
Multiple Agents Moving Target Search

Mark Goldenberg, Alexander Kovarsky, Xiaomeng Wu, Jonathan Schaeffer
Department of Computing Science,

University of Alberta,
Edmonton, Alberta,
Canada T6G 2E8�

goldenbe,kovarsky,xiaomeng,jonathan � @cs.ualberta.ca

April 11, 2003

Abstract

For path-finding problems, traditional single-agent search algorithms usually
make simplifying assumptions. These include having a single search agent, a sta-
tionary target, complete knowledge of the state, and sufficient time to make an op-
timal decision. There are algorithms for relaxing one or two of these constraints;
in this paper we want to relax all four. The application domain is to have multiple
search agents (e.g., squad of policemen) cooperate to pursue and capture a moving
target (e.g., the villain). Agents are allowed to communicate with each other, but
only if they are visible to each other. For solving Multiple Agents Moving Target
(MAMT) applications, we present a framework for specifying a family of suitable
search algorithms. This paper investigates several effective approaches for solving
problem instances in this domain.

1 Introduction

In the 2002 Steven Spielberg movie Minority Report, John Anderton (played by Tom
Cruise) is on the run. Anderton is being chased by his own team of detectives, whose
job it is to identify “pre-crimes” and arrest the guilty party before they commit the
crime. In one sequence, Anderton is hiding in a building, and the pre-crime investi-
gators unleash a team of mini-robots to flush him out. The robot team separates, each
covering a different part of the building. Anderton, realizing the danger, stops fleeing
and comes up with a unique solution – he submerges himself in a bathtub of water so
as to avoid the robotic detectors. Sadly, he can only hold his breath for so long, before
he has to emerge and is found by the robots.

The above scenario has several aspects that are not handled by the conventional
artificial intelligence search algorithms. The classic algorithms, such as ��� and �����	� ,
provide simple and effective approaches for solving search problems that satisfy the
following properties:

1. One search agent.

1



2. Agent has perfect information about the environment.

3. Environment and the goal state do not change.

4. Enough time is given to make an optimal decision.

Relaxing even one of the assumptions gives rise to new algorithms. For example, al-
lowing the target to move (moving target search [3]), limiting the time allowed to make
a decision (real-time search [5]), and dynamically changing the search topology (e.g.,
��� [9]) have spawned interesting research directions. Many real-world problems do
not satisfy all of the above four properties and in this paper we deal with an application
domain that breaks all of them.

Consider the task of multiple agents having to pursue and capture a moving target;
for example a squad of policemen chasing a villain. We want to design a test environ-
ment that is as realistic as possible. We assume a grid with obstacles. Agents can only
“see” what is directly visible to them – other agents or the target. Agents are allowed
to communicate with any agent that they can see. As the target flees, it may become
obscured from sight.

The agent’s knowledge of the locations of the target and other agents may be fuzzy
(since some of them may be hidden from sight). Given whatever knowledge of the
target and other agents is available, an agent must decide how to pursue the target. The
target’s possible locations provide information of where to search; the other agents’
possible locations provide information that can be used to coordinate the search to
obtain maximum coverage.

The challenge is to have the agents act autonomously to catch the target as quickly
as possible. Coming up with effective algorithms for this problem domain has obvi-
ous applications to police or military simulations. However, the motivating application
for this technology is commercial computer games. Many commercial games prod-
ucts are still grappling with the computational complexity of using � � variants in real
time [10]; the (non-cheating) coordinated actions of multiple agents pursuing a target
represents next-generation technology. Recently there have been efforts to apply com-
mercial game technology to creating virtual reality training programs (e.g., [1]). The
technology in this paper could be used to create realistic police chase scenarios for
training new recruits.

For this application domain, which we call Multiple Agent Moving Target (MAMT),
we define a framework for specifying algorithmic solutions. There are a wide variety of
possible solutions, several of which are presented in this paper. Designing an algorithm
that achieves “realistic” pursuit behavior turns out to be a challenging problem.

This paper makes the following contributions:

1. MAMT – a challenging application domain for exploring issues in real-time
search.

2. A framework for expressing a real-time search algorithm for MAMT domains.

3. Several solutions that allow an agent to act autonomously, using information
about the possible positions of the target and other agents as part of the decision-
making process.

2



Section 2 discusses the related literature. Section 3 defines the MAMT problem
domain used in this paper. Section 4 introduces the framework and some algorithmic
instances. Section 5 evaluates different solutions, and Section 6 presents ideas for
future research.

2 Literature

There are a family of � � algorithms that relax the need for an optimal answer by re-
quiring the agent to make the best decision possible given limited search resources
(e.g., time) [5]. The Minimin Lookahead Search algorithm uses a fixed-depth search
(
�

moves), keeping track of the moves that lead to the (heuristically) best
�
-move out-

come. The heuristic values are propagated up the tree, with � -pruning used to reduce
the search effort. The minimum � -value of the leaf nodes seen so far is called � . A
cut-off occurs whenever the heuristic value of an interior node is ��� .

Real-Time �	� ( ��� � � ) is an � � variant that uses the results produced by the min-
imin lookahead search as heuristic values in order to guide the search towards achiev-
ing the goal [5]. The algorithm maintains a hash table with the results of the previous
lookahead searches. The agent always moves to the state that is the closest to the (fixed)
goal according to a value in the hash table or (if the corresponding value is not in the
hash table) according to the result of the lookahead search. After that, the second best
value of the lookahead searches performed at the last state is written to the hash table.
In Learning Real-Time � � ( �	�
� � � ), the best � -value is written to the hash table in-
stead of the second best. This change avoids inflated values in the hash table in the
repeated trials and guarantees convergence of the algorithm to the perfect heuristic.

The Moving Target Search (MTS) algorithm is an �	�
� � � variant that allows a
moving target [3]. Enhancements to this basic idea include adding notions of commit-
ment and deliberation to the agent [3, 2]. An assumption in most MTS papers is that
the target moves slower than the agent. Without this requirement, the target can stay
ahead of the agent and, in many cases, elude capture.

There are many variants of real-time search, including recent additions addressing
issues such as re-planning (e.g., Lifelong Planning A* [4]). However, these are for the
most part orthogonal to our work. The difficult part for an agent in the MAMT domain
is deciding on the search goal; after that is achieved, then any of several different search
algorithms (such as outlined above) can be used.

Having multiple agents participating in a search is a topic of recent interest. For ex-
ample, the RoboCup teams have multiple cooperating agents with communication. In
[8], different agent world models are discussed and evaluated. However, their work as-
sumes that more state information is available than would be in a MAMT-like problem
domain.

In the area of commercial games, work has progressed on developing solutions for
related applications. Research on squad tactics [11] and tactical teams [7]) concen-
trates on having cooperating multiple agents follow prescribed military strategies, and
is not suitable for pursuit.

3



3 Problem Description

The following describes the experimental domain used for this research. The domain
can be extended to be more realistic. However, even the “simplified” domain used here
is quite challenging. Section 6 describes some extensions.

The MAMT domain has the following properties.

1. Agents and target. There are multiple agents pursuing a single moving target.

2. Grid. The grid is ����� in size, with obstacles randomly placed. All agents
and the target have complete knowledge of the grid topology. We allow this as-
sumption because that information is typically available in commercial computer
games. This assumption can be relaxed (see Section 6).

3. Moving. The target and the agents can only move horizontally or vertically.
At each time step, the target and the agents all make a move simultaneously.
Multiple agents are allowed to occupy the same square at any instance in time.

4. Starting position. To create uniformity in the experiments, the target always
starts in the middle of the grid, and all the agents are placed beside each other in
the lower left corner of the grid. The target is visible to at least one agent. The
domain can also be extended to include the starting state where no agent knows
the target’s initial position (see Section 6).

5. Vision and communication. The agents and target are allowed to “see”. Anything
that is in an unobstructed direct line from the agent/target (as measured from the
center of the source to the center of the destination grid square) is visible to
that entity. Furthermore, the agents are allowed to communicate with any agent
that is visible to them. This allows an agent to update their private knowledge.
Communication occurs between moves and consists of the agents exchanging
information as to where they believe the target and the other agents are. No other
forms of communication are allowed.

6. Objective. The multiple agents have to catch the target in the fewest possible
moves. Catching is defined as being within one square of the target (necessary
since the target and agents move at the same time).

4 Multiple Agent Moving Target Search

The intent of this work is not to build a new search algorithm. Rather, we want to plug
standard search algorithms ( � � variant or alpha-beta) into a framework that, given a
goal selection, will find the “best” way to reach the objective. The major problem that
an agent faces in this application domain is selecting a search goal. This is complicated
by three factors:

1. An agent may not know the location of the target or other agents.

4



2. The target moves, meaning that the search goal can change from move to move.

3. An agent’s local decision should be made in the global context. Agents should
take into account what they believe the other agents are doing. Otherwise, many
agents may select the same pursuit strategy, reducing the effectiveness of the
team.

There are three possible ways for an agent (or the target) to know the location of
another agent (or the target):

1. By seeing it (perfect information).

2. Through communication (not applicable to the target).

3. By inference.

When an agent does not know the exact position of the target (from vision or com-
munication), it must maintain a belief set of where the target might be. The belief set
can take into account the topology of the grid, knowledge of the opponent (opponent
modeling – see Section 6), and the time since the last known target location.

As the time increases since the last sighting, the knowledge of where the target
is gets fuzzier. For example, if � time steps have elapsed since the last sighting, the
target could be anywhere within � moves from the last known position. Clearly, as �
increases, the set of possible target locations can become very large (possibly growing
at a rate of �

�

). Since the agent cannot explore all potential target locations (the target
will probably be long gone by then), the agent must filter the set and reduce it to likely
locations where it has a chance to find the target.

An agent should choose its destination search area based not only on its beliefs
about the target, but also about other agents. Knowing where the other agents are (even
if that knowledge is fuzzy) allows an agent to select a search area that (a) is plausible for
the target, and (b) reduces/eliminates the possible overlap with what the other agents
are doing.

Figure 1 shows the four-step method that is the framework used for specifying our
solution algorithms. There is no “right” way of solving any of these steps. In the
following we detail several algorithm alternatives.

4.1 Belief Set

Each agent maintains a set of grid locations where the agent believes that the target can
be located – the belief set. Whenever an agent knows the exact location of the target,
that agent’s belief set contains only one location, otherwise it can grow. Since this
intended to be a real-time search application, and real agents have limited memory, the
size of the belief set is limited.

The private knowledge of each agent is updated before each move using any new
information obtained by communication or visibility:

1. The agents update their information based on what is visible to them. This may
result in them getting a precise location for the target or other agents. As well,
all visible empty squares can be eliminated from the belief set.

5



Figure 1: Framework for MAMT solutions

2. The agents are divided into visibility groups. A visibility group is a maximal
group such that for each pair of agents in the group there is a chain of agents
through which the two agents can communicate; in other words, the agents
within the group are transitively visible to each other.

3. Within each visibility group, the agent that has the most recent information about
an entity (i.e. the target or an agent) conveys that information (and the belief set
in the case of the target) to the other agents of the group.

In our work, we implemented three strategies for maintaining the belief set:

1. All-scenarios. Expand the current belief set to include all possible locations that
can be reached in one more move. If the target has not been seen in � moves,
then the belief set includes all grid squares that are reachable in � moves from
the last known position (excluding those that can be eliminated by vision).

2. Region belief set. This set has the same update as the all-scenarios belief set.
However, after the search goal is chosen, the agent commits to only consider
beliefs in the region of the goal. The belief set may be broken up into connected
components (because of visibility), and the agent removes all nodes from the
belief set that are not in the connected component containing the search goal.

3. Single-location: The agent maintains a single belief (one grid square). The
belief is updated by choosing a random direction and moving the belief in that
direction until an obstacle is encountered or new target information is available.

Note that it is possible for a belief set to become empty. For both the all-scenarios
and region belief sets, the location where the target was last spotted becomes the new
belief set. When using a single-location strategy, the belief set is reinitialized to be the
closest location to the former belief that can’t be seen by the agent.

6



A

C C

C

S

T

A1

A2

T

F1

F2

F3

F4

Figure 2: Belief sets (left) and filtering (right)

Figure 2 (left) illustrates the different belief sets. The agent (A) sees the target
(T) and both then make two moves. The all-scenarios belief set is represented by the
shaded squares. Since the belief set decomposes into two connected components, using
a region strategy, the agent would commit to one of the two regions (the left one, C, in
this case). With a single-strategy, the agent commits to one square in the belief set (S).

4.2 Filtering

The belief set has to be reduced to a single goal location. This stage is the first step
in that direction – it prepares a small subset of the belief set, the filtered belief set, for
further consideration.

No filtering is needed in the case of the single-location belief set. We use the
following greedy algorithm for filtering the all-scenarios and region belief sets. This
algorithm tries to come up with an approximation for the “corners” of the variable
shaped belief set:

1. A belief with the maximal � -coordinate is the first element of the filtered belief
set. The only distinctive property of this belief is that it is located on the border
of the belief set.

2. While the number of elements in the filtered belief set is smaller than a predefined
constant (4 for our work), do:
Let

�
be the belief set and

���
be the filtered belief set so far. The next element

in
���

is the belief ��� �
that maximizes �
	��������� ��� ����������� ������ "!$# .

In Figure 2 (right), the squares marked F1, F2, F3 and F4 in order are selected as
approximations for the “corners” of the belief set bounding box for agent A1.

4.3 Goal Selection

In addition to the belief set of the target’s location, each agent maintains information
on the last known location of the other agents. This information is needed to help the
agent select a search goal that reduces the probability of duplicating what the other
agents are doing.

7



Each agent selects one member of their filtered belief set to be their search goal.
Randomly selecting a location from the filtered belief set is an obvious control strategy
to implement. However, a more intelligent strategy is needed – one that considers
information about other agents.

The difference metric is used to identify a goal that ideally is (a) closest to the agent
and yet (b) farthest from the closest other agent. For each location in the filtered belief
set, we compute two metrics:

1. The distance from the agent to the belief.

2. The minimum of the distances from the belief to the last known positions of the
other agents.

These values can be determined by search (expensive) or by heuristics (inaccurate).
For each location in the filtered belief set, the agent computes the difference of the

above two values, and chooses the one with the minimum difference. The idea is that
the agent should assist the other agents by covering the possible escapes of the target
that are hard for the other agents to reach. In Figure 2 (right), agent A1 is closest to F2.
A1’s knowledge of A2’s position suggests that A2 is likely to go towards F2. Hence,
A1 chooses to move towards F3 (the closest belief that is farthest away from the other
agents).

4.4 Search

Now that each agent has selected a goal, it then performs a search to find a “best”
move that progresses towards that goal. Since this has to be a real-time algorithm,
the search algorithm is allocated a fixed number of search nodes (i.e., approximating a
fixed amount of time per decision). In the search, the manhattan distance is used as the
leaf node evaluation function.

We experimented with two search algorithms:

1. Single-agent minimin search [5]: Here the agent uses single-agent search to find
the shortest path to the goal location. The search has the effect of selecting the
move that tries to chase the target.

2. Adversarial search. The search can alternate between moves for the agent (get
closer to the target) and target (move away from the agent). This becomes an
alpha-beta search, where the agent tries to minimize the minimax value of the
search (the distance from the target). The search has the effect of selecting the
move that minimizes the worst-case scenario.

4.5 Comments

Each agent wanders about the grid trying to maximize their coverage, as a function of
what they know (about the target and other agents). In many cases (especially for large
mazes) an agent may go a long time without getting an update on the target’s position,
effectively negating the effectiveness of the belief set. For non-trivial belief sets, as
long as information is known about other agent’s positions the agents will separate to
avoid redundancy in the search.

8



5 Experiments

5.1 The Moving Target

There are a variety of target strategies that can be investigated (such as the simple avoid,
meet, random and stationary used in [3, 2]). Instead, we prefer to use a (minimalist)
“realistic” model for the target. The target has limited intelligence based on its knowl-
edge of the last known locations of pursuing agents and the locations it has already
visited. The following is a rough sketch of the strategy.

The strategy is a weighted combination of four sub-strategies: distance (
�
), mobil-

ity ( � ), visibility ( � ), and random ( � ). First, the target wants to maximize the distance
from the agents’ location (either real or perceived distance). This can be estimated us-
ing manhattan distance. Second, the target wants to maximize its mobility by preferring
a move that leads to more move choices. By looking a small number of moves ahead,
the target can identify which paths lead to more choices (open space), and which to
fewer (e.g., dead ends). The third consideration is visibility. Moves which increase the
real or perceived ability of the agents to see the target are less desirable than moves to
squares where the target is not visible. Finally, a random factor was introduced to add
some variability to the target’s behavior.

Each possible target move is evaluated using the following formula: score =
��� � ���

��� �
	
�

� �����	 � � ����	 � . The maximum scoring move is selected. The weights were
hand-tuned based on the perceived realism of the target’s behavior. Machine-learning
could be used to find a better set of weights.

To avoid cycles the target will not go back to locations it has already visited before,
if it has other choices. Overall, the strategy produces reasonable target behavior given
its limited search horizon (only used in the mobility calculation).

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

Pr
ob

le
m

s 
So

lv
ed

Maze Size

Single_SAS
All_D(MD)_SAS
All_D(SAS)_SAS
All_D(AB)_SAS
All_D(AB)_AB
All_D(MD)_AB

Figure 3: Comparing solutions

9



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50 60 70 80

Pr
ob

le
m

s 
So

lv
ed

Maze Size

1 Agent 
2 Agents
3 Agents
4 Agents
5 Agents
6 Agents
7 Agents
8 Agents
9 Agents

10 Agents

Figure 4: Varying size and # of agents

5.2 Experimental Setup

Solutions to MAMT instances were tested using grids of sizes from
� �
�

� �
to

� �
�� �

, in increments of 10 for each dimension. Grids had obstacles randomly placed,
occupying 10% to 30%, in increments of 5%, of the available space (higher densities
result in large parts of the grid becoming unreachable). The experiments ranged from
having 1 through 10 agents.

Each pursuer was allocated 50,000 search nodes to make its decision, allowing
each step in the pursuit to be completed in less than a second (the worst case is with 10
agents and one target – requiring up to 11 searches per agent per move, i.e. 10 searches
for weighting the filtered belief set and 1 search for selecting a move). If search was
used to compute the difference metric, then half the search nodes were allocated to this
task, and the other half to move selection. Agents were allowed a maximum belief set
size of 100.

An experiment ended when one of the pursuers caught the target, or when a maxi-
mum number of moves was reached. For an � � � grid, the maximum number of moves
was set to

��	
� � . In our experience, the agents caught the target in less than � � �

moves, or not at all.

5.3 Experiments

Figure 3 compares several different solutions. The belief set was maintained using
one of: all-scenarios (ALL), region, and single-location (Single). Except for a single-
location belief set, the choice of goal was done using the difference metric based on ei-
ther manhattan distance (no search) – D(MD), single-agent search – D(SAS), or alpha-
beta – D(AB). Having chosen a goal, single-agent search (SAS) or alpha-beta (AB) was
used to select the best move. For selected solutions, the graph shows the percentage
of problems where the target was caught (100 trials per data point) as a function of the
maze size.

10



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

5 10 15 20 25 30 35

Pr
ob

le
m

s 
So

lv
ed

Obstacle (%)

1 Agent 
2 Agents
3 Agents
4 Agents
5 Agents
6 Agents
7 Agents
8 Agents
9 Agents

10 Agents

Figure 5: Varying the obstacle density

The control experiment is randomly selecting a goal (single-location), and using
single-agent search (SAS) to decide on the move choice. Not surprisingly, this gets
poor performance since each agent works in isolation without considering any other
agents. Region was expected to perform quite well, but instead its results were mixed
(not shown).

All D(MD) SAS and All D(SAS) SAS performed best in all our experiments, with
a preference for the manhattan difference metric. That the difference heuristic gets the
best performance is gratifying, since it is better informed by using beliefs about the
other agents. Using a simple heuristic appears to be as good as or better than using
search for determining the “best” search goal. The simplest way of computing the
difference metric – using static manhattan distance instead of more accurate search –
also leads to shorter solution lengths (up to 10% on average). This shows that investing
search in move selection is more beneficial than investing it in goal selection.

The results show that alpha-beta is out-performed by single-agent search. Since
alpha-beta takes into account the target’s moves, it cannot reach the search depths that
single-agent search can and, hence, may yield a lesser-quality solution. There are
problem instances where alpha-beta’s consideration of the target’s moves is needed to
properly corner the target, but in general these are in the minority.

In cases where the target eluded capture, a familiar pattern emerged. The target
would stay hidden in a small area, and the agent’s knowledge of where the target
was became obsolete and effectively useless. The agents would independently wander
about, hoping to find the target. In the real world, if such a scenario arises, the agents
should wait until more help arrives and then begin the search anew, going through the
entire grid systematically. Such an extension is beyond the current scope of our work.

Figure 4 shows that more agents are better than fewer. The version used for this
experiment was the one that generally performed best in all our experiments – all-
scenarios belief set using the difference metric (manhattan distance) using single-agent
search. Note that as the number of agents increases, the number of nodes per agent per
search in the goal selection gets smaller(recall the total search size is limited). Even

11



so, adding more agents is beneficial despite less resources per search.
Figure 5 shows that as the mazes become more congested with obstacles, it gets

harder for the agents to find the target. Essentially, a higher percent of obstacles gives
the target more opportunities to hide. However, at 30% of obstacles, our target starts
having problems with avoiding the dead ends and is sometimes caught more easily.

Several control experiments were also done, and they gave predictable results. Sim-
plistic targets (e.g., random, or avoid) were much easier to catch.

6 Future Work and Conclusions

This problem domain is rich in possibilities, and can be extended to increase the “real-
ism” of the simulations. Some examples include:

1. Multiple moving targets. Why does there have to be only one bad guy?

2. More sophisticated forms of communication can be used (e.g., communicating
plans between agents).

3. Agents can use other senses, besides sight. For example, one could enhance
the model to include sound. The pursuers could hear a (decaying with distance)
sound of running feet that may suggest the target’s direction.

4. All agents could have an energy level, that would limit the amount of running
they did. When agents don’t know what to do, they rest to restore their energy.
When they see the target, they sprint to try and catch it.

5. Creating realistic “human-like” target behavior. The target used in this work can
be improved on.

The framework used of this research has many opportunities for interesting ideas:

1. Agents can use more sophisticated reasoning about their belief set.

2. Right now, all agents have a complete map of the terrain. A more interesting
scenario is to have the agents (pursuers and target) dynamically map the en-
vironment. The map could consist entirely of unknown regions. As an agent
moves, it can add everything it sees to its map.

3. In our application, initially the target is visible to at least one agent. In the
Minority Report example, this was not the case. With no information on the
target available, the agents should adopt a systematic search pattern.

4. Our current implementation has all states in the belief set being equally likely
outcomes. A weighted belief set might yield better results against a predictable
opponent (opponent modeling). For example, the belief set could capture the idea
of momentum; non-random targets tend to continue moving in the same direc-
tion. Alternatively, the pursuers could use anticipation as part of their decision-
making process (e.g., [6]).

12



5. In the real world, one of the agents is explicitly or implicitly the leader. Typically
they issue directions to the other agents that are in ear shot.

The framework given in this paper provides a good starting point for solving prob-
lems of having multiple agents pursuing a moving target. There are many ideas yet to
be explored in this framework. However, for the purposes of creating “realistic” pursuit
scenarios, in particular for real-time-strategy commercial games, the current work has
proven to be quite effective.

7 Acknowledgements

This research was supported by grants from the Natural Sciences and Engineering Re-
search Council of Canada (NSERC), Institute for Robotics and Intelligent Systems,
and Alberta’s Informatics Circle of Research Excellence (iCORE).

References

[1] R. Hill, C. Han, and M. van Lent. Applying perceptually driven cognitive map-
ping to virtual urban environments. AAAI, pages 886–893, 2002.

[2] T. Ishida. Real-time search for autonomous agents and multiagent systems. Au-
tonomous Agents and Multi-Agent Systems, 1:139–167, 1998.

[3] T. Ishida and R. Korf. Moving target search: A real-time search for changing
goals. IEEE PAMI, 17(6):609–619, 1995.

[4] S. Koenig and M. Likhachev. D* lite. AAAI, pages 476–483, 2003.

[5] R. Korf. Real-time heuristic search. Artificial Intelligence, 42(2–3):189–211,
1990.

[6] J. Laird. Using a computer game to develop advanced AI. IEEE Computer,
34(7):70–75, 2001.

[7] J. Reynolds. Tactical Team AI Using a Command Hierarchy, pages 260–271.
Charles River Media, Inc., 2002.

[8] M. Roth, D. Vail, and M. Veloso. A world model of multi-robot
teams with communication, 2003. www-2.cs.cmu.edu/˜mmv/papers/
03icra-maayan.pdf.

[9] A. Stentz. The focussed D* algorithm for real-time replanning. In IJCAI, pages
1652–1659, 1995.

[10] B. Stout. Smart moves: Intelligent path-finding. Game Developer Magazine,
pages 28–35, 1996.

[11] W van der Sterren. Squad Tactics: Planned Maneuvers, pages 247–259. Charles
River Media, Inc., 2002.

13


