to use these accounts to access the software needed to complete
the assignment.1

The password for these accounts is the same as your normal CS account. Note
that these accounts are set up for us to make measurements of your develop-
ment process. Some commands (specifically, the commands for compiling and
running Java programs) are not in the usual place. Further, the shell for these
accounts is zsh. Please do not modify this environment or change shells. The
accounts, as set up, should be sufficient for you to do this assignment.

The class has also been broken into two different groups. The 42501 group
will implement this assignment using CO2P3S , a parallel programming system

1The details on the accounts has been removed to protect the privacy of the students
involved.

212

under development here at the university. You will use the Two–Dimensional
Mesh design pattern template available in the tool. Read the documentation
for the template to help you.

The 42502 group will implement this assignment using straight Java. To
help you, an implementation of barrier synchronization is provided. You can
read the documentation for details on how to use the library. You do not have
to compile this code to use this class, just include an import statement in your
code:

import EDU.oswego.cs.dl.util.concurrent.CyclicBarrier;

The implementation code is provided in case you want to see how Barriers
are implemented. You don’t have to understand the implementation to use a
Barrier.

The groups will switch for the next assignment. That is, the ones using
straight Java for this assignment will use COPS for the next assignment and
visa versa.

Note there will be two 45 minute demos of the COPS system for those
using it for the first assignment. The demos will be in CSC-251 (Software
Systems Lab) at 3:00 and 5:00pm on Friday October 13. The demos will be
repeated for the second group before they use COPS for the next assignment.

Both groups will use a native–threaded Java virtual machine. On such
a JVM, the thread library used in the implementation of the Thread class
will schedule threads onto separate physical processors on a multiprocessor
machine. (In contrast, a green–threaded JVM will never use more than one
processor regardless of the number of threads created. The JVM in the lab
does not support green threads, only native threads.)

The final output of your program, as before, should be the final values
of the mesh elements. However, unlike the previous assignment where these
values were printed to the standard output, these values should be written to
a file called “output”.

When developing and debugging your program, use a single processor ma-
chine (such as the workstations in the lab CSC 1-21). For the two nights before
the assignment is due, we have arranged time on ohaton, a 4 processor Sparc
server.

As part of your assignment, you will be expected to provide performance
measurements of your parallel program. These measurements should include
both of the following:

1. The wall clock run time of the computation time of your program. This
time should include initialization time for any mesh data, but should not
include the output time.

2. The speedup of your program. The speedup of a parallel program is
computed as

S =
Ts(n)

Tp(n)

213

where Ts(n) is the wall clock time of your sequential program (again,
including initialization time but not output time) on a problem of size n
and Tp(n) is the wall clock time of the parallel program using p threads on
a problem of size n. Note that both the sequential and parallel programs
should be executed on the same machine to ensure consistent results. Try
to include performance numbers for 2 and 4 processor runs.

Some tips for obtaining better speedups:

• Run with a larger problem. Simply put, larger problems help amortize
the overheads of a parallel program. You may need to increase the heap
size of the virtual machine. You can to this by using the command line
arguments -Xms and -Xmx to set the initial and maximum heap sizes.
For best results, set both of these to the same value. For example, to set
the initial size to 32 MB and the maximum heap size to 64 MB, add the
flags -Xms32m -Xmx64m to the command line. Make sure to run both the
sequential and parallel assignment with the same problem size. However,
please bear in mind the limited resources for obtaining performance data.
Your program can only run for approximately 30 minutes if everyone is
to get a chance to obtain results.

• Remember that synchronization is an overhead. Minimize your use of
barriers and synchronized methods where this does not compromise cor-
rectness.

• Try to ensure that the amount of computation for each thread in your
program is equal. Avoid situations where processors are idle waiting for
other processors. For instance, when using barrier synchronization, try
to ensure that each processor gets to the barrier at roughly the same
time.

• Run your program through a profiler to get an idea of which parts of your
program are the most time–consuming. Once these have been identified,
you can try to optimize these parts.

D.2.2 Added Comments

• A small mistake in the COPS documentation has been found. On the last
line of page 16, the last sentence should read “The final results will be
available in the *reducer* object.”, as opposed to the initializer object.

• The web page suggests the use of the method System.getTimeMillis()

to get timing information. The correct method is System.currentTime-
Millis(). Sorry for the mixup.

• Also, remember that you should measure the times for initialization and
computation only, not the time for your final output. This final output

214

should be written to a file using a file stream, rather than just redirecting
the output as in the previous assignment.

• A bug has been uncovered in COPS when changing some of the Mesh
template parameter values and regenerating the code. Specifically, if
you change your mesh from a 4-point stencil to an 8-point stencil and
regenerate the First Layer Code (again, generating the Next Layer Code
does nothing), some of the classes aren’t properly regenerated. This leads
to compile errors as the old versions of the classes are using the incorrect
signatures for the operation methods in the mesh element class. The
workaround for now is to create a new program with the new values for
the parameters and re-enter your program code. You can cut and paste
code into the editing components in the COPS GUI using Control-C to
copy and Control-V to paste. It is not clear if this problem will occur
for other parameter changes. (You should not use an 8 point mesh for
this assignment. DS)

• I have a few example sets of parameters for Assignment 4. Since the
amount of each metal in the alloy is uniform over the whole surface, the
results will be similar to the plot on the assignment web page. However,
the thermal constants can be used to shift the flat part of the graph up
or down. The following three sets of parameters shifted the central part
of the graph from a value below the two corners to a value much higher.

java Main 10 11 1.0 1.05 0.98 100 100 0.025

java Main 10 11 1.0 1.05 0.981 100 100 0.025

java Main 10 11 1.0 1.05 0.982 100 100 0.025

You may need to play with these parameters to get these results. You
can also change the values by changing the thresholds, particularly for
the first two problems. Both of them very slowly absorb heat, so a lower
threshold will force more iterations and will slowly reduce the tempera-
ture of the metal. In your assignment write up, give the complete set of
parameters that you used for your timings.

• You can execute COPS programs from home without starting the GUI.
Be warned, though, that you will not be able to edit them.

• If you examine the directory that you placed your COPS program in,
you will find that the name of your program corresponds to a directory.
Within that directory, there will be a subdirectory called “classes”. From
this directory, you can run your program from the command line as you
would normally.

215

D.3 Assignment 5: Mould and Bacteria

D.3.1 Assignment Description

This assignment to is write a parallel mesh computation that simulates a mould
and bacteria on the surface of a Tim Horton’s glazed chocolate donut that has
been thrown away. Both the mould and bacteria will grow and spread over
the surface of the donut. Some portion of each will also leave the simulated
donut. In addition, the mould impedes the growth of the bacteria where the
two come into contact.

The simulation involves computing the concentration of both the mould
and bacteria over the surface over time. The concentration for a particular
participant at a given point on the surface is denoted C(x, y), as the surface
is considered to be a two–dimensional surface folded into a torus. When it
is important to note which participant is being referred to, the term will be
subscripted with a m for the mould or a b for the bacteria.

Numerically, this simulation is the solution of the non–linear partial differ-
ential equation

Ċ = a2

(
∂2C

∂x2
+

∂2C

∂y2

)
− dC +R (D.1)

where Ċ is the time derivative of the concentration, a is the rate of at which the
participant spreads, d is the rate at which the participants leave the simulation,
and R is a function that describes the reaction between the mould and the
bacteria.

This problem can be solved by approximating the solution of Equation D.1
using finite differences solved with Euler’s method. The problem can now be
restated as the repeated application of the formula

Ct+∆t = ∆t(M ⊗ Ct +Rt) (D.2)

over time with timestep ∆t, where “⊗” is the discrete convolution operator
(described in the appendix of this assignment) with the convolution mask M .
This formula is applied twice, once for the mould and once for the bacteria.
The mask M is the three by three mask for computing the centre element

M =
1

2


 −a12 2a22 a12

2a11 −4(a11 + a22)− 2d 2a11

a12 2a22 −a12


 (D.3)

where

a11 = a2
1 cos

2 θ + a2
2 sin

2 θ (D.4)

a12 = (a2
2 − a2

1) cos θ sin θ (D.5)

a22 = a2
2 cos

2 θ + a2
1 sin

2 θ (D.6)

216

where a1 is the rate of movement along the axis [cos θ, sin θ], a2 is the rate of
movement along the axis [− sin θ, cos θ], and θ defines the rotation of the axes.

For a given participant, the convolution mask can be specified as a triple
P = (a1, a2, θ). In addition, the function R must also be supplied, which may
rely on the concentration values of all participants in the simulation. Each of
these should be parameters to the classes that implement your simulation.

Good results for a simulation can be achieved by starting the concentration
of both the mould and bacteria to random values in the range [−1, 1] and using
the following values for each of the parameters:

∆t = 0.02 (D.7)

d = 1.0 (D.8)

Pm = (2.0, 1.5, θ) (D.9)

Pb = (2.0, 1.0, θ) (D.10)

where the value of θ should be the same for both the mould and the bacteria,
but otherwise can be any value. The function R is defined as:

Rm = Rb = if Cm > Cb then 1.0 else 0.0 (D.11)

Your Solution

Your program should have four command line parameters in this order: the
width of the mesh, the height of the mesh, the angle theta, and the output file
name. The output file should contain the final concentrations of the bacteria.
A program to display the results will be provided.

You must construct a sequential solution and a parallel version. Put each
in a separate directory.

The 42501 group will implement this assignment using straight Java. To
help you, an implementation of barrier synchronization is provided. You can
read the documentation for details on how to use the library. You do not have
to compile this code to use this class, just include an import statement in your
code:

import EDU.oswego.cs.dl.util.concurrent.CyclicBarrier;

The implementation code is provided in case you want to see how Barriers
are implemented. You don’t have to understand the implementation to use a
Barrier.

The 42502 group will use COPS to implement this assignment. Read the
COPS documentation for the mesh template to help you. Note there will be
two 45 minute demos of the COPS system for those using it for this assignment.
The demos will be in CSC-251 (Software Systems Lab) at 3:00 and 5:00pm on
Monday October 23.

217

Data

Convolution mask

D1 D2 D3

D4 D5 D6

D7 D8 D9

M1 M2 M3

M6M5M4

M7 M8 M9

(D1 * M1) + (D2 * M2) + (D3 * M3)

D1 * M1 D2 * M2 D3 * M3

D4 * M4 D5 * M5 D6 * M6

D7 * M7 D8 * M8 D9 * M9

Expanded subset
of data

Overlay of
mask and
data

D =
+
+

(D4 * M4) + (D5 * M5) + (D6 * M6)
(D7 * M7) + (D8 * M8) + (D9 * M9)

Figure D.1: An example of the convolution of a three by three mask over two–
dimensional data. The element that is being computed is the grey element in
the centre.

Appendix: Discrete Convolution

Discrete convolution is the process of applying a convolution mask to a data
set. This mask represents a formula that is a weighted combination of the
current element and the elements in a neighbourhood around it. This mask is
shifted over the elements of the data set in some order. An example based on
a three by three mask is shown in Figure D.1. Typically, the value of D5 is
replaced with the computed value D. It may help to imagine overlaying the
mask on top of the data.

The convolution mask is usually specified using a matrix, where one element
in the matrix is flagged as the element whose value is being computed. As a
concrete example, the LaPlace solver for the interior region of a data set can
be specified as the convolution mask

M =
1

4



0 1 0
1 0 1
0 1 0


 (D.12)

218

D.3.2 Notes and Clarifications

• There is a typo is Equation D.2. It should read

Ct+∆t = Ct +∆t(M ⊗ Ct +Rt) (D.13)

• The function R is also incorrect. It should read

Rm = Rb = if Cb > Cm then 1.0 else 0.0 (D.14)

• From the previous assignment, two COPS bugs were reported.

First, changing the Mesh State Superclass had no effect. It turns out
this couldn’t be changed at all. This has been fixed.

Second, there was a problem with changing the number of neighbours
in an existing program. After the change was made and the code was
regenerated, there were compile errors. I have not been able to reproduce
this problem. If it happens to anyone, let me know.

• Here is the code for a viewer that you can use to view your results.

To use the viewer, use the command:

java -jar <JAR PATH>/BacterialDisplay.jar

width height filename [scale]

where JAR PATH is the directory leading to the jar file, width and height

are the width and height of the data (which is the width and height for
your mesh), filename is the data file, and scale is an optional scaling
factor for the display window (it defaults to a 2x2 pixel rectangle per
data point).

The window can be dismissed by simply clicking in it. If you want to
grab the window, you can use the autograb feature in xv. Details are
available if you wish.

Here are two sample output files: 0 degrees and 45 degrees.

• A couple of notes on COPS I neglected to mention to one of the groups
(I did mention that I always forget something, right?):

First, you will find that attempting to remotely display the COPS GUI
doesn’t work well. You pretty much have to be sitting at the console to
use the tool.

Second, read over the COPS postings from the last assignment. They
include information on how to run a COPS program without the GUI,
submitting a COPS program, and other things you may encounter while
using the tool (especially the Swing exceptions that may be thrown as
you use the tool).

219

Finally, if you encounter any problems, contact me rather than spending
time trying to work around it.

• I managed to forget to indicate the termination conditions in the assign-
ment description.

Add an extra parameter to the end of the parameter list for the threshold
and stop when the change in concentrations for both the mould and
bacteria fall below the threshold. The examples that I sent each of you
used a threshold of 0.02.

While I’m at it, your parallel version of the program should have two
extra parameters for the number of horizontal and vertical partitions.

220

Appendix E

Mesh Computations

This appendix contains a background material on sequential mesh computa-
tions that was distributed to the subjects in the usability experiment.

E.1 Introduction

Mesh computations provide a straight–forward approach to solving a large
number of problems, particularly those involving the simulation of physical
surfaces or regions. Weather forecasts, particle simulations, and some image
processing applications can be implemented using this approach.

This document describes the characteristics of general mesh computations,
where data is represented using a general graph of nodes with connecting edges.
From this general mesh, a regular mesh structure is presented. The regular
mesh has the advantage of a simpler computational algorithm and structure.
To demonstrate this regular structure, an example mesh application, a LaPlace
equation solver, is described in detail. Finally, some alternative mesh struc-
tures are presented.

It should not be too difficult to think of questions whose answer is not
addressed in this document. This is not intended to be a complete survey of
this field, but rather an introduction to this style of computation.

E.2 General Mesh Computations

Simply put, a general mesh computation iterates over a set of connected data
(such as the nodes in the graph in Figure E.1) computing a new value for
each data element based on a combination of the current value and the values
in some neighbourhood around the element.1 The neighbourhood required to
compute a new value for a given element is called its stencil. This iteration is

1In this document, the elements of the mesh refers to the nodes of the graph. In other
work, the elements in a mesh may refer to the geometric regions formed by the edges of the
graph.

221

Figure E.1: An example graph for a general mesh computation.

Initialize graph NEW

Copy NEW to graph OLD

finished = false

while (not finished) do

finished = true

foreach element e in graph NEW

Set e′ to corresponding node from graph OLD

e.value = f(e′, neighbourhood(e′)) ;

if (not hasFinished(e, e′)) then

finished = false

end if

end for

Copy graph NEW to OLD

end while

Figure E.2: The structure of a general mesh computation.

repeated until the elements satisfy the termination condition and reach their
final values. The final value can be defined as the result after a fixed number of
iterations, when the first element or all elements satisfy a particular condition,
or the result after the data elements converge.

Pseudocode for this computation is given in Figure E.2. Note that the
example code computes new values based on data from the previous iteration
(we will see later that this is not always the case). This is done by using
two copies of the data, one with the values from the previous iteration (OLD)
and another to store the newly computed values (NEW). These graphs are then
swapped before the next iteration. The code also assumes that the value from
the previous iteration is needed to determine if the computation has finished,
which may not be the case depending on the termination condition.

As an example, the graph in Figure E.1 could have been taken from the
mesh in Figure E.3, which is used in simulating the flow of air over the wing
of an airplane. The function f() in Figure E.2 may compute the speed and

222

Figure E.3: A mesh for the region around an airfoil, from
http://www.cacr.caltech.edu/∼roy/image/image.html.

Figure E.4: An example graph for a regular mesh computation.

direction of the airflow for each mesh element based on the last calculated value
and the flow in adjacent elements. The region around the cross section of the
wing is decomposed into a connected graph. In a general mesh structure, this
decomposition can be arbitrarily complex. For instance, in Figure E.3, the
density of the graph increases in regions of particular interest, such as the area
near the front of the wing. This increased density allows for finer granularity
of computation in the regions that need it.

E.3 Regular Mesh Computations

In contrast to the general mesh, a regular mesh consists of a set of evenly–
spaced elements, like that of Figure E.4. Otherwise, the regular mesh behaves
like a general mesh.

223

Figure E.5: Representing a regular mesh as a two–dimensional matrix.

There are two main benefits to this regular structure. First, it makes the
neighbourhood around each element regular as well. Consider the function
f() from Figure E.2. In a general mesh, this function must account for differ-
ent sized neighbourhoods and change the computation accordingly. A careful
examination of Figure E.3 shows that a mesh element can have between four
and eight neighbours. In Figure E.4, though, there are only three cases: el-
ements with two neighbours (at the four corners), three neighbours (at the
edges, except for the corners), and four neighbours (in the interior region of
the mesh). This simplifies the function for computing the new values. Second,
the regular structure allows the mesh to be represented as a two–dimensional
matrix, as shown in Figure E.5. The pseudocode in Figure E.2 can now be
written as a simple pair of nested for loops.

E.4 Example: Solving the LaPlace Equation

This section provides a concrete example of a mesh computation. The example
computes a solution to the LaPlace equation on a regular N by M mesh,
represented by a N by M matrix. The computation is straight–forward. In
each iteration, the value for each mesh element is set to the average of its
immediate neighbours. This computation continues until all of the individual
mesh values converge to the final answer. A mesh element has converged when
the change in its value in an iteration falls below a defined threshold.

The source code for the main loop of the mesh computation is given below.
This particular simulation treats the mesh elements at the four corners (in-
dices [0][0], [0][height - 1], [width - 1][0], and [width - 1][height

- 1]) as constants and does not compute new values for them.2 To keep the
code simple, three loops are used to calculate new values: one loop for the top
and bottom edges, one loop for the left and right edges, and one loop for the

2Any number of elements can be set to fixed values. The elements that have been set to
fixed values in the LaPlace example were chosen to produce an interesting result without
obscuring the details of the mesh computation with too much additional code to handle the
fixed elements.

224

interior portion of the mesh. Also note that the condition for the outer loop
has been changed so that the computation ends if the termination condition
is not met after some maximum number of iterations. This ensures that the
program always ends.

225

public void simulate()
{

int iteration = 1 ;
boolean converged = false ;

while(!converged && iteration < MAXITERATIONS) {

converged = true ;

// Top and bottom edges
for(int i = 1;i < this. width − 1;++i) {

this. new[i][0] = (this. old[i + 1][0] +
this. old[i][1] +
this. old[i − 1][0]) / 3.0 ;

this. new[i][this. height − 1] =
(this. old[i + 1][this. height − 1] +
this. old[i][this. height − 2] +
this. old[i − 1][this. height − 1]) / 3.0 ;

if (Math.abs(this. new[i][0] − this. old[i][0]) > THRESHOLD | |
Math.abs(this. new[i][this. height − 1] −

this. old[i][this. height − 1]) > THRESHOLD) {
converged = false ;

} /* if */
} /* for */

// Left and right edges
for(int j = 1;j < this. height − 1;++j) {

this. new[0][j] = (this. old[0][j − 1] + this. old[0][j + 1] +
this. old[1][j]) / 3.0 ;

this. new[this. width − 1][j] =
(this. old[this. width − 2][j] +
this. old[this. width − 1][j − 1] +
this. old[this. width − 1][j + 1]) / 3.0 ;

if (Math.abs(this. new[0][j] − this. old[0][j]) > THRESHOLD | |
Math.abs(this. new[this. width − 1][j] −

this. old[this. width − 1][j]) > THRESHOLD) {
converged = false ;

} /* if */
} /* for */

// Interior
for(int i = 1;i < this. width − 1;++i) {

for(int j = 1;j < this. height − 1;++j) {
this. new[i][j] = (this. old[i + 1][j] +

this. old[i − 1][j] +
this. old[i][j + 1] +
this. old[i][j − 1]) / 4.0 ;

if (Math.abs(this. new[i][j] − this. old[i][j]) > THRESHOLD) {
converged = false ;

} /* if */
} /* for */

226

} /* for */

// Swap references to old and new arrays
this.swapArrays() ;
++iteration ;
System.out.println("Iteration " + iteration) ;

} /* while */
} /* simulate */

An example of the results from the LaPlace solver are shown in Figure E.6,
for a 25 by 25 element mesh. In this case, the elements at indices [0][0] and
[width - 1][height - 1] are both set to 0.5, the element at [0][height -

1] is 1.0, and the element at [width - 1][0] is 0.0. The initial values for
the other elements are set to random numbers between 0 and 1, shown in Fig-
ure E.6(a). In Figure E.6(b) the solution is beginning to take shape after five
iterations. Figure E.6(c) shows the final solution of the LaPlace solver with
the threshold set to 0.025, which required 138 iterations of the mesh loop. Al-
though this solution would be considered accurate (the threshold yields a 2.5%
margin of error), the surface does not appear smooth. Lowering the threshold
to 0.001, for a 0.1% margin of error, produces the much smoother surface in
Figure E.6(d). However, this solution takes 2685 iterations to converge, over
19 times more than the less accurate solution.3 The need for an accurate
solution must be weighed against the additional time needed to compute it.

E.5 Alternative Mesh Structures

The LaPlace example in the previous section is one of the most basic mesh
computations. There are many different alternatives that can be used to ad-
dress the needs of more specific problems. This section discusses some of these
alternatives.

The first alternative structure deals with the topology of the mesh, or how
mesh elements on the boundary are handled. The LaPlace solver has a non–
toroidal topology, where the edges represent the end of the data. There are
other ways of handling the edges of the data, shown for two dimensions in Fig-
ure E.7. These topologies can be used to simulate different–shaped surfaces for
two–dimensional data. For instance, a horizontal–toroidal or vertical–toroidal
mesh forms a cylindrical surface. A fully–toroidal mesh creates a torus (gener-
ally referred to as a donut), shown in Figure E.8. However, it is not necessary
to treat the surface this way. It is straight–forward to unroll both the cylinder
and torus back to two–dimensional data. Further, it is possible to extend these
topologies to meshes with three or more dimensions.

3In this particular case, the increase in the number of iterations appears to scale up at
approximately the same rate as the change in accuracy. However, this is a coincidence.
Setting the threshold to 0.01 takes 629 iterations to converge, a 4.5–fold increase for a
2.5–fold increase in accuracy.

227

0
5

10
15

20
25 0

5

10

15

20

25

0

0.2

0.4

0.6

0.8

1

(a) The starting conditions, with random
initial values.

0
5

10
15

20
25 0

5

10

15

20

25

0

0.2

0.4

0.6

0.8

1

(b) After 5 iterations.

0
5

10
15

20
25 0

5

10

15

20

25

0

0.2

0.4

0.6

0.8

1

(c) Converged solution with a threshold
of 0.025 (138 iterations).

0
5

10
15

20
25 0

5

10

15

20

25

0

0.2

0.4

0.6

0.8

1

(d) Converged solution with a threshold
of 0.001 (2685 iterations).

Figure E.6: The LaPlace equation solver at various stages of completion.

(a) A non–
toroidal mesh.

(b) A fully–
toroidal mesh.

(c) A
horizontal–
toroidal mesh.

(d) A vertical–
toroidal mesh.

Figure E.7: Different topology options for a mesh.

228

-3
-2

-1
0

1
2

3
4

-4

-3

-2

-1

0

1

2

3

4

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

Figure E.8: A torus, which can be simulated using a folly–toroidal mesh.

(a) An eight–point mesh. (b) An arbitrary stencil using
16 neighbours.

Figure E.9: Different stencils for a mesh computation, used to compute a new
value for the grey element in the centre.

Another useful mesh structure involves using different stencils to compute
new values. The LaPlace solver uses a four–point stencil (also called a four–
point mesh), using the four neighbours on the four compass points to calcu-
late the new value for each element. Alternately, an eight–point mesh, shown
in Figure E.9(a), can be used. More general stencils, such as that in Fig-
ure E.9(b), may be required for some problems.

As noted earlier, there are several different possibilities with respect to de-
termining when a mesh computation has finished. Among the various options,
a computation may be finished when

• the data values converge. There are 2 possibilities for checking conver-
gence:

1. Local termination conditions. This condition checks that the change
in value in each individual mesh element falls below a threshold.
This was used in the LaPlace solver.

2. Global termination conditions. This condition checks that the sum
of the changes over the entire mesh falls below a threshold.

229

• one (or more) elements satisfy a given condition. If the application is
simulating the flow of heat through a material, the simulation may halt
if the melting point of the material is ever reached.

• a maximum number of iterations has elapsed. This condition may be
used in conjunction with any other termination to ensure that a compu-
tation eventually halts.

Another issue in a mesh computation is the style of iteration, or rather
which data is used to calculate new values in each iteration. In the example
and pseudocode earlier, new values are computed based on data from the previ-
ous iteration, which is called Jacobi iteration. The alternative is Gauss–Seidel
iteration, sometimes called over–relaxation, which uses results calculated ear-
lier in the same iteration to calculate new values. For example, rewriting the
body of the third loop of the LaPlace solver using Gauss–Seidel iteration (lines
46 through 49) yields

this._new[i][j] = (this._new[i + 1][j] + this._new[i - 1][j] +
this._new[i][j + 1] + this._new[i][j - 1]) / 4.0 ;

Both iteration styles have advantages and disadvantages. The advantage
of Jacobi iteration is:

1. The results are not dependent on the order in which the mesh elements
are processed.

The disadvantage of Jacobi iteration is:

1. It always requires additional memory for an extra copy of the data. The
amount of extra memory can sometimes be optimized by having each
element keep two copies of the data (a read copy, the equivalent of old
from the LaPlace solver, and a write copy, the equivalent of new). Like
the copying step in Figure E.2, though, this update requires an iteration
over the mesh elements, but this optimization allows larger problems to
be solved. On the other hand, if a complete second copy of the mesh data
can be kept then a program using Jacobi iteration can swap the two data
sets. This swap may only require the exchange of the two references to
the two data sets, which is faster than either copying the data or updating
each element. The needs of the application will determine if it is more
important to optimize memory use to solve larger problems or reduce
the execution time by swapping the two mesh data sets.

The advantages of Gauss–Seidel iteration are:

1. It can use less memory. If the program does not terminate on conver-
gence, then no extra copy of the data is needed. If the extra copy of the
data is needed, then the memory saving idea from Jacobi iteration may
be used. However, it is not possible to swap the two data sets as this
leads to incorrect results.

230

2. It is sometimes necessary in order to ensure that a problem converges.
In fact, it is possible that the LaPlace solver will fail to converge on some
problems unless Gauss–Seidel iteration is used.

The disadvantage of Gauss–Seidel iteration is:

1. The solution is sensitive to the order in which the elements are evalu-
ated. Any changes to the processing loops will be reflected in the final
answer. Further, if the method of enumerating over the mesh elements
does not guarantee an ordering, the results may be non–deterministic.
However, the solution produced will be correct within the bounds of the
termination condition. This only presents a problem if the program must
yield consistent results.

E.6 Conclusion

This document discussed some of the basics of mesh computations, concen-
trating on regular meshes and some of the options available.

231

Appendix F

Parallel Mesh Computations

This appendix contains a background material on parallel mesh computations
that was distributed to the subjects in the usability experiment.

F.1 Introduction

Mesh computations provide a straight–forward approach to solving a large
number of problems, particularly those involving the simulation of physical
surfaces or regions. Weather forecasts, particle simulations, and some image
processing applications can be implemented using this approach.

This document is an addendum to “Mesh Computations.” It describes a
basic strategy for parallelizing regular mesh computations based on spatial
decomposition of the mesh elements. Some of the issues that arise in parallel
mesh computations are also discussed.

This document is not intended to discuss all of the issues and variations
of parallel mesh computations. However, the information should be enough to
write a simple parallel mesh program.

F.2 Parallelization Strategy

A mesh computation is usually parallelized by decomposing the mesh elements
into a disjoint set of partitions. Each of these partitions is assigned to a proces-
sor1 that is responsible for executing the mesh computation for the elements
assigned to it. Of course, each mesh element uses the values from neighbouring
elements, so the processors must exchange their boundaries to compute new
values for the elements on the edge of their assigned partition.

Pseudocode for the complete parallel mesh computation is given in Fig-
ure F.1. The code for an individual processor is shown in Figure F.2. Note
that this structure is a general parallel mesh program, so not all steps may be

1In this document, a processor refers to a process or thread that may or may not be
executing on a separate CPU.

232

Initialize mesh data M
foreach processor p

Determine Mp, the partition of M to be assigned

to processor p
Start the execution on processor p with Mp

(See Figure F.2)

end for

foreach processor p
Wait for p to finish

Get result mesh data Rp from p
end for

foreach result Rp

Gather Rp into final result R
end for

Figure F.1: The overall structure of a parallel mesh computation.

necessary. Further, the pseudocode is independent of issues such as iteration
style and synchronization. Many of these additional issues are extensions of
the issues raised in a sequential mesh computation, and are discussed in more
detail later in this document.

From Figures F.1 and F.2, there are four issues in a parallel mesh program:

1. Partitioning the mesh data for the processors,

2. Exchanging the boundary,

3. Evaluating the termination conditions, and

4. Gathering the final results.

These issues may be affected by the differences between Jacobi iteration ver-
sus Gauss–Seidel iteration and distributed memory computers versus shared
memory computers. The following four sections discusses each issue in more
detail.

F.3 Partitioning the Mesh Data

The first issue in a parallel mesh computation is deciding on how to partition
the mesh data so that it can be distributed across the processors. Typically,
the mesh data is spatially decomposed, as shown by the three examples in Fig-
ure F.3. Normally, the partitions are a contiguous set of connected elements,
but this need not be the case.

When partitioning the mesh data, there are two competing forces that must
be simultaneously balanced:

233

Perform parallel preprocessing of Mp

while (notDone()) do

foreach element in local partition Mp

Preprocess element

end for

Exchange boundary with adjacent partitions

foreach element in local partition Mp

Compute new value for element

end for

end while

Perform parallel postprocessing of Mp

Figure F.2: The structure of a parallel mesh computation for an individual
processor.

(a) A general mesh bro-
ken into three parti-
tions.

(b) A regular mesh bro-
ken into four rectangu-
lar partitions.

(c) A regular mesh bro-
ken into four striped
partitions.

Figure F.3: Examples of partitioned meshes for a parallel implementation of
a mesh computation.

234

1. The amount of computation for each partition should be the same, so
that all of the processors finish at about the same time and none are idle
for an extended period. Balancing the load over the available processors
allows for more effective use of the available processors and thus yields
faster results.

2. The amount of communication required to exchange the boundaries
should be minimized. Communication is an overhead in a parallel pro-
gram – it is extra work that does not need to be done in a sequential
program.

Determining the ideal partitioning of mesh data, particularly for a general
mesh, is the subject of current research and generally requires the use of other
tools. Some research has been devoted to adjusting the partitions as the com-
putation progresses. For a regular mesh, though, a rectangular partitioning
(Figure F.3(b)) or striped partitioning (Figure F.3(c)) is usually best.

F.4 Exchanging the Boundaries

When calculating the new value for an element, a mesh computation uses the
values from neighbouring elements. To parallelize such a computation, though,
the mesh data is spatially decomposed into a set of partitions that are dis-
tributed over processors. Now, for elements on the edge of a partition, some of
these neighbouring elements may have been assigned to another processor and
may not be available locally. To compute new values for these elements, each
processor must now perform a boundary exchange with those processors that
have mesh elements needed to complete the calculation of the local partition.
This boundary exchange defines the communication structure of the program
and is the most crucial synchronization point in a parallel mesh computation.
This section discusses this exchange and some of the issues involved.

The precise nature of this exchange depends on three factors: the topology
of the mesh, the memory architecture of the parallel machine, and the type of
iteration used in the program.

The topology of the mesh affects which processors are considered to be
neighbours, and this affects the communication structure of the program. This
factor is analogous to requiring that the function for computing new values for
a mesh element be able to deal with different sized neighbourhoods, depending
on the location of the element and the topology.

There are two basic memory architectures used in parallel machines. In a
distributed memory machine, each processor has a separate physical memory
that only it can access. Other processors must send network messages to
get copies of data. In such a machine, the boundary exchange uses a “ghost
boundary,” a set of elements that hold a copy of the elements on the edge of
the adjacent partition. It is important to note that the ghost boundary is not
part of the partition that is assigned to a processor, but is a copy of data that

235

Processor 1 Processor 2
Exchange

Exchange

Ghost
Boundaries

Figure F.4: An example of exchanging boundaries using a ghost boundary.
The ghost boundaries are the right column in Processor 1 and the left column
in Processor 2.

Mesh data

Partition 1

data =
startX = 0
startY = 0
endX = 2
endY = 2

Partition 2

data =
startX = 2
startY = 2
endX = 4
endY = 4

Figure F.5: Logically partitioning mesh data, by referring to a single copy of
the data but adding wrapper objects to set the bounds owned by a processor.
Partition 1 refers to the upper left quadrant, and Partition 2 refers to the
lower right quadrant.

is used to compute new values for elements on the edge of the local partition.
An example of an exchange using the ghost boundary is shown in Figure F.4.

A shared memory machine can also use a ghost boundary. However, to
reduce copying overhead, each processor may simply be able to access the
mesh elements it needs, depending on the type of iteration used. In this case,
it is possible to logically partition the mesh data, as shown in Figure F.5. A
partition can access elements in neighbouring partitions by simply accessing
the shared mesh data. For Jacobi iteration, this requires that each element
have both its old value (which is read by other elements to compute new
values) and a new value that has been calculated during the current iteration.
See the document “Mesh Computations” for more information on the issues
related to having each element hold both of these values. Since the boundaries
are not copied, there is no actual exchange. However, synchronization is still
necessary, as explained below.

However, the choice between Jacobi and Gauss–Seidel iteration has the
greatest effect on the boundary exchange. This choice affects both how often
the boundaries are exchanged and the amount of synchronization needed in

236

the program. Before these issues are discussed, it is necessary to note the
differences in the semantics in the two iteration styles when applied to a parallel
program.

As in the sequential case, Jacobi iteration always computes new values
for mesh elements based on the results from the previous iteration. These
semantics require that

• the boundary exchange for a given iteration be completed before a pro-
cessor starts computing new values for its local partition, and

• the iterations be done in lock step in all threads. This simply means that
no processor should start the next iteration before all other processors
have completed the previous one.

To ensure that these semantics are met, it is necessary to introduce synchro-
nization into the boundary exchange and at other points in the mesh computa-
tion (these will be addressed later). This synchronization consists of a barrier
after the exchange in Figure F.2. A barrier is a synchronization structure that
all processors must enter before any can leave. This ensures that no processor
can compute new values using old neighbour data as the boundary exchange
must be completed first.

Gauss–Seidel iteration has a new meaning in a parallel program, though.
In a sequential program, Gauss–Seidel iteration computes values for the mesh
elements using values calculated earlier in the iteration. For a local partition,
this is still the case. In a parallel program, Gauss–Seidel iteration also relaxes
the requirements that each iteration be executed in lock step and that the
boundary exchange must be done in each iteration. This is done by removing
the barrier synchronization and modifying the exchange to poll for new data
from neighbouring partitions. If new data is available, the next iteration uses
these new values. If not, then the next iteration uses the old values. In a
shared memory machine that simply accesses the mesh elements in neighbour-
ing partitions, Gauss–Seidel iteration simply uses the most recent values that
are available.

As in the sequential case, both Jacobi and Gauss–Seidel iteration have
advantages and disadvantages when applied to a parallel program. The ad-
vantage of Jacobi iteration is:

1. If implemented properly, both the sequential and parallel versions of the
same program will produce identical results. This makes it easy to verify
that the parallel version is working correctly.

The disadvantage of Jacobi iteration is:

1. Parallel programs may take longer to finish than those written using
Gauss–Seidel iteration. The barrier synchronization in Jacobi iteration
adds overhead to a parallel program.

The advantage of Gauss–Seidel iteration is:

237

1. Parallel programs may finish faster because of the reduced synchroniza-
tion.

The disadvantage of Gauss–Seidel iteration is:

1. Parallel programs based on Gauss–Seidel iteration will produce non–
deterministic results. The non–determinism arises because an iteration
may or may not use current data from neighbouring partitions, depend-
ing on when this data becomes available. Further, there are issues re-
garding the correct detection of convergence when using Gauss–Seidel
iteration. These are discussed in Section F.5.

F.5 Evaluating the Termination Conditions

An important part of every program is determining when it has finished. In a
parallel program, this can be a difficult problem as it normally requires some
communication between processors and some co–ordination to ensure that the
program has actually finished. This section first gives a basic strategy for eval-
uating the termination conditions in a parallel mesh program. This strategy is
for problems with local termination conditions, but it should be clear how to
extend it to deal with global conditions. However, this is complicated by the
slightly different semantics of a Gauss–Seidel iteration in a parallel program.

A simple strategy for evaluating termination conditions is shown in Fig-
ure F.6. This strategy uses a small region of shared memory. Note that since
local termination conditions are used, the only information that need be sent
between processors is a Boolean value that indicates whether all of the mesh
elements in the local partition have finished. This strategy is a possible im-
plementation of the notDone() call in Figure F.2.

The main issue with respect to termination conditions is the style of itera-
tion used in the program. This issue affects the synchronization that is needed
when evaluating the condition and the reliability of the check.

In a program using Jacobi iteration, the complication is the synchronization
needed to ensure correct results. Both the iterations of the computation and
the evaluation of the termination conditions need to be done in lock step.
In the strategy from Figure F.6, three barriers must be used, after the steps
in Figures F.6(b), F.6(c), and F.6(d). The first barrier ensures that each
processor sends its local flag to the Evaluator before any processor tries to
access the global result. The synchronization in the method that gathers
these flags is required to ensure that the global flag is set properly. The
second barrier ensures that the global flag is not reset before each processor
has had a chance to obtain the value. Finally, the last barrier ensures that no
processor tries to start evaluating the termination conditions (by sending its
local flag in Figure F.6(b)) before the global flag has been reset.

In a program using Gauss–Seidel iteration, the complication is in properly
determining if the mesh data in a program has converged. Like the compu-

238

Processor 2

done = false

Processor 1

done = true

Processor 3

done = true

Processor 4

done = true

Evaluator Global: true

(a) Each processor determines if all of
its elements have finished and sets a
local flag. Initially, the global result
in the Evaluator object is true.

Processor 2

done = false

Processor 1

done = true

Processor 3

done = true

Processor 4

done = true

Evaluator Global: false

(b) Each processor sends its flag to
the Evaluator (via a synchronized
method call). As the Evaluator re-
ceives these flags, it sets the global
result.

Processor 2

done = false

Processor 1

Processor 3 Processor 4

Evaluator Global: false

done = false

done = false done = false

(c) Each processor reads the global
flag from the Evaluator (via an acces-
sor method). The result is used to
decide if the computation should con-
tinue.

Processor 2

done = false

Processor 1

Processor 3 Processor 4

Evaluator

done = false

done = false done = false

Global: true

(d) A designated processor resets the
global result for the next evaluation
of the termination conditions.

Figure F.6: A simple strategy for evaluating the termination conditions using
shared memory.

239

tation, no synchronization is used when checking for convergence. Thus, the
data used in the check for convergence may be old and the program may incor-
rectly finish. Normally, additional sequential iterations must be done after the
parallel code has finished to verify that the data has truly converged. These
extra iterations may outweigh the savings from the reduced synchronization.
Note, though, that this only happens in programs that converge to their final
answers.

F.6 Gathering the Final Results

The last step in a mesh computation is to gather the final results. This is
particularly true in distributed memory systems, where the mesh data is copied
to different physical memories. The final answer must be assembled on a
designated processor. However, it may also be required in a shared memory
environment if the mesh data is partitioned by copying it rather than logically
partitioning it.

In some mesh computations, the final answer is not the new mesh data
values. Instead, the mesh data may be reduced to a single value. For instance,
if the program is testing the airflow around the wing of an airplane, the final
answer may be a Boolean indicating if the wing generates sufficient lift for
the plane. Under certain conditions, this reduction can be done in parallel.
However, parallel reductions are beyond the scope of this document.

F.7 Conclusion

This document described a basic approach to parallelizing a mesh computa-
tion. Further, some of the issues that arise in the parallel implementation were
also discussed.

240

Appendix G

Choice Points Used for the
Usability Experiment

Choice points are a measure of the complexity of a program. Choice points
are those points of a program that can alter the flow of control and may no
longer be sequential, such as selection control statements or loops. Errors
in programs tend to occur at these points when the programmer makes the
wrong choice of what to do next. For example, programmers tend to make
mistakes when checking the boundaries of arrays (and then treating those
elements incorrectly) rather than at the interior of the data where no checks
are needed.

Note that choice points are distinct from the size of a program, although not
completely independent (a larger program will tend to have more choice points
than a smaller program). However, choice points are a better approximation
of the complexity of a program. For practical purposes, a long program that
consists of a sequence of statements is simpler than a small program with many
loops and control statements. This is in contrast to the idea that the size of
the program determines its complexity. One could even go further and suggest
choice point density, dividing the number of choice points by the size of the
program. A higher density suggests more complex code.

The choice points used for the usability experiment are the following:

?, if, else, and else if : The first three are counted, and the fourth is
subtracted from the total of choice points.

&& and || : Each clause in a boolean operation is a different choice point
and should be counted. Each clause can influence the flow of control.

case and default : These two statements count the clauses in a switch

statement.

for and while : These two statements catch all of the loops in a program.
The while will count both while and do loops.

241

catch : This captures the changes in control flow from exceptions. The try
statement is not used because it does not alter the flow of control, but
rather delineates a basic block in which exceptions may occur. Further,
there can be multiple catch statements for a given try statement.

242

