
1

Using Generative Design Patterns to Generate Parallel
Code for a Distributed Memory Environment

Kai Tan† Duane Szafron† Jonathan Schaeffer† John Anvik† Steve MacDonald‡

†Department of Computing Science, University of Alberta, Edmonton, AB, T6G 2E8, Canada
‡School of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
{ cavalier, duane, jonathan, janvik }@cs.ualberta.ca, stevem@uwaterloo.ca

ABSTRACT
A design pattern is a mechanism for encapsulating the
knowledge of experienced designers into a re-usable artifact.
Parallel design patterns reflect commonly occurring parallel
communication and synchronization structures. Our tools,
CO2P3S (Correct Object-Oriented Pattern-based Parallel
Programming System) and MetaCO2P3S, use generative design
patterns. A programmer selects the parallel design patterns
that are appropriate for an application, and then adapts the
patterns for that specific application by selecting from a small
set of code-configuration options. CO2P3S then generates a
custom framework for the application that includes all of the
structural code necessary for the application to run in parallel.
The programmer is only required to write simple code that
launches the application and to fill in some application-
specific sequential hook routines. We use generative design
patterns to take an application specification (parallel design
patterns + sequential user code) and use it to generate parallel
application code that achieves good performance in shared
memory and distributed memory environments. Although our
implementations are for Java, the approach we describe is tool
and language independent. This paper describes generalizing
CO2P3S to generate distributed-memory parallel solutions.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Distributed Programming,
Parallel Programming; D.1.5 [Programming Techniques]:
Object-Oriented Programming; D.2.11 [Sofware Architectures]:
Patterns

General Terms
Performance, Design, Reliability, Languages

Keywords
Parallel Programming, Design Patterns, Frameworks,
Programming Tools

1. INTRODUCTION
The past decade has seen enormous strides forward in software
engineering methodologies and tools for developing
sequential software. Many of these advances have quickly

moved from academia to common practice, including object-
oriented design, design patterns [17], and frameworks [34].
These technologies can lead to better program designs, fewer
programming errors, and better code evolution.

In contrast, the parallel computing community has been slow
to adopt new high-level programming techniques that have
been successful in the sequential domain, even though several
research tools support them:

• In practice few parallel applications are object-oriented,
even though parallel object-oriented languages (such as
Mentat [19] and Orca [2]) have existed for over a decade
(POOMA [32] is an exception with a narrow focus).

• Design patterns for parallel programs have existed for
two decades, in a variety of guises (e.g., skeletons
[14][11], templates [36][38]). However, no widely-used
parallel computing tool uses this technology.

• Frameworks have emerged as a powerful tool for rapid
code development. To the best of our knowledge, there
are no applications of this idea to building tools to
support parallel code development.

The reality today is that the state of the art in parallel
computing is represented by message-passing libraries (e.g.,
MPI [39]) and compiler directives (e.g., OpenMP [12]).

Many parallel programmers lose sight of the true cost of an
application. It is, in part, a function of the program’s execution
time (faster is better), the number of times the program needs
to be run (the amortization factor), and the cost of developing
the code (real dollars). Many developers consider only the first
two factors, while ignoring the third. Yet the reality is that for
many applications, the rapid development and deployment of
a correct parallel application is much more important than its
execution time (at least in the short term). For example, dual-
processor machines are ubiquitous, but most owners are not
experienced parallel programmers. This class of users would
like to build parallel applications with a minimum of effort;
absolute speedup is often a secondary consideration.

There have been numerous attempts to develop high-level
parallel programming tools that use abstraction to reduce
parallel complexity so that users can quickly build
structurally correct programs. Several tools require the user to
write sequential stubs, with the tool inserting all the parallel
code [33]. Despite these (often large) efforts, high-level
parallel programming tools remain academic curiosities that
are shunned by practitioners. There are three main reasons for
this (others are explored in [37]):

1. Performance. Generic tools generally produce abstract
parallel code with disappointing parallel performance.
Even if such a tool were used to develop a first draft of a
structurally correct implementation, most tools do not

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PPoPP ’03, June 11-13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-000-0/00/0000…$5.00.

2

make the entire generated application code available in
a usable form for incremental tuning.

2. Generality. The tools are usually suitable only for a
small class of applications. If an application is not
directly supported by the capabilities of the tool, then
the developer cannot use the tool at all. Most tools do
not support user-defined extensions to their
capabilities.

3. Architecture-independence. Most tools are targeted to
generate code for one type of parallel architecture. The
type and amount of user input to the tool is dictated by
the target architecture, and may not be reusable for
different architectures. The ideal situation is to abstract
the application parallelism from the architecture.

These are the main reasons why MPI and OpenMP are so
popular: the user has complete control over the performance of
a parallel application and the tools are general enough to be
usable for a wide variety of applications and architectures.

1.1 Design Patterns
Design patterns capture the knowledge of experienced
object–oriented designers in a form that can be distributed to
others [3]. Design patterns exist because designers do not
solve all problems from first principles. In fact, experience
plays a key role and a design pattern is an attempt to classify
and describe this experience in small re-usable components.

Until recently, design patterns have been descriptive. They
include a diagram and a description that consists of eleven
parts: intent, motivation, applicability, structure, participants,
collaborations, consequences, implementation, sample code,
known uses, and related patterns [17]. Patterns in this form are
easy to distribute and are independent of software
development tools, since they are only applied during
application design. Experienced parallel programmers are
familiar with the concept of design patterns, even if they
haven’t used them in this stylized form. For example, the well-
known concepts of mesh, wavefront, master-slave, and pipeline
can serve as the basis for parallel design patterns.

During design, each selected pattern must be adapted for use
in the context of the current application, since each pattern i s
actually a family of solutions to similar problems. For
example, the designer must choose between a four-point mesh
and an eight-point mesh, and whether iteration will be Jacobi
(synchronization between iterations) or Gauss-Seidel (no
synchronization between iterations).

Traditionally, adapted patterns are the product of a design
phase. During implementation, the adapted design pattern
serves as a specification. Experienced programmers can
transform the specification into code. In fact, experienced
parallel programmers have probably implemented the master-
slave pattern many times. Nevertheless, implementation
involves writing code from scratch, using experience or
sample design pattern code as a guide. This approach is a waste
of valuable programmer time.

Recently, some researchers have tried to generate code from
design patterns [5][8][13][15][28][45]. We have developed a
generative design pattern (GDP) approach [25] that we have
applied to parallel programs [22][24][26]. A pattern designer
builds a GDP that contains pattern code-configuration options
whose values can vary over well-defined domains. Each pattern
also contains a set of code fragments for each valid set of code-
configuration option settings. A programmer adapts a GDP for

a particular application by specifying the values of pattern
options and then pushing a button to generate code. The
generated code is a framework whose code is configured on the
basis of the options selected by the programmer. For example,
in the case of the mesh design pattern, the generated parallel
structure code for synchronized and unsynchronized meshes
are quite different. However, from the user’s point of view, this
should be as simple as selecting an option to indicate which
form of synchronization is desired.

1.2 Why Generative Design Patterns Work
We have previously shown how GDPs overcome the
performance and generality obstacles for shared-memory
applications using CO2P3S and MetaCO2P3S [23]. There are
three key reasons for this success. First, before generating
code, the programmer selects code-configuration options that
customize the design pattern template for a specific
application. The existence of these options supports design
patterns that are general enough for a wide range of
applications, while facilitating the generation of non-generic
code with good performance. Without using options before
generation, the indiscriminate use of too many design patterns
could cause significant performance problems [34].

However, one more step is often necessary to achieve high
performance. Most high-level parallel programming tools use
a programming model that suffers from a lack of “openness”
[37]. The code generated by these tools is often difficult to
tune for performance. In some cases, parts of the code are not
available. In other cases, all the code is available, but it is not
human readable. Too much effort may be required to
understand the underlying software architecture.

The second key feature of GDPs is their ability to construct an
open and layered programming model. All of the generated
code is available to the programmer, organized into three
layers to make the software architecture understandable at
three different levels of abstraction. Performance tuning
proceeds from the simplest most abstract top layer to the more
detailed lower layers. When sufficient performance is obtained,
no further code details need to be exposed. This approach
provides performance gains that are commensurate with effort.

The third key to the generality and performance of GDPs is a
tool to edit and create them. For pattern-based programming,
current academic tools only support a small number of
patterns and, with only a few exceptions, do not support the
creation of new patterns. We have shown how to create a
graphical GDP editor called MetaCO2P3S [7] that supports
generality by allowing a pattern designer to both edit GDPs
and to create new ones. New GDPs must be first class in that
they are just as general and powerful as the GDPs that are pre-
loaded into tools like CO2P3S. We have also proposed a tool-
independent XML format [6] for GDPs so that they can be used
in any GDP-based parallel programming system. Generative
design patterns reduce the time needed to implement parallel
applications, are less prone to programmer error, promote rapid
prototyping and code reuse, support performance tuning, and
provide better overall software engineering benefits.

1.3 Generative Design Patterns for
Distributed Memory Applications

Until now, CO2P3S only supported creating multi-threaded
applications that executed on a shared-memory (SM) computer
[23]. However, architecture-independence is a critical issue in

3

the utility of any parallel programming tool. Without support
for distributed-memory (DM) applications, CO2P3S would be
ineffective for a large user community. Ideally, one would like
a tool to support a “design once, run anywhere” philosophy.
Given an application specification (parallel design patterns +
sequential user code), the user would like to be able to select
an option that specifies the target architecture, and have the
tool do the rest. In this paper, we describe how CO2P3S has
been extended to support this capability.

There are several problems that need to be solved before GDPs
can be used to generate DM code. In terms of generality, the
goal is to ensure that a programmer can transparently use the
same set of GDPs to generate code for SM computations and
DM computations. In addition, the application-specific code
supplied by the programmer must be the same in both cases. In
other words, the only difference in writing a SM or DM
program should be to push a different “architecture
configuration” button. However, another generality issue i s
that it must also be possible for a pattern designer to rapidly
edit and create GDPs that generate DM code.

On the performance side, high performance is much harder to
obtain using DM. However, although our speedup
expectations are lower, we must still be able to generate DM
code whose performance is commensurate with effort. To attain
this goal a DM GDP system must provide the following
facilities:

1. an infrastructure to construct the whole distributed
system,

2. a communication subsystem, and

3. a synchronization mechanism.
In addition, we need new versions of GDPs that transparently
generate DM code that can use these facilities.

1.4 Research Contributions
The major research contributions of this paper are:

1. A demonstration that generative design patterns can be
used to generate distributed-memory code that runs on
a network of workstations. The programmer must only
select the appropriate code-configuration options and
supply application-specific sequential hook methods.

2. The only difference that a programmer sees in
generating DM or SM code is to select a different
option, along with a few statements during program
launch that handle exceptions that can occur in the DM
case, but not in the SM case.

3. Although performance is not spectacular, it i s
commensurate with effort and performance tuning i s
supported. The generated Java code uses standard
widely-available network infrastructure software (Jini,
RMI), with only straightforward modifications to
enhance its performance. All the generated code i s
exposed to the user in an understandable format. This
facilitates incremental tuning of the generated code.

4. Given the infrastructure we have created, it i s
straightforward to use an existing GDP editor, like
MetaCO2P3S, to edit existing GDP patterns so that they
can generate DM code using our infrastructure.

In Section 2, we describe the process for using a GDP to build a
mesh application that runs on a network of workstations. We
also provide performance results and illustrate performance

tuning. In Section 3 we briefly describe two other applications
that use three other GDPs. In Section 4, we describe the parallel
architecture of our distributed-memory implementations. We
used widely available infrastructure: Jini, RMI and
JavaSpaces. In Section 5, we outline some enhancements we
made to this infrastructure. In Section 6, we list our
conclusions and discuss the future of GDPs.

2. USING GENERATIVE DESIGN
PATTERNS TO GENERATE
DISTRIBUTED MEMORY MESH CODE

In this section, we illustrate the process of using a GDP to
generate DM Java code for a mesh application using CO2P3S.
Some may argue that using Java for high-performance
numerical computations is ill-advised. However, progress i s
being made in using Java for such applications [4][29] and as
researchers, we must anticipate future new parallel processing
trends.

Many computer simulation and animation applications model
a surface as a two-dimensional mesh. For example, in image
processing, the image is a two-dimensional mesh, where each
mesh node represents one pixel. Reaction-diffusion is a
chemical process that simulates graphical patterns. Two or
more chemicals diffuse over the surface and react to form a
stable pattern. In computer graphics, reaction-diffusion
simulation can be used to generate a zebra stripe texture.

The design process is called the Parallel Design Pattern (PDP)
process and it has five steps [22]:

1. Identify one or more design patterns for the parallel
parts of the application.1

2. Adapt the chosen pattern templates. A programmer
selects application-specific code-configuration
options, allowing them to customize the design
patterns to their application.

3. A framework is generated with application-dependent
sequential hook methods. The programmer fills in the
hook methods with application-specific code to obtain
a correct functional parallel program (modulo any bugs
the user introduced in the hook methods).

4. Evaluate the resulting application for initial
performance results. If they are not acceptable, inspect
the generated framework code and make performance-
improving changes.

5. Re-evaluate the performance of the modified
application. If it is still not acceptable, return to Step 4
or, in some cases, return to Step 1 (some applications
are amenable to different parallel design patterns).

For the reaction-diffusion application, we can verify that the
mesh pattern can be applied since the algorithm defines a two-
dimensional rectangular surface consisting of chemicals, each
of which reacts with immediate neighbors and changes over
time. Figure 1 shows a mesh design pattern in CO2P3S. The left
pane shows selectable GDPs and the center pane shows a mesh
pattern that has been selected for this application. This
completes Step 1. One approach to selecting an appropriate
pattern is to use a pattern language [27].

1 CO2P3S has also been used to support design patterns for

sequential programming [25].

4

The mesh pattern has six code-configuration options. For this
application, the options and their settings are (Step 2):

• The mesh class name is RDMesh.

• The mesh element class name is MorphogenPair.

• The superclass of the mesh element class
(MorphogenPair) is Object.

• The topology of the mesh is fully-toroidal.

• The number of neighbors is 4.

• The mesh ordering is set to ordered.

Figure 1. Using a mesh design pattern in CO2P3S

The programmer sets the options using various dialog boxes,
and the results are shown in the right pane of Figure 1. Each
combination of code-configuration options ends up
generating a different parallel framework.

Step 3 of the PDP process is to generate framework code and
fill in the sequential hook methods. The code for the reaction-
diffusion application partitions the mesh over multiple
machines. The main execution loop for each partition is shown
in Figure 2. Each of the partition methods: notDone(),
preProcess(), prepare(), postProcess(), and
operate()contains a loop that iterates over all mesh elements
in the partition and invokes an appropriate hook method on
each in turn. The partition methods, notDone() and
barrier() require global synchronization and will be
discussed in Section 3 along with the technique used to
exchange border elements and other data between machines.

public void meshMethod() {
 preProcess();
 while (notDone()) {
 prepare();
 barrier();
 operate();
 }
 postProcess();
}

Figure 2. The main execution loop for each mesh partition

The programmer does not implement the partition methods
since their method bodies are generated. The programmer only
implements the sequential hook methods that operate on
individual mesh elements. These sequential hook methods are

shown in Figure 3. In this case, the mesh surface is fully
toroidal, so all mesh elements are updated the same way. If the
topology was non-toroidal, additional operate() methods
such as the one in Figure 4, would be generated for special
positions on the mesh surface. The programmer does not have
to write code that calls the appropriate operate method. That
code is generated as part of the framework. The programmer
only has to implement the appropriate operate methods for
individual kinds of mesh elements.

MorphogenPair(int i, int j, int surfaceWidth,
 int surfaceHeight, Object initializer){}

(* This constructor method uses the user-specified
 initializer object to initialize the mesh node at
 (i,j) of the surface. *)

void preProcess() {}
void prepare() {}
void postProcess() {}
(* These three methods allow users to specify customized
 code fragments for a mesh element at different points
 of the execution loop. *)

boolean notDone() {}
(* Termination condition for an individual element *)

void reduce(int i, int j, int surfaceWidth,
 int surfaceHeight, Object reducer) {}
(* Apply the user-supplied reducer object to the current
 element to gather the results of the computation. *)

void operate(MorphogenPair north, MorphogenPair east,
 MorphogenPair south, MorphogenPair west) {}
(* This method defines how the current MorphogenPair
 reacts with its immediate neighbors. *)

Figure 3. The sequential hook methods for the mesh elements

operateLeftEdge(MorphogenPair right, MorphogenPair up,
 MorphogenPair down)
(* Used to update mesh elements on the left edge. *)

Figure 4. A mesh update method for a non-toroidal mesh

To complete the application (Step 3 of the PDP process), the
programmer must write some simple code to launch the
application. The launch code for the distributed-memory
version of the reaction-diffusion application is shown in
Figure 5. The shared-memory version is the same, except that i t
does not use the try-catch clause. Instead, it consists only of
the code in the try-block. This is the only place that the
programmer-supplied code is different between the
distributed-memory and shared-memory options.

try {
 mesh = new RDMesh(surfaceWidth, surfaceHeight,
 meshWidth, meshHeight, initializer, reducer);
 mesh.launch();
}
catch(java.rmi.RemoteException remoteException)
{
 remoteException.printStackTrace();
}

Figure 5. Launching the reaction-diffusion application

5

At this stage, we now have a completely functional and correct
program (modulo any bugs the user has introduced in the
hook methods). The program can be run and its correctness can
be verified. Only now with a correct program in hand do we
consider whether the performance is satisfactory. By
generating all the parallel structure code, CO2P3S eliminates
most sources of concurrent programming errors. This reduces
the code development time, and increases the user’s
confidence in the correctness of their solution.

Step 4 in the PDP process is to run the program and evaluate
its performance. The central JVM for the main program was
started with a 512MB heap space. The distributed JVMs were
started with a 256MB heap space. The speedups are based on
the average wall clock time for ten executions compared to the
sequential execution time using a HotSpot virtual machine.
Note that the timings consider only the computation time and
boundary-exchange time; the initialization and result
gathering times are not included. Table 1 contains the results.

The results given in Table 1 are not very satisfying, especially
when compared to the results obtained from a CO2P3S-
generated shared-memory implementation, which achieves
speedups of 3.7 on 4 processors for the same problem.
However, to obtain the distributed-memory program for the
reaction-diffusion application using CO2P3S was easy: change
the memory code-configuration option from shared-memory to
distributed-memory, push the generate code button and add
the exception-handling code for the launch.

Table 1. Initial performance for a distributed-memory
implementation of the reaction-diffusion application

(seconds)

Mesh Size 1 processor 4 processors Speedup

400¥400 31 103 0.3

800¥800 120 110 1.1

1200¥1200 267 131 2.0

Since the distributed-memory version's performance is not
satisfactory, we can try to improve it by examining the
generated code. Using the real-time monitoring function
provided in CO2P3S, we discovered that each participating
processor was less than 40 percent utilized when the mesh size
was less than 1200¥1200. Most of the time was wasted on
synchronization and boundary exchange. As the mesh size
rose to 1200¥1200, each processor received more work to do,
enough to offset the high communication overhead. We
realized that we would have to examine the generated code and
look for opportunities to remove synchronizations and/or
communications.

Consider the main execution loop in the framework code of
Figure 2. All processes need to synchronize by calling the
barrier() method twice for each iteration. One call is the
explicit call to barrier() that appears between the
prepare() method and the operate() method. This
synchronization is necessary to ensure that the computation i s
ordered (Jacobi iteration). The other call to barrier() is a
hidden one inside the notDone() method that can be easily
found by inspecting the generated framework code. This
synchronization is necessary since all processes must submit
their own view of whether they are done or not, before a final

decision is made whether to terminate the entire computation
or continue iterating.

A distributed barrier is very expensive since it involves
passing multiple messages between all the mesh partitions. If
we can reduce the number of barrier synchronizations by one
for each iteration, it will be a huge performance win, since i t
will reduce the total synchronization overhead by 50%.

On inspection, it was discovered that the code in the
prepare() method can be incorporated into the notDone()
method before the synchronization point already in that
method. This results in the hidden barrier call at the end of the
notDone() method being adjacent to the explicit barrier()
invocation in the loop. Since the two are adjacent, one i s
redundant and the explicit barrier invocation can be removed.
The resulting code is shown in Figure 6.

public void meshMethod() {
 preProcess();
 while (notDone()) {
 (* includes prepare() before barrier *)
 operate();
 }
 postProcess();
}

Figure 6. The modified execution loop for mesh partitions

After modifying the generated code, we re-ran the experiments
and the results are shown in Table 2. This true anecdote is a
good illustration of how performance tuning can work when
coupled with the readable parallel structure code that i s
generated by CO2P3S.

Table 2. Tuned performance for a parallel mesh application

Mesh Size 1 processor 4 processors Speedup

400¥400 31 64 0.5

800¥800 120 70 1.7

1200¥1200 267 91 2.9

Given how well this optimization worked in the reaction-
diffusion equation, we quickly realized that we could go back
to the GDP for the mesh and modify the generated code so that
the code would be in the form of Figure 6 instead of the form
of Figure 2. However, there is a better solution. If the
prepare() code is always executed before the rest of the code
in notDone(), this code may be executed one more time than
is necessary, since if the program is done, the preparation was
unnecessary the last time through the loop. This will not be a
concern unless the preparation time actually increases as the
computation proceeds, but this situation can occur. This kind
of scenario is common in parallel computing and the GDPs
have a great solution for it. A new code-configuration option
can be added to the GDP that differentiates between these two
cases; the code that is generated will depend on the setting of
this option. Such an option is called a performance option
since the programmer will often try different settings to
determine the most efficient one for the particular application.

The last step in the PDP process (Step 5) is to evaluate whether
more performance tuning is required. If so, additional changes
can be made until the desired performance level is reached. For

6

example, CO2P3S automatically does data partitioning across
the processors and decides on the granularity of the
computations. The CO2P3S default settings may be sub-
optimal for a given application. With a mesh application,
CO2P3S, simply divides the mesh evenly among the number of
processors available as specified by the programmer when
instantiating the mesh using arguments, meshWidth and
meshHeight, from Figure 5. However, in other patterns, like a
distributor pattern, a method call is made with an array
argument and this array is distributed by making the same
method call to several processes with the array distributed
using one of: pass through, block, striped or neighbor
distribution [22]. The user can experiment with different
values for this performance parameter. The changes needed to
experiment with different data partitions and/or granularity are
well documented in the generated code.

3. GENERATING DISTRIBUTED MEMORY
CODE FOR THE WAVEFRONT
PATTERN

In this section we report the results of using GDPs to generate
DM code for another application. We present a biological
sequence alignment application that uses the wavefront GDP
and a sorting application that uses the composition of two
GDPs, the phases and distributor patterns.

The biological sequence alignment problem can be solved
using a dynamic programming matrix, which can be modeled
by the wavefront pattern [1]. In essence, aligning two
sequences with lengths of m and n reduces to finding a
maximum cost path through a matrix of size (m+1)¥(n+1). An
extra row and column are added to represent initial scores of
the matrix to start the computation. The computation starts
from the top left corner and proceeds to the bottom right
corner. The resulting paths across the matrix represent
different combinations of the possible operations: letters are
matched, mismatched, and matched with gaps inserted into the
original sequences.

This application is an example of a wavefront computation
since each element is dependent on some of its neighbors'
values, and the computation ripples across the matrix like a
wavefront. In this application, the value of each element
depends on the neighboring elements to the north (above),
west (left) and northwest (above and to the left). However,
other applications may have other dependency options.

The wavefront code-configuration option selections for this
application are:

• The wavefront element class name is SAElement.

• The type of wavefront elements is int.

• The matrix shape is full matrix.

• The dependency set is north, northwest and west.

• The immediate neighbors only option is true.

• The notification technique is Push.
A CO2P3S screenshot of this application is shown in Figure 7.
The class representing individual wavefront elements is called
SAElement. However, since this application only needs to
store integers in the matrix, the type of wavefront element i s
marked as int. In cases like this, CO2P3S generates code that
uses a two-dimensional array of ints (instead of an array of
objects) and static methods are generated to update the

wavefront elements (instead of using instance methods). This
approach increases performance considerably. For this
application, a full matrix is needed. Other option choices are a
banded matrix or a triangular matrix. The dependency set for
this application is north, west and northwest. Not all choices
are legal, since if two opposite directions are selected, the
computation will deadlock. The CO2P3S user interface prevents
the programmer from selecting illegal option values.

Figure 7. Using a wavefront design pattern in CO2P3S

The immediate neighbors option specifies whether an element
needs all the elements in particular directions, or only the
immediate neighbors in those directions. In this application,
only the immediate neighbors are required so the option is set
to true. We have implemented other applications, like a
skyline matrix application and a matrix product chain
application [1], where this option must be set to false.

The last option is a performance option. Performance options
don’t affect the hook methods that the user must write, only
the performance of the generated application. Even though the
hook methods are consistent across all choices of performance
options, the internal structure code of the framework may vary
radically. The notification method specifies whether an
element should poll the elements it is dependent on (Pull) to
see whether their computations are complete, or whether an
element should inform its dependents when its own
computation is complete (Push). For this application, the
performance of both options is similar.

The sequential hook methods for the wavefront pattern are
similar to the ones for the mesh from Section 2. However, in
this case, there are many more operate() methods since we
need custom ones for the top row, left column and top-left
corner, as well as the general one for the interior.

The parallel implementation of a wavefront divides the matrix
into blocks and performs the computation on multiple blocks
concurrently. An algorithm for the main execution loop i s
shown in Figure 8.

while (computation not done) {
 Get one block from the controller’s worklist
 Process this block
 Notify the dependent blocks
 Send the boundaries
}

Figure 8. The execution loop for each wavefront processor

A controller maintains a work-list of blocks whose
dependencies have been satisfied. When a processor is idle, i t

7

takes a block from the controller’s work-list, processes the
block, notifies the dependent blocks that this block is done,
and sends the boundary values to the controller so that they
can be used to update other blocks. Of course, all of this is in
the code generated by CO2P3S and the user does not need to
know any of these details to build a correct parallel
implementation.

Table 3 lists the time and the speedup of the sequence
alignment application using the wavefront pattern and two
sequences of size 10,000. The system configuration is the
same as described in Section 2. The speedup rises slowly as
more processors are added. Although these speedup numbers
are not great, they still indicate some speedup in exchange for
quick parallelization. For this application, we did not try to
tune the performance by modifying the generated code.

Table 3. Performance results for a wavefront application
(milliseconds)

Processors 1 2 4 6 8

Time 6,383 7,321 3,733 2,633 2,115

Speedup - 0.9 1.7 2.4 3.0

Besides the mesh and wavefront, we have also added
distributed-memory code generation to the phases and
distributor patterns, and implemented a parallel sorting
application, called PSRS [35], to test them. The phases pattern
is used to break a parallel computation up into distinct phases
with synchronization at the end of each phase. The distributor
is a master-slave pattern that performs a computation on an
array argument, by sending parts of the array to different
processors. It has a configuration-option that selects between
various distributions like block, striped and neighbors.
Details can be found in [44]. Speedups ranged from 1.5 for two
processors to 4.6 for eight processors. However, the magnitude
of the speedup is not important. We showed again, that a GDP
could be modified to generate distributed-memory code, using
two design patterns that had previously been created to
generate shared-memory code. In addition, the generated
distributed-memory code has a reasonable performance
improvement that was commensurate with the parallelization
effort.

4. THE PARALLEL ARCHITECTURE TO
SUPPORT DISTRIBUTED MEMORY
CODE

In this section, we describe our parallel architecture that uses
Jini, RMI and JavaSpaces. We describe:

• an infrastructure to construct the distributed system,

• a communication subsystem, and

• a synchronization mechanism.
Since CO2P3S supports Java, we have used two Java-centric
infrastructure technologies, Jini [42] and RMI [41], to design
the system architecture. In addition to a standard API, Jini
provides extensive support for Java-based distributed
computing. Jini can be used to build a distributed system with
a scalable and dynamically-configurable architecture. It also
provides efficient process coordination mechanisms, a central
object space (a JavaSpaces service) for global synchronization
and data sharing, a customizable communication scheme, and a

lease renewal service to manage communication failures. These
facilities reduced the complexities of constructing our
distributed architecture and allowed us to focus on creating
parallel design patterns and on performance enhancements.

All system control tasks such as process spawning, process
killing, synchronization, communication, and real-time
performance monitoring are implemented using Jini
technology and Java Native Interface (JNI) [43]. The generated
application code contains multiple processes, where each is a
Jini service running on a distributed machine. All Jini services
locate each other through the Jini lookup service (LUS) and
coordinate with each other directly or through a Jini
Transaction Server and a JavaSpaces service. A JavaSpaces
service [16] is an object-oriented version of the tuple-space
that first appeared in the Linda system [9]. It is a central object
space that provides synchronized access to the entries stored
in it. A JavaSpaces service is implemented as a common Jini
service for collaborative distributed applications.

4.1 CO2P3S Distributed Architecture and
Infrastructure

The CO2P3S architecture for distributed-memory programs i s
shown in Figure 9. Each participating machine is shown as a
dashed-line rounded rectangle with thick borders. The two
participants at the bottom of the figure represent machines that
perform the concurrent computations. Each of these
computational machines contains a set of Jini services that
interact with remote Jini services. A central control process,
represented by the participant in the middle of the figure,
provides a graphical user interface (GUI) that augments the
GUI from the shared-memory version of CO2P3S. The GUI
includes a tool menu with three options. One option allows the
user to configure the environment by adding and removing
machines for the computation. The second option launches all
the Jini infrastructure components on the selected machines.
The third option destroys all the Jini components and shuts
down the environment. The participant at the top of the figure
provides Jini resources for the computation, but do not
perform the computations directly.

A generated application consists of a main program and a
series of distributed slave processes. The main program is
executed on the central control machine. Each process i s
implemented as a Jini activatable service [40] running on a
distinct machine in the environment. Each slave process
contains a proxy and a service. The Java activation system i s
used to make efficient use of resources on distributed
machines. Rather than having each service process continually
waiting for a request, each service contains a daemon process,
called an rmid, which listens for requests and activates the
appropriate service when needed. Each distributed machine,
except the central control, runs an rmid to take care of the
launching and shutting down of activatable processes.

One LUS is setup in the environment to control resource
registration and discovery. The main program uses the LUS to
obtain proxies for all distributed processes and to coordinate
them. For instance, in the mesh application of Section 2, the
main program creates a mesh data structure and divides it into
smaller blocks. The process running the main program uses the
LUS to find all registered processes that are able to process the
blocks. The main program sends blocks to these processes via
the proxies provided by the LUS.

8

Figure 9. The architecture of distributed CO2P3S

4.2 CO2P3S Distributed Communication
Jini supports customizable communication. A service designer
can choose any applicable protocol for communications
between a service and its clients. Furthermore, the design
choice for the service is totally transparent to the clients, who
only need to load a proxy at runtime to discover the service’s
interface.

The default communication scheme used by Jini services i s
RMI, which is also used in all Jini infrastructure components
such as the LUS, the JavaSpaces service, the transaction
manager, and the lease renewal service. If RMI is used as the
communication scheme in a user service, the proxy is a stub
that is automatically generated by the RMI compiler (rmic).
Using RMI greatly simplifies the communication design of
distributed applications. However, since RMI is not open-
ended and it hides almost all the communication details from
the user, RMI is not very extensible or customizable. It leaves
programmers little opportunity for fine-tuning in high-
performance computing applications.

Java sockets are an alternative to RMI. In this case, a pattern
designer would implement the communication details for the
proxy and the service for each pattern. Sockets have more
flexibility than RMI and may perform better. There are two
reasons for this. First, more efficient wire protocols can be
adopted. Second, the designer can choose to implement a thin
proxy or a fat proxy [30]. A thin proxy simply forwards the
request to the server and waits for a reply. A fat proxy can
process some or all of a client’s requests locally without
sending them to the server. This approach is effective if a
request can be more efficiently processed locally instead of
involving network communications. This may occur due to the
small granularity of a computation or the existence of local
data or other resources. For example, a request to a remote
server to display real-time graphics based on the client’s input
may be more efficient if the proxy processes the client’s input
directly and then draws the graphics locally.

We conducted an experiment to evaluate the performance
difference between using RMI and Java sockets in the
distributed CO2P3S environment. To conduct the performance
test, we implemented a Jini service using RMI and then using a
Java TCP socket. The test program contained three major
participants, two services and a client, all of which run in the
Jini environment. The performance comparison focused on the
difference between the pure overhead involved in the coding
and decoding of method invocation information of the RMI
implementation and the TCP sockets implementation. Three
methods were used, each with an argument array containing
1,000 elements. The element types were Object, String and
Integer (not int). The semantics of the methods are not
important. The test program was run on a PC Cluster with 19
nodes connected with a 100Mb Ethernet connection. Each
node is a dual Athlon MP 1800+ CPU and 1.5GB of RAM. The
operating system kernel is Linux 2.4.18-pfctr and the JDK
version is Java HotSpot VM 1.3.1. The virtual machine was
started with a 256MB heap space. Table 4 shows the average
execution time (averaged over 100 runs). It was found that
Java sockets are faster than RMI, and that the performance
improvement varies considerably among different
applications depending on the method arguments.

Table 4. Performance comparison of RMI versus sockets
(milliseconds)

Objects Strings Integers

RMI 36.5 4.6 6.3

Java sockets 26.6 4.1 3.5

% faster 37% 12% 80%

Communication is often a performance bottleneck in
distributed computing. Customized communication (via
sockets) may achieve higher performance by allowing the
pattern designer to reduce communication overhead for
specific patterns. However, our goal is not only to reduce the
complexities of parallel programming in a distributed
environment, but also to support the rapid design of new
parallel patterns. The conflict between requirements for
efficiency in communication and broad abstractions to assist
pattern designers suggests that a compromise is necessary. We
selected RMI to design all required Jini services because of its
simplicity. However, we also modified the existing RMI
implementation to diminish the performance gap between i t
and Java sockets. In particular, we created a modified version
of RMI that uses a more compact and efficient serialization
scheme designed specifically for high-performance
computing. Using the modified RMI maintains performance
while reducing the complexity of the design patterns. This i s
beneficial, both to the pattern designer who must construct the
patterns and to the programmer who may need to tune them.
Our RMI improvements are described in Section 5.

4.3 CO2P3S Distributed Synchronization
Parallel applications use synchronization mechanisms to keep
shared data consistent and processes coordinated. One of the
strengths of Java is that it supports multithreaded
programming at the language level. Java provides monitors to
fully support thread synchronization [46]. The Java Virtual
Machine associates a monitor with each object and provides
two opcodes (monitorenter and monitorexit) to access the

Lookup Service

Proxy

http server
Proxy class file

JavaSpaces

Entries
Transaction

Service

Lease Renewal
ServiceRMID

activates

CO2P3S GUI
central controlUser

Service
Implementation

Server site 1
RMID

Service
Implementation

Server site 2
RMID

computation

infrastructure

9

monitor lock. In Java, it is convenient to implement complex
thread-level synchronization semantics based on monitors
because in shared-memory systems, the heap space and the
method area are shared among all threads.

We have already invested considerable effort in designing the
shared-memory versions of GDPs using the Java Monitor
programming model and we have many patterns whose code
utilizes this model. Unfortunately, the Java RMI distributed-
computing model has no direct support for the Monitor model.
However, based on our current investment in this model, we
decided to implement the Java Monitor in a distributed-
memory environment [46][10]. This approach has four
advantages:

1. It allowed us to use MetaCO2P3S to edit the SM versions
of existing patterns to create DM versions quickly.

2. Parallel Java programmers are familiar with the Monitor
programming model, so it is easier for them to write DM
pattern implementations using this model.

3. A pattern designer who designs a new pattern can share
code between the SM and DM versions of a pattern, since
they share a similar syntax.

4. Programmers who want to tune the CO2P3S-generated
code will find a familiar model to work with.

We used basic message passing to implement the monitor
model. This implementation was self-contained and easy to
use. However, because of the lack of lower-level
communication support, setting up an all-to-all TCP
connection between N processes was too expensive. UDP was
no better since the lack of arrival guarantees and ordering
guarantees made it difficult to correctly implement parallel
semantics without additional checks at the application level.

Therefore, we re-implemented the Java monitor
synchronization model using JavaSpaces technology. We
created a JavaSpaces service to store variables that are shared
among a collection of processes. Since the JavaSpaces service
provides mutually exclusive access to the shared variables, we
were able to implement a basic mutex lock very easily.

An object-diagram of the synchronization subsystem is shown
in Figure 10. Our synchronization package actually includes
the following classes: Barrier, Monitor, Mutex, MutexEntry,
ReadyQueue and ConditionQueue. The MutexEntry extends
the net.jini.core.entry.Entry interface, the superclass of all
objects that can be stored in a JavaSpaces service, with two
extra fields: a counter to be used in the Barrier to count the
number of processes that arrive and a string value acting as a
unique key identifying each distinct MutexEntry object in a
JavaSpaces service.

Each instance of class Mutex contains a MutexEntry and
provides mutually exclusive methods such as lock() and
unlock() to access the MutexEntry instance. These two
methods are implemented based on two blocking methods
(take() and write()) in the JavaSpaces API. The take() and
write() methods provide processes with synchronized access
to entries stored in a JavaSpaces service. Each time an instance
of class Mutex is created, a distinct MutexEntry instance i s
stored in the JavaSpaces service. Processes coordinated by the
mutex invoke its lock() method to acquire the MutexEntry.
One process will eventually succeed and remove the
MutexEntry from the JavaSpaces service, while the others will
be blocked until the MutexEntry is available again. The mutex

lock can be released by the owner process (the MutexEntry i s
written back to the JavaSpaces service) so that others can
compete for it.

Figure 10. The CO2P3S distributed synchronization
mechanisms

Our distributed monitor is based on our distributed mutex. A
group of processes can wait on some conditions for
coordination, analogously to Java threads using a thread
monitor. A distributed monitor has one mutex and two queues
that store blocked processes. In the Java thread model, the
JVM associates one monitor for each object automatically,
while in this case a distributed monitor has to be generated
explicitly for each use.

Here is a behavioral description of our distributed monitor.
Instead of using the synchronized(Object) syntax to guard
a code block, we use monitor.enter() and
monitor.exit() to signify the entry and exit of a code block
guarded by the monitor. A monitor contains two queues to
store waiting processes. A ready queue stores processes that
are ready to continue their computations. Processes that are
waiting for certain conditions to be satisfied are stored in a
condition queue. If a process successfully obtains the mutex
lock to enter into the code block, but later it finds that a
certain condition is not yet satisfied, the process simply
invokes monitor.monitorWait(), which places the process
into the condition queue and releases the mutex lock. This i s
analogous to calling the wait() method in a standard Java
program that uses threads. No queue is used to store the
processes waiting for the mutex lock, as such a function i s
provided implicitly by the blocking mechanism of the take()
method implementation of the JavaSpaces service.

If a set of processes are trying to acquire a mutex lock using
take() and it is unavailable, all the processes will be blocked.
When the mutex lock becomes available in the JavaSpaces
service, one take() method will return and its process will be
awakened. The specific order in which the processes are chosen
depends on the implementation of the JavaSpaces service.

If a condition is true when one process enters into a code
block, the process can invoke monitor.monitorNotify() or
monitor.monitorNotifyAll() to wake up one or all of the
waiting processes. Awakened processes are transferred from the

Barrier

barrier()

Monitor

enter()

exit()

wait()

monitorNotifyAll()

monitorNotify()

readyQueue

conditionQueue

see Figure 11

 if (! isEmpty(readyQueue)

 || ! isEmpty(conditionQueue))

 monitorNotify()

 else

 mutex.unlock()

 mutex.lock()

Mutex

lock()

unlock()

MutexEntry

counter

identifier

10

condition queue to the ready queue. Again, this is analogous
to the Java threads approach.

Upon finishing the code block, a process must call
monitor.monitorExit(). This causes the monitor to pick a
process in the ready queue to be activated. If this queue i s
empty, the monitor will release the mutex lock to let processes
waiting outside the code block compete for it.

Since the behaviors of a distributed monitor are so similar to
the Java threads monitor, they are familiar and simple to use.
Since pattern designers make extensive use of a Barrier class
when designing the SM versions of their patterns, a
distributed Barrier class has also been added to our distributed
tool-chest. A distributed barrier uses a monitor to guard
concurrent accesses to the barrier counter in the monitor’s
MutexEntry. Figure 11 is the key method in the distributed
Barrier class. Figure 11 is also an excellent illustration of how
similar the distributed programming syntax is to Java thread
programming syntax.

public void barrier () {
 monitor.enter();
 counter = this.getBarrierCount() + 1;
 if (counter == procGroup.length) {
 monitor.monitorNotifyAll();
 }
 else {
 this.setBarrierCount(counter);
 monitor.monitorWait();
 }
 this.setBarrierCount(0);
 monitor.exit();
}

Figure 11. A distributed barrier

5. ENHANCING OUR INFRASTRUCTURE
FOR PERFORMANCE

This section summarizes our work on enhancing RMI's
performance by employing a more efficient and faster
serialization routine. RMI was introduced into JDK1.2 to
seamlessly incorporate a distributed object model. Combined
with Java's dynamic class loading, object mobility, extensive
security model, and platform-independence, RMI provides a
convenient way of building Internet client/server applications.
However, RMI does not offer high performance for
applications on high-speed networks. There are two main
obstacles to high performance: an inefficient transport
subsystem and slow object serialization. Although using
technologies such as the HotSpot adaptive compiler, JIT
compiler, and Java native compiler can improve an RMI
application's execution performance somewhat, the time spent
doing object serialization and communication still occupies a
significant amount of the total execution time of one RMI call.

RMI is unable to fully exploit network hardware resources,
since it is implemented almost entirely in Java and TCP
sockets, with only sparse use of the Java native interface calls
to access low-level buffers. For example, RMI cannot gain
performance by running on Myrinet or some other fast user-
level networks.

JDK-serialization is a key component in RMI to implement the
argument passing semantics of remote method invocations.
However, JDK-serialization performs many computations that

are redundant in the context of high-performance computing.
For example, when an object is serialized, the object's class
information is serialized as well.

Other researchers have worked on improving JDK-
serialization. Good examples include UKA-serialization [31],
the Manta project [21], and Jaguar [47]. The first two
approaches apply a new wire format and require explicit
serialization and de-serialization methods for each class. The
third approach uses pre-serialized objects whose memory
layout is already in a serialized form. Details of how our
approach differs from these approaches can be found in [44].
However, in a nutshell, we wanted an approach that could be
used with the existing RMI and that does not require the
programmer to write any serialization code. In fact, our
approach does require a slight modification to RMI, but we
have transparently encapsulated the change. We provide a
drop-in replacement for the JDK-serialization class
(ObjectInputStream) and the de-serialization class
(ObjectOutputStream). We use the Java command-line
options to override the bootstrap classpath to insert our own
classes into the existing bootstrapping class search path.
Fortunately, all the execution commands are encapsulated in
the scripts launched by the CO2P3S environment.

We perform four optimizations.

1. compact the class information,

2. remove security checks,

3. compact references to class information, and

4. take advantage of homogeneous arrays, where possible.
The idea of using compact class information has been applied
in several other research projects. We record only the fully
qualified name (such as java.util.Vector) for each different
class, since all processors in a parallel application have a local
copy of the same version of each class file.

In a high-performance computing environment, each processor
used in an application has trust in the other processors so that
objects can flow freely between them. Therefore, we removed
all the security checks in our serialization and de-serialization
processes.

Our third optimization is to compact shared references to
classes. In an array of Integers, the standard serialized data
stream includes many references that point to a serialized
representation of the Integer class. JDK-serialization uses four
bytes for a reference to this common class information. Thus,
each element has a redundant 4-byte reference. Each array
element uses four bytes to store an int value, so the common
class references represent a storage overhead of almost 100%.
We solve this problem by storing distinct object references in
a hash table with indexes of size one or two bytes. Each entry
has two attributes: one is a sequence number that reflects the
order that the distinct reference was stored in the hash table.
The other is the reference content. The first time a reference i s
encountered during serialization, it is written to the stream in
full, headed by a short int with value -1. The new reference i s
also stored in the hash table with a sequence number. During
serialization, if an identical reference is to be written, the
sequence number of this reference is retrieved from the hash
table and written into the stream. During de-serialization, if a
–1 is encountered, the next 4 bytes are treated as the content of
a reference. New references are appended to the end of a
reference array in the order read. If a positive number (a
sequence number) is read, de-serialization uses the entry in the

11

reference array indexed by this number. If the number of
different references is less than 256, the sequence number can
be a single byte. Thus the 4-byte reference is compressed to 1
byte. However, if the number exceeds 256, the hash table grows
in size along with the sequence number; the resulting
compression rate will be reduced from 4 to 2. In the rare case
that the number of distinct classes whose objects must be
serialized grows beyond 65,535, sequence numbers can grow
to 3 bytes. The price of adding the hash table is one extra
memory access to process each object reference during
serialization and de-serialization. However the reduced transfer
time outweighs this increased overhead in all of our
experiments.

The fourth optimization that we used is to remove class
references from individual array elements altogether, when we
can prove before serialization starts that an array i s
homogeneous. Like most other object-oriented languages,
Java supports type substitutability for arrays. Each element of
an array with static type classA[] can be an instance of any
subclass of classA at runtime. Therefore during the
serialization process, the runtime type of each element must be
computed and serialized even if all the elements end up having
the same type. The dynamic type computation of array
elements is expensive, especially when the array size is large.
If the array elements are heterogeneous at runtime, such
computation is necessary. However, if we know the array
elements are homogeneous ahead of time, we can omit the type
computation. In Java, a class marked as final can never be
subclassed. Therefore, an array whose component class i s
declared as final must be homogeneous. We call such an array,
a final array. We have changed the wire format of a serialized
final array. A final array contains only the class of the array
(which includes the element class), followed by the length,
followed by the elements with no class references. In Java all
the primitive wrapper classes like Integer and Float are final
classes so in practice the opportunity for savings is large.

In the case where an array is not final, a reference for each
element class (dynamic) must be stored. However, if this
element is an object with fields (instance variables) that are
primitive or instances of final classes, this approach is applied
to these fields. We cache the element class information, which
includes the class name and the fields information (final or not
final). By applying the information to each array element, the
serialization cost can be reduced by eliminating redundant
class information and unnecessary tests.

One of the tests we did to evaluate our new serialization was to
re-run the tests described in Section 4.2, that compared the
speed of RMI with Java Sockets. The results are shown in Table
5. Although our custom serialization does not make RMI as
fast as Java sockets, the advantages of RMI described in
Section 4.2 are significant enough to outweigh the shrinking
performance advantage of Java Sockets. Other performance
results can be found in [44].

We also ran additional tests to compare our enhancements
directly to UKA serialization work [31] and to standard JDK-
serialization outside of the CO2P3S environment. Four kinds of
data were used in the tests, an array with 1000
TransportableTree elements, one TransportableTree
object, an array with 1000 TestClass elements and one
TestClass object. The TransportableTree class
implements the uka.transport.Transportable interface.
The interface uka.transport.Transportable is the
identifying interface for UKA-serialization to recognize uka-

serializable objects. A TransportableTree has two int
fields and two TransportableTree fields. This class also
contains a set of methods that are generated automatically by a
preprocessor. These methods are invoked by the UKA-
serialization routine to reduce runtime type checking. These
methods are transparent to JDK-serialization and CO2P3S-
serialization. The level of the tree is chosen to be two, so that
an instance of TransportableTree in the test program
contains 7 nodes (the first level is 0).

Table 5. Comparison of standard and CO2P3S serialization
(milliseconds)

Objects Strings Integers

Standard
serialization

36.5 4.6 6.3

CO2P3S
serialization

31.4 4.2 5.6

% faster 16% 9% 13%

Java sockets 26.6 4.1 3.5

Class TestClass contains one int field and 5 Integer fields
and only implements the java.io.Serializable interface.
UKA-serialization will not recognize instances of this class
and will just pass them to the standard JDK-serialization
routine. Both the TransportableTree and TestClass class
were declared as final in order to use the aggressive
homogeneous array compression scheme of CO2P3S-
serialization.

Table 6. JDK, CO2P3S, and UKA serialization
(microseconds and bytes)

Class Serial De-Serial Total Length

JDK Tree [] 28460 35800 63260 106123

CO2P3S Tree [] 26430 36110 62540 71033

UKA Tree [] 25070 33030 58100 106084

JDK Tree 440 290 730 188

CO2P3S Tree 430 180 610 112

UKA Tree 320 310 630 140

JDK Test [] 22690 26570 49260 10061

CO2P3S Test [] 19590 26330 45920 5025

UKA Test [] 26890 26670 53560 11064

JDK Test 360 400 760 38

CO2P3S Test 350 180 530 22

UKA Test 720 550 1270 41

For each serialization scheme, three times were recorded: the
serialization time, the de-serialization time, and the sum of
these two, as well as the length of the serialized data. The
hardware and runtime configuration for running the
experiments is the same as described in Section 4.2. Table 6

12

shows the results. The fastest time and shortest length i s
indicated in bold font for each separate test. Although CO2P3S-
serialization is not the fastest in all cases, the total time i s
always faster than standard JDK-serialization and is very
competitive with or beats UKA while being plug-compatible
with standard JDK. It also provides the shortest serialized data
in all cases.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have described a critical extension of the
generative design pattern approach to parallel computing that
supports the generation of distributed-memory code. This
extension adds architecture-independence to the advantages of
the GDP approach, while maintaining the generality and
performance principles that are paramount in the GDP
philosophy. We have described a new distributed-memory
runtime environment for GDP that has been built from
standard infrastructure components: Jini, RMI and JDK-
serialization. We have introduced distributed synchronization
primitives that mirror the familiar Java Monitor model that i s
used for thread programming. We have created distributed-
memory versions of four GDPs: mesh, wavefront, phases and
distributor that generate tunable code with reasonable parallel
performance. We have introduced pluggable replacements for
JDK-serialization that improve performance to the same degree
as other non-pluggable approaches, like UKA-serialization.

There is more work that can be done to improve the
performance of GDP generated code for distributed-memory
architectures. For example, in our implementation, a
JavaSpaces service stores all the shared data and acts as a
medium for indirect message passing. This design is valid and
provides reasonable performance for medium-scale parallel
processing. However, if there are a large number of
participants, concurrent accesses to shared data will result in a
serious performance problem. There are two possible ways of
solving this problem.

First, we could remove the JavaSpaces service and use explicit
message passing for exchanging information and pass the
mutex lock as a token. A tree algorithm or butterfly algorithm
[48] can be used to reduce the number of messages exchanged.
The Java Native Interface (JNI) [43] technology can also be
used to improve communication performance.

Second, we could use a distributed-memory version of the
JavaSpaces service [16]. Currently, there is one called
GigaSpaces [18], which can act as a shared-memory layer for
distributed systems and which has the same interface as a
JavaSpaces service. Our implementation can be ported to
GigaSpaces with only minor changes, yielding better
performance for large-scale distributed computing.

Although performance improvements still need to be made, a
new avenue for exploration is emerging for high-level models
and tools. By abstracting out the architectural details using
parallel design patterns, CO2P3S now supports both shared-
memory and distributed-memory application development – a
claim that few (if any) other parallel program development
tools can make. We recommend this approach to other tool-
builders. However, the usefulness of these tools is still limited
by the number of parallel design patterns supported. We are
actively working on enriching this set and we invite others to
join us.

Can “ordinary programmers” create new generative design
patterns? We think so. As anecdotal evidence about how

difficult and time-consuming it is to write generative design
patterns, an undergraduate summer student in our laboratory
implemented five design patterns in three months. This
included all of the time to read about and understand the
descriptive (non-generative) versions of the design patterns,
learn what generative design patterns are, figure out what
parameters to define in each generative design pattern, learn to
use CO2P3S and MetaCO2P3S, code the patterns and add them to
CO2P3S using MetaCO2P3S. By the end of the process, the
student was able to write a generative design pattern in about a
week.

7. ACKNOWLEDGEMENTS
This research was funded in part by the National Sciences and
Engineering Research Council of Canada (NSERC) and the
Alberta Informatics Circle of Research Excellence (ICORE).

8. REFERENCES
[1] J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S.

Bromling, and K. Tan. Generating parallel programs from
the wavefront design pattern. In Proceedings of 7th
International Workshop on High-Level Parallel
Programming Models and Supportive Environments, CD-
ROM 1-8, 2002.

[2] H. Bal, F. Kaashoek, and A. Tanenbaum. Orca: A language
for parallel programming of distributed systems, IEEE
Trans. on Software Engineering, 18(3):190-205, 1992.

[3] K. Beck and R. Johnson. Patterns generate architecture. In
Proceedings of the 8th European Conference on Object-
Oriented Programming, volume 821 of Lecture Notes in
Computer Science, pp. 139-149. Springer-Verlag, 1994.

[4] R. F. Boisvert, J. J. Dongarra, R. Pozo, K. A. Remington,
and G. W. Stewart. Developing numerical libraries in Java.
In ACM 1998 Workshop on Java for High-Performance
Network Computing. ACM SIGPLAN, 1998.

[5] J. Bosch. Design patterns as language constructs. Journal
of Object-Oriented Programming, 11(2):18-32, 1998.

[6] S. Bromling. Meta-programming with parallel design
patterns. Master’s thesis, Dept. of Computing Science,
University of Alberta, 2001.

[7] S. Bromling, S. MacDonald, J. Anvik, J. Schaefer, D.
Szafron, K. Tan, Pattern-based parallel programming,
Proceedings of the International Conference on Parallel
Programming (ICPP'2002), August 2002, Vancouver
Canada, pp. 257-265.

[8] F. Budinsky, M. Finnie, J. Vlissides, and P. Yu. Automatic
code generation from design patterns. IBM Systems
Journal, 35(2):151-171, 1996.

[9] N. Carriero and D. Gelernter. Linda in context. Commun. o f
the ACM, 32(4):444-458, October 1989.

[10] X. Chen and V. H. Allan. MultiJav: a distributed shared
memory system based on multiple Java virtual machines.
Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications
(PDPTA'98), pp. 91-98, 1998.

[11] M. Cole. Algorithmic Skeletons: Structured Management
of Parallel Computation, Pitman/MIT Press, 1989.

[12] L. Dagum and R. Menon. OpenMP: An industry-standard
API for shared-memory programming. IEEE
Computational Science & Engineering, 5(1):46–55,
1998.

[13] A. Eden, Y. Hirshfeld, and A. Yehudai. Towards a
mathematical foundation for design patterns. Technical

13

Report Technical Report 1999-004, Dept. of Information
Technology, University of Uppsala, 1999.

[14] R. Finkel and U. Manber, DIB - A Distributed
Implementation of Backtracking. ACM TOPLAS, April
1987, pp. 235-256.

[15] G. Florijn, M. Meijers, and P. van Winsen. Tool support
for object-oriented patterns. In Proceedings of the 11th
European Conference on Object-Oriented Programming,
volume 1241 of Lecture Notes in Computer Science,
pages 472-495. Springer-Verlag, 1997.

[16] E. Freeman and S. Hupfer, Make room for JavaSpaces, Part
1: Ease the development of distributed apps with
JavaSpaces, http://www.javaworld.com/javaworld/jw-11-1999/jw-
11-jiniology.html

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[18] GigaSpaces Technologies. GigaSpaces cluster white paper,
http://www.gigaspaces.com/download/GSClusterWhitePaper.pdf,
2002.

[19] A. Grimshaw. Easy to use object-oriented parallel
programming with Mentat, IEEE Computer, pp. 39-51,
May, 1993.

[20] R. Johnson and B. Foote. Designing reusable classes.
Journal of Object-Oriented Programming, 1(2):22-35,
1988.

[21] J. Maassen, R. van Nieuwpoort, R. Veldema, H. Bal, T.
Kielmann, C. Jacobs, and R. Hofman. Efficient Java RMI
for parallel programming, Programming Languages and
Systems, 23(6):747-775, 2001.

[22] S. MacDonald. From patterns to frameworks to parallel
programs. Ph.D. thesis, Dept. of Computing Science,
University of Alberta, 2002.

[23] S. MacDonald, J. Anvik, S. Bromling, D. Szafron, J.
Schaeffer and K. Tan. From patterns to frameworks to
parallel programs, Parallel Computing, 28(12);1663-
1683, 2002.

[24] S. MacDonald, D. Szafron, and J. Schaeffer. Object-
oriented pattern-based parallel programming with
automatically generated frameworks. In Proceedings o f
the 5th USENIX Conference on Object-Oriented
Technology and Systems, pp. 29-43, 1999.

[25] S. MacDonald, D. Szafron, J. Schaeffer, J. Anvik, S.
Bromling, and K. Tan. Generative design patterns, 17th
IEEE International Conference on Automated Software
Engineering (ASE), pp. 23-34, 2002.

[26] S. MacDonald, D. Szafron, J. Schaeffer, and S. Bromling.
Generating parallel program frameworks from parallel
design patterns. In Proceedings of the 6th International
Euro-Par Conference, volume 1900 of Lecture Notes in
Computer Science, pp. 95-104. Springer-Verlag, 2000.

[27] M. Massingill, T. Mattson, and B. Sanders. A pattern
language for parallel application programs. Technical
Report CISE TR 99-022, University of Florida, 1999.

[28] ModelMaker Tools. Design patterns in ModelMaker.
http://www.modelmakertools.com/mm_design_patterns.htm.

[29] J. E. Moreira, S.P. Midkiff, M. Gupta, P. V. Artigas, M. Snir,
and R. D. Lawrence, Java programming for high-
performance numerical computing. IBM Systems Journal
39, 2000, pp. 21-56.

[30] J. Newmarch. A Programmer's Guide to Jini Technology.
Apress, November 2000.

[31] M. Philippsen, B. Haumacher, and C. Nester. More efficient
serialization and RMI for Java. Concurrency: Practice
and Experience, 12(7):495-518, May 2000.

[32] J. Reynders, et al. POOMA: A framework for scientific
simulations of parallel architectures, Parallel
Programming in C++, G. Wilson and P. Lu (editors), pp.
547-588, MIT Press, 1996.

[33] J. Schaeffer, D. Szafron, G. Lobe, and I. Parsons. The
Enterprise model for developing distributed applications.
IEEE Parallel & Distributed Technology, 1(3):85–96,
1993.

[34] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, volume 2. Wiley &
Sons, 2000.

[35] H. Shi and J. Schaeffer. Parallel Sorting by Regular
Sampling. Journal of Parallel and Distributed
Computing, 14(4):361-372, 1992.

[36] A. Singh, J. Schaeffer and M. Green. A template-based
approach to the generation of distributed applications
using a network of workstations, IEEE Trans. on Parallel
and Distributed Computing, 2(1):52-67, 1991.

[37] A. Singh, J. Schaeffer, and D. Szafron. Experience with
parallel programming using code templates.
Concurrency: Practice & Experience, 10(2):91–120,
1998.

[38] S. Siu, M. De Simone, D. Goswami, and A. Singh. Design
patterns for parallel programming. Proceedings of the
1996 International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA’96), pp. 230–240, 1996.

[39] M. Snir, S. Otto, S. Hess-Lederman, D. Walker, and J.
Dongarra. MPI: The Complete Reference. MIT Press, 1996.

[40] F. Sommers. Activatable Jini Services, Part 1: Implement
RMI Activation, http://www.javaworld.com/javaworld/jw-09-
2000/jw-0915-jinirmi.html

[41] Sun Microsystems. Java Remote Method Invocation
Specification, JDK 1.1, http://java.sun.com/products/jdk/rmi_ed,
1997.

[42] Sun Microsystems. Jini Architectural Overview, 2001.
http://wwws.sun.com/software/jini/whitepapers/architecture.pdf.

[43] Sun Microsystems. JNI Specification, 2000.
http://java.sun.com/products/jdk/1.2/docs/guide/jni/spec/jniTOC.doc.
html

[44] K. Tan, Pattern-based parallel programming in a
distributed memory environment. Master’s thesis, Dept.
of Computing Science, University of Alberta, 2003.

[45] TogetherSoft Corporation. TogetherSoft ControlCenter
tutorials: Using design patterns.
http://www.togethersoft.com/services/tutorials/index.jsp.

[46] B. Venners. Inside the Java 2 Virtual Machine. McGraw
Hill, 2nd edition, 1999.

[47] M. Welsh and D. Culler. Jaguar: Enabling efficient
communication and I/O in Java. Concurrency: Practice
and Experience, 12(7):519-538, 2000.

[48] B. Wilkinson and M. Allen. Parallel Programming:
Techniques and Applications Using Networked
Workstations and Parallel Computers. Prentice Hall, 1st
edition, 1999.

