
FastLSA:
A Fast, Linear-Space, Parallel and Sequential Algorithm for Sequence Alignment

Adrian Driga, Paul Lu, Jonathan Schaeffer, Duane Szafron, Kevin Charter, and Ian Parsons
Dept. of Computing Science, University of Alberta

Edmonton, Alberta, T6G 2E8, Canada�
adrian|paullu|jonathan|duane � @cs.ualberta.ca

Abstract

Pairwise sequence alignment is a fundamental oper-
ation for homology search in bioinformatics. For two
DNA or protein sequences of length � and � , full-matrix
(FM), dynamic programming alignment algorithms such
as Needleman-Wunsch and Smith-Waterman take O( ���
� ) time and use a possibly prohibitive O( ����� ) space.
Hirschberg’s algorithm reduces the space requirements to
O( ���	��
������� ), but requires approximately twice the num-
ber of operations required by the FM algorithms.

The Fast Linear Space Alignment (FastLSA) algorithm
adapts to the amount of space available by trading space
for operations. FastLSA can effectively adapt to use ei-
ther linear or quadratic space, depending on the amount of
available memory. Our experiments show that, in practice,
due to memory caching effects, FastLSA is always as fast
or faster than Hirschberg and the FM algorithms. We have
also parallelized FastLSA using a simple but effective form
of wavefront parallelism. Our experimental results show
that Parallel FastLSA exhibits good speedups.

1 Introduction

Sequence alignment is a fundamental operation in bioin-
formatics. Pairwise sequence alignment is used to deter-
mine homology (i.e., similar structure) in both DNA and
protein sequences to gain insight into their purpose and
function. Given the large DNA sequences (e.g., tens of
thousands of bases) that some researchers wish to study
[6, 17, 7, 14], the space and time complexity of a sequence
alignment algorithm become increasingly important.

As the first research contribution of this paper, we estab-
lish that the recently-introduced FastLSA [4] algorithm is
the preferred sequential, dynamic programming algorithm
for globally-optimal pairwise sequence alignment. Given
FastLSA’s strong analytical and empirical characteristics

with respect to space and time complexity, FastLSA is a
good candidate for parallelization.

As the second contribution, we show that FastLSA is
nicely parallelizable while maintaining the strong complex-
ity properties of the sequential algorithm.

The third contribution is an empirical study of Paral-
lel FastLSA and a discussion of the importance of algo-
rithms (like FastLSA) that can be parameterized and tuned
(e.g., via parameter � , discussed below) to take advantage of
cache memory and main memory sizes. Existing algorithms
for sequence alignment cannot be similarly parameterized.

2 Background and Related Work

The primary structure of a protein consists of a sequence
of amino acids, where each amino acid is represented by one
of 20 different letters. To align two protein sequences, say
TLDKLLKD and TDVLKAD, the sequences can be shifted
right or left to align as many identical letters as possible. By
allowing gaps (“-”) to be inserted into sequences, we can
often obtain more identical letters; in this example, there are
2 different ways of obtaining 5 identically-aligned letters
(highlighted by *):

TLDKLLK-D TLDKLLK-D
T-DVL-KAD T-D-VLKAD
* * * * * * * ** *

A scoring function (e.g., the Dayhoff scoring matrix,
MDM78 Mutation Data Matrix - 1978 [5]) is used to eval-
uate and choose among the different possible alignments.
Exact matches (e.g., D aligned with D) are given high scores
(assuming that high scores are desired) and inexact matches
(e.g., K aligned with V) are given low scores. If an amino
acid in one sequence lines up with a gap in the other se-
quence (e.g., K aligned with -), then a negative value, called
a gap penalty is added to the score.

Many algorithms for sequence alignment are based on
dynamic programming techniques that are equivalent to the

1



algorithms proposed by Needleman and Wunsch [13] and
Smith and Waterman [18]. Aligning two sequences of
length � and � is equivalent to finding the maximum cost
path through a dynamic programming matrix (DPM) of size
����� by ����� , where an extra row and column is added
to capture leading gaps. Given a DPM of size � by � , it
takes O( � � � ) time to compute the DPM cost entries, and
then O( ��� � ) time to identify the maximum-cost path in
the DPM. In this paper, algorithms that are based on storing
the complete DPM are called full matrix algorithms (FM).

Unfortunately, calculations requiring O( ��� � ) space
can be prohibitive. For instance, aligning two sequences
with 10,000 letters each requires 400 Mbytes of memory,
assuming each DPM entry is a single 4 byte integer. Given
that we now have the capacity to sequence entire genomes,
pairwise sequence comparisons involving up to four million
nucleotides at a time are now desirable. O( � � � ) storage
of this magnitude would require memory sizes beyond the
range of current technology.

Hirschberg [10] was the first to report a linear space al-
gorithm. However, not storing the entire DPM means that
some of the entries need to be recomputed to find the op-
timal path. It is a classic space-time tradeoff: the number
of operations approximately doubles, but the space over-
head drops from quadratic to linear in the length of the se-
quences. In fact, Hirschberg’s original algorithm was de-
signed to compute the longest common sub-string of two
strings, but Myers and Miller [12] applied it to sequence
alignment.

As with the FM and Hirschberg’s algorithm, FastLSA
is a dynamic programming algorithm and it produces the
same optimal alignment for a given scoring function. The
algorithms differ only in the space and time required.

The FM algorithms, Hirschberg’s algorithm and
FastLSA all compute the score of the alignment in the
same way. However, the FM algorithms store all of the

������ � � 
������ � matrix entries while the other two al-
gorithms propagate a single row of scores ( � entries) as the
matrix is computed, overwriting an old row of scores by a
new row.

In the area of pairwise sequence alignment, BLAST (Ba-
sic Local Alignment Search Tool) [1], is currently the most
commonly-used tool. In contrast to FastLSA, BLAST does
not attempt to find the globally-optimal alignment. There is
significant biological motivation for locally-optimal align-
ments, as with BLAST, but globally-optimal alignments, as
with FastLSA, are still interesting and useful.

In the area of parallel algorithms, Aluru, Futamura, and
Mehrotra [2] suggest an embarrassingly parallel algorithm
for sequence alignment, which they refer to as the Parallel
Space-Saving algorithm, a generalization of Hirschberg’s
algorithm. The Parallel Space-Saving algorithm builds on
the ideas of Edmiston et al. [9]. The drawback of this paral-

Algorithm FastLSA /* Will parallelize parallelFastLSA() in Section 4 */
input : logical-d.p.-matrix flsaProblem,

cached-values cacheRow and cacheColumn,
solution-path flsaPath

output: optimal path corresponding to flsaProblem prepended to flsaPath

/* Figure 2 (a) */
1 if flsaProblem fits in allocated buffer then

// BASE CASE
/* Figure 2 (b). Can parallelize as parallelSolveFullMatrix() */

2 return solveFullMatrix( flsaProblem, cacheRow, cacheColumn, flsaPath )

// GENERAL CASE
3 flsaGrid = allocateGrid( flsaProblem )
4 initializeGrid( flsaGrid, cacheRow, cacheColumn )

/* Figure 2 (c). Can parallelize as parallelFillGridCache() */
5 fillGridCache( flsaProblem, flsaGrid )

6 newCacheRow = CachedRow( flsaGrid, flsaProblem.bottomRight )
7 newCacheColumn = CachedColumn( flsaGrid, flsaProblem.bottomRight )

/* Figure 2 (d). Recursion. */
8 flsaPathExt = FastLSA( flsaProblem.bottomRight,

newCacheRow, newCacheColumn, flsaPath )

9 while flsaPathExt not fully extended
10 flsaSubProblem = UpLeft( flsaGrid, flsaPathExt )
11 newCacheRow = CachedRow( flsaGrid, flsaSubProblem )
12 newCacheColumn = CachedColumn( flsaGrid, flsaSubProblem )

/* Figure 2 (e) . Recursion. */
13 flsaPathExt = FastLSA( flsaSubProblem, newCacheRow, newCacheColumn,

flsaPathExt )

14 deallocateGrid( flsaGrid )

/* Figure 2 (f) */
15 return flsaPathExt

Figure 1. Pseudo-Code for FastLSA

lel algorithm is the lack of control on the granularity of the
subproblems it generates. To achieve good speedups, the
subproblems should have similar sizes. This is unlikely to
happen in practice because of the irregular nature of the bi-
ological sequences to be aligned. As we will see, FastLSA
also has granularity issues, but it also has parameters that
can be tuned to deal with granularity.

Martins et al. [11] have a parallel version of the
Needleman-Wunsch algorithm. The DPM is divided into
equally-sized blocks, and the algorithm statically preassigns
rows of blocks to each processor. This algorithm suffers
from the same major drawback as the original Needleman-
Wunsch algorithm: the space required is quadratic in the
size of the sequences. The particular implementation con-
sidered is based on EARTH, “a fine-grain event-driven
multi-threaded execution and architecture model” [11]. The
performance numbers presented, although impressive, are
obtained through simulation, and the largest DPM com-
puted for their benchmarks has only 	 �
�

 ����
 �
�

 en-
tries. We present empirical results on parallel hardware and
our problem sizes are substantially larger.

3 Sequential FastLSA Algorithm

We describe the FastLSA algorithm and show how it is
different from both the FM and Hirschberg algorithms. In
particular, FastLSA can be tuned, via parameter � , to take
advantage of different cache memory and main memory

2



(a) Layout of the input caches at the
start of FastLSA()

(b) Base case: full matrix algorithm is
used to find an optimal path

(c) General case: grid of caches (for k
= 4) allocated but not filled yet

���
���
���
���
���
���
��

���
���
���
���
���
���
��������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

A

B

���
���
���
���
���
���
��

			
			
			
			
			
			
		
�
�
�
�
�
�
�
�
�
�
���������������������

(d) General case: grid of caches filled
before recursion on bottom-right
block

(e) General case: after recursion on
bottom-right block, with partial
solution path

(f) General case: extend path to top
boundary via successive recursion on
sub-problems

���
���
���
���
���
���
��







������������������������������������������

���������������
���������������

���������
���������
���������
���������
���������
���������
������

���������
���������
���������
���������
���������
���������
������

���
���
���
���
���
���
��

���
���
���
���
���
���
��

���
���
���
���
���
���
��

���
���
���
���
���
���
��

��������������������������������������
��������������������������������������
��������������������������������������

���������
���������
���������
���������
���������
���������
���������

���
���
���
���
���
���
���

C2

   
   
   
   
   
   
   

!!!
!!!
!!!
!!!
!!!
!!!
!!!"�"�"�"�"�"�"�"�"�"#�#�#�#�#�#�#�#�#�#

$$
$$

%%
%%

&&&
&&&
&&&
&&&
&&&
&&&
&&&

'''
'''
'''
'''
'''
'''
'''

C

(�((�((�(
(�((�((�(
(�((�((�(
(�((�((�(
(�((�((�(
(�((�((�(
(�((�((�(

)�))�))�)
)�))�))�)
)�))�))�)
)�))�))�)
)�))�))�)
)�))�))�)
)�))�))�)

*�*�*�*�*�*�*�*�*�*+�+�+�+�+�+�+�+�+�+
,�,�,�,�,�,�,�,�,�,-�-�-�-�-�-�-�-�-�-
.�.�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�.�./�/�/�/�/�/�/�/�/�//�/�/�/�/�/�/�/�/�/

010010010
010010010
010010010
010010010
010010010
010010010
010010010

212212212
212212212
212212212
212212212
212212212
212212212
212212212

33
3
44
4

515515515
515515515
515515515
515515515
515515515
515515515
515515

616616616
616616616
616616616
616616616
616616616
616616616
616616

717717717
717717717
717717717
717717717
717717717
717717717
717717

818818818
818818818
818818818
818818818
818818818
818818818
818818

919919919
919919919
919919919
919919919
919919919
919919919
919919

:1::1::1:
:1::1::1:
:1::1::1:
:1::1::1:
:1::1::1:
:1::1::1:
:1::1:

;1;1;1;<1<1<=1=1=1==1=1=1==1=1=1==1=1=1=

>1>1>>1>1>>1>1>>1>1>?1??1?
?1?
@@
@A1A1A1AB1B1B

C1C1C1C1C1C1C1C1C1C1CD1D1D1D1D1D1D1D1D1D

E1E1E1E1E1E1E1E1E1E1EF1F1F1F1F1F1F1F1F1F
G1G1G1G1G1G1G1G1G1G1GH1H1H1H1H1H1H1H1H1H

I1I1I1I1I1I1I1I1I1I1I1IJ1J1J1J1J1J1J1J1J1J1J1J

C

F

E D

HI G

Sub-problem
(for recursion)KLKLKKLKLKKLKLKMLMLMMLMLMMLMLM NLNLNNLNLN

OLOLOOLOLO
Known score values Unknown score values Solution path

Figure 2. Execution Stages of FastLSA

sizes. Furthermore, we show that FastLSA is the preferred
algorithm in practice, which also makes it a good candidate
for parallelization.

The basic idea of FastLSA [4, 8] is to use more available
memory to reduce the number of re-computations that need
to be done in Hirschberg’s algorithm. This is accomplished
by: (1) dividing both sequences instead of just one, (2) di-
viding each sequence into � parts instead of only two and
(3) storing some specific rows and columns of the logical
DPM in grid cache lines to reduce the re-computations.

Suppose that PRQ �TSUS �WV and XYQ �ZS[S �RV are the two biologi-
cal sequences that must be aligned. Let \^] denote the
number of memory units (e.g., words) available for solv-
ing the sequence alignment problem. \^] may represent
either the size of cache memory or main memory, depend-
ing on the specific performance-tuning goal of the program-
mer. If \^]`_ � � � , then a full matrix algorithm (e.g.,
Needleman-Wunsch) can be used to solve the problem be-
cause the DPM can be stored in the available memory.

FastLSA is a recursive algorithm based on the divide and

conquer paradigm. The pseudo-code for the FastLSA algo-
rithm is shown in Figure 1 and an explanatory diagram is in
Figure 2. A call to FastLSA takes as input a logical DPM
corresponding to a pair of sequences and an optimal solu-
tion path that ends at the bottom-right entry.

Prior to running FastLSA, ab] units of memory are re-
served from the \^] units available. These reserved units
are referred to as the Base Case buffer. If the DPM can
be allocated in the Base Case buffer, then an optimal path
for the input problem is built using a full matrix algorithm.
This corresponds to the BASE CASE section of the algo-
rithm (lines 1–2 in Figure 1).

The full matrix algorithm uses the input values
cacheRow and cacheColumn as the first row and col-
umn of the DPM it must compute (Figure 2 (a)). After all
entries of the DPM have been computed, an optimal path
through the matrix is built. Figure 2 (b) shows the com-
puted and stored DPM entries of a sample base case. In this
figure, an optimal path is found to extend from the bottom-
right corner entry, c , to the top boundary entry, a .

3



If the size of the DPM for the input problem is bigger
than ab] , the General Case of the algorithm is followed
(Figure 1). In this case, FastLSA splits the input problem
into smaller subproblems. These subproblems are solved
recursively. The solution paths for these subproblems, if
concatenated, form a solution path for the input problem.

It is useful to observe that FastLSA solves a succession
of rectangular problems, called FastLSA subproblems, as ei-
ther a Base Case for small subproblems, or as a Fill Cache
for subproblems that do not fit in the Base Case buffer (Fig-
ure 2(c) to Figure 2(f)).

Let � 
�����  � � be the maximum number of DPM entries
that need to be stored in order to align the sequences us-
ing a grid cache of � rows and � columns; ��� � rows of
length � and ��� � columns of length � must be allocated.
� 
�����  � ��� ��� 
�������� � ab] [4, 8], so we know that
the space overhead is linear with respect to problem size.
Admittedly, FastLSA uses more space than Hirschberg’s
algorithm, but FastLSA also recomputes fewer DPM en-
tries, thus improving the overall performance. Furthermore,
FastLSA is conveniently parameterized by � and can be ad-
justed to use all \^] units of memory.

Again, FastLSA trades space for time. Let � 
 �  �  � �
be the number of DPM entries computed by FastLSA when
the sequences P and X are aligned using a grid cache with �
rows and � columns. The total execution time of FastLSA is
proportional to � 
 �  �  � � . In the worst case, � 
�����  � ���
� � � �
	���	���

for FastLSA [4]. For example, when ����� ,
� 
����� �� ��� �TS�� � � � � . The upper bound provided by
FastLSA decreases when the value of � increases.

We compared the empirical performance of the FM algo-
rithm, Hirschberg’s algorithm, and FastLSA using a com-
mon software and hardware base. The experiments were
performed on a 800 MHz Pentium III (Coppermine) with
16 Kbytes of Level 1 data cache, 256 Kbytes of Level 2
cache (clocked at 800 MHz), 133 MHz front side (memory)
bus, 512 MB of main memory and Red Hat Linux 6.1 with
the Linux 2.2.16 kernel. Although there are two CPUs, our
application is single-threaded.

We randomly selected 5 sequences of lengths 100, 200,
500, 800, 1000, and 2000 amino acids, plus or minus 5%
in length, from the Swiss-Prot database [3] to serve as our
query sequences. The average and standard deviation of the
real times for the 5 queries are in Table 1. Note that, with
one exception, FastLSA is the fastest algorithm.

Why is FastLSA faster than FM for query sequences of
length 100 and 200, slower than FM for sequences of size
500 and then faster again for longer sequences? An in-
escapable fact of contemporary computer systems is that, in
practice, the cache behavior of an algorithm can have a sub-
stantial impact on its performance. Each query sequence of
size 100 was aligned against the entire Swiss-Prot database,
which contains sequences ranging from less than 100 amino

Query
Length

Full
Matrix

Hirschberg FastLSA

100 0.307 �
0.003

0.389 �
0.007

0.262 �
0.004

200 0.621 �
0.008

0.885 �
0.014

0.595 �
0.009

500 1.594 �
0.016

2.551 �
0.042

1.713 �
0.028

800 2.594 �
0.049

3.853 �
0.129

2.580 �
0.081

1000 3.216 �
0.026

4.305 �
0.048

2.882 �
0.030

2000 6.531 �
0.091

9.418 �
0.642

6.136 �
0.415

Table 1. Sequential Search of the Swiss-Prot
Databases with FM, Hirschberg and FastLSA
(times in ������� ������� � 
! , fastest times are in
boldface)

acids to over 5,000 amino acids. This means that the DPM
ranged in size from � 
�
 � � 
�
 � 	 bytes = 40 Kbytes to
��

 �"��
�
�
 � 	 bytes = 2 Mbytes. Since the secondary
cache has only 256 Kbytes, the FM DPM would not fit in
secondary cache and a large number of main memory ac-
cesses were made. In contrast, the memory requirements for
FastLSA are much smaller. FastLSA with �#�%$ requires
only $ ��
 � 
�
 ����

�
 � � ��& bytes = 140.8 Kbytes for the
grid vectors. This easily fits into the 256 Kbyte secondary
cache. Hirschberg’s algorithm also fits into the secondary
cache. However, since it does more re-computations than
FastLSA, it cannot overtake the FM algorithm.

From Table 1 we conclude that for shorter sequences, the
choice of the best algorithm depends on cache effects. How-
ever, FastLSA is always better than Hirschberg’s algorithm.
For longer sequences, FastLSA is the best choice.

4 Parallel FastLSA

To further improve performance, sequential FastLSA
can, in theory, be parallelized via two major components:

1. Base Case: the full matrix algorithm used for solv-
ing Base Case subproblems (line 2 of the pseudo-code
from Figure 1), and

2. General Case: the computation of the FastLSA Grid
Cache for the Fill Cache subproblems (line 5 of the
pseudo-code from Figure 1).

The only changes from the sequential version to
Parallel FastLSA are the replacement of the sequen-

4



tial solveFullMatrix() with a parallel version,
parallelSolveFullMatrix(), in line 2, and the re-
placement of the sequential fillGridCache() with a
parallel version, parallelFillGridCache(), in line 5.

In practice, we found that the Base Case subproblems are
already too fine-grained to benefit from parallelism. There-
fore, in the following section, we analyze the performance
of an implementation of Parallel FastLSA that solves all
Base Case subproblems sequentially; the Fill Cache sub-
problems of the General Case are the only ones solved in
parallel.

As discussed earlier, parameter � is the primary control
of the storage overhead of FastLSA. However, new param-
eters � and � , where \ ��� � � and

� ��� � � (Figure
3) are introduced to control the parallel work partitioning
strategy for the Fill Cache subproblems. Too few units of
work results in too many idle processors; too many units of
work results in poor speedups due to fine-grained work.

Each Fill Cache subproblem is subdivided into tiles,
which are laid out along \ rows and

�
columns. Note that

each tile contains many DPM entries. In Figure 3, � ��� ,
����� , � � 	 and (consequently) \ �
$ , � ���	� ; the actual
parameter values are selected to tune the performance of the
algorithm (e.g., the different values of � and � in Table 2).
At any moment during the parallel computation, a processor
is either idle, or it is working on only one tile. Furthermore,
only one processor can work on a tile. Once the processing
of a tile ends, no processor will work on that tile again.

In terms of the order in which work is computed, the
computation starts with one processor computing the entries
of the top-left tile (labelled 1 in Figure 3). The computation
of the top-left tile is possible because the initial row (i.e.,
cacheRow) and column values (i.e., cacheColumn) for
this tile are available. In fact, the top-left tile is the only tile
that has all its initial values available. All the other proces-
sors are idle during Step 1.

After Step 1, there is enough information available to
start computing the entries in the tiles which neighbor the
top-left tile to the East and the South. In Step 2, the two
tiles neighboring the top-left tile, labelled 2 in Figure 3, can
be computed in parallel on two different processors.

The processing of the tiles advances on a diagonal-like
front. In Figure 3, each diagonal of tiles labeled with the
same number forms a wavefront line. At the 
��� step, all
the 
 processors can work in parallel because the wave-
front line consists of exactly 
 tiles. The parallel compu-
tation ends when all the 
 ��� � � � ��� ��� tiles have been
computed. The empty region at the bottom-right of the Fill
Cache subproblem is solved by recursion.

We have investigated two solutions to the problem of as-
signing the tiles that are ready to be processed to the proces-
sors that are available. In the first solution, the ready tiles
are placed in a work queue, and a processor that needs work

��������������������������������������������������������������

������
������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��

��������������������������������������������������������������

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

��������������������������������������������������������������

������������������������������� � � � � � � � � � � � � � � � 

!�!!�!
!�!!�!
!�!!�!
!�!!�!
!�!!�!
!�!!�!
!�!!�!
!�!!�!
!�!!�!
!�!!�!

""
""
""
""
""
""
""
""
""
""

##
##
##
##
##
##
##
##
##
##

$$
$$
$$
$$
$$
$$
$$
$$
$$
$$

%%
%%
%%
%%
%%
%%
%%
%%
%%
%% 21 3

2 3

3

Wavefront parallelism

k = 4

C = 12

R
 =

 8

cacheRow

v = 3

u 
=

 2

cacheColumn

Tiles

Figure 3. Data Partitioning for Parallel Fill
Cache Subproblems

&'&'&'&'&'&'&'&'&'&'&'&'&'&'&'&('('('('('('('('('('('('('('('(

))
))
))
))
))
))
))
))
))
))
)

**
**
**
**
**
**
**
**
**
**
*

+'+'+'+'+'+'+'+'+'+'+'+'+'+'+'+,',',',',',',',',',',',',',',',

--
--
--
--
--
--
--
--
--
--
-

.'..'.
.'..'.
.'..'.
.'..'.
.'..'.
.'..'.
.'..'.
.'..'.
.'..'.
.'..'.
.'.

/'//'/
/'//'/
/'//'/
/'//'/
/'//'/
/'//'/
/'//'/
/'//'/
/'//'/
/'//'/
/'/

0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'01'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1

2'2'2'2'2'2'2'2'2'2'2'2'2'2'2'23'3'3'3'3'3'3'3'3'3'3'3'3'3'3'3

44
44
44
44
44
44
44
44
44
44
4

55
55
55
55
55
55
55
55
55
55
5

6'66'6
6'66'6
6'66'6
6'66'6
6'66'6
6'66'6
6'66'6
6'66'6
6'66'6
6'66'6
6'6

77
77
77
77
77
77
77
77
77
77
7

88
88
88
88
88
88
88
88
88
88
8

99
99
99
99
99
99
99
99
99
99
9

:':':':':
:':':':':
:':':':':

;';';';
;';';';
;';';';

21 3

2 3

3

Wavefront parallelism

Recursion

Grid Cache

Tile Cache

Figure 4. FastLSA Grid Cache and Tile Cache
for Parallel Fill Cache Subproblems

dynamically dequeues a tile from the queue. In the second
solution, entire rows of tiles are statically preassigned to the
processors, and each tile is processed as soon as it becomes
ready. The performance results for Parallel FastLSA pre-
sented in this section are obtained using an implementation
based on the dynamic distribution of work strategy.

In terms of data storage, the Tile Cache (Figure 4) is
needed to hold the intermediate results passed between tiles.
For example, Tile Caches hold the right-most column and
the bottom-most row of the top-left tile (labelled 1); the in-
formation is used in computing the tiles labelled 2.

Figure 4 shows the Grid Cache delimiting the sub-
matrices and, in turn, the Tile Cache delimiting the tiles.
After all the tiles have been processed, the FastLSA Grid
Cache has been filled and the Tile Cache can be deallo-
cated. Then, Parallel FastLSA is applied recursively to the
bottom-right sub-matrix. Note that new caches of each type,
FastLSA Grid Cache and Tile Cache, are allocated in shared
memory for each Fill Cache subproblem solved.

5



4.1 Space and Time Complexity

We argue that Parallel FastLSA still uses linear space and
that the time complexity of the algorithm is still quadratic.
We prove this claim by finding a linear upper bound for
the space complexity of Parallel FastLSA and by finding
a quadratic upper bound for its time complexity. The full
derivation and proofs of the following are elsewhere [8].

4.1.1 FastLSA Recursion Pattern

To compute the amount of space and time required by Par-
allel FastLSA to align a sequence of size � against a se-
quence of size � using a FastLSA Grid Cache of size � , one
needs to know the trace of the FastLSA algorithm. A trace
of FastLSA is a series of FastLSA subproblems solved by
the recursive calls to FastLSA, and which are listed in the
exact order in which they are solved. A typical series for

��^P ����� � c 
 �  �  � � is:

���
	���������������������! #"���
$&%'%�()	+*-,/.0���������1�� 2�����
	�����������43 56�+7 58���! 2����
	��������������9-����9:���! 2��;-;�;��1���
	��-��<�������>=4���?=@���� 2A
(1)

where 
�� ��B�B � P �DC � 
 �  �  � � is the initial Fill Cache sub-
problem, 
��^P ����� � c 
�E

	
!F
	
 � � is the recursive call to

the bottom-right subproblem, and 
��^P ����� � c 
��HG  ��G� � � ,
� � � 2I are the subproblems solved recursively inside the
while-loop of the algorithm. Depending on the configu-
ration of the optimal alignment path that is followed by the
FastLSA algorithm, I can take values between � � � and
� � � � . Details about the values of I in the best case and
worst case scenarios can be found in [4].

Given a Base Case buffer of size ab] , the deepest level
of recursion reached by FastLSA is a positive integer, P ,
with E

	4J � F
	4J � ab]LK E

	4J:M!N � F
	4J�M!N S (2)

This is equivalent to

P � �OK P Q-R ETSUFVXW
�
P Q-R
	

� PZY [ P Q2R ETSUFVXW
�
P Q2R
	]\ � P S (3)

4.1.2 Space Complexity

Definition 1 Let � 
�����  � � be the maximum number of
DPM entries that need to be stored to align a sequence of
size � against a sequence of size � using a grid cache with
� rows and � columns.

The following result shows that � 
�����  � � is linear in �
and � .

Theorem 1 Let � 
�����  � � be defined as in Definition 1. If
the tiles for each Fill Cache subproblem are laid out in \
rows and

�
columns, then

� 
�����  � � � 
 � � � � � � 
 � � �����_^` � � � \ � � � � � � � ab] S
(4)

4.1.3 Time Complexity

Definition 2 Let a � 
�����  �  
 � be the time spent by the
slowest of the 
 threads involved in the parallel alignment
of two sequences of size � and � , using a grid cache with �
rows and � columns.

The time spent by the slowest thread, a � 
 �  �  �  
 � , is
a good upper bound for the time complexity of Parallel
FastLSA. An upper bound for a � 
 �  �  �  
 � itself is es-
tablished by the following result.

Theorem 2 Let a � 
�����  �  
 � be defined as in Defini-
tion 2. For simplicity, assume that the tiles processed in a
parallel phase are laid out in \ rows and

�
columns for

both the Fill Cache and the Base Case subproblems. Thena � 
�����  �  
 � � ETSbF^ � 
 � � ^�c � ^d S ` � ��
 		��� � � S (5)

Therefore, the algorithm is still quadratic in its time com-
plexity.

5 Experimental Results for Parallel FastLSA

To establish that Parallel FastLSA can achieve rea-
sonable speedups, in practice, for globally-optimal pair-
wise alignment, we present results from experiments on
an SGI Origin 2400 parallel computer. The Origin 2400
has 64 processors (400 MHz R12000 MIPS CPUs), each
with a primary data cache of 32 Kbytes and a unified 8
Mbytes secondary cache. The Parallel FastLSA algorithm
is implemented in C using Irix 6.5 sproc threads with
hardware-based shared memory. The sequential version of
the FastLSA algorithm is an independent, non-commercial
implementation based on the original description [4]. Our
scoring function, which is simpler than the Dayhoff ma-
trix, assigns identical matches a score of 2, all mismatches
a score of -1, and a gap penalty of -2.

We discuss the experimental results corresponding to the
alignment of three pairs of DNA sequences which are cho-
sen from a test suite suggested by the bioinformatics group
at Penn State University [14]. Most of their examples are
comparisons of “some region of the human genome with
the synthetic region from a rodent genome” [16]. These
pairs are used as a test suite, not only because of their size,
but also because their alignment is biologically meaningful
to the Penn State group.

6



Name Value Notes

Constants� 3 number of rows of tiles
between consecutive Grid
rows;� 4 number of columns of tiles
between consecutive Grid
columns;���

1,600,000 size of Base Case buffer in
integers;�

8 total number of rows of tiles
for a Base Case subproblem;�

10 total number of rows of tiles
for a Base Case subproblem;

Variables�
1, 2, 4, 8, 16, 32 number of processors;�

8 to 12 number of Grid rows and
columns;� �
	 ���� 	 � total number of rows of tiles
for a Fill Cache subproblem;� ��	 ����� 	 � total number of rows of tiles
for a Fill Cache subproblem;

size of
��������� 	 ���������� XRCC1;

DPM
����������� 	! � ���"#� Myosin;������    �	 �"#�������� TCR.

Table 2. FastLSA Parameters

Admittedly, there is a valid debate as to the length of the
sequences that biologists actually wish to align. Towards
that, as computing scientists, we can only say that we have
been motivated by biologists who do seem to want to do
large alignments [6, 17, 7].

We have experimented with several more pairs of DNA
sequences, but we choose to present results for the pairs
of shortest and longest sequences, and another pair of se-
quences of medium size.

1. The shortest sequence pair is formed by the XRCC1
DNA repair gene from human beings and mice. The
XRCC1 gene encodes an enzyme involved in the repair
of X-ray damage [16]. The human sequence is 37,785
base pairs (bp) long, and the mouse sequence is 37,349
bp long.

2. The medium size sequences are the “cardiac myosin
heavy chain genes” (abbreviated Myosin) [16] from
human beings and hamsters. The human sequence is
55,820 bp long, and the hamster sequence is 66,315 bp
long.

3. The longest sequence pair consists of the human and
mouse alpha/delta T-cell receptor loci (abbreviated
TCR). These sequences “show an unusually high level
of conservation” [15]. The human sequence is 319,030
bp long, and the mouse sequence is 305,636 bp long.

Several tunable parameters introduced in Section 4 are
assigned constant, empirical values in this study (Table 2).

The parameters most relevant to parallel processing are left
are variables. Constraining some of the parameters is justi-
fied since we are primarily interested in establishing reason-
able performance for Parallel FastLSA rather than optimal
performance. In the future, we hope to further explore the
parameter space. Table 2 summarizes the parameters in-
volved in the FastLSA algorithms and the values assigned
to them.

Note that the parameter values that we have chosen for � ,
� , and � are non-optimal for 
 ��� � , and the explanation of
this fact follows. The logical DPM is divided in � ��� rows
and 	 � � columns of tiles for each Fill Cache subproblem.
Because the wavefront line can have no more tiles than the
shortest dimension of the array of tiles, the wavefront line
can have at most � � � tiles for our parameter values. When
� is less than ��� , the wavefront line consists or less than
32 tiles, which means that 32 processors cannot all work in
parallel. Despite this theoretical disadvantage, we observed
that, for 
 ��� � , �#�%$ is the empirical optimum for the
alignment of the XRCC1 sequences, while � �%$ is the em-
pirical optimum for the Myosin sequences.

To remove the small, unpredictable noise generated by
the operating system, three consecutive runs are performed
for each set of parameter values. The three time samples
obtained for each run are averaged.

5.1 General Observations

As mentioned in the previous section, the sequential
and parallel versions of FastLSA are benchmarked for each
value of � from 8 to 12, and for each of the three pairs of
sequences. Ideally, we should have devised a simple, re-
liable heuristic which produces an best value for � , given
the size of the sequences and 
 , the number of processors
used. This best value would ensure that the overall align-
ment time is close to the theoretical optimal time. However,
the relationship between the best value of � , 
 , and the size
of the sequences is not straightforward, and this makes the
development of such a heuristic challenging. We note from
the results obtained that, in most of the cases, there is a
small number of neighboring values that can be chosen as
empirically best values for � . The values outside this small
interval, when assigned to � , worsen the time performance
of the algorithm. The 8 to 12 interval for � was chosen after
repeated probing for the best values. This interval includes
an empirical best value for � in most of the combinations
benchmarked.

To simulate the effect of such a heuristic on the time per-
formance of Parallel FastLSA and to provide a quick, first
look into the results of our experiments, we have selected
for each pair of sequences and each number of processors
the best execution time across the five values of � that were
considered, and then computed the speedups. The result-

7



1
2

4

8

16

32

1 2 4 8 16 32

S
pe

ed
up

Processors

XRCC1
Myosin

TCR
Linear

Figure 5. Best Speedups for XRCC1, Myosin,
and TCR

ing speedup curves are shown in Figure 5. Table 3 shows
the execution time for each sequence alignment performed
and the corresponding value for � that achieved that perfor-
mance. Note that the largest problem (i.e., TCR) requires
over 5,040 seconds (i.e., 1.4 hours) to align, which sug-
gests the need for efficient parallel algorithms to tackle even
larger sequences.

For the pair of short sequences, XRCC1, the speedup is
linear for 2 and 4 processors, but starts deteriorating when
8 or more processors are used. The slowdown from 16 and
32 processors occurs because the granularity of the work
assigned to each processor decreases, leading to a situation
where the processors spend more time trying to get a tile on
which to work rather than actually working on it.

Sequences Proces-
sors

Time (s) Speedup Best
�

XRCC1 1 71.71 12
2 33.44 2.14 11
4 18.05 3.97 10
8 10.44 6.87 9

16 7.94 9.03 9
32 8.72 8.22 8

Myosin 1 189.71 12
2 85.54 2.22 12
4 44.92 4.22 11
8 24.89 7.62 11

16 17.52 10.83 11
32 17.91 10.59 9

TCR 1 5040.93 12
2 2202.65 2.29 12
4 1128.56 4.47 12
8 597.66 8.43 12

16 370.07 13.62 12
32 292.84 17.21 12

Table 3. Real Times, Speedups, and �

The speedup curve for the alignment of the Myosin se-
quences ascends almost linearly for up to 8 processors, in-
creases slowly for 16 processors, and almost flattens for
32 processors. This noticeable improvement of the perfor-
mance of Parallel FastLSA happens because the DPM com-
puted for the Myosin sequences has � S & times more entries
than the DPM computed for the XRCC1 sequences. The
larger Myosin DPM provides better granularity for the par-
allel tasks, but not enough to satisfy 32 processors.

Not surprisingly, the best speedup curve is obtained for
the largest sequences that are aligned; our empirical results
show that Parallel FastLSA can scale with the problem size.
As mentioned above, both TCR sequences are over 300,000
base pairs in length. Because of the large problem, the
granularity of work is reasonable and the speedup becomes
slightly super-linear for 8 processors or less. The super-
linearity of the speedup is due to cache effects.

The speedup curve for TCR is steeper from 8 to 16 pro-
cessors than the speedup for Myosin, and a reasonable im-
provement of the performance occurs for 32 processors.
The speedup curve increases from 16 to 32 processors with
a slope of 
 S � � – which is close to 
 S ��� , the slope of the
speedup curve for XRCC1 between 8 and 16 processors.

In our experiments, we have also found that the ma-
jority of the alignment time is spent solving the initial
Fill Cache subproblem. For each alignment operation per-
formed by Parallel FastLSA, we computed the percentage
of time spent on the initial Fill Cache subproblem, out of
the total execution time. For the TCR pair, this percentage
ranges from 87.86% for 
 � � to 77.08% for 
 � � & ,
and 67.53% for 
 � � � . We note that the above defined
percentage decreases with 
 , but increases with the size
of the sequences; for 
 � ��& , the percentage is 59.03%
for XRCC1 and 63.40% for Myosin. Because of the de-
sign of the FastLSA algorithms, the time spent on the initial
Fill Cache subproblem depends only on the size of the se-
quences, and not their particular configuration.

5.2 Subproblem Types and Sizes in the Myosin
Dataset

The time spent by the FastLSA algorithms in computing
a pairwise alignment is dominated by the total time spent by
the algorithms on filling matrices for Base Case subprob-
lems or filling Grid Caches for Fill Cache subproblems. We
can trace and cluster the subproblems based on the type and
size of the subproblem.

A subproblem count graph (Figure 6) shows how many
FastLSA subproblems are solved during an alignment oper-
ation and how coarse-grained are the problems. Naturally,
coarse-grained subproblems are more-easily exploited for
parallel computation than fine-grained subproblems. Note
that the FastLSA subproblems which occur for an alignment

8



0

50

100

150

200

250

300

350

400

8 9 10 11 12

C
um

ul
at

iv
e 

N
um

be
r

k

Base Case
Fill Cache

0

50

100

150

200

250

300

350

400

450

8 9 10 11 12

C
um

ul
at

iv
e 

N
um

be
r

k

Base Case (3 bars)
Fill Cache (5 bars)

By Type By Size

Figure 6. FastLSA Subproblem Count: Parallel FastLSA Alignment for Human Myosin versus Hamster
Myosin (Breakdown Based on the Type/Size of the FastLSA Subproblems)

are determined by the specific sequences themselves (e.g.,
Myosin), the size of the Base Case buffer ( a ] ), and � , but
are independent of the number of processors used for the
alignment. Figure 6 consists of two parts: (LHS, By Type)
one for the clustering based on the type of the subproblems
and (RHS, By Size) the other for the clustering based on the
size of the subproblems.

According to the “By Type” (Figure 6) graph, Base Case
subproblems (black bars; left-most bar for each � ) dominate
Fill Cache subproblems (red bars; right-most bar for each � )
in terms of the number of subproblem instances (i.e., cumu-
lative number count).

In the “By Size” graph, the black bars (left-most bars for
each � ) show the distribution of Base Case problems across
three different sizes: the first partition holds the smallest
subproblems, up to  ab] in size; the second partition holds
those between  a ] and � ab] ; the third holds the biggest
ones, sized up to and including ab] . Since the largest black
bars are on the far left of each group in the ‘By Size” graph,
we conclude that most of the Base Case problems are  ab]or smaller in size. Normally, the most common type of work
or subproblem is a good candidate for parallelization, but
the Base Case subproblems are low-granularity computa-
tions and, therefore, are best computed sequentially, as per
our previous design decision.

For Fill Cache subproblems, the right-most red bars of
the ‘By Size” graph, the interval between ab] and the size
of the initial DPM is evenly divided into five subintervals.
Most of the Fill Cache subproblems are small relative to the
full DPM, but they are larger than ab] (by definition) and
have sufficient granularity to generate speedups.

6 Concluding Remarks

Sequence alignment is a fundamental operation for ho-
mology search in bioinformatics. The Fast Linear Space
Alignment (FastLSA) algorithm adapts to the amount of
space available by trading space for time. What makes
FastLSA unique is its parameter � , which can be used to
tune its storage requirements for a given amount of cache
memory or main memory. Our experiments show that, in
practice, due to memory caching effects, FastLSA is pre-
ferred over the Hirschberg and the FM algorithms.

To further improve the performance of FastLSA, we have
parallelized it using a simple but effective form of wave-
front parallelism. Our experimental results show that Par-
allel FastLSA exhibits good speedups, almost linear for 8
processors or less and reasonable speedups for up to 16 pro-
cessors, with problems of sufficient size; the efficiency of
Parallel FastLSA increases with the size of the sequences
that are aligned.

Again, a recurring theme in this paper is the impor-
tance of algorithms that can be parameterized and tuned
to take advantage of cache memory and main memory
sizes. Our empirical results are a first look at the large
parameter space, with more future work indicated. How-
ever, notably, existing algorithms for sequence alignment
(i.e., FM and Hirschberg) are not similarly parameterized.
Given the large DNA sequences (e.g., tens of thousands of
bases) that some researchers wish to study [6, 17, 7], the
space and time complexity of a sequence alignment algo-
rithm become increasingly important. The combination of
FastLSA’s parameterized storage complexity, good analyt-

9



ical time complexity, easy parallelization, and reasonable
empirical performance makes FastLSA a good choice for
globally-optimal pairwise sequence alignment.

7 Acknowledgments

We would like to acknowledge Scott Fortin at BioTools
(www.biotools.com) for several helpful discussions
and making their source code available to us. This research
was partially funded by research grants from the Protein
Engineering Network of Centres of Excellence (PENCE),
the National Science and Engineering Research Council
(NSERC), the Alberta Informatics Circle of Research Ex-
cellence (iCORE) and the Canada Foundation for Innova-
tion (CFI).

References

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and
D. J. Lipman. Basic local alignment search tool. Jour-
nal of Molecular Biology, 215:403–410, 1990.

[2] S. Aluru, N. Futamura, and K. Mehrotra. Parallel bi-
ological sequence comparison using prefix computa-
tions. In International Parallel Processing Symposium
and Symposium on Parallel and Distributed Process-
ing (IPPS/SPDP), pages 467–473, April 1999.

[3] R. D. Appel, A. Bairoch, and D. F. Hochstrasser.
A new generation of information retrieval tools for
biologists: the example of the ExPASy WWW
server. Trends in Biochem. Sci., 19:258–260, 1994.
http://ca.expasy.org/sprot/.

[4] K. Charter, J. Schaeffer, and D. Szafron. Sequence
alignment using FastLSA. In International Confer-
ence on Mathematics and Engineering Techniques in
Medicine and Biological Sciences (METMBS), pages
239–245, June 2000.

[5] M. O. Dayhoff, W. C. Barker, and L. T. Hunt. Estab-
lishing homologies in protein sequences. Methods in
Enzymology, 91:524–545, 1983.

[6] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peter-
son, O. White, and S. L. Salzberg. Alignment of whole
genomes. Nucleic Acids Research, 27(11):2369–2376,
1999.

[7] A. L. Delcher, A. Phillippy, J. Carlton, and S. L.
Salzberg. Fast algorithms for large-scale genome
alignment and comparison. Nucleic Acids Research,
30(11):2478–2483, 2002.

[8] A. Driga. Parallel FastLSA: A parallel algorithm for
pairwise sequence alignment. Master’s thesis, Univer-
sity of Alberta, 2002.

[9] E.W. Edmiston, N.G. Core, J.H. Saltz, and R.M.
Smith. Parallel processing of biological sequence
comparison algorithms. International Journal of Par-
allel Programming, 17(3):259–275, June 1988.

[10] D. S. Hirschberg. A linear space algorithm for com-
puting longest common subsequences. Communica-
tions of the ACM, 18:341–343, 1975.

[11] W.S. Martins, J.B. del Cuvillo, F.J. Useche, K.B.
Theobald, and G.R. Gao. A multithreaded parallel
implementation of a dynamic programming algorithm
for sequence comparison. In Pacific Symposium on
Biocomputing 2001, January 2001.

[12] E. Myers and W. Miller. Optimal alignments in lin-
ear space. Computer Applications in the Biosciences
(CABIOS), 4:11–17, 1988.

[13] S. B. Needleman and C. D. Wunsch. A general method
applicable to the search of similarities in the amino
acid sequence of two proteins. Journal of Molecular
Biology, 48:443–453, 1970.

[14] Penn State University. Bioinformatics Group. http:
//bio.cse.psu.edu, 2001.

[15] Bioinformatics Group Penn State University. TCR
sequences. http://bio.cse.psu.edu/
pipmaker/examples.html, 2001.

[16] Bioinformatics Group Penn State Univer-
sity. XRCC1 and Myosin sequences. http:
//globin.cse.psu.edu/globin/html/
pip/examples.html, 2001.

[17] N. T. Perna and et al. Genome sequence of en-
terohaemorrhagic Escherichia coli O157:H7. Nature,
409(6819):529–533, 2001.

[18] T. F. Smith and M. S. Waterman. Identification of
common molecular subsequences. Journal of Molec-
ular Biology, 147:195–197, 1981.

10


