
Multiple Agents Moving Target Search

Mark Goldenberg, Alexander Kovarsky, Xiaomeng Wu, Jonathan Schaeffer
Department of Computing Science, University of Alberta,

Edmonton, Alberta, Canada T6G 2E8�
goldenbe,kovarsky,xiaomeng,jonathan � @cs.ualberta.ca

Abstract

Traditional single-agent search algorithms usually
make simplifying assumptions (single search agent,
stationary target, complete knowledge of the state,
and sufficient time). There are algorithms for re-
laxing one or two of these constraints; in this pa-
per we want to relax all four. The application do-
main is to have multiple search agents cooperate
to pursue and capture a moving target. Agents are
allowed to communicate with each other. For solv-
ing Multiple Agents Moving Target (MAMT) ap-
plications, we present a framework for specifying a
family of suitable search algorithms. This paper in-
vestigates several effective approaches for solving
problem instances in this domain.

1 Introduction

In the 2002 Steven Spielberg movie Minority Report, John
Anderton (played by Tom Cruise) is on the run. In one se-
quence, Anderton is hiding in a building, and his pursuers
unleash a team of mini-robots to flush him out. The robot
team separates, each covering a different part of the building.
Anderton, realizing the danger, stops fleeing and comes up
with a unique solution – he submerges himself in a bathtub
of water so as to avoid the robotic detectors. Sadly, he can
only hold his breath for so long, before he has to emerge and
is found by the robots.

The classic algorithms (such as ���) are effective for solv-
ing search problems that satisfy the properties: one search
agent, the agent has perfect information about the environ-
ment, the environment and goal state do not change, and
enough time is given to make an optimal decision. Relax-
ing even one of the assumptions gives rise to new algorithms
(e.g., moving target search [Ishida and Korf, 1995]), real-time
search [Korf, 1990], and � � [Stentz, 1995]). Many real-
world problems do not satisfy all of these properties. In this
paper we use an application domain that breaks all of them.

Consider the task of multiple agents having to pursue and
capture a moving target; for example a squad of policemen
chasing a villain. We want to design a test environment that
is as realistic as possible. We assume a grid with obstacles.
Agents can only “see” what is directly visible to them. Agents

are allowed to communicate with any agent that they can see.
As the target flees, it may become obscured from sight.

The agent’s knowledge of the locations of the target and
other agents may be fuzzy (since some of them may be hid-
den from sight). Given whatever knowledge of the target and
other agents is available, an agent must decide how to pursue
the target. The target’s possible locations provide informa-
tion of where to search; the other agents’ possible locations
provide information that can be used to coordinate the search
effort. The challenge is to have the agents act autonomously
to catch the target as quickly as possible.

This paper makes the following contributions: MAMT –
a challenging application domain for exploring issues related
to Multiple Agents pursuing a Moving Target, a framework
for expressing real-time search algorithms for the MAMT
domain, and several solutions that allow an agent to act au-
tonomously (using information about the possible positions
of the target and other agents in the decision-making process).

More details are available at www.cs.ualberta.ca/
˜jonathan/Papers/ai.2003.html.

2 Literature

There are a family of ��� algorithms that relax solution opti-
mality by requiring the agent to make the best decision pos-
sible given limited search resources (e.g., time) [Korf, 1990].
The Minimin Lookahead Search algorithm uses a fixed-depth
search (� moves), keeping track of the moves that lead to the
(heuristically) best � -move outcome. Real-Time ��� (�
���)
is an �� variant that uses the results produced by the min-
imin lookahead search as heuristic values in order to guide the
search towards achieving the goal [Korf, 1990]. Moving Tar-
get Search (MTS) is an ��	�
���� variant that allows a moving
target [Ishida and Korf, 1995]. An assumption in most MTS
papers is that the target moves slower than the agent. With-
out this requirement, the target can stay ahead of the agent
and possibly elude capture. There are many real-time search
variants (e.g., LPA* [Koenig and Likhachev, 2003]). For the
most part, these are orthogonal to our work. The difficult part
for an agent is deciding on the search goal; once achieved,
then any of several different search algorithms can be used.

Having multiple agents participating in a search is a topic
of recent interest. RoboCup is an example, but that work
has more limited scope, and agents (players) generally have
global knowledge.

Figure 1: Framework for MAMT solutions

3 Problem Description
The MAMT domain has the following properties. Agents
and target: multiple agents pursuing a single moving target.
Grid: ����� in size, with randomly-placed obstacles. All
agents and the target have complete knowledge of the grid
topology. Moving: all moves are horizontal or vertical and
are made simultaneously. Starting position: The target al-
ways starts in the middle of the grid. The agents are all placed
in the lower left corner of the grid. The target is visible to
at least one agent. Vision: can “see” anything that is in an
unobstructed direct line. Communication: between moves,
agents communicate with any agent that is visible to them.
The agents exchange information as to where they believe
the target and other agents are located. Objective: catch the
target in the fewest number of moves.

4 Multiple Agent Moving Target Search
The intent of this work is not to build a new search algorithm.
Rather, we want to plug standard search algorithms into a
framework that, given a goal selection, will find the “best”
way to reach the objective.

When an agent does not know the exact position of the tar-
get (from vision or communication), it must maintain a belief
set of where the target might be. The belief set can take into
account the topology of the grid, knowledge of the opponent,
and the time since the last known target location. As the time
increases since the last sighting, the knowledge of where the
target is gets fuzzier. An agent should choose its search area
based on its beliefs about the target and other agents.

Figure 1 shows the four-step method that is the frame-
work used for specifying our solution algorithms. There is
no “right” way of solving any of these steps. In the following
we detail several algorithm alternatives.

4.1 Belief Set
Whenever an agent knows the exact location of the target,
that agent’s belief set contains only one location, otherwise
it can grow. Since this is a real-time search application, and
real agents have limited memory, the belief set size is limited.
Before a move, each agent sends its belief set information
about the target and other agents to any agent it can see (who
may, in turn forward it to agents that they see).

We implemented three strategies for maintaining the belief
set. All-scenarios. Expand the current belief set to include
all possible locations that can be reached in one more move.

Region belief set. This set has the same update as the all-
scenarios belief set. After the search goal is chosen, the agent
commits to only consider beliefs that are connected to the goal
location. Single-location: The agent maintains a single be-
lief (one grid square). The belief is updated by choosing a
random direction and moving the belief in that direction until
an obstacle is encountered or new target information is avail-
able.

We use a simple greedy algorithm to approximate the four
“corners” of the variable shaped belief set. This subset of the
belief set is called the filtered belief set.

4.2 Goal Selection
Each agent selects a goal from their filtered belief set. Ran-
domly selecting a location from this set is an obvious control
strategy to implement. However, a more intelligent strategy is
needed – one that considers information about other agents.

The difference metric is used to identify a goal that ideally
is (a) closest to the agent and yet (b) farthest from the clos-
est other agent. For each location in the filtered belief set,
we compute two metrics: the distance from the agent to the
belief, and the minimum distance from the belief to the last
known agent positions. These values can be determined by
search (expensive) or by heuristics (inaccurate).

For each location in the filtered belief set, the agent com-
putes the difference of the above two values, and chooses the
one with the minimum difference. The idea is that the agent
should assist the other agents by covering the possible es-
capes of the target that are hard for the other agents to reach.

4.3 Search
Given a goal, each agent performs a search to find a “best”
move that progresses towards that goal. Since this has to be a
real-time algorithm, the search algorithm is allocated a fixed
number of search nodes (approximating a fixed amount of
time per decision). The manhattan distance is used as the
search evaluation function.

We experimented with two search algorithms. Single-
agent minimin search [Korf, 1990]: Here the agent uses
single-agent search to find the shortest path to the goal lo-
cation. The search has the effect of selecting the move that
tries to chase the target. Adversarial search: The search can
alternate between moves for the agent (move towards the tar-
get) and target (move away from the agent). This becomes
an alpha-beta search, where the agent tries to minimize the
minimax value of the search (the distance from the target).

4.4 Comments
For non-trivial belief sets, as long as information is known
about other agent’s positions the agents will separate to avoid
redundancy in the search. Each agent wanders about the grid
trying to maximize their coverage, as a function of what they
know (about the target and other agents). In many cases (es-
pecially for large mazes) an agent may go a long time without
getting an update on the target’s position, effectively negating
the effectiveness of the belief set.

5 Experiments
There are a variety of target strategies that can be investi-
gated. The strategy used is a weighted combination of four

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

Pr
ob

le
m

s
So

lv
ed

Maze Size

Single_SAS
All_D(MD)_SAS
All_D(SAS)_SAS
All_D(AB)_SAS
All_D(AB)_AB
All_D(MD)_AB

Figure 2: Comparing solutions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50 60 70 80

Pr
ob

le
m

s
So

lv
ed

Maze Size

1 Agent
2 Agents
3 Agents
4 Agents
5 Agents
6 Agents
7 Agents
8 Agents
9 Agents

10 Agents

Figure 3: Varying size and # of agents

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

5 10 15 20 25 30 35

Pr
ob

le
m

s
So

lv
ed

Obstacle (%)

1 Agent
2 Agents
3 Agents
4 Agents
5 Agents
6 Agents
7 Agents
8 Agents
9 Agents

10 Agents

Figure 4: Varying the obstacle density

sub-strategies: distance, mobility, visibility, and random. The
maximum scoring move is selected. The weights were hand-
tuned based on the perceived realism of the target’s behavior.

Solutions to MAMT instances were tested using grids of
sizes from

���
�
���

to � � ��� � . Grids had obstacles randomly
placed, occupying 10% to 30%, in increments of 5%, of the
space. The experiments used 1 to 10 agents. Each pursuer
was allocated 50,000 search nodes to make its decision. If
search was used to compute the difference metric, then half
the search nodes were allocated to this task, and the other half
to move selection. Agents were allowed a maximum belief set
size of 100. An experiment ended when one of the pursuers
caught the target, or when a maximum number of moves was
reached. For an ��� � grid, the maximum was set to

���
� � .

With few exceptions, the target was caught in less than � � �
moves, or not at all.

Figure 2 compares several different solutions. The belief
set was maintained using one of: all-scenarios (ALL), region,
and single-location (Single). Except for a single-location be-
lief set, the choice of goal was done using the difference met-
ric based on either manhattan distance (no search) – D(MD),
single-agent search – D(SAS), or alpha-beta – D(AB). Hav-
ing chosen a goal, single-agent search (SAS) or alpha-beta
(AB) was used to select the best move. The graph shows the
percentage of problems where the target was caught (100 tri-
als with different random seeds per data point) as a function
of the maze size.

The control experiment is randomly selecting a goal
(single-location), and using single-agent search (SAS) to de-
cide on the move choice. Not surprisingly, this gets poor per-
formance. Region was expected to perform quite well, but
instead its results were mixed (not shown).

All D(MD) SAS and All D(SAS) SAS performed best in
all our experiments, with a preference for the manhattan dif-
ference metric. That the difference heuristic gets the best per-
formance is gratifying, since it is better informed by using be-
liefs about the other agents. Using a simple heuristic appears
to be as good as or better than using search for determining
the “best” search goal. The simplest way of computing the
difference metric – using static manhattan distance instead of
more accurate search – also leads to shorter solution lengths
(up to 10% on average). This shows that it is more beneficial
to invest search effort in move selection than in goal selection.

Alpha-beta is out-performed by single-agent search. Since
alpha-beta takes into account the target’s moves, it cannot
reach the search depths that single-agent search can and,

hence, usually yields a lesser-quality solution.
In cases where the target eluded capture, a familiar pattern

emerged. The target would stay hidden in a small area, and
the agent’s knowledge of where the target was became obso-
lete and effectively useless. The agents would independently
wander about, hoping to find the target. In the real world,
if such a scenario arises, the agents should wait until more
help arrives and then begin the search anew, going through
the entire grid systematically.

Figure 3 shows that more agents are better than fewer (us-
ing All D(MD) SAS). Note that as the number of agents in-
creases, the number of nodes per agent per search in the goal
selection gets smaller (recall the total search size is limited).
Even so, adding more agents is beneficial despite less re-
sources available.

Figure 4 shows that as the mazes become more congested
with obstacles, it gets harder for the agents to find the tar-
get. Essentially, a higher percent of obstacles gives the target
more opportunities to hide. However, at 30% of obstacles,
our target starts having problems with avoiding the dead ends
and is sometimes caught more easily.

Several control experiments were also done, and they gave
predictable results. Simplistic targets (e.g., random, or avoid)
were much easier to catch.

6 Future Work and Conclusions
This problem domain is rich in possibilities, and can be ex-
tended to increase the “realism” of the simulations. Some ex-
amples include: multiple moving targets, more realistic com-
munication, creating “human-like” target behavior, and op-
ponent modeling. The framework used of this research has
many opportunities for interesting extensions.

7 Acknowledgments
This research was supported by NSERC, iCORE, and IRIS.

References
[Ishida and Korf, 1995] T. Ishida and R. Korf. Moving tar-

get search: A real-time search for changing goals. IEEE
PAMI, 17(6):609–619, 1995.

[Koenig and Likhachev, 2003] S. Koenig and M. Likhachev.
D* lite. AAAI, pages 476–483, 2003.

[Korf, 1990] R. Korf. Real-time heuristic search. Artificial
Intelligence, 42(2–3):189–211, 1990.

[Stentz, 1995] A. Stentz. The focussed D* algorithm for
real-time replanning. In IJCAI, pages 1652–1659, 1995.

