
Running the Table: An AI for Computer Billiards

Michael Smith
Department of Computing Science, University of Alberta

Edmonton, Canada T6G 2E8
smith@cs.ualberta.ca

Abstract

Billiards is a game of both strategy and physical skill. To
succeed, a player must be able to select strong shots, and then
execute them accurately and consistently. Several robotic bil-
liards players have recently been developed. These systems
address the task of executing shots on a physical table, but so
far have incorporated little strategic reasoning. They require
AI to select the ‘best’ shot taking into account the accuracy
of the robotics, the noise inherent in the domain, the continu-
ous nature of the search space, the difficulty of the shot, and
the goal of maximizing the chances of winning. This paper
develops and compares several approaches to establishing a
strong AI for billiards. The resulting program, PickPocket,
won the first international computer billiards competition.

Introduction
Billiards refers to a family of games played on a billiards ta-
ble. Players use a cue stick to strike the cue ball into an ob-
ject ball, with the intent to drive the object ball into a pocket.
Common billiards games include 8-ball and snooker.

Billiards games emphasize both strategy and physical
skill. To succeed, a player must be able to select strong
shots, and then execute them accurately and consistently.
Several robotic players have recently been developed, in-
cluding Deep Green (Long et al. 2004) and Yang’s billiard
robot (Cheng & Yang 2004). These systems address the task
of executing shots on a physical table, but so far have incor-
porated little strategic reasoning. To compete beyond a basic
level, they require AI to select the ‘best’ shots.

Three main factors determine the quality of a billiards
shot. First, it must contribute towards the player’s goals.
Most shots sink an object ball, allowing the player to shoot
again and progress towards clearing the table. Safety shots,
giving up the turn but leaving the opponent with few viable
shots, are another strategic option. The many potential ex-
traneous shots that perform neither of these have little value.
Second, the shot’s difficulty is a factor. All else being equal,
shots with a high probability of success are preferred. Fi-
nally, the quality of the resulting table state after the shot is a
factor. A shot that leaves the player well positioned to make
an easy follow-up shot on another object ball is preferred.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Skilled human billiards players make extensive use of po-
sition play. By consistently choosing shots that leave them
well positioned, they minimize the frequency at which they
have to make more challenging, risky shots. Strong players
plan several shots ahead. The best players can frequently
run the table off the break shot. The value of lookahead sug-
gests a search-based solution for a billiards AI. Search has
traditionally proven very effective for games such as chess.
Like chess, billiards is a two-player, turn-based, perfect in-
formation game. Two properties of the billiards domain dis-
tinguish it, however, and make it an interesting challenge.

First, it has a continuous state and action space. A table
state consists of the position of 15 object balls and the cue
ball on a continuous <x,y> coordinate system. Thus, there
are an infinite number of possible table states. This renders
standard game-tree search enhancements inapplicable. Sim-
ilarly, each shot is defined by five continuous parameters,
so there are an infinite number of possible shots available
in any given table state. A set of the most relevant of these
must be selectively generated.

Second, it has a stochastic nature. For a given attempted
shot in a given state, there are an infinite number of possi-
ble outcomes. The player can visualize their intended shot,
but will always miss by a small and effectively random delta
amount. A professional player, trained for accuracy, will
tend to have small deltas, whereas casual players will ex-
hibit larger deltas. Similarly, for a robotic player, deviations
from the intended shot arise from limitations in the accuracy
of the vision and control systems. Ambient environmental
factors such as temperature and humidity can also affect col-
lision dynamics, leading to variance in shot outcomes. This
stochastic element means that a deterministic expansion of
a move when building a search tree, as is done in chess, is
insufficient to capture the range of possible outcomes.

Search has been applied to stochastic games such as
backgammon and scrabble. However, these games are sim-
pler than billiards in that they have a discrete state and ac-
tion space. Search has also been investigated for continuous
real-time strategy (RTS) games (Chung, Buro, & Schaeffer
2005). Billiards is more constrained than these because of
its rigid turn-based structure. Billiards players take turns
shooting, whereas in RTS games players move simultane-
ously. Billiards players also have the benefit of having a
static table state which they can spend time analyzing before



Figure 1: Parameters defining a billiards shot

selecting a shot. In contrast, the environment in an RTS is
constantly changing. As a perfect information, turn-based,
continuous, stochastic game, billiards bridges the complex-
ity gap, bringing together elements of traditional determin-
istic perfect information games like chess, stochastic games
like backgammon, and realtime continuous games.

There is a family of turn-based continuous stochastic
games, which include croquet, lawn bowling, shuffleboard,
and curling. These have not been previously examined from
an AI perspective. The techniques and considerations dis-
cussed here for billiards should carry over to these domains.

Any search-based game-playing program consists of three
main components: a move generator, an evaluation function,
and a search algorithm. In this paper, we discuss the adap-
tation of each of these to a stochastic continuous domain,
and describe our billiards implementation. Two search al-
gorithms are presented: probabilistic search (a special case
of expectimax) and Monte-Carlo sampling search. These
algorithms have offsetting strengths and weaknesses, repre-
senting the classic trade-off between of breadth vs. depth in
search. Experimental results are given showing the strength
of these search algorithms under varying error conditions.

Move Generation
A move generator provides, for a given game state, a set
of moves to consider. For games with a continuous action
space, it is impossible to enumerate all moves; a set of the
most relevant ones must be selectively generated.

In billiards, shots vary in their difficulty. Shots range from
ones players rarely miss, such as tapping in a ball in the
jaws of a pocket, to very challenging, such as a long bank
shot off a far rail. This difficulty is a key property of the
shot itself, and thus must be captured by the move generator.
With every shot generated, it must provide an assessment of
its difficulty. This is needed by both the search algorithm
and the evaluation function.

Every billiards shot is defined by five continuous param-
eters: φ, the aiming angle; V , the cue stick impact velocity;
θ, the cue stick elevation angle; and a and b, the x and y off-
sets of the cue stick impact position from the cue ball centre.
Figure 1 illustrates these parameters.

Shots that accomplish the goal of sinking a given object
ball into a given pocket can be divided into several classes.
In order of increasing difficulty, they are: The straight-in
shot, where the cue ball directly hits the object ball into the

pocket; the bank shot, where the object ball is banked off
a rail into the pocket; the kick shot, where the cue ball is
banked off a rail before hitting the object ball into the pocket;
and the combination shot, where the cue ball first hits a sec-
ondary object ball, which in turn hits the target object ball
into the pocket. These can be combined to arbitrary com-
plexity. Difficulty increases with each additional collision.

Consider a straight-in shot. As a result of billiard ball dy-
namics, φ largely determines the shape of the shot up until
the cue ball’s first collision with the target object ball. This
object ball will have a similar post-collision trajectory re-
gardless of the values of the other parameters. However, the
cue ball’s post-collision trajectory can be altered by varying
V , a, and b, which affect the cue ball’s spin at the time of col-
lision. V at the same time affects the distance travelled by
the cue and object balls. It must be sufficiently large to sink
the desired object ball, while variations above this threshold
determine how far the cue ball travels post-collision. θ is
constrained by having to be large enough that the cue stick
is not in collision with either any object balls on the table
or the rails around the table’s edge. High θ values impart
curvature on the cue ball’s initial trajectory.

PickPocket generates shots one class at a time, starting
with straight-in shots. For every legal object ball, for ev-
ery pocket, a straight-in shot sinking that object ball in that
pocket is considered. Sometimes this shot is not physically
possible. When the shot is possible, φ is chosen such that the
object ball is aimed at the exact centre of the pocket. V is
retrieved from a precomputed table of minimum velocities
necessary to get the object ball to the pocket. θ is set to a
minimum physically possible value. a and b are set to zero.

This generates one shot sinking the target ball in the tar-
get pocket. An infinite set of these could be generated by
varying the shot parameters, especially V , a, and b, such
that the altered shot still sinks the target ball in the target
pocket. Each variation on the shot leaves the table in a dif-
ferent follow-up state. For position play, it is important to
generate a set of shots that captures the range of possible
follow-up states. PickPocket discretely varies V , a, and b
to generate additional shots. For example, V is increased in
1m/s increments up to the maximum 4.5m/s.

If straight-in shots are found, move generation is com-
plete. If not, PickPocket falls back on the other shot classes
in order of increasing complexity until shots are found.

Shot Difficulty
To model shot outcomes, the poolfiz physics simulator
(Leckie & Greenspan 2005) is used. Given an initial state
and a set of shot parameters, poolfiz applies dynamics equa-
tions to find the resulting state. Under simulation, the result
of a particular shot is deterministic. To capture the inaccura-
cies inherent in playing on a physical table, an error model
is applied. This randomly perturbs the shot parameters be-
fore they are input to the simulator, resulting in a slightly
different shot every time. The error model is described later.

The difficulty of a straight-in shot is a function of several
parameters. A subset of these depend entirely on the posi-
tion of the object ball and cue ball, independent of the rest
of the table state. These are: the cut angle α, the object



Figure 2: Shot difficulty parameters

ball-pocket distance d1, the cue-object ball distance d2, and
object ball-pocket angle β (Figure 2). α and d2 are calcu-
lated relative to a ghost ball, representing the position of the
cue ball when it impacts the object ball. The function is also
different between shots into corner and side pockets, due to
differing interactions between the object ball and rails.

In previous work, fuzzy (Chua et al. 2002) and grey (Lin
& Yang 2004) logic have been used to approximate this
function. PickPocket uses a different approach, taking ad-
vantage of the poolfiz simulator to capture the shot difficulty
function in a table. The table is filled with accurate approxi-
mations of absolute probability values. Previous techniques
generated arbitrary, relative values.

PickPocket precomputes a table to capture the difficulty
function, as the calculation is too costly to perform for each
shot generated at runtime. The shot difficulty parameters are
discretized and sampling is used to fill each table entry. For
each set of parameter values {α, d1, d2, β}, a table state and
shot are generated. The shot is simulated s times in poolfiz,
and the percentage of these that the ball is successfully pock-
eted is recorded in the table. PickPocket uses s = 200. At
runtime, a table lookup for each generated shot provides a
quick estimate of its probability of success.

In a game situation, the actual probability of success of a
shot depends on dynamic factors that cannot be captured in
this lookup table. Other object balls on the table can inter-
fere with the shot when they are near the intended trajecto-
ries of the object and cue ball. The exact value of the five
shot parameters also has a small effect on success chances.

The granularity of the discretization used for the table has
an impact on its accuracy, as well as its memory footprint
and computation time. Thus it must be chosen with these
factors in mind. PickPocket builds 30×30×30×30 tables.

Bank, kick, and combination shots have too many param-
eters to construct a success probability table of manageable
size. For each collision there is an additional distance and
angle parameter. To assign a probability value to these shots,
each one is mapped to a corresponding straight-in shot. A
discount factor is applied to the straight-in probability to ac-
count for the additional complexity of the shot class.

Safety Shots
With a safety shot the goal is not to sink a ball, but rather
to leave the opponent with no viable shots. Ideally the op-

ponent will then give up ball-in-hand,1 leaving the player
in a strong situation. Unlike the previously discussed shot
classes, there is no way to generate a safety directly from
parameters. What makes a good safety is wholly dependent
on the table state. The goal is abstract (leave the table in a
‘safe state’) rather than concrete (sink ball x in pocket y).

One way to account for the entire table state is the use of
sampling. For safety shots, a wide range of φ and V values
are sampled, leaving θ, a, and b alone to make the sampling
space manageable. For each set of φ and V , a shot with these
parameters is sampled i times, evaluating the resulting state
from the opponent’s perspective. The overall value of this
shot is then the average of these evaluations.

Since sampling is a costly operation, if safeties were gen-
erated per-node then the cost of searching would quickly be-
come excessive. To get around this, safety shots are only
considered at the root. Sampling as a one-time cost has a
relatively minor impact on performance. At the root, if the
best shot from the search has an estimated success probabil-
ity below a threshold t0, safety shots are generated. If the
value for the opponent of the best safety is below another
threshold t1, this shot is selected instead of the search result
shot. The thresholds t0 and t1 can be adjusted to alter the
program’s safety strategy. PickPocket uses t0 = 65% and
t1 = 0.5 (evaluation values range from 0 to 1.48).

Evaluation Function
An evaluation function generates, for a game state, a value
corresponding to the worth of that state for the player to
act. In search, the evaluation function is applied to the game
states at the leaf nodes, and the generated values are propa-
gated up the tree.

In PickPocket’s billiards evaluation function, the domi-
nant term is related to the number and quality of the shots
available to the player. This is similar to the mobility term
used in games like chess, extended to account for the uncer-
tainty of the stochastic domain. Intuitively, the more high
success probability shots available to the player, the more
ways he can clear the table without giving up the turn. Even
if there is no easy path to clearing the table, the more good
options the player has, the greater the chances are that one
of them will leave the table in a more favourable state. Sim-
ilarly, the higher the probability of success of the available
shots, the more likely the player is to successfully execute
one and continue shooting. Unintentionally giving up the
shot is one of the worst outcomes in all billiards games.

To implement this term, the move generator is used to
generate shots for the state being evaluated. These shots are
sorted by their probability estimates, highest first. Duplicate
shots for the same ball on the same pocket are eliminated,
as these all have the same estimate. The first n shots are
considered, and the function d1p1+d2p2+d3p3+ ...+dnpn

is applied. dn is the discount factor for the nth shot and pn is
the estimated probability for the nth shot. Values are chosen
for each dn such that they decrease as n increases.

The discount factor is applied to account for diminish-
ing returns of adding additional shots. Consider two situa-

1When a player fails to execute a legal shot, his opponent gets
ball-in-hand, and may place the cue ball anywhere on the table.



tions for a state: three shots with 90%, 10%, 10% success
chances, and three shots with 70%, 70%, and 70% chances.
These are of roughly equal value to the player, as the for-
mer has an easy best shot, whereas the latter has several de-
cent shots with more options for position play. With equal
weighting, however, the second would evaluate to nearly
twice the value of the first state. Applying a discount factor
for shots beyond the first maintains a sensible ordering of
evaluations. PickPocket uses n = 3, d1 = 1.0, d2 = 0.33,
and d3 = 0.15. These weights have been set manually, and
could benefit from tuning by machine learning.

Search Algorithms
A search algorithm defines how moves at a node are ex-
panded and how their resulting values are propagated up the
resulting search tree. For traditional games like chess, αβ
is the standard algorithm. For stochastic games, the search
algorithm must also account for inherent randomness in the
availability or outcome of actions. In billiards, players can-
not execute their intended shots perfectly. The outcome of
a given shot varies, effectively randomly, based on the ac-
curacy of the shooter. For any stochastic game, the search
algorithm should choose the action that has the highest ex-
pectation over the range of possible outcomes.

When searching billiards, a physics simulation is used to
expand the shots available at a node to the next ply. The
per-node overhead of simulation reduces the maximum tree
size that can be searched in a fixed time period. Whereas
top chess programs can search millions of nodes per second,
PickPocket searches hundreds of nodes per second.

Expectimax, and its *-Minimax optimizations, are natural
candidates for searching stochastic domains (Hauk 2004).
In expectimax, chance nodes represent points in the search
where the outcome is non-deterministic. The value of a
chance node is the sum of all possible outcomes, each
weighted by its probability of occuring. This approach does
not apply directly to billiards, as there is a continuous range
of possible outcomes for any given shot. The chance node
would be a sum over an infinite number of outcomes, each
with a miniscule probability of occuring. To practically ap-
ply expectimax, similar shot results have to be abstracted
into a finite set of states capturing the range of plausible out-
comes. In general, abstracting billiards states in this way is
a challenging unsolved problem.

A simple abstraction that can be made, however, is the
classification of every shot as either a success or failure. Ei-
ther the target object ball is legally pocketed and the current
player continues shooting, or not. From the move gener-
ator, ps, an estimate of the probability of success, is pro-
vided for every generated shot. Expectimax-like trees can
be constructed for billiards, where every shot corresponds to
a chance node. Successful shots are expanded by simulation
without applying the error model. For a shot to succeed, the
deviation from the intended shot must be sufficiently small
for the target ball to be pocketed, so the outcome table state
under noisy execution should be similar to the outcome un-
der perfect execution. For unsuccessful shots, there is no sin-
gle typical resulting state. The deviation was large enough
that the shot failed, so the table could be in any state after

float Prob_Search(TableState state, int depth){
if(depth == 0) return Evaluate(state);
shots[] = Move_Generator(state);
bestScore = -1; TableState nextState;
foreach(shots[i]){

nextState = Simulate(shots[i], state);
if(!ShotSuccess()) continue;
score = shots[i].probabilityEstimate

* Prob_Search(nextState, depth - 1);
if(score > bestScore) bestScore = score;

}
return bestScore;

}

Figure 3: Probabilistic search algorithm

the shot. To make search practical, the value of a failed shot
is set to zero. This avoids the need to generate a set of fail-
ure states to continue searching from. It also captures the
negative value to the player of missing their shot.

Probabilistic search, an expectimax-based algorithm suit-
able for billiards is shown in Figure 3. It has a depth
parameter, limiting how far ahead the player searches.
Simulate() calls the physics library to expand the shot,
without perturbing the requested shot parameters according
to the error model. ShotSuccess() checks whether the
preceding shot was successful in pocketing a ball.

There are three main drawbacks to this probabilistic
search. First, the probability estimate provided by the move
generator will not always be accurate, as discussed earlier.
Second, not all successes and failures are equal. The range
of possible outcomes within these two results is not cap-
tured. Some successes may leave the cue ball well po-
sitioned for a follow-up shot, while others may leave the
player with no easy shots. Some failures may leave the op-
ponent in a good position to run the table, whereas some
may leave the opponent with no shots and likely to give up
ball-in-hand. Third, as the search depth increases, the rel-
evance of the evaluation made at the leaf nodes decreases.
Expansion is always done on the intended shot with no er-
ror. In practice, error is introduced with every shot that is
taken. Over several ply, this error can compound to make
the table state substantially different from one with no error.
The player skill determines the magnitude of this effect.

Sampling is a second approach to searching stochastic do-
mains. A Monte-Carlo sampling is a randomly determined
set of instances over a range of possibilities. Their values are
then averaged to provide an approximation of the value of
the entire range. Monte-Carlo techniques have been applied
to card games including bridge and poker, as well as go. The
number of deals in card games and moves from a go position
are too large to search exhaustively, so instances are sam-
pled. This makes the vastness of these domains tractable.
This suggests sampling is a good candidate for billiards.

In PickPocket, sampling is done over the range of possi-
ble shot outcomes. At each node, for each generated shot,
a set of num samples instances of that shot are randomly
perturbed by the error model, and then simulated. Each
of the num samples resulting table states becomes a child
node. The score of the original shot is then the average of the
scores of its child nodes. This sampling captures the breadth



float MC_Search(TableState state, int depth){
if(depth == 0) return Evaluate(state);
shots[] = Move_Generator(state); bestScore = -1;
TableState nextState; Shot thisShot;
foreach(shots[i]){

sum = 0;
for(j = 1 to num_samples){

thisShot = PerturbShot(shots[i]);
nextState = Simulate(thisShot, state);
if(!ShotSuccess()) continue;
sum += MC_Search(nextState, depth - 1);

}
score = sum / num_samples;
if(score > bestScore) bestScore = score;

}
return bestScore;

}

Figure 4: Monte-Carlo search algorithm

of possible shot outcomes. There will be some instances of
successes with good cue ball position, some of successes
with poor position, some of misses leaving the opponent
with good position, and some of misses leaving the oppo-
nent in a poor position. Each instance will have a different
score, based on its strength for the player. Thus when these
are averaged, the distribution of outcomes will determine the
overall score for the shot. The larger num samples is, the
better the actual underlying distribution of shot outcomes is
approximated. However, tree size grows exponentially with
num samples. This results in searches beyond 2-ply being
intractable for reasonable values of num samples.

Figure 4 shows pseudo-code for the Monte-Carlo ap-
proach. PerturbShot() randomly perturbs the shot pa-
rameters according to the error model.

Generally, Monte-Carlo search is strong where proba-
bilistic search is weak, and vice versa. Monte-Carlo search
better captures the range of possible outcomes of shots, but
is limited in search depth. Probabilistic search generates
smaller trees, and therefore can search deeper, at the expense
of being susceptible to error.

Both probabilistic and Monte-Carlo search algorithms can
be optimized with αβ-like cutoffs. By applying move or-
dering, sorting the shots generated by their probability esti-
mate, likely better shots will be searched first. Cutoffs can
be found for subsequent shots whose score provably cannot
exceed that of a shot already searched.

Experiments
Although the results of shots on a physical table are stochas-
tic, simulator results are deterministic. To capture the range
of shot results on a physical table, a random element is
introduced into the simulation. In poolfiz, error is mod-
eled by perturbing each of the five input shot parameters
by zero-mean gaussian noise. A set of standard deviations
{σφ, σθ, σV , σa, σb} corresponding to the noisiness of the
five parameters is specified. These σ values can be chosen
with the properties of the player being simulated in mind.
For a robot, σ values can be approximated experimentally.

PickPocket plays 8-ball, the game selected for the first
computational billiards tournament. In 8-ball, each player is
assigned a set of seven object balls: either solids or stripes.
To win, the player must pocket their entire set, followed by

Ehigh Elow

Match W SIS SS W SIS SS

Greedy 13 246/451=55% 25/36 14 230/313=73% 27/77
Prob 37 308/496=62% 25/40 36 313/349=90% 42/112

Greedy 2 187/350=53% 25/32 0 77/115=70% 4/28
MC 48 326/481=68% 9/16 50 350/374=94% 4/17

Prob 12 205/319=64% 10/21 5 147/176=84% 9/24
MC 38 306/414=74% 9/14 45 334/360=93% 12/39

Table 1: Comparison of search algorithms

the 8-ball. If a player’s shot pockets the 8-ball prematurely,
they suffer an automatic loss. Players must call their shots
by specifying which object ball they intend to sink in which
pocket. A player continues shooting until they fail to legally
pocket a called object ball, or until they declare a safety shot.

Other requirements for building an 8-ball AI are choos-
ing a break shot and handling ball-in-hand situations. Pick-
Pocket has additional routines to handle these tasks.

Experiments were constructed to compare the search al-
gorithms used by PickPocket. A tournament was played be-
tween the following versions of the program:
• Greedy: This baseline algorithm runs the shot generator

for the table state, and executes the shot with the high-
est probability estimate. No search is performed. Greedy
algorithms are used to select shots in both (Chua et al.
2002) and (Lin & Yang 2004).

• Prob: The 4-ply probabilistic search algorithm.
• MC: The Monte-Carlo search algorithm with

num samples = 15, searching to 2-ply depth.
Prob and MC parameters were chosen such that a decision
was made for each shot within 60 seconds. This is a typical
speed for time-limited tournament games.

To compare purely search algorithms, other factors in-
fluencing performance were simplified. The move genera-
tor was set to generate only straight-in shots. Bank, kick,
and combination shots were disabled. These occur rarely
in game situations; usually there are straight-in shots avail-
able. Safety thresholds were set at t0 = 0% and t1 = 1.48,
so safeties were played only when no other shots could be
generated.

Fifty games were played between each pair of algorithms,
under two different error models. The first, Ehigh, has
parameters {0.185, 0.03, 0.085, 0.8, 0.8}. This models a
strong amateur, who can consistently pocket short, easy
shots, but often misses longer shots. The second, Elow, has
parameters {0.0185, 0.003, 0.0085, 0.08, 0.08}. This was
chosen to model a highly accurate professional player.

Table 1 shows the tournament results. As well as wins
(W) for each match, the breakdown of players’ attempted
shots is given. SIS is the ratio of successful to attempted
straight-in shots. A successful straight-in shot sinks the
called object ball; the player continues shooting. SS is the
ratio of successful to attempted safety shots. A successful
safety is one where the opponent fails to pocket an object
ball on their next shot, thus the player gets to shoot again. In
this tournament, every shot is either a straight-in attempt, a
safety attempt, or a break shot to begin a new game.



Both search algorithms defeated Greedy convincingly.
This demonstrates the value of lookahead in billiards.
Greedy selects the easiest shot in a state, without regard for
the resulting table position after the shot. The search al-
gorithms balance ease of execution of the current shot with
potential for future shots. Thus, they are more likely to have
easy follow up shots. This wins games.

Under each error model, the algorithms vary in their per-
centage of completed straight-in attempts. This highlights
the differences in position play strength between the algo-
rithms. Since the same error model applies to all algorithms,
they would all have the same straight-in completion percent-
age if they were seeing table states of equal average qual-
ity. Lower completion rates correspond to weaker position
play, which leaves the algorithm in states that have a more
challenging ‘best’ shot on average. Completion rates con-
sistently increased from Greedy to Prob to MC.

Under Ehigh, the games tended to be longer, as the lower
accuracy led to more missed shots. Under Elow, matches
completed faster with fewer misses. The change in straight-
in completion rate for a given algorithm between the two er-
ror models represents this change in accuracy. Winning pro-
grams take more shots than losing programs, as they pocket
balls in longer consecutive sequences.

In 8-ball, since a player may aim at any of his assigned
solids or stripes, there are usually straight-in shots available.
Safeties, attempted when no straight-in shots could be gen-
erated, totalled roughly 10% of all shots in the tournament.
Therefore at least one straight-in shot was found in 90% of
positions encountered. This demonstrates the rarity of op-
portunities for bank, kick, and combination shots in practice,
as they would be generated only when no straight-in shots
are available. Even then, safety shots would often be cho-
sen as a better option. Safeties were effective under Ehigh,
frequently returning the turn to the player. They were much
less effective under Elow, as the increased shot accuracy led
to there being fewer states from which the opponent had no
good straight-in shots available.

MC is clearly the stronger of the search algorithms. Un-
der both error models, it defeated Greedy by a wider margin
than Prob, and then defeated Prob convincingly in turn. This
suggests that the value of sampling and taking into account
the range of possible shot outcomes outweighs the benefit of
deeper search under a wide range of error models.

The num samples used for MC search, and the search
depth selected for both MC and Prob, contribute to their per-
formance. While they were held fixed for these experiments,
varying them has been seen to impact results. 2-ply search
performs better than 1-ply search. There is diminishing re-
turns for each additional ply of depth added for Prob. For
MC, larger values of num samples improve performance,
but are also subject to diminishing returns.

Computer Olympiad 10
PickPocket won the first international computational 8-ball
tournament at the 10th Computer Olympiad (Greenspan
2005). Games were run over a poolfiz server, using the
Ehigh error model detailed above. PickPocket used the
Monte Carlo search algorithm for this tournament.

Rank Program 1 2 3 4 Total Score

1 PickPocket - 64 67 69 200
2 Pool Master 49 - 72 65 186
3 Elix 53 54 - 71 178
4 SkyNet 53 65 55 - 173

Table 2: 8-Ball competition results

The tournament was held in a round-robin format, each
pair of programs playing an eight game match. Ten points
were awarded for each game won, with the losing program
receiving points equal to the number of its assigned solids
or stripes it successfully pocketed. PickPocket scored more
points than its opponent in all three of its matches. The re-
sults of the tournament are shown in Table 2.

Conclusions
This paper described PickPocket, an adaption of game
search techniques to the continuous, stochastic domain of
billiards. Its approach to move generation and its evaluation
function were described. The technique of estimating shot
difficulties via a lookup table was introduced. Two search
algorithms for billiards were detailed.

A man-machine competition between a human player and
a billiards robot will soon occur. This research goes a long
way towards building an AI capable of competing strategi-
cally with strong human billiards players.

Acknowledgments
Thanks to Michael Greenspan, Will Leckie, and Jonathan
Schaeffer for their support and feedback. Financial support
for this research was provided by NSERC and iCORE.

References
Cheng, Bo-Ru; Li, J.-T., and Yang, J.-S. 2004. Design
of the neural-fuzzy compensator for a billiard robot. In
Networking, Sensing, and Control, volume 2, 909–913.
Chua, S., et al. 2002. Decision algorithm for pool using
fuzzy system. In Artificial Intelligence in Engineering &
Technology, 370–375.
Chung, M.; Buro, M., and Schaeffer, J. 2005. Monte carlo
search for real-time strategy games. In IEEE Symposium
on Computational Intelligence and Games, 117–124.
Greenspan, M. 2005. UofA Wins the Pool Tournament.
ICGA Journal 28(3):191–193.
Hauk, T. 2004. Search in Trees with Chance Nodes. Mas-
ter’s thesis, University of Alberta.
Leckie, W., and Greenspan, M. 2005. An event-based
pool physics simulator. In Proc. of Advances in Computer
Games 11. To appear.
Lin, Z.M.; Yang, J., and Yang, C. 2004. Grey decision-
making for a billiard robot. In Systems, Man, and Cyber-
netics, volume 6, 5350–5355.
Long, F., et al. 2004. Robotic pool: An experiment in
automatic potting. In IROS’04, volume 3, 2520–2525.


