
University of Alberta

Library Release Form

Name of Author: Michael Smith

Title of Thesis: PickPocket: An Artificial Intelligence For Computer Billiards

Degree: Master of Science

Year this Degree Granted: 2006

Permission is hereby granted to the University of Alberta Library to reproduce single copies
of this thesis and to lend or sell such copies for private, scholarly or scientific research
purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as hereinbefore provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever
without the author’s prior written permission.

.
Michael Smith
223 Oak St
Winnipeg, MB
Canada, R3M 3P7

Date:

“Whoever called snooker ‘chess with balls’ was rude, but right”
– Clive James

University of Alberta

PICKPOCKET: AN ARTIFICIAL INTELLIGENCE FOR COMPUTER BILLIARDS

by

Michael Smith

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2006

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled PickPocket: An Artificial Intelli-
gence For Computer Billiards submitted by Michael Smith in partial fulfillment of the
requirements for the degree of Master of Science.

.
Jonathan Schaeffer

.
Duane Szafron

.
Gordon Swaters

Date:

Abstract

Billiards is a game of both strategy and physical skill. To succeed, a player must be able to
select strong shots, and then execute them accurately and consistently on the table. Several
robotic billiards players have recently been developed. These systems address the task of
executing shots on a physical table, but so far have incorporated little strategic reasoning.
They require artificial intelligence to select the ‘best’ shot taking into account the accuracy
of the robotics, the noise inherent in the domain, the continuous nature of the search space,
the difficulty of the shot, and the goal of maximizing the chances of winning. This thesis
describes the program PickPocket, the winner of the simulated 8-ball tournaments at the
10th and 11th Computer Olympiad competitions. PickPocket is based on the traditional
search framework, familiar from games such as chess, adapted to the continuous stochastic
domain of billiards.

Acknowledgements

My many thanks go out to the following people who had a hand in this work:
Michael Greenspan, whose research with Deep Green brought about the opportunity

to undertake this project. Without his organizing of both the software infrastructure upon
which this work was built, and the computational 8-ball competitions in both Taiwan and
Italy, all that follows would not have been possible.

Jonathan Schaeffer, my supervisor, for all the support, encouragement, and feedback
throughout the course of the project.

Will Leckie, Marc Godard, and Jean-Francois Landry - ‘the competitors’, for the friendly
competition and good company in Italy! Special thanks to Will for his work behind the
scenes maintaining the poolfiz library.

Fredrik Niemela, for his assistance running the tournaments in both Taiwan and Italy.
The members of the GAMES group at the University of Alberta, many of whom have

shown enthusiasm for the project and provided suggestions which have found their way
into this work.

And finally, NSERC and iCore, which provided the funding to support this work.

Contents

1 Introduction 1
1.1 Billiards . 1

2 Background 4
2.1 Robotic Billiards . 4
2.2 The Search Framework . 5

2.2.1 Traditional Search . 6
2.2.2 Search in Stochastic Games . 7

2.3 Billiards Physics Simulation . 9
2.4 8-ball . 10

3 PickPocket Implementation 13
3.1 Move Generation . 13

3.1.1 Straight-in Shots . 17
3.1.2 Bank Shots . 18
3.1.3 Kick Shots . 18
3.1.4 Combination Shots . 21
3.1.5 Shot Difficulty . 21
3.1.6 Velocity Table . 25
3.1.7 Safety Shots . 26
3.1.8 Bank/Kick/Combo Activation . 27
3.1.9 Root Sampling . 27

3.2 Evaluation Function . 28
3.3 Search Algorithms . 30

3.3.1 Probabilistic Search . 30
3.3.2 Monte-Carlo Search . 33
3.3.3 Search Enhancements . 35

3.4 Game Situations . 37
3.4.1 Break Shot . 37
3.4.2 Ball-in-Hand . 39

4 Experimental Results 42
4.1 Error Model . 42
4.2 Sample Size and Statistical Significance 43
4.3 Experiments . 45

4.3.1 Probability Table . 47
4.3.2 Evaluation Function . 49
4.3.3 Safety Shots . 51
4.3.4 Root Sampling . 52
4.3.5 Probabilistic Search . 53
4.3.6 Monte-Carlo Search . 53
4.3.7 8.5-ball . 56
4.3.8 Bank, Kick, Combination shots 59
4.3.9 Search Enhancements . 60
4.3.10 Search Algorithm Comparison . 61

4.4 Computer Olympiad 10 . 63
4.5 Computer Olympiad 11 . 64

5 Conclusions and Future Work 68
5.1 Future Directions for Work . 68

5.1.1 Adaptation to Other Billiards Games 68
5.1.2 Implementation Enhancements . 71
5.1.3 Man-Machine Challenge . 74

5.2 Conclusions . 76

Bibliography 77

List of Figures

2.1 Generic search algorithm . 6
2.2 A standard billiards table . 11

3.1 Parameters defining a billiards shot . 14
3.2 A straight-in shot . 15
3.3 A bank shot . 15
3.4 A kick shot . 15
3.5 A combination shot . 16
3.6 Shot difficulty parameters . 22
3.7 Effect of β on effective pocket size . 23
3.8 Rail interactions with corner and side pockets 23
3.9 Probabilistic search algorithm . 32
3.10 Monte-Carlo search algorithm . 34
3.11 Probabilistic search w/ pruning . 36
3.12 Monte-Carlo search w/ pruning . 38
3.13 Ball-in-hand algorithm . 41

4.1 Error vs. Sample Size for 50-50 Win Rate 44

List of Tables

4.1 Confidence Intervals for 100-Game Match Result 45
4.2 Probability table accuracy . 48
4.3 Probability table match result . 49
4.4 2-ply comparison of evaluation functions 50
4.5 1-ply comparison of evaluation functions 51
4.6 Safety match result . 51
4.7 Root sampling match result . 52
4.8 Effect of search depth in probabilistic Search 54
4.9 Effect of sample size in 1-ply Monte-Carlo search 55
4.10 Effect of sample size in 2-ply Monte-Carlo search 55
4.11 Effect of search depth in Monte-Carlo search 55
4.12 Effect of search depth in Probabilistic 8.5-ball 58
4.13 Effect of search depth in Monte-Carlo 8.5-ball 58
4.14 Bank/Kick/Combo match result . 59
4.15 Effect of pruning in Probabilistic search 60
4.16 Effect of pruning in Monte-Carlo search 60
4.17 Comparison of search algorithms . 62
4.18 Computer Olympiad 10 competition results 64
4.19 Computer Olympiad 11 competition results 65

Chapter 1

Introduction

1.1 Billiards

Billiards refers to a family of games played on a billiards table. Players use a cue stick to

strike the cue ball into an object ball, generally with the intent to drive the object ball into a

pocket. The most popular billiards games are 8-ball pool, 9-ball pool, and snooker. There

are a wide variety of other games that can be played with the same equipment, including

straight pool, one-pocket, and cutthroat.

Billiards games emphasize both strategy and physical skill. To succeed, a player must

be able to select strong shots, and then execute them accurately and consistently. Several

robotic players have recently been developed, including Deep Green [1] and Roboshark

[2]. These systems address the task of executing shots on a physical table, but so far have

incorporated little strategic reasoning. To compete beyond a basic level, they require AI to

select the ‘best’ shot to play in any given game situation.

Three main factors determine the quality of a billiards shot. First, it must contribute

towards the player’s goals. Most shots sink an object ball, allowing the player to shoot again

and progress towards clearing the table. Safety shots, giving up the turn but leaving the

opponent with few viable shots, are another strategic option. The many potential extraneous

shots that perform neither of these have little value. Second, the shot’s difficulty is a factor.

All else being equal, shots with a high probability of success are preferred. Finally, the

quality of the resulting table state after the shot is a factor. A shot that leaves the player

well positioned to make an easy follow-up shot on another object ball is preferred.

Skilled human billiards players make extensive use of position play. By consistently

1

choosing shots that leave them well positioned, they minimize the frequency at which they

have to make more challenging shots. This makes it easier for them to pocket long con-

secutive sequences of balls. Strong players plan several shots ahead. The best players can

frequently run the table off the break shot. The value of lookahead for humans suggests a

search-based solution for building a billiards AI. Search has traditionally proven very ef-

fective for games such as chess. Like chess, billiards is a two-player, turn-based, perfect

information game. Two properties of the billiards domain distinguish it, however, and make

it an interesting challenge.

First, it has a continuous state and action space. A table state consists of the position

of 15 object balls and the cue ball on a continuous <x,y> coordinate system. Thus, there

are an infinite number of possible table states. This renders standard game-tree search

enhancements inapplicable. Similarly, each shot is defined by five continuous parameters:

the aiming direction, velocity, cue stick elevation angle, and x and y offsets of the cue stick

impact position on the cue ball, so there are an infinite number of possible shots available

in any given table state. A set of the most relevant of these must be selectively generated.

Second, it has a stochastic nature. For a given attempted shot in a given state, there are

an infinite number of possible outcomes. The player can visualize their intended shot, but

will always miss by a small and effectively random delta amount. A professional player,

trained for accuracy, will tend to have small deltas, whereas casual players will exhibit

larger deltas. Similarly, for a robotic player, deviations from the intended shot arise from

limitations in the accuracy of the vision and control systems. Ambient environmental fac-

tors such as temperature and humidity can also affect collision dynamics, leading to vari-

ance in shot outcomes. This stochastic element means that a deterministic expansion of a

move when building a search tree, as is done in chess, is insufficient to capture the range of

possible outcomes.

This thesis describes PickPocket, an artificial intelligence program for computer bil-

liards. PickPocket was created to compete in the simulated billiards tournaments held at

the 10th and 11th Computer Olympiads. It won both of these competitions. The program is

based on the traditional game search framework, and is an adaptation of these techniques

to the continuous, stochastic domain of billiards. Specifically, this thesis presents:

• A shot generator for billiards,

2

• An evaluation function for billiards,

• Two search algorithms for billiards: one based on Expectimax and one based on

Monte-Carlo search,

• Pruning optimizations for both search algorithms,

• A new approach to estimating the shot difficulty function,

• Experimental results confirming the benefit of search over the previously standard

greedy approach, and

• Experimental results exploring the effect of PickPocket’s many parameters and fea-

tures.

Chapter 2 gives background details on robotic billiards, the search framework, the sim-

ulated billiards domain, and the rules of 8-ball. Chapter 3 describe’s PickPocket’s imple-

mentation, including its shot generator, evaluation function, search algorithms, and domain

specific implementation details. Chapter 4 gives the results of a range of experiments with

PickPocket, as well as details of the Computer Olympiad competition results. Chapter 5

concludes this thesis with a discussion of how PickPocket could be adapted to play other

billiards games, and gives some directions for future work.

3

Chapter 2

Background

2.1 Robotic Billiards

Several recent robotics projects address the task of physically executing shots on a billiards

table [1, 2, 3, 4]. These systems use machine vision to assess the table state, and robotic

control of a cue stick to execute shots. A high degree of accuracy is required in both of

these areas for competent play, making billiards an interesting and challenging domain for

robotics research.

In these systems, the cue stick is generally controlled by an overhead mounted gantry

robot. Roboshark uses a gantry with four degrees of freedom: x position, y position, z

position (cue stick height), and aiming direction. Deep Green has five degrees of freedom;

the elevation angle of the cue stick is also controlled. An end effector is used by both

systems to drive the cue stick into the cue ball to make shots1. With this setup, the robot

has as much control over the cue stick position as a human player does.

All robotics billiards players so far have used vision to assess the table state, primarily

by means of an overhead mounted global vision camera. The images captured by this can

be processed to identify the location of the balls on the table. Note that this can be a non-

trivial task; in 8-ball, there are solid and striped object balls of the same colour. From

certain angles, these can be hard to differentiate. Deep Green additionally features a local

vision camera mounted along the cue stick’s line-of-sight. This aids in fine-tuning the shot

once the cue stick is almost in position.

The decision algorithms that these robotics projects have used for shot selection have

1Roboshark actually uses a pneumatic cylinder rather than a regulation cue stick to hit the cue ball, but
the effect is the same

4

so far been relatively simplistic. They focus on finding the easiest shot, rather than the best

shot. That is, they attempt to find the shot with the highest probability of success, without

regard for position or strategic play. The algorithms described in [5, 6, 7, 8] are all greedy

algorithms which generate a set of shots, assign a difficulty score to each shot, and select

the easiest shot to execute. Their methods for assigning a difficulty score to each shot are

described in Section 3.1.5.

Several programs have been developed concurrently with PickPocket to compete in

the Computer Olympiad computational billiards tournaments. These are detailed in Sec-

tion 4.5.

Two other related projects are Stochasticks [9], and Larsen’s automatic pool trainer

[10]. These are systems that aid humans in planning shots, and deal with vision problems

like those faced by billiards robots.

2.2 The Search Framework

Any search-based game-playing program consists of three main components: a move gen-

erator, an evaluation function, and a search algorithm. From any given game state, these

components work together to construct a search tree which selects a move to take. A

search tree is a type of tree graph consisting of nodes which correspond to states in the

game, and edges which correspond to moves, the transitions between states in the game.

When searching, the move generator generates a set of legal moves for each non-terminal

node. The evaluation function assigns a score corresponding to the value of that state for

the player to each leaf node, the nodes at the depth being searched to. The search algorithm

defines in what order nodes are expanded, and how each node propagates the values of its

children up the search tree.

The initial game state being searched corresponds to the root node of the search tree. A

ply of search refers to all of the nodes at a given search depth, or number of moves from

the root node. For example, a 1-ply search consists of the root node and all of its children.

These children are leaf nodes. A 2-ply search consists of the root node, all of its children

(which are interior nodes), and all of its children’s children (which are leaf nodes). The

branching factor of a game tree refers to the average number of children (moves) at each

5

float Generic_Search(GameState state, int depth){

// if a leaf node, evaluate and return
if(depth == 0) return Evaluate(state);

// else, generate moves
moves[] = Move_Generator(state);

GameState nextState;

// search each generated move
foreach(moves[i]){

nextState = Apply_Move(moves[i], state);

// save the score for this child node
scores[i] = Generic_Search(nextState, depth - 1);

}

// return a function of the child scores
return F(scores);

}

Figure 2.1: Generic search algorithm

node. Pseudocode for a generic search algorithm is shown in Figure 2.1. This implements

a basic search with nodes expanded in depth-first order. The return value at a node is a

function of the scores of its child nodes. Most typically this would be the maximum child

score, but it can vary based on the search algorithm being implemented.

If at a leaf node, the game is a win or a loss, an absolute evaluation can be returned.

Otherwise, a heuristic evaluation, an estimate of the value of the state for the player, must

be returned. The more accurate this heuristic, the better the program will play.

2.2.1 Traditional Search

Search has proven very effective in games such as chess and checkers. The chess pro-

gram Deep Blue famously defeated world champion grandmaster Garry Kasparov in a

1997 match [11]. The checkers program Chinook became world champion in 1994 [12].

These programs use highly tweaked and optimized variants of the basic Minimax search

algorithm. Minimax is an algorithm for games where the turn alternates back and forth

6

between players after each move. Most traditional games have this adversarial property.

Max nodes correspond to states where it is the searching player’s turn. The player wants

to maximize their score, so the value propagated up the tree is the maximum of the scores

of the child nodes. Min nodes correspond to states where it is the opponent’s turn. The

opponent is also trying to win, so will choose the best move from their perspective. This is

the worst option from the player’s perspective, so the minimum child score is propagated

upwards at min nodes.

Pruning search trees by not searching branches that are provably inferior to a branch

already seen can provide a large performance boost. The αβ algorithm implements pruning

in Minimax search trees [13]. There are also a wealth of other optimizations that take

advantage of the deterministic structure of Minimax-style trees.

2.2.2 Search in Stochastic Games

Stochastic games have in common the presence of random events that effect the play of the

game. These random events can come in two forms: they may determine what actions a

player has available to them (such as the roll of the dice in backgammon, or the drawing of

tiles in Scrabble), or they may influence the outcome of the actions the player takes (such

as in billiards shots, or the drawing of cards in poker). This non-determinism complicates

search. Whenever a stochastic event occurs, instead of one successor state in the search

tree, there are many. The search algorithm must take into account both the value to the

player of each possibility, and the likelihood of it occuring. Two established approaches to

dealing with this are Expectimax search and Monte-Carlo sampling.

Expectimax Search

Expectimax, and its *-Minimax pruning optimizations, are an adaptation of game tree

search to stochastic domains [14] [15]. Expectimax search operates similar to standard

Minimax search, with the addition of chance nodes wherever a non-deterministic action

is to be taken. For example, dice rolls in the game of backgammon would be represented

by chance nodes. Chance nodes have a child node for each possible outcome of the non-

deterministic event. In backgammon, every possible outcome of the dice roll would have

a corresponding child node. The value of a chance node is the weighted sum of its child

7

nodes, where each child is weighted by its probability of occuring. This accounts for both

the value of the child and its probability of occuring.

Monte-Carlo Sampling

A Monte-Carlo sampling is a randomly determined set of instances over a range of pos-

sibilities. Each instance is assigned a value, and the average of all values is computed to

provide an approximation of the value of the entire range. This implicitly captures like-

lihood of good and bad outcomes (as a state that has mostly strong successor states will

score highly, and vice versa), as opposed to Expectimax which explicitly uses probabilities

to factor in the likelihood of events occuring.

Monte-Carlo techniques have been applied to a wide range of problems. In game-

playing, they have been used in card games such as bridge [16], poker [17] and hearts [18],

as well as Go [19] and Scrabble [20]. All of these games have in common a branching factor

too large for traditional search. All except Go have a stochastic element. To explicitly build

full search trees would be impossible. In card games, the number of possible deals of the

cards is massive. Rather than accounting for all of them explicitly, a set of instances of

deals are sampled. In Go, the number of moves available to the player is too large to search

deeply, so random games are played out to estimate the values of moves. In Scrabble,

possible tile holdings are sampled from the tiles known to be left in the bag, rather than

searching every possibility. The Scrabble program Maven [20] also uses selective sampling,

using a biased rather than uniform sampling to improve play.

Monte-Carlo search has also been investigated for continuous real-time strategy (RTS)

games [21]. Unlike the turn-based games mentioned so far, these are real-time games where

players take their actions simultaneously. This increases the complexity of the domain

dramatically. In turned-based games, players have the benefit of having a static game state

which they can spend time analyzing before taking an action. In contrast, the environment

in an RTS is constantly changing. Turn-based games naturally impose a rigid structure on

search trees. RTS actions can occur in any sequence, or simultaneously, so knowing how to

structure a search tree is a difficult problem. RTS games feature a near-infinite branching

factor to compound the challenge.

Stochastic games where search has previously been investigated fall therefore into

8

two categories: turn-based games with discrete state and action spaces like card games,

backgammon, and scrabble; and continuous real-time RTS games. Unlike the former, bil-

liards has a continuous state and action space. Unlike the latter, billiards has a rigid turn-

based structure. Also unlike card games where an opponent’s hand is typically hidden, bil-

liards features perfect information. Therefore billiards bridges the complexity gap, bring-

ing together elements of traditional deterministic perfect information games like chess,

stochastic games like backgammon, and realtime continuous games. It is ‘more complex’

than backgammon because of its continuous nature, yet ‘less complex’ than RTS games

because of its turn-based structure. It is the first game with this particular set of properties

to be examined from an AI perspective. There is a family of such turn-based continuous

stochastic games, which include croquet, lawn bowling, shuffleboard, and curling. The

techniques and considerations discussed here for billiards should carry over to these do-

mains.

2.3 Billiards Physics Simulation

The outcome of any billiards shot depends on the physical interactions between the balls

moving and colliding on the table. The physics of billiards are quite complex, as the motion

of balls and results of collisions depend on the spin of the ball(s) involved as well as their

direction and velocity. Leckie’s poolfiz [22] is a physics simulator that, given an initial

table state and a shot to execute, finds the resulting table state after the shot completes.

Poolfiz implements an event-based physics simulation. In this approach, equations mod-

eling billiards ball dynamics are solved to find the time of the next event. Events include

ball-ball collisions, ball-rail collisions, and ball motion state transitions (such as from mov-

ing to stopped). Simulation time is then advanced to this point, the positions of the balls

are located, the event is resolved, and then the equations are reapplied to find the time of

the next collision. This is repeated until all balls are at rest and the shot is complete. This

method is a departure from the numerical integration method that has been the traditional

approach to this type of physics simulation.

Simulation results are deterministic, whereas the outcome of shots made by a human or

robot player on a physical table are non-deterministic. To capture this stochastic element,

9

the input shot parameters to poolfiz are perturbed by a noise model at game time. This

results in a slightly different shot outcome every time for a given set of input parameters.

The noise model is described in Section 4.1.

Simulation is a costly operation; it is where PickPocket spends a vast majority of its

time. To save on runtime simulation costs, PickPocket precomputes several tables for per-

forming common tasks. These are the shot probability table, minimum velocity table, and

rail rebound table. Each is covered in detail in Chapter 3.

2.4 8-ball

PickPocket plays 8-ball, as this was the game selected for the computational billiards com-

petitions held at the 10th and 11th Computer Olympiad. While many of the implementation

details that follow are specific to 8-ball, the overall approach could be easily applied to any

billiards game. The adaptations to the search framework to account for billiards’ stochastic

and continous nature would be the same. Specific considerations for several other billiards

variants are discussed in Section 5.1.1.

Billiards games are played on a rectangular table, twice as long as it is wide. Typical

dimensions for a table used for 8-ball and 9-ball range from 3′ × 6′ to 4.5′ × 9′. Snooker

is played on a larger table, typically measuring 6′ × 12′ if full sized. A billiards table has

six pockets; four in the corners and two midway along the sides. It is also marked by a

headstring line, 1/4 of the distance along the length of the table, and a footstring line 3/4

of the length along the table. At the midpoint of the headstring and footstring are the head

spot and the foot spot. Often the footstring is not physically depicted on a table, but implied

by the location of the foot spot. Figure 2.2 depicts a standard billiards table.

PickPocket plays by the rules of 8-ball as standardized by the Billiards Congress of

America (BCA) [23]. The major rules can be summarized as follows:

• Fifteen numbered object balls are initially racked in a triangular formation, with the

1-ball positioned on the foot spot and the triangle extending out behind the footstring.

• The 1-ball through 7-ball are solid colours, and collectively referred to as ‘solids’.

The 9-ball through 15-ball feature a coloured stripe on a white background, and are

10

Figure 2.2: A standard billiards table

referred to as ‘stripes’. Each player will be assigned one of these groups during the

game, and to win must pocket all seven balls in their group, followed by the 8-ball.

• One player is selected to break, or shoot first. They shoot at the racked balls with

the cue ball from behind the headstring. For an 8-ball break to be considered legal,

it must either pocket a ball or at least 4 numbered balls must contact a rail. If the

breaker pockets any object ball on the break, they continue shooting; otherwise, they

lose their turn.

• Immediately after the break shot, the game is in an ‘open table’ state. Players are not

yet assigned to solids or stripes, and may shoot at any ball on the table.

• 8-ball uses a called-shot rule. That is, the shooter must indicate which ball they intend

to sink in which pocket. They continue shooting if they pocket the called object ball

in the called pocket, otherwise they lose their turn.

• The first time a player calls and successfully pockets a stripe or solid, they are as-

signed to that group. Their opponent is assigned to the other group.

• For a shot to be legal, the cue ball must first contact a ball of the player’s assigned

group before one of the opponent’s group. Additionally, a numbered ball must be

pocketed or any ball must contact a rail after this first cue-object ball collision for the

shot to be legal.

11

• An illegal shot is called a foul. The player that shot the foul loses their turn, and their

opponent gets ‘ball-in-hand’, the right to place the cue ball anywhere on the table.

• If a player scratches, or pockets the cue ball, their opponent gets ball-in-hand.

• Pocketed balls stay pocketed, even if pocketed by a foul shot.

• A player may call ‘safety’ on any shot and force his opponent to take the next shot.

• Pocketing the 8-ball at any time before a player has cleared their group is an au-

tomatic loss. If a player has cleared their group and is shooting at the 8-ball, and

scratches or fouls on a shot that pockets the 8-ball, they suffer an automatic loss.

• The first player to pocket all of their assigned group of balls, followed by legally

pocketing the 8-ball, wins the game.

12

Chapter 3

PickPocket Implementation

Any search-based game-playing program consists of three main components: a move gen-

erator, an evaluation function, and a search algorithm. This chapter discusses the adaptation

of each of these to a stochastic continuous domain, and in particular the implementation

used by PickPocket. Two search algorithms are presented: Probabilistic search (a special

case of Expectimax) and Monte-Carlo sampling search. These algorithms have offsetting

strengths and weaknesses, representing the classic trade-off between breadth vs. depth in

search.

3.1 Move Generation

A move generator provides, for a given game state, a set of moves for the search algorithm

to consider. For deterministic games like chess, this is often as simple as enumerating all

legal moves. For games with a continuous action space, it is impossible to enumerate all

moves; a set of the most relevant ones must be selectively generated.

In deterministic games, an attempted move always succeeds. A chess player cannot

‘miss’ when capturing an opponent’s piece. In billiards, shots vary in their difficulty. Shots

range from ones players rarely miss, such as tapping in a ball in the jaws of a pocket, to

very challenging, such as a long bank shot off a far rail. This difficulty is a key property of

the shot itself, and thus must be captured by the move generator. With every shot generated,

it must provide an assessment of its difficulty. This is used by both the evaluation function

and the search algorithm to perform their respective tasks, as described in Section 3.2 and

Section 3.3.

13

Figure 3.1: Parameters defining a billiards shot

The need to selectively generate relevant shots, and to assign a difficulty assessment to

generated shots, arise respectively from the continuous and stochastic nature of the billiards

domain.

Every billiards shot is defined by five continuous parameters, illustrated in Figure 3.1:

• φ, the aiming angle,

• V , the initial cue stick impact velocity,

• θ, the cue stick elevation angle, and

• a and b, the x and y offsets of the cue stick impact position from the cue ball centre.

Shots that accomplish the goal of sinking a given object ball into a given pocket can

be divided into several classes. In order of increasing difficulty, they are: The straight-in

shot (Figure 3.2), where the cue ball directly hits the object ball into the pocket; the bank

shot (Figure 3.3), where the object ball is banked off a rail into the pocket; the kick shot

(Figure 3.4), where the cue ball is banked off a rail before hitting the object ball into the

pocket; and the combination shot (Figure 3.5), where the cue ball first hits a secondary

object ball, which in turn hits the target object ball into the pocket. Theoretically these can

be combined to arbitrary complexity to create multi-rail bank and combination shots. In

practice, difficulty increases rapidly with each additional collision, so players only attempt

the more challenging types of shots when they lack easier options.

14

Figure 3.2: A straight-in shot

Figure 3.3: A bank shot

Figure 3.4: A kick shot

15

Figure 3.5: A combination shot

The target object ball is aimed with the aid of a conceptual ‘ghost ball’. A line is

extended from the intended target position (the center of a pocket, for example) through

the center of the target object ball. The position adjacent to the object ball on the far side of

this line from the target position is the ghost ball position. If the cue ball is aimed such that

it is in this position when it contacts the target object ball, the target object ball will travel

in the direction of the target position post-collision. Therefore, the φ aiming angle for the

cue ball is chosen so that it is aimed directly at the ghost ball position to drive the object

ball in the desired direction.

In addition to controlling the direction of the target object ball, the shooter has a signif-

icant degree of control over where the cue ball ends up after a shot. Consider a straight-in

shot. As a result of billiard ball dynamics, φ largely determines the shape of the shot up

until the cue ball’s first collision with the target object ball. This object ball will have a

similar post-collision trajectory regardless of the values of the other parameters. However,

the cue ball’s post-collision trajectory can be altered by varying V , a, and b, which affect

the cue ball’s spin at the time of collision. V at the same time affects the distance travelled

by the cue and object balls. It must be sufficiently large to sink the desired object ball,

while variations above this threshold determine how far the cue ball travels post-collision.

θ is constrained by having to be large enough that the cue stick is not in collision with either

any object balls on the table or the rails around the table’s edge. High θ values can impart

curvature on the cue ball’s initial trajectory.

16

3.1.1 Straight-in Shots

PickPocket generates shots one class at a time, starting with straight-in shots. For every

legal object ball, for every pocket, a straight-in shot sinking that object ball in that pocket is

considered. Sometimes this shot is not physically possible. This can occur when the object

ball is not between the cue ball and the target pocket, or when another object ball blocks

the path to the pocket. If the cue ball is very near or frozen against1 another object ball, it is

impossible for the cue to hit it from some directions. Checks are made for these conditions,

and impossible shots are discarded. When the shot is possible, the parameters are set as

follows:

• φ is chosen such that the object ball is aimed at the exact centre of the pocket.

• V is retrieved from a precomputed table of minimum velocities necessary to get the

object ball to the pocket. See section 3.1.6.

• θ is set to a minimum physically possible value, found by starting at 5◦ and increasing

in 5◦ increments until the cue stick is not in collision with any other object balls or

the side of the table. Most of the time this turns out to be 5◦ or 10◦. θ has the least

impact on shot trajectory, so relatively large 5◦ increments are used to quickly find a

physically possible value.

• a and b are set to zero.

This generates exactly one shot sinking the target ball in the target pocket. An infinite

set of these could be generated by varying the shot parameters, especially V , a, and b, such

that the altered shot still sinks the target ball in the target pocket. Each variation on the shot

leaves the table in a different follow-up state. For position play, it is important to generate a

set of shots that captures the range of possible follow-up states. PickPocket discretely varies

V , a, and b to generate additional shots. For example, V is increased in 1m/s increments up

to poolfiz’s maximum 4.5m/s. The number of variations per ball and pocket combination

has a strong impact on the branching factor when searching. These values were hand-tuned

such that the 2-ply Monte-Carlo search algorithm from Section 3.3.2 would execute within

the time limits imposed at the Computer Olympiad.
1In contact with.

17

If one or more straight-in shots are found, move generation is complete. If not, Pick-

Pocket falls back on the other shot classes in order of increasing complexity until shots

are found. A vast majority of the time, straight-in shots are found and this is not neces-

sary. Section 4.3.8 details experiments which show that bank, kick, and combination shots

totalled under 6% of the total shots played under typical conditions.

3.1.2 Bank Shots

Bank shots are generated in a manner similar to that described for straight-in shots. Instead

of aiming the target object ball directly at the pocket, it is aimed at a point along the rail

such that it will reflect into the target pocket. For an object ball-rail collision, the angle of

incidence is approximately equal to the angle of reflection - this simplification is used to

solve for the target position along the rail.

For every legal object ball, for every pocket, for every rail, a bank shot is considered

sinking the object ball into the target pocket off the selected rail. It is physically impossible

to bank off a rail into a pocket along that same rail, so one rail is skipped for side pockets,

and two rails are skipped for corner pockets. Additionally, the object ball must be between

the cue ball and the target rail for the shot to be physically possible.

Since a minimum velocity table for bank shots would be too large to be reasonable, the

velocity is initially set to 2m/s for these shots. This is sufficient for the vast majority of

bank shots. As with straight-in shots, it is then incremented, creating new shot variants up

to 4.5m/s velocity.

3.1.3 Kick Shots

Kick shots are significantly more complicated to calculate than bank shots. Unlike bank

shots, the assumption that the angle of incidence is approximately equal to the angle of

reflection for the cue ball-rail collision does not hold strongly. The exact angle of reflection

depends on the amount of spin on the cue ball at the time of collision. This is a function

of the initial velocity V at which the cue ball is struck, and the distance between cue ball

and the rail. The angle of reflection may vary by up to several degrees from the angle

of incidence. Therefore a simple geometric calculation is not sufficient to calculate an

effective kick shot.

18

The amount of spin on the cue ball at collision time varies because of the dynamics

of a billiards shot. Immediately after the cue ball is struck by the cue, it slides along the

table felt without rolling. This state is called ‘stun’. Gradually friction between the cue ball

and table felt causes the cue ball to start rolling along the table. In this transitional phase,

its forward motion is partially sliding motion, and partially rolling motion. Eventually the

cue ball transitions into a state where its forward motion is entirely rolling motion, called

‘normal roll’. The angle of reflection off the rail will vary depending on the point along

this transition that the cue ball is in at the time of collision, as each point has different spin

characteristics. The shooter can also use side spin to influence the angle of reflection.

To generate a kick shot, a ghost ball position which aims the target object ball at the

desired pocket can be found by the same method used for straight-in shots. Then an aiming

point along the rail (which determines φ) and an initial velocity V for the shot must be

found, such that the centre of the ghost ball falls on the line extending from the cue ball-rail

contact point in the direction of the angle of reflection. Holding either φ or V fixed, varying

the other influences the angle of reflection. The shot is also constrained by having to be of

sufficient velocity to sink the target object ball. For a given cue ball-rail contact point, the

velocity that results in the correct angle of reflection may be too weak to pocket the target

object ball. Because of the interaction between φ and V , there may be many possible kick

shots that sink a given object ball in a given pocket. PickPocket generates one such shot,

with the goal of finding a kick shot that is robust.

The angle of reflection for a shot at a rail with an initial φ and V cannot be determined

geometrically; it must be found through simulation. Rather than perform expensive simu-

lations at runtime to optimize φ and V for a given kick shot, PickPocket precomputes a rail

rebound table and retrieves values from this table to find kick shot parameters. To generate

the table, the angle of incidence, cue ball-rail distance, and initial velocity parameters are

discretized and a shot is simulated for every physically possible combination of these three

parameters. The angle of reflection and cue ball velocity immediately after reflection are

recorded. Table entries are indexed by their angle of incidence, angle of reflection, and

cue ball-rail distance. In each table entry, the minimum and maximum initial velocity V

to achieve that angle of reflection given the angle of incidence and cue ball-rail distance

are recorded, as well as the minimum velocity the cue ball can have after the collision

19

with the rail. During precomputation, this table is updated after each combination of initial

parameters is simulated.

At runtime, kick shots are generated with the aid of lookups into this table. A set

of potential cue ball-rail contact points are found, equally spaced and centred around the

point where the angle of incidence (the cue ball-rail angle) equals the angle of reflection

(the ghost ball-rail angle). For each of these points, one lookup into the table is made, for

the specific angle of incidence to that point, required angle of reflection from that point to

the ghost ball position, and distance between the cue ball’s initial position and that point.

If an entry exists, the minimum rebound velocity of the cue ball from the rail is checked to

ensure it is sufficient. This is made by making a lookup into the minimum velocity table as

though the shot were a straight-in shot with the cue ball initially located at the rail contact

point; if the minimum rebound velocity is greater than the minimum velocity required for

the shot, then this rail contact point is stored as a good candidate. If multiple good candidate

contact points are found, the one with the largest range between the minimum velocity and

maximum velocity to get the desired reflection angle is selected. The larger this range, the

more robust the shot - the less sensitive it is to small changes in the initial parameters. The

velocity in the center of the minimum-maximum range of the selected good candidate is

selected as V for the shot, as this is the value with the largest margin of error on both sides.

If at least one good candidate entry in the table is found, this method finds a unique φ and

V for a kick shot. If no such entries are found, a kick shot is not generated.

When generating kick shots, a and b are not varied - each of these affects the spin of

the cue ball when it impacts the rail, and hence its angle of reflection. To generate kick

shots by varying these parameters, PickPocket would have to optimize for four parameters

concurrently instead of two. θ is set, as usual, to a minimum physically possible value.

Because the cue ball’s angle of reflection off the rail is sensitive to small changes in the

initial shot parameters, the rail rebound table must be calculated to a very fine granularity.

PickPocket uses a 900× 900× 100 table, giving an accuracy to 0.1 degrees for the angles

of incidence and reflection, and 1cm for the cue ball-rail distance. The table is stored using

a sparse data structure to save memory - the vast majority of table entries are empty. For

a given angle of incidence, only those angles of reflection within several degrees are likely

to be populated.

20

This process results in kick shots being generated by a sequence of table lookups, rather

than the alternative of a sequence of runtime simulations. When generating kick shots, a

shot is considered for every combination of target object ball, target pocket, and kick rail.

A set of the physically possible shots amongst these is generated.

3.1.4 Combination Shots

Like straight-in and bank shots, the generation of combination shots is straightforward.

Working backwards from the object ball to be pocketed, a ghost ball position is found that

will send that ball into the desired pocket. This is where the secondary object ball must

contact that object ball. A ghost ball position on the secondary object ball can be found by

setting the first ghost ball position as that ball’s target. The cue ball is then aimed at this

secondary ghost ball position.

To generate combination shots, for every pair of object balls, for every pocket, a shot

is considered. For the shot to be physically possible, both object balls must be between the

cue ball and the target pocket, and the first object ball to be contacted must be closer to the

cue ball than the second object ball.

Like bank shots, it is unreasonable to generate a minimum velocity table for combina-

tion shots. The initial velocity for each generated shot is set at 2m/s, sufficient for the vast

majority of combination shots.

3.1.5 Shot Difficulty

The difficulty of a straight-in shot is a function of several parameters. A subset of these

depend entirely on the position of the object ball and cue ball, independent of the rest of the

table state. These are the cut angle α, the object ball-pocket distance d1, the cue-object ball

distance d2, and object ball-pocket angle β (Figure 3.6). α and d2 are calculated relative to

a ghost ball position. In general, the larger α, d1, or d2 is, the more difficult the shot. The

relationship between β and shot difficulty depends on whether the shot is into a corner or a

side pocket.

The shot difficulty function is different between shots into corner and side pockets

because of two properties of the geometry of the billiards table. First, the effective pocket

size varies differently with the β angle for the corner and side pockets. Effective pocket

21

Figure 3.6: Shot difficulty parameters

size refers to the width of the pocket along the trajectory of the object ball. The smaller this

is, the less margin for error in the shot. For a side pocket, the pocket is largest, and hence

the shot easiest, for a straight-in shot with β = 0. As β increases, pocket size decreases

rapidly. For corner pockets, the pocket is angled2, so effective pocket size is less sensitive

to changes in β. Figure 3.7 illustrates this. w1 shows the width of the corner and side

pockets where β = 0, and w2 shows the width of the corner and side pockets with a larger

β angle. Because of the pocket shapes, the side pocket width is much more sensitive to

changes in β. This is compounded by β having a maximum value of 90◦ at a side pocket,

and only 45◦ at a corner pocket.

The second factor is that the interaction between the object ball and rails differs between

the two types of pockets. If an object ball misses the pocket slightly and hits a side rail when

aimed at a side pocket, it will never go in. On the other hand, if an object ball hits a rail

on the way to a corner pocket, it will still frequently go in, because of the angled pocket

orientation. Figure 3.8 illustrates this. This leads to shots along a rail into a corner pocket

being much easier than into a side pocket.

Previous work on billiards AI has concentrated on approximating the shot difficulty

function to find the easiest shot. Chua et al. used fuzzy logic to do this [7]. In this work,

fuzzy sets were defined for d1, d2, and α corresponding to easy, medium, and hard difficulty

values for each parameter (β was ignored). Rules combining these fuzzy variables were

2The angled corner pockets used by poolfiz approximate the effect of the jaws of the corner pockets on a
physical billiards table.

22

Figure 3.7: Effect of β on effective pocket size

Figure 3.8: Rail interactions with corner and side pockets

23

then used to assign an overall difficulty to the shot. Their evaluation of this approach

consisted of the chosen shots being deemed ‘acceptable’ by a human.

A similar approach was used by Alian and Shouraki [5]. Whereas the rules combining

fuzzy variables used by Chua et al. were hand-crafted, this work used a reinforcement

learning algorithm to tune them on a simulated table. Later work by Alian et al. [6] exper-

imented with replacing the reinforcement learning algorithm with a genetic algorithm; this

led to worse performance. Evaluation of these approaches was again made by comparing

the shots chosen by the technique to ones chosen by a human for the same table state. Every

shot chosen under the reinforcement learning-trained algorithm was deemed ‘acceptable’,

and most matched the shot ‘recommended’ by the human. The genetic algorithm-trained

variant chose fewer of these shots, and more that were ‘not accepted’.

Lin et al. used grey logic to create a mathematical function approximating the shot

difficulty function [8]. The parameters d1, α, and β were used as inputs. Experiments on

a physical robot were used to evaluate this approach. While pictures of this experiment in

execution were presented, numerical results of its outcome were not.

PickPocket uses a different approach from these previous methods, taking advantage

of the poolfiz simulator to capture the shot difficulty function in a table. The table is filled

with accurate approximations of absolute probability values. Previous techniques generated

arbitrary, relative values.

PickPocket precomputes a table to capture the difficulty function, as the calculation is

too costly to perform for each shot generated at runtime. The shot difficulty parameters are

discretized and sampling is used to fill each table entry. For each set of parameter values

{α, d1, d2, β}, a table state and shot are generated. The shot is simulated s times in poolfiz,

and the percentage of these that the ball is successfully pocketed is recorded in the table.

At runtime, a table lookup is made for each generated straight-in shot by finding the

nearest table entry to the actual difficulty parameters for the shot. Each parameter is

rounded to the granularity of the discretization used for the table. The value correspond-

ing to these parameters is retrieved from the table, providing a quick estimate of the shot’s

probability of success.

In a game situation, the actual probability of success of a shot depends on dynamic

factors that cannot be captured in this lookup table. Other object balls on the table can

24

interfere with the shot when they are near the intended trajectories of the object and cue

ball. Slight deviations from these trajectories that would be insignificant on a clear table

can now result in collisions with these obstacle balls. The exact value of the five shot

parameters also has a small effect on the chance of success.

The granularity of the discretization used for the table has an impact on its accuracy,

as well as its memory footprint and computation time. Thus it must be chosen with these

factors in mind. PickPocket builds two 30×30×30×30 tables, one for the corner pockets

and one for the side pockets, because of their differing difficulty functions. PickPocket uses

s = 200, chosen for sub-24 hour precomputation time at the table granularity used.

Bank, kick, and combination shots have too many parameters to construct a success

probability table of manageable size. For each collision there is an additional distance and

angle parameter. To assign a probability value to these shots, each one is mapped to a

corresponding straight-in shot. A discount factor is applied to the straight-in probability

to account for the additional complexity of the shot class. This is an approximation that

captures the increased difficulty of these shot classes, but does not have the high degree of

accuracy of straight-in probability table lookups.

3.1.6 Velocity Table

To quickly find the minimum velocity required for a straight-in shot to sink the target object

ball, a table of minimum velocities is precomputed. The minimum velocity for a straight-in

shot depends on its d1, d2, and α parameters. The larger the distances d1 and d2 are, the

harder the cue ball must be initially hit to cover those distances. The larger α is, the less

energy is transferred from the cue ball to the object ball in the collision, so the harder it

must be hit initially to impart sufficient velocity on the object ball to reach the pocket. Note

that β and whether the shot is into a corner or side pocket have no impact on the minimum

velocity needed to reach the pocket.

Like the shot difficulty table, to build the velocity table d1, d2, and α are discretized

and a table state and shot are generated for each combination of these parameters. Initially

the velocity of the shot is set to 0.1m/s. It is increased in 0.1m/s increments and sampled

(without applying the error model) until the target object ball is successfully pocketed. This

is the minimum velocity for that set of parameters, and fills that entry in the table.

25

At runtime, a table lookup given a shot’s parameters quickly retrieves the approximate

minimum velocity for that shot. Any velocity below the minimum is insufficient to pocket

the target object ball, and not worth considering. Larger velocities will still sink the target

object ball, but will lead to a different final cue ball position.

PickPocket uses an 80× 80× 135 minimum velocity table.

In practice, a small boost of 0.2m/s is added to the values retrieved from the velocity

table to ensure the target object ball is hit hard enough to sink it. This boost is enough

to cover the uncertainty that arises from perturbations to the requested shot velocity by

the error model, as well as the error introduced by rounding the shot parameters to the

granularity of the lookup table.

3.1.7 Safety Shots

With a safety shot, the goal is not to sink a ball, but rather to leave the opponent with no

viable shots. Ideally the opponent will then give up ball-in-hand, leaving the player in a

strong situation. Unlike the previously discussed shot classes, there is no way to generate

a safety directly from parameters. What makes a good safety is wholly dependent on the

table state. The goal is abstract (leave the table in a ‘safe state’) rather than concrete (sink

ball x in pocket y).

One way to account for the entire table state is the use of sampling. For safety shots, a

wide range of φ and V values are sampled, leaving θ, a, and b alone to make the sampling

space manageable. For each set of φ and V , a shot with these parameters is sampled i times,

evaluating the resulting state from the opponent’s perspective. The overall value of this shot

is then the average of these evaluations. i is set equal to the num samples parameter from

Section 3.3.2, typically to a value of 15.

Since sampling is a costly operation, if safeties were generated per-node then the cost

of searching would quickly become excessive. To get around this, safety shots are only

considered at the root. Sampling as a one-time cost has a relatively minor impact on per-

formance. At the root, if the best shot from the search has a score below a threshold t0,

safety shots are generated. If the value for the opponent of the best safety is below an-

other threshold t1, this shot is selected instead of the search result shot. The thresholds

t0 and t1 can be adjusted to alter the program’s safety strategy. For the 10th Computer

26

Olympiad, these values were set at t0 = 0.65 and t1 = 0.5 (evaluation values range from 0

to 1.48). Later experimentation suggested that this chose safeties too frequently; a strategy

that played fewer safeties was more successful (see Section 4.3.3). For the 11th Computer

Olympiad, PickPocket used t0 = 0.5 and t1 = 0.18, which fared better in tests.

3.1.8 Bank/Kick/Combo Activation

Occasionally there are straight-in shots available in a table state, yet a bank, kick, or com-

bination shot would actually be a better option for the player. If these shot classes were

only considered when there are no straight-in shots available, such opportunities would be

missed. Generating all of these shots every time ‘just in case’ is clearly excessive; it would

blow up the branching factor while the vast majority of the time a straight-in shot will be

the best shot.

To consider these shots only when they may be of benefit, a threshold similar to that

used for safety shots is employed. If the best shot found by the search has a value below

b0, bank, kick, and combination shots are generated and searched. This extra search is only

performed to 1-ply, to minimize the effect on average time for shot selection. If bank shots

are found that have a greater score than the best shot found by the initial search, the initial

search of straight-in shots is repeated to a 1-ply depth; values returned from different depth

searches are not directly comparable, as values propagated up more ply are likely to be

lower. If the bank/kick/combo shot score is still higher than the score of the best shot in

the 1-ply re-search, this shot is executed instead of the shot initially found by the search.

This approach has a minimal computational overhead, while still finding bank/kick/combo

shots on the rare occasions that they are better options than a straight-in shot. PickPocket

uses b0 = 0.8, a hand-tuned value selected so that this feature would kick in when it has

a chance of finding a better shot, yet not activate excessively slowing down the program’s

execution.

3.1.9 Root Sampling

The root node of a billiards search tree has two special features. First, it is the only node in

that tree that is guaranteed to be seen in practice, since it is the current table state at the time

of search. The player will never be faced with any of the other exact states that comprise

27

the search tree, only similar states to them. Second, operations performed only at the root

node have a one-time cost, as opposed to a per-node cost. Thus it is possible to invest some

time improving the average quality of shots available at the root. These improved shots are

directly applicable to the current state. There is less benefit to improving the shots available

deeper in the tree, as the opportunity to actually execute those shots would never come up.

The number of variations applied to the V , a, and b parameters of each generated shot

determines the branching factor of the search algorithm. It also determines the number of

options for position play that are available, as each set of parameters will leave the cue

ball in a different final position. The more shot variants generated, the better the options

for position play, but the longer searching will take. Typically PickPocket generates 3-8

variants of any straight-in shot, to keep the branching factor manageable.

At the root, many more variants can be generated, 50-100 per shot, and each variant

can be sampled repeatedly, similar to safety shot sampling. The evaluation function is

used to score each shot instance. The averages of these evaluations can be sorted, and

the shot variants with the highest scores under sampling can be passed on to the search

algorithm. This finds the shot variants that are most likely to be successful, and lead to the

best position. This gives the search algorithm a better set of shots to search than the method

of ‘blindly’ varying the shot parameters. Because extensive per-node sampling has a high

overhead, this is only feasible at the root as a one-time cost per search.

Viewed another way, this is analogous to iterative deepening on the first ply only. A

broad 1-ply sampling search is used to find a smaller set of the best candidates to use in the

deeper search.

3.2 Evaluation Function

An evaluation function generates, for a game state, a value corresponding to the worth of

that state for the player to act. In search, the evaluation function is applied to the game

states at the leaf nodes, and the generated values are propagated up the tree.

In PickPocket’s billiards evaluation function, the value of a state is related to the num-

ber and quality of the shots available to the player. This is similar to the mobility term

used in games like chess, extended to account for the uncertainty of the stochastic domain.

28

Intuitively, the more high success probability shots available to the player, the more ways

he can clear the table without giving up the turn. Even if there is no easy path to clearing

the table, the more good options the player has, the greater the chances are that one of

them will leave the table in a more favourable state. Similarly, the higher the probability of

success of the available shots, the more likely the player is to successfully execute one and

continue shooting. Unintentionally giving up the shot is one of the worst outcomes in all

billiards games.

To implement this term, the move generator is used to generate shots for the state being

evaluated. These shots are sorted by their success probability estimates, highest first. Du-

plicate shots for the same ball on the same pocket are eliminated, as these all have the same

estimate. The first n shots are considered, and the function d1p1 + d2p2 + d3p3 + ... + dnpn

is applied. dn is the discount factor for the nth shot and pn is the estimated probability for

the nth shot. Values are chosen for each dn such that they decrease as n increases.

The discount factor is applied to account for diminishing returns of adding additional

shots. Consider two situations for a state: three shots with 90%, 10%, 10% success chances,

and three shots with 70%, 70%, and 70% chances. These are of roughly equal value to the

player, as the former has an easy best shot, whereas the latter has several decent shots with

more options for position play. With equal weighting, however, the second would evaluate

to nearly twice the value of the first state. Applying a discount factor for shots beyond

the first maintains a sensible ordering of evaluations. PickPocket uses n = 3, d1 = 1.0,

d2 = 0.33, and d3 = 0.15. These weights have been set manually, and could benefit from

tuning via a machine learning algorithm.

Another possibility is to evaluate as the quality of the best shot. That is, with n = 1

and d1 = 1.0. Intuitively this loses information compared to the above set of parameters.

The more good shots available from a state, the more robust it is; the more likely there

are to be good shots available even when the state actually arrived at differs from the state

evaluated due to the error introduced when making a shot. In practice, the experiments in

Section 4.3.2 suggest that PickPocket’s evaluation is not very sensitive to the exact values

of its parameters.

29

3.3 Search Algorithms

A search algorithm defines how moves at a node are expanded and how their resulting

values are propagated up the resulting search tree. For traditional games like chess, αβ is

the standard algorithm. For stochastic games, the search algorithm must also account for

inherent randomness in the availability or outcome of actions. In billiards, players can-

not execute their intended shots perfectly. The outcome of a given shot varies, effectively

randomly, based on the accuracy of the shooter. For any stochastic game, the search algo-

rithm should choose the action that has the highest expectation over the range of possible

outcomes.

When searching billiards, a physics simulation is used to expand the shots available at

a node to the next ply. The per-node overhead of simulation reduces the maximum tree

size that can be searched in a fixed time period. Whereas top chess programs can search

millions of nodes per second, PickPocket searches hundreds of nodes per second.

3.3.1 Probabilistic Search

Expectimax, and its *-Minimax optimizations, are natural candidates for searching stochas-

tic domains [15]. In Expectimax, chance nodes represent points in the search where the

outcome is non-deterministic. The value of a chance node is the sum of all possible out-

comes, each weighted by its probability of occuring. This approach does not apply directly

to billiards, as there is a continuous range of possible outcomes for any given shot. The

chance node would be a sum over an infinite number of outcomes, each with a miniscule

probability of occuring. To practically apply Expectimax, similar shot results have to be

abstracted into a finite set of states capturing the range of plausible outcomes. In general,

abstracting billiards states in this way is a challenging unsolved problem.

A simple abstraction that can be made, however, is the classification of every shot as

either a success or failure. Either the target object ball is legally pocketed and the current

player continues shooting, or not. From the move generator, ps, an estimate of the prob-

ability of success, is provided for every generated shot s. Expectimax-like trees can be

constructed for billiards, where every shot corresponds to a chance node. Successful shots

are expanded by simulation without applying the error model. For a shot to succeed, the

30

deviation from the intended shot must be sufficiently small for the target ball to be pock-

eted, so the outcome table state under noisy execution should be similar to the outcome

under perfect execution. For unsuccessful shots, there is no single typical resulting state.

The deviation was large enough that the shot failed, so the table could be in any state after

the shot. To make search practical, the value of a failed shot is set to zero. This avoids

the need to generate a set of failure states to continue searching from. It also captures the

negative value to the player of missing their shot.

Unlike games such as chess where players strictly alternate taking moves, billiards has

an open ended turn structure. A player may continue shooting as long as they legally pocket

object balls. They only give up the shot when they miss, or call a safety. Because the table

state after a failed shot is unknown, it is not possible to consider the opponent’s moves in

search. Thus, this search method only considers the shots available to the shooting player.

The goal is to find a sequence of shots which is likely to clear the table, or leave the player

in a good position from which to clear the table.

Probabilistic search, an Expectimax-based algorithm suitable for billiards, is shown

in Figure 3.9. It has a depth parameter, limiting how far ahead the player searches.

Simulate() calls the physics library to expand the shot, without perturbing the requested

shot parameters according to the error model. ShotSuccess() checks whether the pre-

ceding shot was successful in pocketing a ball.

There are three main drawbacks to this probabilistic search. First, the probability es-

timate provided by the move generator will not always be accurate, as discussed earlier.

Second, not all successes and failures are equal. The range of possible outcomes within

these two results is not captured. Some successes may leave the cue ball well positioned

for a follow-up shot, while others may leave the player with no easy shots. Some failures

may leave the opponent in a good position to run the table, whereas some may leave the

opponent with no shots and likely to give up ball-in-hand. Third, as the search depth in-

creases, the relevance of the evaluation made at the leaf nodes decreases. Expansion is

always done on the intended shot with no error. In practice, error is introduced with every

shot that is taken. Over several ply, this error can compound to make the table state sub-

stantially different from one with no error. The search depth used for the experiments in

Chapter 4 was restricted more by this effect than by any time constraints relating to tree

31

float Prob_Search(TableState state, int depth){

// if a leaf node, evaluate and return
if(depth == 0) return Evaluate(state);

// else, generate shots
shots[] = Move_Generator(state);

bestScore = -1;
TableState nextState;

// search each generated shot
foreach(shots[i]){

nextState = Simulate(shots[i], state);
if(!ShotSuccess()) continue;
score = shots[i].probabilityEstimate

* Prob_Search(nextState, depth - 1);
if(score > bestScore) bestScore = score;

}

return bestScore;
}

Figure 3.9: Probabilistic search algorithm

32

size. The player skill determines the magnitude of this effect.

3.3.2 Monte-Carlo Search

Sampling is a second approach to searching stochastic domains. A Monte-Carlo sampling

is a randomly determined set of instances over a range of possibilities. Their values are

then averaged to provide an approximation of the value of the entire range. Monte-Carlo

techniques have been applied to card games including bridge and poker, as well as board

games such as go. The number of deals in card games and moves from a go position are

too large to search exhaustively, so instances are sampled. This makes the vastness of these

domains tractable. This suggests sampling is a good candidate for billiards.

In PickPocket, sampling is done over the range of possible shot outcomes. At each

node, for each generated shot, a set of num samples instances of that shot are randomly

perturbed by the error model, and then simulated. Each of the num samples resulting table

states becomes a child node. The score of the original shot is then the average of the scores

of its child nodes. This sampling captures the breadth of possible shot outcomes. There

will be some instances of successes with good cue ball position, some of successes with

poor position, some of misses leaving the opponent with good position, and some of misses

leaving the opponent in a poor position. Each instance will have a different score, based

on its strength for the player. Thus when these are averaged, the distribution of outcomes

will determine the overall score for the shot. The larger num samples is, the better the

actual underlying distribution of shot outcomes is approximated. However, tree size grows

exponentially with num samples. This results in searches beyond 2-ply being intractable

for reasonable values of num samples.

Figure 3.10 shows pseudo-code for the Monte-Carlo approach. PerturbShot()

randomly perturbs the shot parameters according to the error model.

Generally, Monte-Carlo search is strong where probabilistic search is weak, and vice

versa. Monte-Carlo search better captures the range of possible outcomes of shots, but

is limited in search depth. Probabilistic search generates smaller trees, and therefore can

search deeper, at the expense of being susceptible to error.

Note that in the case where there is no error, probabilistic search and Monte-Carlo

search are logically identical. Searching to a given search depth, they will both generate

33

float MC_Search(TableState state, int depth){

// if a leaf node, evaluate and retuern
if(depth == 0) return Evaluate(state);

// else, generate shots
shots[] = Move_Generator(state);

bestScore = -1;
TableState nextState;
Shot thisShot;

// search each generated shot
foreach(shots[i]){

sum = 0;
for(j = 1 to num_samples){

thisShot = PerturbShot(shots[i]);
nextState = Simulate(thisShot, state);
if(!ShotSuccess()) continue;
sum += MC_Search(nextState, depth - 1);

}
score = sum / num_samples;
if(score > bestScore) bestScore = score;

}

return bestScore;
}

Figure 3.10: Monte-Carlo search algorithm

34

the same result. It is entirely in how they handle the uncertainty introduced by the error

model that the two algorithms diverge.

3.3.3 Search Enhancements

Both probabilistic and Monte-Carlo search algorithms can be optimized with αβ-like cut-

offs. By applying move ordering, sorting the shots generated by their probability estimate,

likely better shots will be searched first. Cutoffs can be found for subsequent shots whose

score provably cannot exceed that of a shot already searched. This reduces the total num-

ber of nodes expanded, lowering search times. The search result is not impacted, as only

branches that provably could not return the best score are pruned.

For probabilistic search, the pruning test is whether the probability estimate of the cur-

rent shot multiplied by the maximum evaluation value provably makes that shot inferior to

the best shot already found. There are two possible cases for this best shot: either it is an

earlier child of the current node, or it is an earlier child of a parent node. If it is an ear-

lier child of the current node, the cutoff check is simply whether the maximum evaluation

times the probability estimate of the current shot is less than the score of that earlier child.

If this is true, searching the current shot cannot possibly yield a better score, so it can be

skipped. If the best shot is an earlier child of a parent node, the cutoff check is whether the

current shot times the maximum evaluation could exceed the score of the best shot after

being propagated up the tree - the probabilities of success of the parent nodes need to be

taken into account, as they will be multiplied in as the result for this node is propagated

upwards. If the current shot provably could not exceed that best score when propagated

up, a cutoff can be made. Since the shots are sorted in order of descending probability es-

timates, whenever a cutoff is found the cutoff condition will also be true for all subsequent

shots. Therefore, searching for that node is finished. Figure 3.11 shows pseudocode for

probabilistic search with pruning.

At the root the cutoff threshold parameter is initialized to -1, as there can be no cutoffs

until at least one leaf has been evaluated (since the maximum possible score for a child

node will never be less than a negative value). The cutoff threshold parameter is divided by

shot difficulty estimates as the tree is expanded to reflect the fact that the score at any node

will be multiplied by the probability of success of the shot that led to it. For example, if the

35

float Prob_Search(TableState state, int depth,
double cutoff_threshold){

if(depth == 0) return Evaluate(state);
shots[] = Move_Generator(state);

double bestScore = -1;
TableState nextState;

foreach(shots[i]){
// test for cutoff
if(shots[i].probabilityEstimate * MAX_EVAL <

cutoff_threshold) break;

nextState = Simulate(shots[i], state);
if(!ShotSuccess()) continue;
score = shots[i].probabilityEstimate

* Prob_Search(nextState, depth - 1,
cutoff_threshold /
shots[i].probabilityEstimate);

if(score > bestScore) bestScore = score;

// update cutoff threshold
if(score > cutoff_threshold) cutoff_threshold = score;

}

return bestScore;
}

Figure 3.11: Probabilistic search w/ pruning

best score so far at a node is 0.6, and the probability of success of the next shot to search is

0.8, then that next child node must yield a score of at least 0.6/0.8 = 0.75 in order to score

higher than 0.6 when multiplied by its probability of success. If, at that next child node,

the best achievable score is provably under 0.75, that child node can be pruned.

For Monte-Carlo search, the pruning test is whether the current shot being sampled

could exceed the best score so far if every remaining sample yielded the maximum evalu-

ation. If it could not, the remaining sampling for the shot can be skipped. The check for

this condition can be made after every sample is taken. Subsequent shots from that same

node still need to be sampled, as they could still potentially yield a higher value. This is

36

different from probabilistic search, where once a cutoff is found, search for the entire node

is complete. However, because shots are searched in order of descending probability esti-

mates, it is likely that cutoffs will be found for the later shots at a node. Figure 3.12 shows

pseudocode for Monte-Carlo search with pruning.

Again, the cutoff threshold parameter is initialized to -1 so no cutoffs will be found until

at least one leaf has been evaluated. As the tree is expanded, cutoff threshold is propagated

from parent to child nodes. Since the actual best score for a parent node is unknown at the

point where cutoff threshold is propagated (as it depends on all samples, and not all samples

have completed yet), the minimum required value for the child node for the current shot to

exceed the best score is propagated. This minimum required value is the value required of

the current sample, assuming all future samples evaluate to the maximum possible score.

If the child node provably cannot exceed this value, it can be pruned.

3.4 Game Situations

To play billiards games, an AI needs routines to handle the break shot and ball-in-hand

situations that occur regularly. This section describes the approach PickPocket uses for

these situations.

3.4.1 Break Shot

Every billiards game begins with a break shot. This establishes the position of the object

balls on the table, as well as which player gets to continue shooting. In most billiards

games, including 8-ball, if a player pockets an object ball on the break shot, they may

continue shooting. If they do not, their opponent gets the next shot.

Poolfiz randomizes the size of the small spaces between the object balls in the initial

rack, leading to variation in the outcome of the break shot. Thus, break results are unpre-

dictable. It is not feasible to respond dynamically to the exact details of the initial rack.

The player can, however, select a shot that maximizes their chances of sinking a ball over

the range of possible racks.

PickPocket uses sampling to precompute a break shot. A range of:

37

float MC_Search(TableState state, int depth,
double cutoff_threshold){

if(depth == 0) return Evaluate(state);
shots[] = Move_Generator(state);

double bestScore = -1;
TableState nextState;
Shot thisShot;

foreach(shots[i]){
sum = 0;
for(j = 1 to num_samples){

// test for cutoff
if(((sum + (num_samples - j + 1) * MAX_EVAL)

/ num_samples) < cutoff_threshold) break;

thisShot = PerturbShot(shots[i]);
nextState = Simulate(thisShot, state);
if(!ShotSuccess()) continue;
sum += MC_Search(nextState, depth - 1,

cutoff_threshold * num_samples
- sum - ((num_samples - j)*MAX_EVAL));

}
score = sum / num_samples;
if(score > bestScore)bestScore = score;

// update cutoff threshold
if(score > cutoff_threshold) cutoff_threshold = score;

}

return bestScore;
}

Figure 3.12: Monte-Carlo search w/ pruning

38

• Initial cue ball positions,3

• Velocities, and

• φ aiming angles

are sampled, with 200 samples taken for each set of parameters. The percentage of these

that manage to sink an object ball is recorded. After sampling all positions, the set of

parameters the led to the highest chances of sinking a ball are selected. At runtime, when

it is PickPocket’s turn to break, this break shot is executed.

3.4.2 Ball-in-Hand

A billiards player gets ball-in-hand when their opponent commits a foul, or fails to execute

a legal shot. In 8-ball, a foul occurs if the cue ball is pocketed, or a player fails to hit a

legal ball and rail on their shot. When a player has ball-in-hand, they are free to place the

cue ball anywhere on the table. Ball-in-hand is a very strong situation, as the player can

take advantage of it to set up an easy shot. Strong players often use ball-in-hand to sink

‘trouble’ balls that would be difficult to pocket from many positions on the table.

PickPocket must choose a position for the cue ball, as well as select a shot from that

position, when it is awarded ball-in-hand. Although the cue ball could be placed anywhere

on the table, it is impossible to do a full search from every position. Like with shot gen-

eration, a set of the most relevant positions for the cue ball must be generated. From each

of these, search can proceed as normal by creating a table state with the cue ball in the

selected position. The cue ball is ultimately placed at the position that led to the best search

result, and the shot selected by that search is executed.

To generate a set of candidate positions, the table is discretized into a grid of cells. Each

cell is assigned a value by generating shots as though the cue ball were at the center of that

cell. Probability estimates for these shots are retrieved from the probability table. For each

cell, the probability estimate of the best shot is set as the value of that cell.

This creates a map of the table, with the value of each cell corresponding to the ease of

the best available shot from that cell. From this map, a set of candidate positions for the

3The cue ball may be placed anywhere behind the headstring on a break attempt.

39

cue ball need to be retrieved. These positions should be high valued cells, from a range of

different regions on the table to capture the breadth of available options. This is preferred

over considering multiple neighbouring cells, as the options available from neighbouring

cells are likely to be very similar, and could be captured by evaluating just one of them. To

find the highest valued non-adjacent cells, local maxima are examined.

A randomized sampling search is used to approximate the k-best local maxima. A set

of c cells on the table are randomly selected, and hill-climbing is performed from each of

these to find c local maxima. Duplicates are eliminated. The remaining values are then

sorted, and the best k cell locations are returned. These are the candidate positions which

are searched to find the final ball-in-hand shot.

Figure 3.13 gives psuedocode for the entire ball-in-hand shot selection process.

Under certain conditions, a player must take their ball-in-hand shot from behind the

headstring. In 8-ball this occurs after the opposing player fouls on a break shot. In this

case, only grid squares behind the headstring are populated with values. Additionally, in

this case the player must shoot forward, aiming at a ball on the far side of the headstring. A

flag is set so that only shots aimed at balls on the far side of the headstring are considered

during search.

40

Shot Compute_Ball_In_Hand_Shot(TableState state){

// populate grid
foreach(grid cell [x,y]){

state.Cue_Position = cells(x,y).centre;
ShotSet shots[] = Generate_Shots(state);
ShotSet.sort();
grid[x,y] = shots[0].probability_estimate;

}

// find best shot
candidate_positions[] = Get_KBest_Local_Maxima(grid, k);
Shot best_shot;
best_shot.score = -1;
foreach(candidate_positions[i]){

shot = search(candidate_positions[i]);
if(shot.score > best_shot.score){

best_shot = shot;
}

}

return best_shot;
}

Figure 3.13: Ball-in-hand algorithm

41

Chapter 4

Experimental Results

Pickpocket has a wide range of adjustable parameters and features. This chapter presents

experimental results demonstrating the impact of these features on the program’s perfor-

mance. Experiments were performed with probability table size, evaluation function pa-

rameters, safety shots, root sampling, bank/kick/combination shots, Probabilistic search

parameters, Monte-Carlo search parameters, pruning enhancements, and a comparison of

the search algorithms. A description of the experimental setup and the results of these tests

follow. This chapter also contains the details of the 10th and 11th Computer Olympiad

simulated 8-ball tournaments won by PickPocket.

4.1 Error Model

Although the results of shots on a physical table are stochastic, simulator results are de-

terministic. To capture the range of shot results on a physical table, a random element

is introduced into the simulation. In poolfiz, error is modeled by perturbing each of the

five input shot parameters by zero-mean Gaussian noise. A set of standard deviations

{σφ, σθ, σV , σa, σb} corresponding to the noisiness of the five parameters is specified. These

σ values can be chosen with the properties of the player being simulated in mind. For a

robot, σ values can be approximated experimentally.

The use of Gaussian noise is a simplification. It may well be that on a robot, due

to biases of the system, shot errors are not normally distributed. The noise between the

desired shot and the actual executed shot on a robot is a result any imprecisions in the

robot’s vision and control systems. The shot result is also affected by the properties of

42

the physical table being played on, as well as environmental factors like temperature and

humidity. If the actual distribution of shot errors on a robot were to be measured, then this

distribution could be used to perturb shots in poolfiz instead; there is no reason why the

noise model need be Gaussian. Poolfiz with its noise model acts as a black box: the user

submits their requested shot, it is perturbed by the noise model used, and a resulting table

state is returned. The calling program need not know anything about the noise model used

internally, so it can be as simple or complex as necessary. Gaussian noise is convenient for

its simplicity and as an approximation how actual noise on a robot may appear.

4.2 Sample Size and Statistical Significance

Because of the stochastic nature of the domain, all experimental results are subject to un-

certainty. This arises from the two sources of randomness: the random spacing between

the balls as they are racked, and the error added to requested shot parameters by the error

model. The former leads to variations in the positions of object balls on the table after the

break, and the latter leads to variations in the outcome of each requested shot. In the long

run - over a very large or infinite number of games - the effects of this randomness even

out as both sides are helped and hurt by it equally. However, over the course of tens or

hundreds of games, the random element is significant and must be taken into account.

Any pair of billiards programs will have a constant, ‘true’ underlying win rate between

them. This is the proportion of games that each will win over an infinite sample size. The

exact value of this win rate depends on the programs’ parameters, as well as the σ values

that make up the error model. The win rate can also be viewed as the equity that each

program has in a match before it begins. If a program is played against itself, each instance

of that program will win 50% of the total games in the long run.

The purpose of running matches as experiments is to determine this underlying win

rate between program variants, which is a measure of their relative strengths. Since only a

finite number of games are played, each match result is an approximation of the underlying

win rate. The impact of randomness keeps it from being exact. Ideally we would like to

know which side is superior and by how much when comparing programs; we would like

to know the exact value for the underlying win rate. However, the sample size required to

43

Figure 4.1: Error vs. Sample Size for 50-50 Win Rate

approximate this to a high degree of accuracy would be very large. The experiments in this

section will give an indication whether one side is superior to another, or whether they are

roughly equal, but the exact underlying win rates will remain unknown.

Statistics provides a formula for relating sample size (number of games in a match),

confidence level, and uncertainty:

n =
z2pq

E2
(4.1)

where n is the sample size, z is the z-value for the confidence interval (typically retrieved

from a table of z-values), p is the underlying win rate for one program, and q is (1−p), or the

underlying win rate of the other program. Since these underlying win rates are unknown,

in practice the sampled win rates can be filled in - for large enough sample sizes this is

sufficiently accurate. E is the magnitude of the error. Therefore, the associated confidence

interval is p± E.

Figure 4.1 shows the relationship between sample size and error for an underlying 50-

50 win rate. This clearly shows diminishing returns as the sample size is increased - addi-

44

Sampled Result Confidence Level
99% 95% 85% 75%

50-50 (37.1-62.9 , 62.9-37.1) (40.2-59.8 , 59.8-40.2) (42.8-57.2 , 57.2-42.8) (44.3-55.7 , 55.7-44.3)
55-45 (42.2-57.8 , 67.8-32.2) (45.3-54.7 , 64.7-35.3) (47.8-52.2 , 62.2-37.8) (49.3-50.7 , 60.7-39.3)
60-40 (47.4-52.6 , 72.6-27.4) (50.4-49.6 , 69.6-30.4) (52.9-47.1 , 67.1-33.9) (54.4-45.6 , 65.6-34.4)
65-35 (52.7-47.3 , 77.3-22.7) (55.7-44.3 , 74.3-25.7) (58.1-41.9 , 71.9-28.1) (59.5-40.5 , 70.5-29.5)

Table 4.1: Confidence Intervals for 100-Game Match Result

tional games lead to progressively smaller reductions in the magnitude of error. 100-game

samples were chosen for the experiments in this section to provide a balance between ac-

curacy and execution time. To substantially increase the accuracy of the experiments, a

significantly larger sample size would be required.

Table 4.1 shows the confidence intervals for a range of match results and confidence

levels, for a 100-game sample size. These show that a 50-50 result or a 55-45 result is

inconclusive for determining which side is superior. Underlying win rates favouring both

sides fall within their respective confidence intervals. Therefore it is impossible to strongly

conclude whether one program will prove superior, or whether they will prove roughly

equal, in the long run. A 55-45 result does suggest that the side scoring 55 is stronger, as the

75% confidence interval almost entirely contains scores favouring this side. However, 75%

confidence is weak and inconclusive - a larger sample size would be required to provide

strong evidence of the long-run result.

A 60-40 result is more conclusive, as the entire confidence intervals up to the 95%

confidence level contain scores favouring the 60 side. Therefore, as a general rule of thumb

any 100-game experiment where one side wins 60 games or more is strong evidence (over

95% confidence) of that side’s superiority. Matches with results closer to 50-50 are not

conclusive one way or another to a strong degree of confidence. However, the higher above

50 a score gets, the more likely it becomes that it is the long-run winning program.

4.3 Experiments

PickPocket plays 8-ball, the game selected for the first computational billiards tournament.

The rules were described in Section 2.4. To summarize, each player is assigned a set of

seven object balls: either solids or stripes. To win, the player must pocket their entire set,

followed by the 8-ball. If a player’s shot pockets the 8-ball prematurely, they suffer an

45

automatic loss. Players must call their shots by specifying which object ball they intend to

sink in which pocket. A player continues shooting until they fail to legally pocket a called

object ball, or until they declare a safety shot.

A series of matches were played to evaluate the impact of PickPocket’s many param-

eters on its performance. Typically each match holds all but one parameter constant, to

isolate the effect of that one parameter. Bank, kick, and combination shot generation is dis-

abled, to simplify the experiments and compare purely the effects of search. Therefore, in

these matches every shot is either a straight-in attempt, a safety attempt, or a break shot to

begin a new game. Players alternate taking the break to eliminate any potential advantage

or disadvantage of going first. For each match, the following results are given:

• W (Wins), the number of games the program won.

• SIS (Straight-in-success), the ratio of successful to attempted straight-in shots. A

successful straight-in shot sinks the called object ball; the player continues shooting.

• SS (Safety success), the ratio of successful to attempted safety shots. A successful

safety is one where the opponent fails to pocket an object ball on their next shot, thus

the player gets to shoot again.

Unless otherwise stated, PickPocket is configured as the following for the matches: A

30 × 30 × 30 × 30 granularity table is used. Monte-Carlo search is used to 2-ply, with

num samples = 15. Safety thresholds are set at t0 = 0% and t1 = 1.48, so safeties are

played if and only if no other shots can be generated. Enhancements such as Root Sampling

and extra Bank/Kick/Combo activation are disabled.

Parameters were chosen such that a decision was made for each shot within approxi-

mately 60 seconds. This is a typical speed for time-limited tournament games. A 10-minute

per side per game hard time limit was imposed, to ensure that program variants made their

decision within a reasonable amount of time. 2-ply Monte-Carlo search was the only vari-

ant that approached this limit.

Experiments were run primarily under the ETaiwan error model, with parameters: {0.185,

0.03, 0.085, 0.8, 0.8}. This was the error model used at the 10th Computer Olympiad in

Taiwan. It models a strong amateur, who can consistently pocket short, easy shots, but

46

sometimes misses longer shots. Tests showed than under ETaiwan, 69.07% of straight-in

shots in random table states were successful, over a 10,000 shot sample size. These num-

bers are lower than the sinking percentages seen in experiments with PickPocket, as they

are from random table states. In a gameplay situation, PickPocket does not see random ta-

ble states. Rather, it sees states that are the result of shots chosen partly for their positional

value.

Two additional error models were used in the search depth and search algorithm com-

parison experiments. Elow, with parameters {0.0185, 0.003, 0.0085, 0.08, 0.08}, corre-

sponds to a top human player who can consistently make even challenging shots success-

fully. Ehigh, with parameters {0.74, 0.12, 0.34, 3.2, 3.2}, corresponds to a human novice

who can usually make short, easy shots, sometimes make medium difficulty shots, and

rarely make challenging shots. Thus, these experiments were repeated under conditions of

low, medium, and high error.

4.3.1 Probability Table

Experiments were constructed to demonstrate the effectiveness of the probability table used

to estimate shot difficulties. This accuracy is related to the granularity of the discretization

used, which determines the number of entries in the table and the average distance between

sets of shot parameters and the nearest probability table entry.

To find out how the accuracy of the probability table varies with table size, a tester

program was created. This generates random positions with the cue ball and a single object

ball on the table. For each position, every physically possible straight-in shot is examined.

Each of these shots is sampled under the error model to estimate its probability of success

directly. This is then compared to the probability estimate provided by a table lookup for

that same shot. The magnitude of the difference between these values is the error for that

particular shot. These errors are averaged over all shots to give an indication of the accuracy

of the probability table as a whole.

For these experiments, 5,000 positions were examined and 500 samples per shot were

taken. Table 4.2 shows the average error reported by this tester program for a variety of

table sizes. The Total Shots and Error columns give the shots and average error for each

entire table as a whole. The 80%+ columns give the number of shots and error for just

47

Table Size Total Shots Error 80%+ 80%+ Err 90%+ 90%+ Err
5× 5× 5× 5 9142 0.247 529 0.180 77 0.160
10× 10× 10× 10 9168 0.177 1164 0.149 703 0.140
15× 15× 15× 15 9221 0.152 1440 0.136 852 0.117
20× 20× 20× 20 9268 0.147 1427 0.135 935 0.118
25× 25× 25× 25 9199 0.146 1476 0.125 889 0.108
30× 30× 30× 30 9208 0.142 1437 0.120 900 0.104

Table 4.2: Probability table accuracy

those shots whose probability of success is reported by the probability table as being 0.80

or more. The 90%+ columns give the details for those shots whose probability of success

according to the probability table is 0.90 or more.

Not surprisingly, these results clearly show that higher granularity tables generate more

accurate probability estimates. Additionally, they demonstrate the diminishing returns in-

herent when increasing that table size. The jump in overall accuracy from 5× 5× 5× 5 to

10×10×10×10 is greater than the jump from 10×10×10×10 to 30×30×30×30. Most

of the gains come in at the first few steps, even though each jump adds a larger absolute

quantity of entries to the table than the jump before it.

Note that the most accurate probability estimates are for the shots that have the highest

probability of success according to the table. These happen to be the shots for which

accuracy is the most important - the evaluation function used by PickPocket is based on

the probability estimate of the best shots, and move ordering during search places the best

shots first; weaker shots will often be eliminated by cutoffs.

These entries are the most accurate for two reasons: Firstly, sampling theory indicates

that, for a fixed number of samples, the results that are closer to 100%-0% have a lower

uncertainty than those close to 50%-50%. Secondly, shots that have a high probability

estimate do so because they are robust - changes in the shot input parameters had a minimal

effect on the sinking of the shot while the table was being generated. On the other hand,

shots with a low probability estimate are not robust. During the table generation, some

perturbations of the shot parameters would lead to the shot being a success, and some to

it being a failure. Upon table lookup, the actual shot whose probability is being estimated

will have different parameters from the shot that was sampled to generate the entry, due to

48

Match W SIS SS
5× 5× 5× 5 38 474/635=74.6% 18/56
30× 30× 30× 30 62 546/696=78.4% 21/62

Table 4.3: Probability table match result

the finite granularity of the table. This tends to lead to more variation between the sampled

and actual probability in non-robust shots with lower probability estimates, than with the

robust, high estimate shots.

Finally, a match was run between two programs that were identical in every parameter

except for probability table size. A program using a 30 × 30 × 30 × 30 table competed

against one using a 5 × 5 × 5 × 5 table. The match results are shown in Table 4.3. The

program using the higher granularity probability table sunk 3.8% more of its attempted

shots than the program using the lower granularity table. That this led to a 62-38 match

win is a convincing, statistically significant evidence that a higher granularity table leads to

better performance in match play. It also points out the reality that small improvement in

accuracy can lead to a large gain in overall performance.

4.3.2 Evaluation Function

To assess the impact of the evaluation function on performance, games were played be-

tween programs using the following evaluation functions:

• Material Difference (MD). The evaluation is the difference between the number of

the player’s balls on the table and the number of opponent’s balls.

• (1,1,1). PickPocket’s evaluation with d0 = 1, d1 = 1, and d2 = 1. Thus the evalua-

tion is the sum of the probability table lookup for the best three shots generated.

• (1,0,0). PickPocket’s evaluation with d0 = 1, d1 = 0, and d2 = 0. Thus the evalua-

tion is the probability table lookup for the single best shot generated.

• (1,0.33,0.15). PickPocket’s evaluation with d0 = 1, d1 = 0.33, and d2 = 0.15.

Note that MD is not a very interesting evaluation for most billiards search trees, as the

search is to a fixed depth, and each successful shot typically sinks exactly one object ball.

49

Match W SIS SS
(1,0,0) 54 574/745=77.0% 23/66
MD 46 503/671=75.0% 25/77
(1,0,0) 53 555/692=80.0% 15/53
(1,1,1) 47 467/615=75.9% 8/46
(1,0,0) 46 543/691=78.6% 22/71
(1,0.33,0.15) 54 522/669=78.0% 18/70

Table 4.4: 2-ply comparison of evaluation functions

Thus the leaf evaluation will differ from the root evaluation by exactly the search depth the

vast majority of the time - most leaves will have the same evaluation. The only times the

evaluation will differ is when a shot incidentally sinks one or more extra object balls in

addition to the called object ball.

The results of these matches, shown in Table 4.4, are all very close to the 50-50 mark, so

it is impossible to tell which evaluations are stronger with a high degree of confidence. In

fact, this is evidence that the exact composition of the evaluation function is not a dominant

parameter for this type of search. MD did lose its match to (1,0,0), and have the weak-

est shooting percentage, however not by margins large enough to result in high statistical

confidence that it is in an inferior evaluation.

To differentiate the evaluations, the matches were re-run with the search depth set equal

to one. This places a greater emphasis on the values returned by the evaluation function, as

they more directly determine which shot is selected. The evaluation values are only modu-

lated by one ply of search, not two. Here, the variants using weighted probability estimates

are still too close to call, however the match between (1,0,0) and MD was decisive. Its

65-35 win indicates that (1,0,0) has the higher winrate of the two programs, with a high

degree of confidence. The results of this 1-ply match are shown in Table 4.5.

The likely reason that MD, an evaluation that adds very little information to the search,

performed well to a 2-ply depth is that the 2-ply search implicitly generates position play.

Any branch at the root that has a high value has two good successive shots available, as

well as a high evaluation value. If it did not, the evaluation value would not be propagated

up the tree intact - the root would show a lower value for that branch due to the weakness

of the available shots. On the other hand, a 1-ply search relies on the evaluation function

50

Match W SIS SS
(1,0,0) 65 612/766=79.9% 37/101
MD 35 457/624=73.2% 32/107
(1,0,0) 51 546/677=80.6% 34/85
(1,1,1) 49 541/701=77.2% 18/57
(1,0,0) 45 561/705=79.6% 31/77
(1,0.33,0.15) 55 524/678=77.2% 19/68

Table 4.5: 1-ply comparison of evaluation functions

Match W SIS SS
Last Resort 61 555/714=77.7% 49/103=47.6%
Taiwan 39 434/536=81.0% 104/170=61.2%
Last Resort 48 521/654=79.7% 35/85=41.1%
Italy 52 515/646=79.7% 50/86=58.1%

Table 4.6: Safety match result

to provide information to lead to position play. MD does not do this, so leads to positions

that are weaker on average than those found by searching with an evaluation related to the

number and quality of shots available.

The results also suggest that of the four functions tested, (1, 0.33, 0.15) is the best.

Therefore, it was used in all subsequent experiments.

4.3.3 Safety Shots

To evaluate the impact of PickPocket’s safety shot activation thresholds on performance,

matches were played between the following variants:

• Last Resort. Baseline with safety thresholds set to t0 = 0.0 and t1 = 1.48. Safety

shots are played if and only if no other shots are available.

• Taiwan. The safety strategy used at the 10th Computer Olympiad. t0 = 0.65 and

t1 = 0.50. This plays safeties aggressively, choosing a moderate scoring safety over

a moderate straight-in shot.

• Italy. The safety strategy used at the 11th Computer Olympiad. t0 = 0.50 and

t1 = 0.18. While it considers safety shots only slightly less frequently than the

51

Match W SIS SS
Root sampling 59 567/666=85.1% 17/41
No root sampling 41 426/544=78.3% 10/38

Table 4.7: Root sampling match result

Taiwan strategy, it is much more conservative about executing safety shots. The

average evaluation for the opponent of the safety state must by 0.18 or less for a

safety to be activated over a weak straight-in shot. For this to be true, the opponent

must consistently have no good shot available when the safety is searched.

The results of this match are shown in Table 4.6. The Taiwan strategy played the most

safeties, as expected, and lost its match in a statistically significant manner, scoring 39-61.

The results of the Italy strategy match are too close to call. It is not clear which is the long-

run better strategy between it and the baseline, but the result suggests that they are roughly

equal in performance. These results show that playing too many safety shots in 8-ball is

a poor strategy, hence PickPocket’s safety thresholds were refined for the 11th Computer

Olympiad.

Safety shots were 41% to 61% effective overall (SS Column). The Last Resort strategy

consistently had the poorest safety success record, as it would only choose safeties when

there were no straight-in shots available. In these cases it would execute a safety whether

or not a good one was found. The other strategies would only execute safeties when other

shots were available when a moderate-to-good safety was found. Therefore, they would be

expected to show the better overall success that they did.

4.3.4 Root Sampling

A match was played between a version of the program with the root sampling feature

enabled, and one with the root sampling feature disabled. The results of this match are

shown in Table 4.7.

Root sampling operates similar to iterative deepening in traditional search, in that it

broadly searches 1-ply before doing a deeper search of the best shots. This improved

the shooting percentage to 85.1%, whereas Monte-Carlo search without this enhancement

has shooting percentages in the 77%-81% range. The improved shooting percentage is

52

evidence of enhanced position play, as considering more shots at the root of the search tree

gives the program more options to find a shot that leads to good position. The 59-41 match

result is further strong evidence of the benefit of this enhancement, as it suggests it is the

better program to just under 95% confidence.

This shows the importance of search breadth in billiards. Root sampling was set to

consider 50 variants of each ball and pocket combination at the root, each variant with

slightly different a, b, and V parameters. Regular shot generation finds 3-8 variants per

straight-in shot.

4.3.5 Probabilistic Search

Matches were played between variants of the Probabilistic Search algorithm searching to

various depths to evaluate the relationship between search depth and performance. The

matches were repeated under three different error models: Elow, ETaiwan, and Ehigh, cor-

responding respectively to low, medium and high amounts of noise added to the attempted

shots. The results of the matches are shown in Table 4.8.

Under Elow, the various search depths all have roughly equal performance. There is

no apparent gain from searching deeper, but neither is there a significant penalty. Under

ETaiwan and Ehigh, on the other hand, 1-ply search clearly outperforms any deeper search,

winning every match under these error models. This suggests that, as error increases, any

benefit to deep lookahead is cancelled out by the compounding effect of error over several

ply of search. Probabilistic search, with its deterministic node expansion, is expected to be

the algorithm most susceptible to this type of error.

Leckie’s experiments in [24] show a similar result. He found that, for his Expectimax-

based billiards search algorithm, deeper search did improve performance when the amount

of error introduced was small. When he repeated the experiments with larger error, deeper

search fared worse.

4.3.6 Monte-Carlo Search

Monte-Carlo search is controlled by two parameters: search depth and num samples, the

number of samples to expand for each shot. Table 4.9 shows the effect of sample size in a

1-ply search. Table 4.10 shows the effect of sample size in a 2-ply search. Note that this

53

Match W SIS SS
Elow

Depth 1 48 446/502=88.8% 56/101
Depth 2 52 464/519=89.4% 58/99
Depth 1 54 502/557=90.1% 38/86
Depth 3 46 446/523=85.3% 35/69
Depth 1 53 450/507=88.7& 40/78
Depth 4 47 481/532=90.4% 38/86

ETaiwan

Depth 1 66 541/698=77.5% 90/164
Depth 2 34 459/661=69.4% 76/137
Depth 1 63 545/687=79.3% 83/160
Depth 3 37 518/689=75.2% 68/142
Depth 1 61 534/708=75.4% 83/141
Depth 4 39 511/697=73.3% 72/139

Ehigh

Depth 1 59 475/1009=47.1% 143/219
Depth 2 41 463/1034=44.8% 122/189
Depth 1 52 487/1056=46.1% 156/226
Depth 3 48 478/1098=43.5% 110/186
Depth 1 59 522/1082=48.2% 148/225
Depth 4 41 490/1129=43.4% 96/163

Table 4.8: Effect of search depth in probabilistic Search

54

Match W SIS SS
Samples = 5 47 492/615=80.0% 25/73
Samples = 15 53 504/637=79.1% 21/59
Samples = 5 46 532/688=77.3% 27/73
Samples = 30 54 547/707=77.3% 29/73

Table 4.9: Effect of sample size in 1-ply Monte-Carlo search

Match W SIS SS
Samples = 5 46 500/643=77.8% 23/75
Samples = 15 54 528/667=79.1% 34/66

Table 4.10: Effect of sample size in 2-ply Monte-Carlo search

experiment was not run for num samples = 30 because that variant did not run within

tournament time constraints. Table 4.11 shows the effect of search depth on performance,

with num samples fixed at 15. Again, 2-ply was the deepest variant that would run within

time constraints. As with Probabilistic search, the error model was varied for the search

depth experiments.

All of the match results varying sample size are too close to call. This suggests that

the exact parameters used in Monte-Carlo search have a relatively minor impact on per-

formance. Interestingly, all three of the variants using a larger sample size edged out the

variants using a smaller sample size. This might suggest that larger sample size confers a

slight benefit. This would be expected, as the larger the sample size, the better the underly-

Match W SIS SS
Elow

Depth 1 36 381/439=86.8% 3/35
Depth 2 64 533/593=89.9% 4/18

ETaiwan

Depth 1 55 504/616=81.8% 25/57
Depth 2 45 492/621=79.2% 15/41

Ehigh

Depth 1 43 471/985=47.8% 50/97
Depth 2 57 501/1008=49.7% 51/103

Table 4.11: Effect of search depth in Monte-Carlo search

55

ing distribution of shot outcomes is approximated. Certainly a smaller sample size would

not be expected to perform better than a larger sample size. However, because the results

are all so close, it could just as easily be a result of noise that the larger sample size won

every time; too much should not be read into the result.

The experiment with search depth also had an inconclusive result under the Ehigh and

ETaiwan error models. It is not clear whether 2-ply Monte-Carlo search performs better,

worse, or approximately equal to 1-ply search under these conditions. The results suggest

that they are quite close in performance. Compared to Probabilistic search, Monte-Carlo

fares better at deeper depths. This is expected as it better handles the error intruduced

at every shot. Under the Elow error model, 2-ply is stronger than 1-ply with statistical

confidence. This echoes the result seen in the search depth experiments with Probabilistic

search, where deeper search exhibited better performance when there was less noise relative

to when there was more noise.

2-ply did generally perform fewer safety shots than 1-ply search. Since safeties are only

executed when no straight-in shots are available, this means it left itself with no straight-in

shots fewer times than 1-ply did. This is an expected benefit of deeper search. However,

because the safety shots constitute a small percentage of the overal shots in the match, this

factor likely had a minimal effect on the final result.

4.3.7 8.5-ball

The experiments with search depth in 8-ball only showed a benefit to further lookahead

beyond 1-ply under the Elow error model, and there the benefit was only substantial for

the Monte-Carlo search algorithm (there is always a large benefit to searching 1-ply vs. a

greedy, non-searching algorithm - see Section 4.3.10). With larger error, in Probabilistic

search deeper search actually performed worse than 1-ply search. In Monte-Carlo search,

the match results were too close to declare any advantage for 2-ply search over 1-ply, or

vice versa. This result is surprising as traditionally search depth is strongly correlated

with performance in game-playing programs. Interestingly, deeper search was shown to

be beneficial under the ETaiwan error model when using the material difference evaluation,

in Section 4.3.2. It implicitly added information that compensated for a weak evaluation

function.

56

There are 3 possible reasons why deeper search might not be so beneficial. Firstly,

the evaluation function could be good enough that the 1-ply evaluation consistently gives

the best shots the highest value. Such strong evaluations exist for backgammon, a game

where relatively little additional strength comes from deeper search [15]. This is unlikely

to explain the results seen in 8-ball, as deeper search was clearly beneficial under the Elow

error model using the Monte-Carlo search algorithm.

Secondly, noise makes the states seen, and therefore the evaluations returned, less ac-

curate as depth increases. Because of the noise model, the root of the search tree is the only

state that will actually occur in-game. The other nodes that comprise the trees are states

that are likely to be similar to states that will be seen. However, inaccuries can compound

over several ply. This is likely why deeper search is actually a worse performer in Proba-

bilistic search. Deeper Monte-Carlo search does not clearly fare worse likely because the

algorithm is better suited to accounting for this type of error. As noise increased from Elow

to Ehigh, both algorithms saw a decrease in the effectiveness of deeper search.

The third possible reason for the lack of benefit to additional search depth has to do

with the properties of 8-ball. When playing, the player has the option of shooting at any

of their objects balls. At the beginning of the game there are seven balls they can select to

shoot at. As the table clears, they have fewer potential object balls to target, but at the same

time there are fewer object balls obscuring potential shots. The player will very frequently

have shots available. Further, this feature makes position play easier because the player

can set up for position on any of their remaining object balls. The potential shots in 8-ball

are not very constrained. Because of this, it is likely that there will be good shots available

from a wide range of table states. It is hard for a player to run themselves into a corner

and be left with no good shots available. This can be seen from the relative infrequency at

which safety shots are played in PickPocket’s 8-ball matches.

In contrast, some billiards games more strongly constrain the shots available to the

player. In 9-ball, the player must shoot at the lowest numbered ball remaining on the table.

When shooting, they are aiming at one specific ball, and trying to gain position on one other

specific ball (the next-lowest ball remaining on the table), rather than having the option of

any ball in a set. From more table states there will not be shots available that both sink the

target ball and get position on the next ball. It is easier for a player to run themselves into

57

Match W SIS SS
Depth 1 44 420/666=63.0% 266/423
Depth 2 56 428/664=64.5% 283/433
Depth 1 65 477/693=68.8% 281/427
Depth 3 35 399/620=64.4% 257/434
Depth 1 56 438/669=65.5% 300/466
Depth 4 44 447/714=62.6% 254/430

Table 4.12: Effect of search depth in Probabilistic 8.5-ball

Match W SIS SS
Depth 1 40 380/509=74.7% 73/139
Depth 2 60 378/517=73.1% 54/123

Table 4.13: Effect of search depth in Monte-Carlo 8.5-ball

a corner in such games. Therefore, deeper search would be expected to confer a stronger

benefit in these games.

To test whether this is the case, the game of 8.5-ball was created. The rules of 8.5-

ball are identical to those of 8-ball, except that the player may only shoot at the lowest

numbered object ball remaining in their set. This constrains the shots available, and the

positional options available, in a manner similar to 9-ball. The search depth experiments for

the Probabilistic and Monte-Carlo search algorithms were repeated for this game under the

ETaiwan error model. The results of these matches are shown in Table 4.12 and Table 4.13.

Now in 8.5-ball using Probabilistic search, depth 2 search won 56-44 games against

depth 1. While this is still an inconclusive match result, it is very strong evidence of an

improvement over the previous 34-66 loss suffered by depth 2 search in 8-ball under the

same error model. 3-ply and 4-ply search still fare worse than 1-ply. The 4-ply match result

is close enough to be inconclusive, but considering the 3-ply result, it is highly unlikely that

4-ply search is better than 1-ply.

Using Monte-Carlo search in 8.5-ball, 2-ply search clearly and statistically significantly

outperforms 1-ply search, winning 60-40. Like with Probabilistic search, this is a substan-

tial improvement from the 8-ball result of 45-55 under the same error model. Overall, these

results add up to the properties of this game favouring deeper search, much more so than

then game of 8-ball. This is an interesting result, as it shows that the importance of search

58

Match W SIS SS Bank Kick Combo
No Banks 55 512/631=81.1% 15/43 N/A N/A N/A
Banks 45 508/633=80.3% 9/29 5/11 2/9 4/4
8.5-Ball No Banks 47 420/638=65.8% 131/240 N/A N/A N/A
8.5-Ball Banks 53 430/678=63.4% 100/166 1/10 1/25 5/10

Table 4.14: Bank/Kick/Combo match result

depth in billiards games, as well as being a function of the error model, is a function of the

properties of the particular game being played.

Note also the higher proportion and success rate of safety shots in 8.5-ball, under both

algorithms. The greater proportion of safety shots is a result of the player being required

to target one specific ball. More often there will be no shot available on that ball, so the

player will have to perform a safety. The higher success rate also follows. Since it is known

which ball the opponent will have to target, it is easier to find a safety shot that prevents

that player from having a shot on that specific ball.

4.3.8 Bank, Kick, Combination shots

To determine the benefit of bank, kick, and combination shots, a variant with these shot

types enabled and activated at b0 = 0.8 was played against a variant that never attempted

these shots. The results are shown in Table 4.14. The Bank column lists the ratio of suc-

cessful to attempted bank shots. The Kick column lists the ratio of successful to attempted

kick shots. The Combo column lists the ratio of successful to attempted combination shots.

The same experiment was repeated for 8.5-ball, with the results shown in the same table.

In 8-ball, the total number of banks attempts constituted a small percentage of the total

overall shots. 24 out of 686 shots by the banking variant were bank, kick, or combination

attempts. The match result was too close to call. Since such a small proportion of total

shots were bank, kick, or combo attempts, the impact of these shots on the final result

was likely negligible. Combination shots were the least frequent, but most successful.

Bank shots were the most frequent and somewhat successful. Kick shots were almost as

frequent as bank shots, but substantially less successful. This is as expected. Bank shots

are more robust than kick shots, as the angle at which an object ball rebounds off a rail is

less sensitive to initial shot parameters than the angle for a cue ball. Opportunities for good

59

Match W Average Tree Size Average Time (s)
Depth 1, No Pruning 45 8.07 2.75
Depth 1, Pruning 55 5.27 3.14
Depth 2, No Pruning 50 54.48 3.19
Depth 2, Pruning 50 18.08 2.42

Table 4.15: Effect of pruning in Probabilistic search

Match W Average Tree Size Average Time (s)
Depth 1, No Pruning 45 74.79 2.14
Depth 1, Pruning 55 58.66 1.50
Depth 2, No Pruning 48 4239.76 70.49
Depth 2, Pruning 52 2786.01 45.41

Table 4.16: Effect of pruning in Monte-Carlo search

combination shots are rare, as object balls must be lined up to make them feasible, and the

player must only have a clear shot at the kick shot; if any straight-in shots are available,

they will almost certainly be a better option.

The experiment was repeated for 8.5-ball to see the impact of these shots in this game.

It seemed plausible that a banking player might have an advantage in this game, as they

would be able to pocket their one target ball even when no straight-in shots at it were

available. In practice, this was not the case. Many such attempts were made, but they

almost all missed. It turned out that, in general, finding a bank, kick, or combo shot on a

specific ball is very difficult under then ETaiwan error model. The banking variant in 8-ball

had the advantage that it could generate bank shots on all balls and choose the best one.

There was more likely to be a good shot available amongst this larger set.

Note that the banking player executed fewer safeties than the non-banking player in

both cases. Sometimes there would be bank, kick, or combo shots available to attempt in

states where no straight-in shots were available. The non-banking player would always

take a safety shot in this situation, so took more safeties overall.

4.3.9 Search Enhancements

Table 4.15 shows the effect of pruning in Probabilistic search. Matches were played be-

tween programs with pruning enabled and disabled, to 1-ply and 2-ply depth. Variants with

60

and without pruning should be logically identical, so should have a 50-50 underlying win

rate. The wins for each side are listed as a sanity check. The average tree size (in nodes)

and average search time (in seconds) are listed for each variant. All of a program’s regular

searches over the 100-game match are included in these averages. Safety searches are not

included in these averages, as the method is the same for all variants. Table 4.16 shows the

result of the same experiment repeated for the Monte-Carlo search algorithm.

Pruning clearly reduces the overall tree size substantially, in all cases. The match results

were all within expected bounds for a 50-50 win rate, so the sanity check passed. The effect

on search time for all variants except 2-ply search was not substantial, because so few total

nodes were searched in these cases. Search times were measured on the server side, and

include round-trip times for the messages over the internet, so the differences in average

times in these cases are as likely to be the results of variance in packet round-trip times as

they are to be a direct result of pruning. For 2-ply Monte-Carlo search, however, the benefit

in both nodes searched and average search time is clear and significant. The decrease in

average search time is roughly proportional to the decrease in average tree size, as would

be expected. Pruning is an effective optimization.

4.3.10 Search Algorithm Comparison

Experiments were constructed to compare the main search algorithms used by PickPocket.

A tournament was played between the following versions of the program:

• Greedy: This baseline algorithm runs the shot generator for the table state, and exe-

cutes the shot with the highest probability estimate. No search is performed. Greedy

algorithms were used to select shots in [5, 6, 7, 8].

• Prob: The Probabilistic search algorithm.

• MC: The Monte-Carlo search algorithm with num samples = 15.

Matches were played between each pair of algorithms, under the Elow, ETaiwan, and

Ehigh error models described earlier. These model a professional, strong amateur, and

beginning player, respectively. Under each error model, each of the search algorithms

was run to the best performing search depth for that amount of error, as determined in

61

Match W SIS SS
Elow

Greedy 7 202/377=53.6% 43/68
Prob 93 659/726=90.8% 74/128
Greedy 3 122/249=49.0% 23/38
MC 97 662/722=91.7% 29/59
Prob 38 375/432=86.8% 15/40
MC 62 510/566=90.1% 12/28

ETaiwan

Greedy 19 411/745=55.2% 74/119
Prob 81 631/829=76.1% 138/222
Greedy 22 341/604=56.5% 35/81
MC 78 637/806=79.0% 66/135
Prob 44 525/675=77.8% 74/145
MC 56 552/730=75.6% 63/109

Ehigh

Greedy 27 381/1136=32.4% 79/119
Prob 73 579/1145=50.6% 192/273
Greedy 25 368/1039=35.4% 59/89
MC 75 554/1023=54.2% 101/153
Prob 33 432/972=44.4% 98/155
MC 67 495/1040=47.6% 77/131

Table 4.17: Comparison of search algorithms

Sections 4.3.5 and 4.3.6. Thus, under Elow, both algorithms searched to 2-ply depth. Under

ETaiwan, both algorithms searched to 1-ply depth. Under Ehigh, Monte-Carlo searched to

2-ply depth and Probabilistic to 1-ply depth. Table 4.17 shows the tournament results.

Both search algorithms defeated Greedy convincingly under all error conditions. This

demonstrates the value of lookahead in billiards. Greedy selects the easiest shot in a state,

without regard for the resulting table position after the shot. The search algorithms balance

ease of execution of the current shot with potential for future shots. Thus, they are more

likely to have easy follow up shots. This wins games.

Under each error model, the algorithms vary in their percentage of completed straight-

in attempts. This highlights the differences in position play strength between the algo-

rithms. Since the same error model applies to all algorithms, they would all have the same

straight-in completion percentage if they were seeing table states of equal average quality.

62

Lower completion rates correspond to weaker position play, which leaves the algorithm

in states that have a more challenging ‘best’ shot on average. Completion rates generally

increased from Greedy to Probabilistic to Monte-Carlo search, with the difference between

Greedy and Probabilistic being much greater than that between Probabilistic and Monte-

Carlo search.

Under Ehigh, the games tended to be longer, as the lower accuracy led to more missed

shots. Under Elow, matches completed faster with fewer misses. The change in straight-

in completion rate for a given algorithm between error models represents this change in

accuracy. Winning programs take more shots than losing programs, as they pocket balls in

longer consecutive sequences.

In 8-ball, since a player may aim at any of his assigned solids or stripes, there are

usually straight-in shots available. Safeties, attempted when no straight-in shots could be

generated, totalled roughly 10% of all shots in the tournament. Therefore at least one

straight-in shot was found in 90% of positions encountered. This demonstrates the rarity of

opportunities for bank, kick, and combination shots in practice, as they would be generated

only when no straight-in shots are available. Even then, safety shots would often be chosen

as a better option. Safeties were more effective under Ehigh, frequently returning the turn to

the player. They were generally less effective under Elow, as the increased shot accuracy led

to there being fewer states from which the opponent had no good straight-in shots available.

Monte-Carlo search is clearly the strongest of the algorithms. Under all error models,

it defeated Greedy by a wide margin, and then defeated Probabilistic search in turn. The

victories over Probabilistic search under Elow and Ehigh have statistical confidence, while

the ETaiwan result is too close to call. Overall, this suggests that the value of sampling and

taking into account the range of possible shot outcomes is substantial under a wide range of

error models. This is in agreement with the results of the previous experiments on search

depth and search breadth.

4.4 Computer Olympiad 10

PickPocket won the first international computational 8-ball tournament at the 10th Com-

puter Olympiad [25]. Games were run over a poolfiz server, using the ETaiwan error model

63

Rank Program 1 2 3 4 Total Score
1 PickPocket - 64 67 69 200
2 PoolMaster 49 - 72 65 186
3 Elix 53 54 - 71 178
4 SkyNet 53 65 55 - 173

Table 4.18: Computer Olympiad 10 competition results

detailed earlier. PickPocket used the Monte-Carlo search algorithm for this tournament,

searching to 2-ply depth.

The tournament was held in a round-robin format, each pair of programs playing an

eight game match. Ten points were awarded for each game won, with the losing program

receiving points equal to the number of its assigned solids or stripes it successfully pock-

eted. PickPocket scored more points than its opponent in all three of its matches. The

results of the tournament are shown in Table 4.18.

4.5 Computer Olympiad 11

PickPocket also won the 11th Computer Olympiad, held in Italy in May 2006. The same

setup was used, with a slightly different error model: EItaly has parameters {0.125, 0.1,

0.075, 0.5, 0.5}. This corresponds to a somewhat more accurate player. Tests showed than

under EItaly, 75.66% of straight-in shots in random table states were successful, over a

10,000 shot sample size. Under ETaiwan, the same test resulted in 69.07% of shots being

pocketed.

One shortcoming of the 10th Olympiad was that programs only played 8-game matches

against one another. While the results certainly suggested that PickPocket was the top

program, there was no way of knowing whether this was really the case or if PickPocket

won because of fortuitous random events. Counting balls pocketed in a loss helped over-

come the effects of variance somewhat, as a stronger program is likely to pocket more balls

when it loses. However, the overall results cannot be claimed to be statistically significant

(comparing PickPocket with the second place program, t(471) = 1.62 p = 0.11).

To address this, the 11th Olympiad featured a 50-game match between each pair of

competing programs. Because this is a larger sample size, balls pocketed in a loss were not

64

Rank Program 1 2 3 4 5 Total Win %age
1 PickPocket - 38 34 37 39 148 74.0%
2 Elix 12 - 26 31 36 105 52.5%
3 SkyNet 16 24 - 28 37 105 52.5%
4 PoolMaster 13 19 22 - 22 76 38.0%
5 Snooze 11 14 13 28 - 66 33.0%

Table 4.19: Computer Olympiad 11 competition results

counted. The scores represent the number of games out of the 50-game match won by each

player. The results of the tournaments are shown in Table 4.19.

Again PickPocket scored more wins than its opponent in all of its matches, winning 68-

78% of games versus all opponents. Overall it won 74% of the games it played, defeating

the next best performers by a substantial margin. This is a convincing, statistically signifi-

cant result (comparing PickPocket with the second place programs, t(391) = 4.58 p = 0.0).

The version of PickPocket that competed in this tournament was substantially tweaked and

improved from the previous year, and had enabled all of the features described in this doc-

ument.

A variety of approaches were used by the other entrants in the tournament, which were

developed concurrently with PickPocket. The main distinguishing features of each program

are as follows:

Elix

Elix was developed by a strong billiards player who translated his knowledge of the game

into an ad-hoc, rule based approach to shot selection. A set of shots are generated, and then

a sequence of rules is used to select which shot to execute. These rules operate on such

inputs as the shot difficulty parameters, the results of a 1-ply Monte-Carlo type search,

and other features of the table state. Because of complex interactions between rules, Elix

would sometimes make poor shot selections. Contrast this with the uniform approach used

by PickPocket, where every shot (save safeties) is found as a result of the same search pro-

cess. Since PickPocket has few special cases, there is less risk of them being inadvertently

activated.

65

SkyNet

Leckie’s SkyNet [24] was the program most similar to PickPocket, using a primarily search-

based approach. The search algorithm used was based on Expectimax, and was similar to

the Probabilistic Search algorithm detailed for PickPocket. SkyNet searched to a 3-ply

depth. To estimate the probability of success of a shot, a runtime Monte-Carlo sampling al-

gorithm was used. This formed the multiplier for each child node’s returned value. Contrast

this with PickPocket’s more efficient, but less accurate, use of a lookup table to estimate

each shot’s probability of success. SkyNet’s search, like Probabilistic search, performed a

deterministic expansion of nodes. Unlike Monte-Carlo search, it did not account for the

range of possible shot outcomes. SkyNet’s leaf evaluations were based on the number of

shots available at leaf nodes, whereas PickPocket’s evaluation is based on the number and

quality of those shots.

PoolMaster

Leckie describes two paradigms for billiards shot generation in [24]: shot discovery and

shot specification. PickPocket, Elix, and SkyNet all use shot discovery methods. Here,

shots leading to position play are generated by blindly varying an initial shot to create a set

of shots which will all lead to different final cue-ball positions. Search then ‘discovers’ the

shots among these that lead to good position play. In contrast, a shot specification approach

to generation explicitly chooses good final cue ball positions, and then uses sampling and

optimization to find shots that leave the cue ball as near as possible to these positions. Shot

discovery is computationally cheap, as no physics simulation is required. Shot specification

is expensive, as extensive physics simulations are required to find a shot that best leaves the

cue ball in the desired final position.

PoolMaster [26] uses a shot specification approach to move generation; positions on the

table are scored to find good positions for the cue ball to come to rest after the shot. Local

maxima are used as candidates, similar to PickPocket’s ball-in-hand play. The optimization

algorithm used to direct sampling to find shots that leave the cue ball in these positions is

described in [27]. PoolMaster performs 1-ply search on the generated shots. However, it

used a basic search algorithm which did not take into account the probability of success

of the generated shots. PoolMaster therefore often made risky shots in tournament play,

66

which likely would not have been chosen if their difficulty had been taken into account.

Snooze

Snooze was a late entrant to the tournament, and the version that competed was still a

work-in-progress. No details of its operation are available.

67

Chapter 5

Conclusions and Future Work

5.1 Future Directions for Work

5.1.1 Adaptation to Other Billiards Games

The major differences between billiards games fall into two categories: ball ownership and

sinking order. Ball ownership can be individual or communal. Under individual ownership,

each player is assigned a set of balls which are ‘theirs’, to either sink or protect. Under

communal ownership, the object balls are not specifically assigned to individual players.

Sinking can be ordered or unordered. Players are either required to sink the object balls in

a specific order, or are free to shoot at any (or a subset of) the object balls.

8-ball features individual ball ownership, as each player is either solids or stripes. Sink-

ing is unordered, as players may shoot at any object ball in their set.

Several other billiards games can be summarized as follows:

9-ball

9-ball is played with 9 numbered object balls. Ball ownership is communal. The object is

to be the first player to legally pocket the 9-ball. Players must always shoot at the lowest

numbered ball remaining on the table, so sinking is ordered.

Snooker

Snooker is played on a large table with 21 object balls, divided into a set of 15 reds and a set

of 6 colours. Ball ownership is communal. The game is played in two phases. In the first

phase, players alternate between aiming at reds and colours, switching back and forth after

68

every successful shot. In this phase sinking is unordered, as players may aim at any ball

in the designated set. Coloured balls pocketed in this phase are replaced on the table. The

second phase begins once all of the reds have been pocketed. This phase features ordered

sinking, as players must pocket the colours in a specific sequence.

One Pocket

One pocket is played with 15 object balls. Each player is assigned one of the two pockets at

the foot end of the table, and scores points by pocketing the communal balls in this pocket.

The object balls are communal and may be pocketed in any order.

Cutthroat

Cutthroat is a game for 3 or 5 players. 15 numbered object balls are divided into equally

sized sets and assigned to the players. Players try to pocket their opponents’ balls and

protect the balls in their own set. Once a player’s entire set has been pocketed, they are

eliminated from the game. Opponent modelling may be useful in cutthroat, as a common

human strategy is to try to eliminate the stronger players first, leaving the player only facing

weaker opponents towards the end of the game.

The overall search approach used by PickPocket can easily be applied to any of these

games, by modifying the move generator to only generate legal shots according to the rules

of the game, and modifying the shot result evaluator to follow the rules of the new game.

To obtain the best performance, the breakdown of where PickPocket spends its time when

finding a shot may need to be modified. Given a fixed amount of time to search, how should

that time be invested? A broad shallow search could be performed, or a narrower deeper

search. Safeties could be considered more frequently, or less frequently, and the amount of

time spent generating safeties when they are considered could be varied. How to optimally

distribute time amongst these tasks depends on the properties of the game being played.

The experiments with 8.5-ball showed that deeper search has a larger benefit when

object balls must be pocketed in a specific order. When the player may shoot at balls in any

order, as in 8-ball, then sequences of balls can be strung together by looking 1-ply ahead.

This is sufficient to find a shot that is likely to sink the targeted object ball, plus leave

69

position on a follow-up ball. Since there are many potential target balls for the current

shot, and many potential follow-up balls for the next shot, it is likely that a good shot can

be found from a wide range of table states. Deeper search confers marginal additional

benefit. When object balls must be pocketed in a specific sequence, on the other hand,

there is only one possible target for the current shot, and only one ball to leave position on

for the next shot. Now from many table states no good shots may be physically possible

that both pocket the desired object ball and leave position on the follow-up ball. Deeper

search makes it less probable that a program will end up in such a state.

Deeper search, therefore, seems most applicable to games such as 9-ball, and the second

phase of snooker, where object balls must be pocketed in a specific sequence. 1-ply search

may be sufficient for games where players have more options for what to shoot at, and a

program for these games may best invest its time in a broader search, considering more

potential shots.

Games with communal ball ownership emphasize safety play more so than games with

individual ownership. This is because a sequence of successful shots followed by a miss is

very bad for a player. Each successful shot cleared a ball from the table, making the task for

their opponent easier when it switches to their turn. If a miss after several shots is deemed

likely, it may be better to play a safety and leave the opponent with the most challenging

possible table state, rather than a partially cleared table. Professional 9-ball matches often

feature players trading safeties back and forth, until one player breaks out and runs the

table. Strategic safety play is similarly important in snooker - the term ‘snooker’ means to

leave one’s opponent without a clear shot.

Similarly, safeties are most effective when balls must be pocketed in a specific order. It

is much easier to leave a player with no good shots on a specific ball, than to leave them

with no good shots on any ball in a set. This can also be seen from the experiments with 8.5-

ball. Therefore, safeties should be considered more frequently in games that have ordered

pocketing and communal ball ownership, than in games featuring unordered pocketing and

individual ownership.

70

5.1.2 Implementation Enhancements

There are a number of ways in which PickPocket’s performance could potentially be en-

hanced. This section describes several such ideas.

Parameter Optimization

PickPocket has many tunable parameters, including the number of shot variants to generate

per ball/pocket combination, the evaluation function parameters, and the thresholds used

for safety and bank shot activation. These have been hand-tuned to values that are reason-

able, but are not necessarily optimal. To precisely hand-tune these parameters would be

an overwhelming task, as a large sample size of games is required to evaluate the impact

of any changes. A machine learning algorithm could be applied to automate the tuning of

these parameters over the course of thousands of games. While the experimental results

from Sections 4.3.2, 4.3.3, and 4.3.8 suggest that the benefit to precisely tuning such pa-

rameters individually is marginal, a program variant with all of its parameters tuned may

have a substantial edge over the current version.

Evaluation Function Terms

PickPocket’s current evaluation is based on the number and quality of shots available in leaf

node states. There are several other examinable features of a table state which could give

an indication of how strong it is for the player. Two such possibilities are the centredness

and clusteredness of the state.

Centredness refers how centred a player’s balls are compared to their opponent’s. A

ball towards the centre of the table is pocketable from all sides; no matter where the cue

ball is, there are likely several good options for sinking it in a range of pockets. Conversely,

a ball along a rail may only be easily pocketable from one side, into one specific pocket.

The more a player’s balls tend towards the centre of the table, and the more their opponent’s

balls tend towards the rails, the better that state should be for the player.

Clusteredness refers to how clustered a player’s balls are compared to their opponent’s.

Tightly clustered object balls are hard to pocket, as they interfere with each other’s lanes to

the pockets. Unclustered object balls are easier to pocket, as they are more likely to have a

clear path to a wider range of pockets, and more likely to have a clear path for the cue ball

71

to approach along. The more a player’s balls are unclustered, and the more their opponent’s

are clustered, the better that state should be for the player.

Both of these terms could be numerically evaluated and incorporated into a complex

evaluation function. It is not obvious how the terms should be relatively weighted - exten-

sive tuning, perhaps via machine learning, would be required to find reasonable weights.

Progressive Pruning

The Monte-Carlo search algorithm could benefit from progressive pruning, as described in

[19]. This technique finds shots to prune that are statistically unlikely to exceed the current

best score based on the samples already seen. Consider a case where the values 0.35, 0.41,

0.22, and 0.27 are seen in the first 4 of 6 samples, and average values of 0.85 or higher are

needed on the remaining 2 samples in order to exceed the current best score. Based on the

samples seen so far, it seems unlikely that the next samples would have values high enough

to give this shot the best score. This is a case where progressive pruning may find a cutoff.

Note that the pruning method shown in Section 3.3.3 would not find a cutoff because it is

still mathematically possible for the coming samples to have values that would give this

shot the best score. Unlike this method, progressive pruning may in extreme cases alter the

search result by pruning what would be found as the best branch by a complete search.

Progressive pruning is less applicable to billiards than games such as Go, however, be-

cause of the relatively small number of samples taken per shot. With num samples = 15,

the scores found are not going to be highly accurate, as even one outlier can have a signif-

icant impact on the average score. The running average after 5 or 10 samples will be even

less accurate. These could still be used to eliminate branches that are statistically unlikely

to improve. However, due to the lack of resolution of the success probability averages, ei-

ther a conservative threshold could be set and only cases highly unlikely to improve would

be pruned (but potentially missing opportunities for pruning), or an aggressive threshold

could be set that finds many cutoffs (but with a high risk of pruning too many shots and

altering the search result). The larger the sample size, the better a balance between these

extremes can be struck.

72

Adversarial Search

Billiards differs from many traditional games in that the sequence of play is not strictly

ordered. Players continue shooting until they fail to pocket a ball, rather than trading the

turn back and forth every shot. PickPocket’s search algorithms only consider the shots

available to itself; it does not continue searching after a miss and the turn passes to the

other player. Therefore the quality for the opponent of the resulting positions after probable

misses is not taken into account in the best shot found by the search. For Probabilisitic

search, this would be difficult to incorporate, as generating ‘average’ probable misses is

not straightforward. However, it would be easy to add adversarial search to the Monte-

Carlo search algorithm. Instead of stopping after a miss, the resulting table state could be

searched from the opponent’s perspective, and the negative of the node score propagated

up the tree. This may improve performance, leaving the opponent in worse on average

positions after a miss. On the other hand, the time spent searching opponent’s positions

may be better invested searching more shot options for the player. Experimentation would

be required to determine whether there is any benefit to performing adversarial search in

billiards.

Ball-in-hand Play

PickPocket’s approach to ball-in-hand situations efficiently generates a range of positions

from which it is known that there is at least one good shot. However, it does not take into

account position play - it is left up to the search algorithm to select the position and shot

that leads to the best prospects further ahead in the game. Human players know to take

advantage of ball-in-hand to pocket problem balls that may otherwise be difficult to gain

good position on. Balls near to the rails, and in the vicinity of other object balls, are most

likely to fall into this category. Therefore, an improved ball-in-hand algorithm might bias

the candidate positions generated towards those with good shots on such balls, and away

from those object balls that are unclustered and towards the centre of the table. This would

likely lead to an improvement in the average position seen later in the game.

73

Parallelization

PickPocket’s search algorithms are easily parallelizable. Each shot simulation is an in-

dependent unit of execution, and since these simulations are where PickPocket spends a

majority of its time, substantial speedup could be gained by distributing this work between

a number of processors. For Monte-Carlo search especially, the samples taken for each

shot at a node could be split up amongst processors, allowing a greater number of total

samples to be taken. Care must be taken when designing a parallel algorithm to ensure

that cutoffs are found efficiently - this is one of the biggest challenges when parallelizing

search algorithms. Communication is required to ensure that each processor has the most

current cutoff threshold. If cutoffs are ignored, then every branch of a search tree could

be searched independently with no communication requirements. Parallelization may also

allow Monte-Carlo search to reach deeper search depths in a reasonable amount of time.

This may be of greater benefit to games such as 9-ball than 8-ball.

Learning an Error Model

Given a table with an unknown error model, take N shots and build an error model. This

feature would be useful for automatically calibrating a robot to a physical table. The error

model could be further refined on the fly based on the shot results seen during gameplay.

5.1.3 Man-Machine Challenge

A major goal of any game-playing project is to be able to defeat top human players. This

has been done in chess and checkers, and the Robocup project aims to defeat a top human

team at soccer by the year 2050. Defeating top humans is a strong demonstration of effec-

tiveness, and a goal that motivates the development of new techniques. Ultimately billiards

robots will be strong enough to accomplish this, and may even become common as prac-

tice opponents, just as chess players now play against computer programs for practice and

entertainment.

For a billiards robot to challenge a top human, three components must be in place:

1. The robot must have shot error margins roughly as low as the top humans. The exact

accuracy required to win depends on how the AI’s shot selection compares to the

74

top human’s shot selection. If the AI’s shot selection is weaker than the human’s, the

robot must be more accurate than the human competitor. If it has better shot selection

than the human, then the robot may not need to be quite as accurate as the human to

win the match.

2. Physics simulation must be accurately calibrated to the physical table. The AI’s shot

selection is based on the results of physics simulation. If the simulation accurately

predicts what will happen on a physical table as a result of a shot, then the shots

found by the AI will be effective.

3. The shot selection of the AI driving the robot must be roughly as good as the top

human. Again, the exact requirements depend on the physical accuracy of the robot

being driven.

Early forms of all three components are now in place. Soon full games will be held

between the robot Deep Green [1] and human challengers. The physical accuracy of the

robot, and calibration of the physics simulation, are still a long way from being sufficient to

challenge the best humans. The current systems should provide an entertaining challenge

for humans, and should have a chance of defeating casual players.

It is unclear how the current version of PickPocket would fare against a top human

player, as there is no way to directly compare just shot selection. Without a robot that

is similar in accuracy to strong humans, it would be difficult to tell (except for obvious

mistakes) whether losses by the robot were due to weak shot selection, or a lack of sufficient

physical accuracy. Having an expert human comment on PickPocket’s shot selection may

provide insight on the strength of its strategic play. However in some games, such as

backgammon, non-conventional moves found by computers actually turned out to be better

than the established wisdom, and resulted in changes over time to the strategies employed

by humans.

The properties of the game chosen for a man-machine challenge may have an impact on

the robot’s chance of success. In 8-ball, 1-ply search is sufficient to consistently find good

shots; depending on the error model, there may be little advantage to additional lookahead.

A robotic player may therefore have a better chance of defeating a top human at 8-ball than

75

9-ball, where lookahead is more important, and the best human players can plan a path to

clear the entire table.

5.2 Conclusions

This thesis described PickPocket, an adaption of game search techniques to the continuous,

stochastic domain of billiards. Its approach to move generation, evaluation function, and

the Probabilistic and Monte-Carlo search algorithms were described. Pruning optimiza-

tions for both search algorithms were detailed. The technique of estimating shot difficulties

via a lookup table was introduced. A range of other techniques that PickPocket uses for

efficiency and effectiveness were described.

Experimental results proved the benefit of lookahead search over the previously stan-

dard greedy technique. They demonstrated that Monte-Carlo search is the strongest of the

two presented search algorithms under a wide range of error conditions. They suggest

that search breadth is more important than search depth in the game of 8-ball. Addition-

ally, they suggest that the exact parameters used in the evaluation function, to control the

Monte-Carlo search algorithm, and for bank, kick and combination shot activation are not

of major consequence. They show that, in 8-ball, playing too many safety shots is a poor

strategy.

The exact benefit of search depth and safety shots was shown to depend on both the

amount of noise added to each shot, and the properties of the specific billiards game being

played. This suggests that these factors should be kept in mind when adapting to vari-

ous robotic platforms and alternate billiards games. This should prove useful as the next

Computer Olympiad competition will feature a billiards game other than 8-ball.

PickPocket proved itself the world’s best billiards AI at the 10th and 11th Computer

Olympiad competitions.

A man-machine competition between a human player and a billiards robot will soon

occur. This research goes a long way towards building an AI capable of competing strate-

gically with strong human players.

76

Bibliography

[1] Fei Long, Johan Herland, Marie-Christine Tessier, Darryl Naulls, Andrew Roth, Ger-
hard Roth, and Michael Greenspan. Robotic pool: An experiment in automatic pot-
ting. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
04), volume 3, pages 2520–2525, 2004.

[2] Mohammad Ebne Alian, Saeed Bagheri Shouraki, M.T. Manzuri Shalmani, Pooya
Karimian, and Payam Sabzmeydani. Roboshark: A gantry pool playing robot. In
35th International Symposium on Robotics (ISR 2004), 2004. Electronic Publication.

[3] Bo-Ru Cheng, Je-Ting Li, and Jr-Syu Yang. Design of the neural-fuzzy compensator
for a billiard robot. In Networking, Sensing, and Control, volume 2, pages 909–913,
2004.

[4] Sang William Shu. Automating Skills Using a Robot Snooker Player. PhD thesis,
Bristol University, 1994.

[5] Mohammad Ebne Alian and Saeed Bagheri Shouraki. A fuzzy pool player robot with
learning ability. WSEAS Transactions on Electronics, Issue 2, 1:422–426, Apr. 2004.

[6] Mohammad Ebne Alian, Saeed Bagheri Shouraki, and Caro Lucas. Evolving strate-
gies for a pool player robot. WSEAS Transactions on Information Science and Appli-
cations, Issue 5, 1:1435–1440, Nov. 2004.

[7] S.C. Chua, W.C. Tan, E.K. Wong, and V.C. Koo. Decision algorithm for pool using
fuzzy system. In Artificial Intelligence in Engineering & Technology, pages 370–375,
June 2002.

[8] Z.M. Lin, J.S. Yang, and C.Y. Yang. Grey decision-making for a billiard robot. In
Systems, Man, and Cybernetics, volume 6, pages 5350–5355, Oct. 2004.

[9] Tony Jebara, Cyrus Eyster, Josh Weaver, Thad Starner, and Alex Pentland. Stocha-
sticks: Augmenting the billiards experience with probabilistic vision and wearable
computers. In ISWC ’97: Proceedings of the 1st IEEE International Symposium on
Wearable Computers, page 138, Washington, DC, USA, 1997. IEEE Computer Soci-
ety.

[10] Lars Bo Larsen, Morten Damm Jensen, and Wisdom Kobby Vodzi. Multi modal user
interaction in an automatic pool trainer. In International Conference on Multimodal
Interfaces (ICMI 02), pages 361–366, 2002.

[11] Murray Campbell, A. Joseph Hoane Jr., and Feng-Hsiung Hsu. Deep blue. Artificial
Intelligence, 134(1-2):57–83, 2002.

[12] Jonathan Schaeffer, Robert Lake, Paul Lu, and Martin Bryant. Chinook: The world
man-machine checkers champion. AI Magazine, 17(1):21–29, 1996.

77

[13] Donald Knuth and Ronald Moore. An analysis of alpha-beta pruning. Artificial Intel-
ligence, 6(4):293–326, 1975.

[14] Bruce W. Ballard. The *-minimax search procedure for trees containing chance nodes.
Artificial Intelligence, 21(3):327–350, 1983.

[15] Thomas Hauk. Search in Trees with Chance Nodes. Master’s thesis, University of
Alberta, January 2004.

[16] Matthew L. Ginsberg. Gib: Steps toward an expert-level bridge-playing program. In
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence,
pages 584–593, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[17] Darse Billings, Aaron Davidson, Jonathan Schaeffer, and Duane Szafron. The chal-
lenge of poker. Artificial Intelligence, 134(1-2):201–240, 2002.

[18] Nathan Reed Sturtevant. Multiplayer games: algorithms and approaches. PhD thesis,
UCLA, 2003. Chair-Richard E. Korf.

[19] Bruno Bouzy and Bernard Helmstetter. Advances in Computer Games, Many Games,
Many Challenges, chapter Monte Carlo Go developments, pages 159–174. 2003.

[20] Brian Sheppard. World-championship-caliber scrabble. Artificial Intelligence, 134(1-
2):241–275, 2002.

[21] Michael Chung, Michael Buro, and Jonathan Schaeffer. Monte carlo search for real-
time strategy games. In IEEE Symposium on Computational Intelligence and Games,
pages 117–124, 2005.

[22] Will Leckie and Michael Greenspan. An event-based pool physics simulator. In Proc.
of Advances in Computer Games 11, Sept 2005. To appear.

[23] Billiards Congress of America, editor. Billiards: The Official Rules and Records
Book. The Lyons Press, 2002.

[24] Will Leckie and Michael Greenspan. Monte carlo methods in pool strategy game
trees. In Proc. of Computers and Games 2006, May 2006. To appear.

[25] Michael Greenspan. UofA Wins the Pool Tournament. International Computer
Games Assocation Journal, 28(3):191–193, Sept. 2005.

[26] Jean-Pierre Dussault and Jean-Francois Landry. Optimization of a billiard player -
tactical play. In Proc. of Computers and Games 2006, May 2006. To appear.

[27] Jean-Pierre Dussault and Jean-Francois Landry. Optimization of a billiard player -
position play. In Proc. of Advances in Computer Games 11, Sept 2005. To appear.

78

