
From Patterns to Frameworks to Parallel Programs

S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer, D. Szafron,
K. Tan

Department of Computing Science, University of Alberta, Edmonton, Alberta, CANADA

Abstract

Object–oriented programming, design patterns, and frameworks are abstraction techniques
that have been used to reduce the complexity of sequential programming. This paper de-
scribes our approach of applying these three techniques to the more difficult parallel pro-
gramming domain. The Parallel Design Patterns (PDP) process, the basis of the CO2P3S
parallel programming system, combines these techniques in a layered development model.
The result is a new approach to parallel programming that addresses correctness and open-
ness in a unique way. At the topmost development layer, a customized framework is gen-
erated from a design pattern specification of the parallel structure of the program. This
framework encapsulates all of the structural details of the pattern, including communi-
cation and synchronization, to prevent programmer errors and ensure correctness. Lower
layers are used only for performance tuning to make the code as efficient as necessary. This
paper describes CO2P3S, based on the PDP process, and demonstrates it using an example
application. We also provide results from a usability study of CO2P3S with real users.

Key words: Parallel programming systems. Design patterns. Object–oriented frameworks.

1 Introduction

Parallel programming offers the potential for substantial performance improve-
ments to computationally–intensive problems found in fields such as computational
biology, physics, chemistry and computer graphics. Solutions to these problems
can take hours, days, or even weeks of processing time. However, to realize the
potential, expert programmers must design highly concurrent algorithms that can
execute on massively parallel computer systems. They must then implement these
algorithms correctly and efficiently. This is a difficult and error–prone task that can
benefit from the use of sophisticated parallel programming systems.

The solutions to many computationally intensive problems exhibit a degree of com-
monality that can be exploited. By extracting the common communication and syn-
chronization patterns from these parallel solutions, we can build abstractions that

Preprint submitted to Elsevier Science 8 May 2002



capture the expertise needed to write parallel programs. This idea is well known in
sequential programming where such abstractions are calleddesign patterns[8].

Even in the parallel domain, the idea of pattern abstraction is not new. For instance,
a frequently recurring parallel solution is a grid or mesh [5,7]. A Mesh design
pattern captures the experience of creating parallel programs for connected data
elements, where each element iteratively computes a new value based on a com-
bination of values in its immediate neighborhood. The elements are grouped into
partitions, which are assigned to different processors and computed concurrently.
Communication is required to exchange partition boundaries, which are needed to
compute values for elements on the edge of a partition. Synchronization is needed
to ensure that new values are computed with correct values. This basic strategy is
common to all mesh algorithms and can be abstracted into a design pattern.

The Mesh pattern can be used to parallelize many finite element computations and
image processing algorithms. Other parallel design patterns cover other problems
that have traditionally been solved using task parallel, data parallel, or custom syn-
chronization structures. However, design patterns capture design expertise at an ab-
stract level. Patterns are applicable to different problem domains, each with differ-
ent characteristics and concerns. A pattern is thus a family of solutions to a problem
and must be adapted for each use. Once the programmer elects to use a pattern in
a design, most of the basic structure of the program can be inferred. What happens
next? Traditionally, the tedious process of implementing that pattern ensues. Some-
times old code is used to make the coding go faster. Unfortunately, old code is a
combination of application–independent pattern structure and application–specific
operations. The former code must be identified and extracted. Then the structure
must be modified for its new use. This process can be time–consuming and error–
prone because it can be difficult to recognize the application–independent code.

Fortunately, we can learn a valuable lesson about efficient code re–use fromframe-
works in sequential object–oriented programming [10,8]. A typical framework is
a set of classes that implement the application–independent structure of a specific
kind of program. This structural code defines the classes in the application and
the flow of control between operations on the objects. This structure is written
in terms ofhook methodsthat are called when application–specific operations are
needed. The hook method bodies are supplied by subclassing framework classes
and overriding the methods. Using this style of programming, the design and im-
plementation of the framework is used to write many different programs, reducing
the effort needed to build applications [10]. Equally important are the organiza-
tional benefits of a framework. The application–independent structure is separate
from the application–specific code and is never modified directly. This separation
allows the user to concentrate on their application. It also reduces the probability of
user error since the structure is not “contaminated” with application–specific code.
It is important to recognize the difference between a framework and a library. With
a library, the programmer writes the application structure and the library provides

2



application–independent utility routines. In contrast, a framework supplies the ap-
plication structure and the programmer writes application–specific utility routines.

In this paper, we combine design patterns and frameworks in the parallel program-
ming domain. In our approach, the user selects patterns for the program structure
and a parallel programming system generates correct framework code. This code
includes communication and synchronization. The hook methods are sequential
code focused on solving the problem and not on the parallel structure. However, a
pattern must still be adapted for its use. For this, we usedesign pattern templates,
parameterized constructs based on design patterns. The parameters refine the pat-
tern structure and guide the code generator. The resulting framework is specific to
the parameters, improving its performance. pattern–based approach addresses cor-
rectness. Generating correct code for a parallel design pattern saves the user from
writing and debugging this code, simplifying the creation of a parallel application.

Unfortunately, this pattern–based development model may not be sufficient to cre-
ate high performance programs. The generated code may incur overhead that can
be removed for a given program. Tuning the performance of a program requires
that the programming system beopen, allowing access to low–level features [23].
To address these concerns, we also include programming layers in our develop-
ment model. The topmost layer supports pattern–based programming as described
above. Lower layers gradually expose the generated code for performance tuning.

This combination of design patterns, frameworks, and layers forms the basis of the
Parallel Design Patterns (PDP) process. This process is the philosophy underlying
a new parallel programming system, CO2P3S (Correct Object–Oriented Pattern–
based Parallel Programming System, pronounced “cops”) [13–15]. As well as im-
plementing the PDP process, CO2P3S provides tool support for program develop-
ment with frameworks that enforces correctness. To demonstrate both the process
and CO2P3S, we walk through the creation of an application. As well, we briefly
discuss MetaCO2P3S, which introduces tool support for creating new pattern tem-
plates. We also present results from a study assessing the usability of the system.

2 The PDP Process for Pattern–based Parallel Programming

This section describes the PDP process, a pattern–based approach to parallel pro-
gramming. It is based on a layered model that provides three distinct abstractions:
the Patterns Layer, the Intermediate Code Layer, and the Native Code Layer. The
Patterns Layer promotes correct parallel programming by generating frameworks
for a set of supported patterns, and hiding the structure from the programmer. The
Intermediate Code Layer and the Native Code Layer gradually expose the details
of the frameworks. The framework can then be tuned to remove performance bot-
tlenecks or modified to implement a pattern variation.

3



The process has five steps. The first three are required and the last two are optional:

(1) Identify one or more parallel design patterns that can contribute to a solution
and pick the corresponding design pattern templates.

(2) Provide application–specific parameters for the design pattern templates to
generate collaborating framework code for the selected pattern templates.

(3) Provide application–specific sequential hook methods and other non–parallel
code to build a parallel application. The Patterns Layer is now complete.

(4) Monitor the parallel performance of the application and if it is not satisfactory,
inspect the generated parallel–structure code at the Intermediate Code Layer.
This code contains high–level synchronization and communication primitives.
Remove primitives that are not necessary in the specific application or modify
the location and parameters of the primitives to improve performance.

(5) Re–monitor the parallel performance of the application and if it is still not
acceptable, modify the implementation of these primitives for your specialized
target architecture at the Native Code Layer.

We illustrate the PDP process and the application architecture by using an example
problem solved with a Mesh design pattern. The process is illustrated using our
programming environment called CO2P3S which generates shared memory Java
code. CO2P3S should be viewed as an example of the process. Other environments
can be created that support different programming languages, different patterns, or
require different pattern template parameters and hook methods. This paper focuses
on steps two and three in the process and only briefly describes the other steps.

2.1 Selecting a Design Pattern

A parallel design pattern is the encapsulation of a strategy for solving a problem us-
ing a familiar parallel communication strategy. Given a palette of design patterns,
the programmer must select the appropriate patterns for their application. We do
not address this selection process. It is possible for programmers to select a pattern
template that is inappropriate for the problem. However, there are several method-
ologies for finding the best parallel structure for an application [5,7,16].

For clarity, we have chosen an example problem that can be solved with a single
pattern. It is often the case that several patterns must be combined in a solution. Re-
gardless, the patterns must be documented to facilitate the pattern selection process.
We enhanced the standard pattern description in [8] to include parallel aspects.

Consider a reaction–diffusion simulation of chemicals, calledmorphogens, over
a two–dimensional surface [30]. The simulation results can be used to produce a
zebra stripe texture. We would like to tile this texture over a large surface with-
out discernible edges. The simulation uses two morphogens, starting with random
concentrations and the correct reaction and diffusion parameters. This problem is

4



similar to solving two interacting Laplace equations. We solve it using convolution.

The first step of our process is to pick a design pattern for solving the problem. We
can consider the Mesh design pattern. Specifically, we consider a Two-Dimensional
Regular Mesh pattern. For the rest of this paper, the Mesh pattern refers to this
pattern, and we will use mesh computation to refer to this particular computation.

The Mesh design pattern supports computations on data in a rectangular data struc-
ture, where each element computes its new value using its current value and values
from the elements around it. This computation is executed iteratively, usually until
the elements converge to a solution. Mesh computations are parallelized by splitting
the data into partitions and assigning each to a different processor. However, the
partitions contain a data dependency, as the elements on the edge of one partition
require elements from adjacent partitions to compute new values. This dependency
defines the synchronization and communication structure of a parallel mesh.

Within this pattern, there are several options to consider. These options affect the
implementation of the Mesh pattern. For example, a mesh can use synchronous or
asynchronous Jacobi iteration. Another option is how to handle the edges of the
data, or the meshtopology. The edges may wrap in one or more directions.

The reaction–diffusion example computes new values using finite differences, de-
termining the change in concentration values in the morphogens based on the con-
centrations at neighboring cells. The problem uses synchronous Jacobi iteration to
iteratively compute the new values until the morphogen concentrations converge, as
the problem specification indicates the values from the previous iteration be used.
To generate a texture that can be tiled, the morphogens diffuse around the edges in
both the horizontal and vertical directions. The Mesh pattern is appropriate for this
problem, so we select the Two–Dimensional Regular Mesh design pattern template.

2.2 From Design Patterns to Pattern Templates

To incorporate the idea of patterns as families of solutions, we introduce a new
concept called adesign pattern template. This template represents the basic struc-
ture of the pattern but includes parameters to specialize this structure to include
common alternatives. Thus, pattern templates are a parametrically related family
of solutions, much like the patterns they are based upon. Using a template, a pro-
grammer can select the pattern structure that best matches their application. For
example, the parameters for a Two–Dimensional Regular Mesh template include
the topology, the number of neighboring elements, and the synchronization level.

We inspect the documentation of the Mesh design pattern template to see what
template parameters we must provide. In CO2P3S , there are five parameters:

5



Fig. 1. The reaction–diffusion example in CO2P3S, with the Mesh pattern template.

(1) The name of the class representing the mesh. We useRDMesh in our example.
(2) The class name for the elements that populate the two–dimensional data struc-

ture. We useMorphogenPair, a class that holds a pair of morphogens for
each cell on the surface. This class has no application–specific superclass.

(3) The topology of the mesh. This application uses a fully–toroidal mesh to allow
the morphogens to diffuse around the edges of the surface. The resulting tex-
ture can be tiled on a larger display without any noticeable edges. The template
also supports non–toroidal, horizontal–toroidal, and vertical–toroidal meshes.

(4) The pattern of neighboring elements that each element uses to compute a new
value. In this program, the morphogens diffuse up–and–down and side–to–
side, so we use a four–point mesh. An eight–point mesh is another option.

(5) The synchronization level: whether the iterations are synchronous or asyn-
chronous. With synchronous iteration, each element waits for its neighbors to
finish computing their current values before computing the next value. With
asynchronous iteration, each element computes its next value as quickly as it
can. This problem uses synchronous iteration.

Figure 1 shows an example of how the template parameters for the reaction–
diffusion program might be selected and specified in a programming environment.
It is a screenshot of the CO2P3S user interface showing a Mesh pattern template.

When designing pattern templates, we must balance usefulness against generality.
We can add more parameters to a template to provide a larger number of alternative
structures. However, a larger number of parameters can make the specification of
a template more complicated. On the other hand, fewer parameters may mean that
either some aspects of the basic structure cannot be specified using the template,
or that the generated code is so general that it is inefficient. Striking this balance
requires us to consider the alternatives on a pattern–by–pattern basis. Consider the
parameters in the Mesh template as an example. The topology and neighbor param-
eters have the greatest effect on the generated framework code.

Consider the mesh topology parameter. Ultimately, a mesh computation requires

6



each element to update itself based on the values of its neighbors. This computa-
tion is performed by a sequential hook method that is automatically generated from
the pattern template and implemented by the user. Its method header is of the form:

void operate(MeshElem right, MeshElem left,
MeshElem up, MeshElem down);

However, if a mesh element is on a boundary it has fewer neighbors. There are
two solutions to this problem. The first is to require the user to implement this sin-
gle method by checking the location of the element and computing its value with
the available neighbors. A better solution is to generate different methods for each
boundary condition, with appropriate arguments. The framework invokes the cor-
rect method with the proper neighbors for each mesh element. This is an example of
error–reduction due to code generation that is discussed later. In general, there are
nine possible location–dependent methods, listed in [13]. However, only a subset
of these are applicable for a given topology. For example, a fully–toroidal mesh has
no edges or corners. The generated mesh element class only includes stubs for the
operations that are needed. Generating methods that are not used inflates code size
and can be confusing to a user who sees hook methods that are not called. This is a
good example of how the template parameters guide the code generation process.

Now consider the neighbor parameter for the mesh. This parameter determines the
arguments for the generated operation methods. A four–point mesh considers the
elements at the compass points, where an eight–point mesh also includes diagonal
elements. Without this mesh parameter, a choice would have to be made to always
generate four or eight argument methods. Using four arguments reduces generality.
Using eight arguments adds memory accesses if only four arguments are needed.
Once again, parameterized pattern templates provide a solution to this problem.

2.3 From Pattern Templates to Frameworks: The Patterns Layer

Each design pattern template represents a parametrically related family of pattern
implementations. After the user specifies the template parameters, a code generator
produces a framework for the pattern and its parameters. This framework consists
of abstract classes implementing the pattern structure, including concurrency, syn-
chronization, and communication. The user does not need to modify this code.

The PDP process is independent of programming language and parallel architec-
ture. CO2P3S, one implementation of this process, generates multithreaded Java
framework code for shared memory multiprocessor systems. Some of our current
research is aimed at creating distributed memory pattern templates.

A set of concrete classes is also generated. The sequential hook methods in these
concrete classes are invoked by the parallel structure code at the appropriate time.
In step three of the PDP process, the programmer must implement these sequen-

7



tial hook methods to implement the application. In addition, the programmer must
provide code to create the appropriate application objects, to start the parallel com-
putation and (possibly) to gather the results of the parallel computation. The gener-
ated framework code, together with the hook method code, the initialization code
and the result–gathering code are called thePatterns Layer Code.

Note that the generated frameworks are not targeted at a particular problem domain.
The frameworks provide code implementing the specific pattern indicated by the
template parameters so that programs from different domains can be implemented.

An alternative to generating a new framework for each design pattern template in-
stance is to create a single framework that the user can instantiate for each use in
a program. However, there are several benefits to generating code for each pattern
template instance. One benefit is that the framework can be customized for the se-
lected structure. This can improve performance by reducing indirection in the code,
which would be necessary to accommodate structural variations of the pattern in a
generic implementation. Another benefit is that it is difficult to incorporate pattern
variations that involve the use of application–specific interfaces or the redistribution
of responsibilities between objects into a single framework. A final benefit is that
we are not limited to generating only framework code for the pattern templates. We
can also generate additional support code to simplify the instantiation and use of
the frameworks. For instance, we generate concrete classes with stubs for the hook
methods with the framework code. Other examples of support code, to insulate the
user from implementation details of the framework, will be discussed later.

Before using the framework generated for the Mesh design pattern template to im-
plement our example application, we need to consider what parts of the program
are provided by the framework and what parts need to be implemented by the pro-
grammer. The programmer is responsible for implementing a class representing an
individual mesh element using the operations defined by the hook methods. In the
reaction–diffusion example, this class would correspond to a pixel in the texture.

The structural framework code builds up a complete parallel mesh computation
based on the individual mesh elements. The structure populates the mesh with the
user–defined elements, creates the threads, partitions the elements over the set of
threads, executes the computation, and gathers the results. The heart of the mesh
computation, the main execution loop, is shown in Figure 2. This method is exe-
cuted by each thread in the computation on its local partition. Since this method is
part of the parallel structure, the programmer cannot modify it. In fact the program-
mer does not even have to see it. However, it is useful to discuss it to understand
how the parallel mesh structure works. In general, each of the methods in Figure 2
iterate over the local partition, invoking a similarly named method on each element.

ThemeshMethod()method repeatedly executes the mesh computation on the el-
ements in a local partition until the termination condition is satisfied.notDone()

8



public void meshMethod() f
preProcess() ;
while(notDone()) f

prepare() ;
barrier() ;
operate() ;

g /* while */
postProcess() ;

g /* meshMethod */

Fig. 2. The main execution loop for the Mesh framework.

checks the termination condition for the mesh. The computation continues un-
til all mesh elements are finished.preProcess(), prepare(), andpost-
Process() invoke similar methods on each mesh element.operate() is also
mapped to each mesh element, resulting in one of nine appropriate operation meth-
ods being invoked on the element.barrier() does not map directly to each
mesh element. It ensures that the current mesh operation does not proceed until the
previous ones have completed. Although the code inmeshMethod() does not
reveal how the mesh is partitioned into groups and how the groups are mapped to
processors, these details are not germane to this paper. More importantly, they are
not germane to the programmer’s task (at this layer of abstraction) and they would
only serve as a distraction to the task of implementing the application code.

The Mesh framework includes a main class that creates the mesh and launches the
computation. The constructor takes the size of the surface, the number of horizon-
tal and vertical partitions, an initializer object, and a reducer object as arguments.
When the computation is launched, each thread starts executingmeshMethod().
When the computation is finished, the results are gathered and returned to the user.

The only class that the programmer implements is the mesh element class. There
are five tasks in total. The first is to write a constructor that applies a user–defined
initializer object to the mesh element being created. The second is to write the
basic mesh operations for the chosen topology for a single element. The third is
to write the three other methods for each element. The fourth is to implement the
termination condition for an element. The fifth is to write a method that applies a
user–defined reducer object to a mesh element. These methods are listed in Table 1.

In the example program, the mesh element class isMorphogenPair. Complete
code for this class is in [13]. The initializer object is a random number genera-
tor, so each mesh element can create two morphogens with random initial concen-
trations.notDone() checks for convergence.interiorNode() computes the
new value for each morphogen based on the four neighbors supplied by the frame-
work. The synchronous Jacobi iteration is implemented by having each morphogen
hold two concentrations, a write value for the value computed by the current itera-
tion and a read value used to compute new values.prepare() updates the read

9



Table 1
The hook methods for the mesh element class in a four–point mesh.

Hook method with signature Implemented responsibility

MeshElem(int i, int j,
int surfaceWidth,
int surfaceHeight,
Object initializer);

This method initializes the mesh element at the
location (i, j) of the two–dimensional structure,
by applying the user–supplied initializer object.

void preProcess();
void prepare();
void postProcess();

These methods allow application code to be in-
serted at various points in the mesh compu-
tation. Thebarrier() call in Figure 2 im-
plements the necessary synchronization in the
mesh structure. It ensures that all of the threads
have finished any preprocessing for an iteration
(theprepare() call) before they compute the
next value for the mesh elements.

boolean notDone(); This method is called indirectly from thenot-
Done() method in Figure 2. It evaluates the
termination condition for a single mesh ele-
ment. The computation continues until all mesh
elements returnfalse.

void reduce(int i, int j,
int surfaceWidth,
int surfaceHeight,
Object reducer);

This method is responsible for applying the
programmer–supplied reducer object to gather
the results of the mesh computation after it is
done.

value with the write value. The barrier synchronization ensures that this update is
complete before new values are computed. Finally,reduce() applies a reducer to
each mesh element to gather the results. This program copies the concentration of
one of the morphogens into an output array. Additional instance variables, accessor
methods, and constants for the simulation are also included in this class.

The code for this problem is written using several other classes that were taken
directly from a sequential implementation of this problem. The hook methods are
used as Adapters [8], translating the interface to the hook methods to the interface
supported by the sequential code. It is also possible to use the hook methods to
wrap code libraries written in different languages. The Java Native Interface allows
Java code to invoke C functions, which can invoke C++ or FORTRAN code.

Performance is the most vital characteristic of parallel programming systems since
improved performance is the reason for writing parallel programs. To show that
CO2P3S can generate applications with reasonable parallel performance, even with-
out tuning, performance results for the reaction–diffusion example are shown in Ta-
ble 2. These performance numbers are not necessarily the best that can be achieved,
but show that it is possible to build a parallel program and quickly obtain reason-
able speedups. The program was run using a native threaded Java implementation

10



Table 2
Speedups and wall clock times for the reaction–diffusion example.

2 proc. 4 proc. 8 proc. 16 proc.

1680� 1680 Speedup 1.75 3.13 4.92 6.50

surface Time (sec) 5734 3008 1910 1448

with optimizations on. The program was run on an SGI Origin 2000 with 195MHz
R10000 processors. The virtual machine was started with 512MB of heap space.
The speedups are based on wall clock times compared to a sequential program.

The speedups only include computation time; neither initialization nor output is
included. From Table 2, we can see that the problem scales well up to 4 processors,
but the performance falls off afterwards. The problem is granularity; as more pro-
cessors are added, the amount of work assigned to each falls until synchronization
becomes a limiting factor in performance. Larger computations (either with a larger
surface size or with a more complex mesh operation) yield better speedups.

Other example programs, implemented with other pattern templates, include Paral-
lel Sorting by Regular Sampling [13], 15–puzzle search [13], JPEG encoding [13],
sequence alignment [1], matrix product chain [1], and a skyline matrix solver [1].

The two crucial aspects of the Patterns Layer are parallel structure correctness and
parallel separation.Parallel structure correctnessguarantees that there are no com-
munication, synchronization, or parallel access errors in the structural part of the
framework. This is due to the fact that the user only edits sequential hook methods
and cannot affect th parallel code. Only the structural code access the data structures
internal to a given framework. The hook methods receive this data as arguments,
such as the neighboring element parameters in the Mesh framework.

It is vital to note that this correctness guarantee does not extend to the application–
specific code written by the user. It is possible for hook method code to introduce
errors, such as unprotected accesses to a static variable. The user must ensure that
such accesses do not occur. Unfortunately, code libraries can make it difficult to find
such problems. Barring changes to the programming language, there is no general
solution to this problem. We do not address it in this research.

Parallel separationmeans that the parallel structure code is separated from the
application–specific code. The generated code and the application–specific code are
in different classes This can limit the number of changes that are necessary in the
hook methods if the framework code is changed. In many cases, the user can change
template parameter values and regenerate framework code with minimal changes to
the hook methods. For example, if the programmer changes the mesh topology from
fully–toroidal to horizontal–toroidal, the implemented hook methods do not need to
be changed. The programmer need only write hook methods for the new boundary
conditions. Stubs for these new methods are generated with the framework.

11



Fig. 3. A modified HTML viewer for entering hook method code.

This separation can be further enforced by tool support. In CO2P3S, the application–
specific code is presented in a modified HTML viewer shown in Figure 3. This
viewer only allows the user to access the hook method bodies. When a link is se-
lected, a dialog for entering code appears that does not permit the hook method
signature to be changed, removing a source of potential programmer errors.

2.4 From Frameworks to Parallel Programs: The Lower Layers

Once the hook methods in the generated framework have been implemented, the
programmer has a fully functioning, structurally correct parallel program that can
be executed on a parallel machine. Ideally, the Patterns Layer would be sufficient
to create an efficient parallel program. Unfortunately, this is not possible for two
reasons. First, it would require the set of available pattern templates to cover the
complete spectrum of parallel program structures, which is not possible. Second,
even though the pattern templates can be specialized by the user, the generated
frameworks are conservatively correct. They are general enough that they can be
used for a variety of problem domains. Consequently, some portions of the frame-
work may not be optimal for a specific problem. The principle purpose of writing
parallel programs is to improve the performance of an application, so we need a
way of tuning the generated code to remove performance problems. Most parallel
programming systems do not have any means of accessing, much less tuning, code
inserted by the system, a major shortcoming that is addressed by our research.

12



To support application tuning, the PDP process has two additional layers. These
layers provide openness by gradually exposing the structural code encapsulated at
the Patterns Layer. The second layer, the Intermediate Code Layer, provides a high–
level explicitly parallel object–oriented programming language, an extension of an
existing language such as Java. This layer includes high–level primitives such as
barrier synchronization. Also, the structural code is made available. The program-
mer can change or augment this code (to parallelize thereduce() method, for
example). The programmer can also write applications in this language, bypassing
the Patterns Layer. The implementation of the new primitives at this layer is hidden.

If the performance of the application is still not acceptable after tuning the structure
at the Intermediate Code Layer, it is still possible to improve performance by tuning
the implementations of the primitives at the Native Code Layer. This layer provides
access to the programming language and libraries that underly the higher–level
abstractions. The Native Code Layer contains the architecture–dependent aspects
of the system, which can be tuned for the execution environment. For example, the
barrier operation can be tuned for the particular computer used to run the program.

While the lower layers provide the openness needed for performance tuning and
other program modifications, they also remove the correctness benefits from the
Patterns Layer. Once the user modifies the code, structural correctness cannot be
guaranteed. With CO2P3S, it is always possible to regenerate the Patterns Layer
Code and start tuning again with a correct program if errors are introduced at the
lower layers. An interesting problem is how to take changes at the lower layers and
incorporate them into the pattern template. Our tool support for extending CO2P3S,
with new or modified pattern templates, is discussed briefly in Section 3.3.

Dividing the performance tuning steps into multiple layers offers usability benefits.
By gradually exposing the framework details, users can select a suitable abstraction
based on the problem being solved. For instance, adding code to count the number
of iterations in a mesh computation should not require the user to consider the im-
plementation of the barrier synchronization. Also, users can select an abstraction
based on how comfortable they are with it, but can still expect tuning opportunities.
Thus, we believe that the multiple layers of abstraction provided by the PDP pro-
cess will benefit novice parallel programmers while providing low–level control for
experienced programmers. This support for multiple layers of abstraction to tune
and refine parallel programs is a further advance in parallel programming systems
research that creates a flexible environment for building efficient parallel programs.

3 The Usability of CO2P3S

One of the most important but least studied problems in parallel programming sys-
tems is usability. Every parallel programming tool claims to be easy to use based on

13



anecdotal evidence from its developers. The possibility of inadvertent bias cannot
be discounted. The developers of a system will have a better understanding of the
tool, which is a large advantage over normal users. Ultimately, the tools we build
are intended to be used by other developers. We will require feedback from these
users if we hope to build parallel programming systems that they will use. This
section describes results from the few available usability studies. The results of an-
other study assessing the impact of pattern–based parallel programming systems on
program complexity and maintainability is also discussed. Finally, the results of an
initial usability study on CO2P3S are presented.

3.1 The Usability of Enterprise and Orca

The first study compared parallel programming with the pattern–based Enterprise
system against the PVM [26]. Users identified three strengths of Enterprise. First,
the system prevented several common parallel programming errors. Most errors in
Enterprise affected application performance and not correctness. Second, program-
mers were able to quickly create a working parallel program. Finally, Enterprise
had good tool support. In particular, many users took advantage of a replay mecha-
nism to visualize an execution of their program to identify performance problems.
The study also uncovered three weaknesses in Enterprise. First, programmers could
quickly create a working program but were unable to tune its performance. Second,
the programming model of Enterprise introduced subtle changes to the program-
ming language semantics. Confusion over these new semantics was the primary
source of performance errors. Last, Enterprise users found that the performance of
their programs was poorer than their PVM counterparts. In combination with their
inability to tune performance, this problem frustrated many Enterprise users.

CO2P3S maintains the first two strengths by generating correct framework code
from the pattern templates. This saves users from having to write complex parallel
code at the Patterns Layer. Encapsulating the structural code reduces the possibility
of user errors. The user can concentrate on the application code rather than the
framework. Although frameworks impose their own learning curve [10], starting
program development with a correct structure can only improve the usability of the
system. Development time is reduced because it takes little time to select a pattern
template, supply parameter values, and generate the code. It can be reduced further
by using sequential code in a parallel application. At present, CO2P3S does not
have an integrated set of support tools. This will be a subject of new research.

The PDP process addresses the first and third problems through the layered pro-
gramming model. The layers provide successively lower–level details and control
over the implementation of the generated frameworks, providing programmers with
increased control and opportunities for performance tuning. However, the second
problem is also present in the Intermediate Code Layer of the PDP process to sup-

14



port the development of highly concurrent algorithms. However, unlike other sys-
tems, the PDP process relies on frameworks and libraries to express concurrency.
This limits the number of semantic changes. However, other problems remain. For
instance, CO2P3S currently does not have good support for safely accessing global
data. Such support will need to be added to reduce potential programmer confusion.

The study for the Orca parallel programming language [29] is based on user ex-
periences with the Cowichan problem set [28]. The Cowichan problems are a set
of seven modestly–sized programs that cover a broad range of application domains
and parallel programming idioms. The primary lessons of the study are two–fold.
First, tools are essential to identifying performance problems. Second, the program-
ming model for a parallel language should be general. Orca suffered from two se-
rious limitations that required significant programming effort to overcome.

Future work on CO2P3S will concentrate on tool support. The generality of any
system implementing the PDP process is a function of the pattern templates it sup-
ports. The extensibility and openness of a system will dictate the ability of users to
address any limitations that they encounter. In CO2P3S, users can modify a gener-
ated framework at lower development layers. If such changes are made frequently,
they can be added as a new pattern template or a parameter to an existing template.

Another study assessed the impact of pattern–based systems on application com-
plexity and maintainability [27]. The data for this study was taken from programs
written with MPI [25], Enterprise, FrameWorks (not to be confused with object–
oriented frameworks) [22], and PAS [9]. An analysis of the code revealed that pro-
grams written with pattern–based systems were less complex and more maintain-
able than the MPI equivalents.

3.2 A Usability Study of CO2P3S

We have undertaken a usability study of CO2P3S that is similar to the study for
the Enterprise system. This study was conducted over two assignments in an un-
dergraduate course with 20 students. The first assignment had the students solve
a modified version of the Laplace equation, and the second was the reaction–
diffusion problem. The class was split into two groups of 10 students. The first
group wrote the first assignment using non–CO2P3S Java (with a barrier class pro-
vided) and the other group used CO2P3S. The groups switched development sys-
tems for the second assignment. Our results focus on the code written for the as-
signments as a measure of the difficulty of writing the two programs. Other mea-
sures, such as the number of compiles, program runs, and development time, are
not considered here. Tables 3 and 4 summarize the results. In both assignments,
the CO2P3S group wrote less code, 40% for the first assignment and 53% for the
second. The CO2P3S students also used fewer classes, 41% in the first assignment

15



Table 3
Results from the usability study for CO2P3S, for the Laplace problem.

CO2P3S students Non–CO2P3S Java Students

No.
Programs

Avg.
Lines

of
Code

Avg.
No.

Classes

Avg.
No.

Choice
Points

No.
Programs

Avg.
Lines

of
Code

Avg.
No.

Classes

Avg.
No.

Choice
Points

10 171.6 4.1 20 8 274.9 6.6 52.6

Table 4
Results from the usability study for CO2P3S, for the reaction–diffusion problem.

CO2P3S students Non–CO2P3S Java Students

No.
Programs

Avg.
Lines

of
Code

Avg.
No.

Classes

Avg.
No.

Choice
Points

No.
Programs

Avg.
Lines

of
Code

Avg.
No.

Classes

Avg.
No.

Choice
Points

6 131.0 4.2 11.8 6 278.5 6 46.5

and 30% for the second. The difference is the generated structural code, which the
non–CO2P3S students had to write by hand. To assess complexity, we measure the
number of choice points in the application code. Choice points are any point in a
program where the flow of control can be altered and may no longer be sequen-
tial, such as selection control statements. Errors in programs tend to occur at these
choice points when the user makes the wrong choice. We can see that the applica-
tion code of CO2P3S users is significantly less complex than that written by their
counterparts. Most of the complex code in a mesh computation is in the structure,
which is generated for CO2P3S users. Note that choice points do not consider the
effort required to determine where the application code should be inserted within
the hook methods in a framework. This is an important aspect of program develop-
ment with a framework that can be improved only through experience [10].

3.3 Tools for CO2P3S Extensibility

Having realized that the need for tools to enable CO2P3S extensibility was one of
our most pressing concerns to improve system usability, we have concentrated our
latest research efforts in this area. MetaCO2P3S will enable a pattern designer to
create a pattern template/framework pairing that integrates seamlessly with CO2P3S
[3]. The pattern templates and frameworks created using the tool are indistinguish-
able in both looks and functionality from the ones provided. These new templates
can be shared amongst CO2P3S users. In the future, we envision a pattern repository
that will allow a community of users to freely exchange their pattern templates.

With MetaCO2P3S, a pattern designer has three main responsibilities. First, they
must define the pattern template, including the parameters that can act upon it and

16



its GUI representation. This information is stored in a system–independent XML
file that is imported into CO2P3S. The pattern designer’s second responsibility is
to define the framework. Since the framework code is parameterizable, this task
is not trivial. Our approach has the pattern designer create annotated source code
under the guidance of the tool. When a user generates a framework in CO2P3S, we
run the annotated source code through a modifiedJavaDoc parser and output the
appropriate code. The last responsibility of the pattern designer is to ensure that the
frameworks for the template are correct. We verify our frameworks by using them
to write applications after the design of a pattern template is complete.

To demonstrate the usefulness of MetaCO2P3S, all of the design pattern templates
currently supported by CO2P3S have been generated using it. In addition, a new
pattern template, the Wavefront, has been created and used to implement three dif-
ferent problems [1], including two from the Cowichan problem set [28].

Note that pattern designers are not limited to creating new pattern templates. It is
also possible to modify existing templates, adding new parameters and generating
different framework code. Templates can also be copied and ported to different
parallel architectures. We are porting our existing templates to distributed memory
machines, using the shared memory versions as a starting point.

Additional information on MetaCO2P3S can be found in [3].

4 Related Work

A number of research groups have developed pattern–based parallel programming
tools. FrameWorks was one of the first [22]. FrameWorks programs consisted of a
combination of annotated source code and structural diagrams describing the par-
allelism. However, it was the responsibility of the user to ensure that both of these
parts of the program were in agreement. In addition, the patterns supported by
FrameWorks were not independent; some combinations did not work properly.

Enterprise improved on FrameWorks by transforming sequential C code based on
a structural diagram [18]. Further, the patterns in Enterprise were independent and
easily composed. However, like FrameWorks, Enterprise did not take full advantage
of the asset graph, using it to verify the program structure rather than create it.

Like our work, DPnDP uses the design pattern information to generate code for the
pattern [24]. Using the pattern description, all pattern–specific communication is
handled automatically. The programmer explicitly exchanges application–specific
messages. The system addresses extensibility, allowing users to add new patterns.
However, the support for extensibility is not complete. New patterns are added us-
ing C++ framework rather than using tools. The user interface of DPnDP cannot be

17



easily extended to include the new pattern, whereas part of the templates created
with MetaCO2P3S include GUI information. Also, only the structure of new pat-
terns can be added. Behavioural aspects, such as pattern–specific communication,
cannot be added. It is not possible to recreate the patterns supplied with DPnDP.

PAS provides a number of communications interfaces tailored for specific pattern
structures, such as workpiles and meshes [9]. Applications are written either using
a specification language that includes special constructs for pattern information or
using templated C++ code and instantiating the correct communication interface.
Regardless, the application code includes communication code using the appropri-
ate interface. New communication interfaces can be added, but it is unclear if the
specification language can be easily extended to incorporate them.

PAS is based on algorithmic skeletons [6]. Skeletons are another means of express-
ing parallel structures that can be used be build applications. A skeleton can be
likened to a single framework that encompasses all possible structural variations.

The CORRELATE language [17] also relies on code generation to support its used
of the Active Object pattern [11]. Remote method invocations are annotated, and
a precompiler processes the annotations to generate all of the classes needed to
implement the pattern. However, this support is only targeted to a single pattern.

P3L is a language–based solution to pattern–based programming [2]. A P3L pro-
gram is a set of code fragments and a pattern description that describes how the
fragments are composed into a complete program. The program is then mapped
onto the underlying hardware architecture by creating anabstract machinetailored
for the pattern and execution environment. Communication in a program is han-
dled by typed input and output parameter streams rather than message passing
primitives, but is still addressed in application code. The language does not appear
extensible, as this would require a pattern designer to create new abstract machines.

There has been considerable work on concurrent design patterns, such as that of
Lea [12], the ACE project [19], and POSA2 [20]. While most of this work does not
address the performance aspects of parallel programming, concurrency is a cru-
cial component of parallel algorithms. Further, the concurrent structural patterns in
most patterns literature consists of very fine–grained patterns solving small, spe-
cific problems, whereas this work concentrates on larger structures.

Common parallel structures have been known for some time now and are described
in introductory parallel design and algorithm literature [5,7]. However, the pattern–
based systems discussed earlier are representative of the research in tools that sup-
port program development using these patterns.

The idea of generating code for patterns is not new. Budinskyet al. [4] developed
a web–based tool that creates code for the patterns in [8], including the ability to
select pattern variations from the options in the pattern documentation. However,

18



the generated structural code is returned to the programmer, who can introduce
structural errors. We follow a similar strategy, but hide the generated code until
performance tuning is required. Sefikaet al. [21] also suggest generating structural
code for patterns, and also advocate adding run–time assertions to ensure a system
adheres to its design. We do not include assertions in our patterns as our open
programming model is designed to allow the structure of a pattern to be modified.

5 Conclusions

In this paper we presented the PDP process, a pattern–based process for building
parallel programs that addresses correctness and openness. This new process uses
a layered approach to creating applications. The first layer emphasizes the correct-
ness of programs, and is based on generating structural framework code from a
pattern description. Lower layers provide openness, allowing programmers to ac-
cess the framework code for performance tuning. It is this layered approach that
addresses many of the shortcomings of existing systems. Finally, we used CO2P3S,
a tool that implements the PDP process, to show that we can use this process to
build correct, working parallel programs that yield performance improvements.

Although we have addressed the issues in pattern–based programming systems, we
have not fully assessed the usability of our process or our tool. We have some results
and feedback that we can use to make improvements in the tool and the process.
Further work should be undertaken to assess the usability of our frameworks, which
is essential to the success of any tool implementing the PDP process. We can model
these usability experiments after others for parallel systems [26,29].

Current research is concentrating on finding new patterns to add to CO2P3S, and
porting the system to distributed memory architectures. Future work will address
supporting tools to produce a fully–featured, mature parallel programming system.

An initial version of CO2P3S is available for download. It can be found at
http://www.cs.ualberta.ca/�systems/cops/index.html

Acknowledgments

This work was supported by the Alberta Research Council, the Natural Science and
Engineering Research Council of Canada, Alberta’s Informatics Circle of Research
Excellence, and MACI (Multi–media Advanced Computational Infrastructure).

19



References

[1] J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Bromling, and K. Tan.
Generating parallel programs from the wavefront design pattern. InProceedings of 7th
International Workshop on High-Level Parallel Programming Models and Supportive
Environments, 2002.

[2] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L: A structured
high level parallel language and its structured support.Concurrency: Practice and
Experience, 7(3):225–255, 1995.

[3] S. Bromling. Meta–programming with parallel design patterns. Master’s thesis,
Department of Computing Science, University of Alberta, 2001.

[4] F. Budinsky, M. Finnie, J. Vlissides, and P. Yu. Automatic code generation from design
patterns.IBM Systems Journal, 35(2):151–171, 1996.

[5] K. Mani Chandy and S. Taylor.An Introduction to Parallel Programming. Jones and
Bartlett Publishers, 1992.

[6] M. Cole. Algorithmic Skeletons: A Structured Approach to the Management of Parallel
Computation. MIT Press, 1988.

[7] I. Foster.Designing and Building Parallel Programs. Addison–Wesley, 1995.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of
Reusable Object–Oriented Software. Addison–Wesley, 1994.

[9] D. Goswami, A. Singh, and B. Priess. Using object–oriented techniques for realizing
parallel architectural skeletons. InProceedings of the Third International Scientific
Computing in Object-Oriented Parallel Environments Conference, volume 1732 of
Lecture Notes in Computer Science, pages 130–141. Springer–Verlag, 1999.

[10] R. Johnson. Frameworks = (components + patterns).CACM, 40(10):39–42, 1997.

[11] R. Lavender and D. Schmidt. Active object: An object behavioral pattern for
concurrent programming. In J. Vlissides, J. Coplien, and N. Kerth, editors,Pattern
Languages of Program Design 2, chapter 30, pages 483–499. Addison–Wesley, 1996.

[12] D. Lea.Concurrent Programming in Java: Design Principles and Patterns. Addison–
Wesley, second edition, 1999.

[13] S. MacDonald. From Patterns to Frameworks to Parallel Programs. PhD thesis,
Department of Computing Science, University of Alberta, 2002.

[14] S. MacDonald, D. Szafron, and J. Schaeffer. Object–oriented pattern–based parallel
programming with automatically generated frameworks. InProceedings of the 5th
USENIX Conference on Object–Oriented Technology and Systems, pages 29–43, 1999.

[15] S. MacDonald, D. Szafron, J. Schaeffer, and S. Bromling. Generating parallel program
frameworks from parallel design patterns. InProceedings of the 6th International
Euro–Par Conference, volume 1900 ofLecture Notes in Computer Science, pages 95–
104. Springer–Verlag, 2000.

20



[16] B. Massingill, T. Mattson, and B. Sanders. Patterns for parallel application programs.
In Proceedings of the Sixth Pattern Languages of Programs Workshop, 1999.

[17] F. Matthijs, W. Joosen, B. Robben, B. Vanhaute, and P. Verbaeten. Multi–level
patterns. InObject–Oriented Technology (ECOOP’97 Workshop Reader), volume
1357 ofLecture Notes in Computer Science, pages 112–115. Springer–Verlag, 1998.

[18] J. Schaeffer, D. Szafron, G. Lobe, and I. Parsons. The enterprise model for developing
distributed applications.IEEE Parallel and Distributed Technology, 1(3):85–96, 1993.

[19] D. Schmidt. The ADAPTIVE communication environment: Object-oriented network
programming components for developing client/server applications. InProceedings
of the 12th Sun Users Group Conference, 1994.

[20] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.Pattern–Oriented Software
Architecture: Patterns for Concurrent and Networked Objects, volume 2. Wiley &
Sons, 2000.

[21] M. Sefika, A. Sane, and R. Campbell. Monitoring compliance of a software system
with its high–level design models. InProceedings of the 18th International Conference
on Software Engineering, pages 387–396, 1996.

[22] A. Singh, J. Schaeffer, and M. Green. A template–based approach to the generation
of distributed applications using a network of workstations.IEEE Transactions on
Parallel and Distributed Systems, 2(1):52–67, 1991.

[23] A. Singh, J. Schaeffer, and D. Szafron. Experience with parallel programming using
code templates.Concurrency: Practice and Experience, 10(2):91–120, 1998.

[24] S. Siu, M. De Simone, D. Goswami, and A. Singh. Design patterns for parallel
programming. InProceedings of the 1996 International Conference on Parallel and
Distributed Processing Techniques and Applications, pages 230–240, 1996.

[25] M. Snir, S. Otto, S. Hess-Lederman, D. Walker, and J. Dongarra.MPI: The Complete
Reference. MIT Press, 1996.

[26] D. Szafron and J. Schaeffer. An experiment to measure the usability of parallel
programming systems.Concurrency: Practice and Experience, 8(2):147–166, 1996.

[27] L. Tahvildari and A. Singh. Impact of using pattern–based systems on the qualities of
parallel applications. InProceedings of the 2000 International Conference on Parallel
and Distributed Processing Techniques and Applications, pages 1713–1719, 2000.

[28] G. Wilson. Assessing the usability of parallel programming systems: The Cowichan
problems. In Proceedings of the IFIP Working Conference on Programming
Environments for Massively Parallel Distributed Systems, pages 183–193, 1994.

[29] G. Wilson and H. Bal. Using the Cowichan problems to assess the usability of orca.
IEEE Parallel and Distributed Technology, 4(3):36–44, 1996.

[30] A. Witkin and M. Kass. Reaction–diffusion textures.Computer Graphics (SIGGRAPH
’91 Proceedings), 25(4):299–308, 1991.

21


