
1

ScriptEase: Generative Design Patterns for Computer Role-Playing Games

M. McNaughton, M. Cutumisu
D. Szafron and J. Schaeffer
Dept. of Computing Science,

University of Alberta, Edmonton, AB
Canada T6G 2E8

{mcnaught, meric, duane,
jonathan}@cs.ualberta.ca

J. Redford
BioWare Corp.

200, 4445 Calgary Trail,
Edmonton, AB

Canada T6H 5R7
jamesr@bioware.com

D. Parker
Electronic Arts Inc.

4330 Sanderson Way
 Burnaby, BC

Canada V5G 4X1
dparker@ea.com

Abstract

Recently, some researchers have argued that
generative design patterns (GDPs) can leverage the
obvious design re-use that characterizes traditional
design patterns into code re-use. This paper provides
additional evidence that GDPs are both useful and
productive. Specifically, the current state-of-the-art in
the domain of computer games is to script individual
game objects to provide the desired interactions for
each game adventure. We use BioWare Corp.’s
popular Neverwinter Nights computer role-playing
game to show how GDPs can be used to generate
game scripts. This is a particularly good domain for
GDPs, since game designers often have little or no
programming skills. We demonstrate our approach
using a new GDP tool called ScriptEase.

Keywords: generative design patterns, scripting
languages, code generation, computer games.

1. Introduction

Traditional design patterns are descriptive. Each
design pattern describes a set of known solutions to a
recurring design problem, by providing a design
lexicon, solution structures and the reasoning behind
the solutions [12]. Since each pattern is a family of
solutions, it must be adapted to a specific context
during program construction. An adapted design
pattern is a detailed specification that can be translated
to code quickly by experienced programmers who have
implemented the same design pattern in other contexts.

For novice programmers, adapting a design pattern
into code is usually more difficult and error-prone. The
ambiguous natural language pattern documentation can
lead to slow progress and coding errors.

1.1 Generative Design Patterns

We claim that generative design patterns (GDPs)
can increase the speed of code production and reduce

coding errors, for novice and experienced programmers
alike. They can also be used to promote rapid
prototyping and provide a mechanism for code reuse at
a high level of abstraction. There have been several
efforts to produce GDPs. Some of these approaches are
ad-hoc and others are more structured [4][6][7][8][15].

We have identified four problems with using GDPs.
1. generality - Since each design pattern represents a

family of solutions, it is difficult to generate a
single code base that can cover each potential
solution.

2. performance - Since design patterns are formulated
at a high level of abstraction, generated code may
have poor execution performance.

3. coverage - Programmers must be able to amortize
the overhead of learning a generative system over
the amount of code they are able to generate with
it. Therefore, there must be a rich set of GDPs.

4. evolution - New problem variants and completely
new problems require new solutions, so there must
be an easy way to edit GDPs and create new ones.

The generality problem of GDPs is caused by the
fundamental nature of design patterns as a broad family
of solutions to a set of related problems. The generality
of non-generative design patterns is an advantage and
is responsible for their success. However generality
often makes it impossible to generate a single static
software architecture that implements the entire family
of solutions.

For example, when implementing the composite
design pattern, there is a choice about where to declare
the child management operations (safe or transparent)
[9]. In the safe implementation, they are declared in the
composite class, and in the transparent
implementation, they are declared in the component
class. There are trade-offs with either choice, but the
important point is that it is impossible to generate a
single static software architecture that will support both
choices: safety and transparency.

This is pre-print of a paper that will appear in the Proceedings of:

Automated Software Engineering, ASE ’04, Sept. 20-24, 2004, Linz, Austria.

2

Some of these simple static architecture problems
can be solved by cross-cutting support such as aspect-
oriented programming (AOP) [11]. However, the
choice of safe versus transparent in the composite
design pattern is an example where cross-cutting
support does not help.

A simple solution to the generality problem is to
narrow the scope of GDPs. However, this naïve
approach leads to the coverage problem described later.
Our solution to the generality problem is tied to design
pattern adaptation, where we use the context of the
problem to narrow the scope of a design pattern before
code is generated. We proposed (and created) a simple
three-phase adaptation process consisting of [12]:
1. initial adaptation,
2. code generation of a framework, and
3. final adaptation.

The initial adaptation phase adapts the design
pattern to a single structural and control flow model,
by allowing the user to select generation options
before code generation. The code generation phase
generates a software framework and the final
adaptation phase performs standard specialization
operations on the framework to adapt it to the final
application. In the case of object-oriented frameworks,
final adaptation involves setting method parameters,
implementing hook methods and creating subclasses.
In non-object-oriented frameworks, final adaptation
involves setting function parameters, adding and
removing code fragments and creating call-back
functions. Our approach solves the problem of trying
to adapt a single framework to support different
structures and control flows, while maintaining the
advantage of using framework specialization for
adapting code to a particular application [10].

The performance problem of GDPs is due to code
that is too generic. Design patterns introduce flexibility
to support application evolution, “designing for
change”, by using indirection techniques [9].
Unfortunately, this approach requires more code to be
written and maintained and the indirection can reduce
performance. In effect, the indiscriminate use of
patterns can result in a slower application [16]. Again,
a naïve solution to this problem is to reduce the scope
of the GDPs to remove these indirections. However,
this can cause a coverage problem.

Partial adaptation before code generation is a good
technique for managing the generality problem.
Generation options produce more efficient static code
by reducing dynamic choice points in the code for
control flow, indirection and polymorphism.

The coverage problem occurs when there are few
opportunities to use GDPs. It may take longer to learn
about and use a set of generative patterns than it takes
to write and debug the generated code by hand. There
are two factors that contribute to the coverage problem.

First, the obvious way to mitigate the generality and
performance problems of GDPs is to reduce the scope
of each GDP. Our approach for mitigating the first
coverage factor is to reject the naïve approach of
reducing coverage to solve the generality and
performance problems. By solving the generality and
performance problems in other ways, we reduce the
pressure to lower the coverage of GDPs.

Second, to have broad coverage, each application
domain needs domain-specific GDPs. The time for
creating a suitable library of patterns must be amortized
over the time gained by using the library. Our approach
to mitigating this second coverage factor is to create a
programming environment for creating GDPs and to
provide a mechanism for sharing GDPs between users
by creating repositories of shared GDPs. This has the
same positive effect as the open source software
movement, where the development load is shared
among users and the reliability of the software is
increased.

The evolution problem for GDPs occurs because
even if the coverage problem is solved, new problems
will require new solutions, which will require either
new GDPs or new versions of existing GDPs. Our
programming environment for editing and creating new
GDPs alleviates this problem as well.

 In previous papers, we demonstrated how our three-
phase approach could mitigate the four GDP problems
in the domain of parallel processing [12][13], where
final adaptation used object-oriented framework
specialization in Java. However, it could be argued that
the domain of parallel processing is very general and
the question as to whether our approach works in more
vertical specialized domains was unanswered. It was
also unclear how well final adaptation would work
when the target code was not object-oriented (no
inheritance), so that object-oriented framework
specialization could not be used.

1.2 GDPs in Computer Role-Playing
Games

In this paper, we show how our three-phase approach
solves the four GDP problems in a more specialized
vertical domain – computer role-playing games
(CRPGs). We also describe several different adaptation
techniques that can be used when the generated code is
not an object-oriented framework. Although this is a
narrow domain, it is economically significant. The
North American games industry is currently worth
more than $10 billion per year. In the past, computer
graphics have been the major sales feature of games.
With more powerful computers, the perceived need for
better graphics has been replaced by the demand for a
more entertaining gaming experience and this is often
provided through scripting.

CRPGs have many thousands of non-player
characters (NPCs) and other game objects to script.

3

This is a daunting task to do manually, yet sadly, this
is the state-of-the-art. The consequences are serious:
1. There are so many objects that it is difficult to

organize and track them during game development.
2. Most objects have simplistic behaviors.
3. Testing is difficult, as games are very interactive.
4. Many designers are unable to do the scripting

themselves.

Objects must be tracked using many independent
ontologies, such as which area they are in, which sub-
plots they are associated with, whether they are static
or adaptive, and many others. Tracking the objects is
hard, but tracking the scripts is even more difficult
since most scripts involve the interaction of several
objects.

Unless an object is on the critical path of the main
plotline of the game, it usually has a single trivial
scripted behavior. More behaviors (and more realistic
behaviors) are desirable, but are not cost effective to
write because of the large time investment needed.

Testing a complex interactive system with
thousands of scripts is challenging. Many common
errors are difficult to detect without manually playing
through all of the game scenarios and trying all of the
different combinations of user choices. For example,
scripts are often created using cut-and-paste techniques,
and it is not uncommon for the programmer to cut-and-
paste scripts without making all the changes needed for
the new context. There are so many game objects and
scripts that it has become standard practice to use
object numbers or script numbers as part of their
names. An off-by-one error in a name often results in a
legal script that performs incorrectly.

Game designers create the game's story line, but
often do not do the scripting themselves, since many
are not programmers. Therefore, programmers
implement the story line by writing scripts. The extra
level of indirection in the process (the programmer)
increases the chances of creating a product that does not
match the designer's intentions. Such miscues are
analogous to the ones that occur between
c u s t o m e r s / r e q u i r e m e n t s a n a l y s t s a n d
designer/programmers during the development of more
general software systems.

We have attempted to solve these four problems by
putting GDPs in the hands of game designers. Most of
the documented uses of design patterns involve
relatively few patterns that occur relatively few times.
CRPGs are demanding. There are hundreds of patterns
used and they will appear in thousands of places. We
performed a case study in which we used GDPs to
generate the code for all scripts in BioWare's
Neverwinter Nights (NWN) CRPG that are attached to
a particular representative kind of object called a
placeable. We accomplished this using a tool called
ScriptEase [14]. In all, 497 calls to 182 different

scripts comprising 1925 non-comment lines of hand-
written code were replaced by ScriptEase-generated
code using 431 instances of 24 different patterns. If we
generalize this result to include all of the objects (not
only the placeables), many thousands of lines of code
could be replaced by a few thousand instances of a few
hundred patterns.

ScriptEase solves the four scripting problems listed
for the CRPG domain:
1 . ScriptEase provides knowledge management

support for organizing the thousands of scripts.
2. ScriptEase can create scripted objects with reduced

programmer effort. Saved effort can result in lower
costs or this effort can be concentrated on writing
better stories, resulting in a more satisfying game
experience.

3. Since ScriptEase generates the code, many common
programming errors are eliminated. Patterns are
used only after they have been fully tested, and
since ScriptEase generates fully documented code,
patterns are easy to understand during debugging.
Reduced testing time for individual patterns
translates to less cost or more testing time on game
play scenarios, which leads to a more reliable
product. The pattern instantiation process of
ScriptEase also eliminates literal tags that are a
source of error during copy-and-paste.

4. ScriptEase allows game designers to generate their
own script code. This eliminates the middle-man
(programmer) during story-telling and allows the
programmers to focus on pattern writing, pattern
testing and the interface with the game engine.

In Section 2, we introduce the domain of CRPGs by
describing NWN, its game development tool, Aurora,
and the non-object-oriented NWScript language. In
Section 3, we describe the kinds of patterns found in
CRPGs. In Sections 4 and 5, we introduce ScriptEase,
our implementation of GDPs for NWN. We show how
ScriptEase can be used to adapt GDPs and generate
their script code, using several non-object-oriented
adaptation mechanisms. We also show how ScriptEase
can be used to create and edit GDPs. The scripts
described in Sections 4 and 5 were originally hand-
written by BioWare. In Section 6, we present the
results of a case study where hand-written scripts from
the original NWN game were replaced by scripts
generated by ScriptEase. We also present some
anecdotal data about ScriptEase users.

2. Neverwinter Nights, the Aurora
Toolkit and NWScript

NWN is a multi-award winning (86 awards) CRPG
from BioWare Corp. The game contains an engine that
renders the graphical objects and characters, manages
sound and motion, and dispatches game events to

4

scripts. This game engine is designed to play stories
composed of individual modules constructed by game
designers. A module contains areas (map sections),
NPCs and other game objects that can be scripted to
respond to game events using the NWScript language.

The game comes with a story that contains seven
modules, and recently expansion packs for two more
stories have been released. However, NWN is a
community-based game. Thousands of people write
stories and post them on the web for others to play.
For example, Neverwinter Vault (http://nwvault.ign.
com/Files/modules/modulesTop3.shtml) hosts more
than 3,300 adventures. The most popular community
adventure has been downloaded more than 222,000
times and the tenth most popular has been downloaded
more than 75,000 times, as of June 2004.

Since most community-based designers are not
programmers, they find scripting difficult. They often
try to copy-and-paste scripts from existing adventures
without understanding the code. There are also forums
where they ask other designers who know how to
program to write individual scripts for them.

An adventure can be created using BioWare’s Aurora
Toolset – a CAD tool for designing areas and placing

customized versions of pre-designed objects. Aurora
can also be used to attach scripts to objects, by
selecting one and typing an NWScript for any of the
events that the object can respond to. Figure 1 shows
part of an area of the basic NWN Chapter One module
in the Aurora Toolset and the properties dialog box for
the selected chest object.

The game objects are divided into eleven categories.
There are eight scriptable object categories: modules,
areas, creatures, doors, placeables, triggers,
encounters and merchants. There are three non-
scriptable object categories: i t ems , sounds , and
waypoints. Non-scriptable objects can be referred to in
the scripts attached to scriptable objects. Each
scriptable object has a set of event types that apply to it
and a separate script can be associated with each event
type for each scriptable object instance. For example, a
placeable (chest, pedestal, pile of rubble, etc.) supports
the events: O n C l o s e , OnDamaged , OnDeath,
OnHeartbeat , OnDisturbed , OnPhysicalAttacked,
OnSpellCastAt, OnOpen, OnLock, OnUnlock, OnUsed
and OnUserDefined.

Figure 1. A screenshot of the BioWare Aurora toolset (2004 © Atari, Inc.).

5

void main()
{
 object oItem = GetInventoryDisturbItem();
 int nItemBase = GetBaseItemType(oItem);
 if(GetLocalInt(OBJECT_SELF,"NW_L_M1S1Opened") == FALSE
 && GetTag(oItem) == "M1S1Shield")
 {
 DestroyObject(oItem);
 object oDoor =
 GetNearestObjectByTag("M1Q5F03_M1Q5J1");
 AssignCommand(oDoor,ActionOpenDoor(oDoor));
 SetLocked(oDoor,FALSE);
 SetLocalInt(OBJECT_SELF,"NW_L_M1S1Opened",TRUE);
 RewardXP("m1q1_Never",50,GetPCSpeaker());
 }
}

Figure 2. OnDisturbed script for a chest.
Figure 1 shows a chest near a door. The designer

created a locked door that cannot be opened unless the
player character (PC) performs a specific action on the
chest. The PC must place a specific shield object in it.
If this is done, the shield is destroyed, the door opens
and the PC is given a reward called experience points
(XP). Figure 2 shows the hand-written script (written
in NWScript – a C-like language) that implements this
scenario. The script was attached to the OnDisturbed
event of the chest, which fires if an item is added to or
removed from the chest.

Here is a natural language description of the script in
Figure 2. If this chest has not yet served its purpose,
and if the disturbed item is a specific shield
(“M1S1Shield”), then destroy the shield, open the
closest door (tagged “M1Q5F03_M1Q5J1”), unlock the
door, tell the chest to remember that it has served its
purpose and award 50 experience points to the PC that
disturbed the chest. Note that the nItemBase integer
variable is bound, but not used.

There are two other locations in the same module
where a specific item must be placed into a chest to
open a nearby door. The script programmer must have
recognized the similarity of all three scenarios and used
copy-and-paste to create the other scripts, since the
same unused value nItemBase appears in all three
scripts. All the scripts share the same high level goal
and code pattern, although the tag for the special item
and the tag for the door to be opened are different.

3. Design Patterns For CRPGs

The scenario described in the previous section occurs
frequently enough in NWN modules and in CRPGs in
general that we have defined the concept of placing a
specific item in a container to open/unlock (or
close/lock) a door, as a GDP called disturb container –
(specific item) toggle door. In fact, this pattern is a
specialization of a more general GDP, which we call
disturb container – (specific item). In this pattern,
some actions are taken whenever a specific item is
added or removed from a container. The container does

not have to be a chest. For example, in NWN any
placeable or creature can be granted container status
(so that objects can be added or removed from it) by
checking the Has Inventory box in the properties dialog
of the object, as shown in Figure 1.

We have divided our GDPs into four pattern groups:
encounter, behavior, dialog and plot. An encounter
pattern applies to a scenario that is started by an event
involving a module, area, door, placeable, trigger (a
polygon drawn on the ground), merchant or encounter.
A behavior pattern is used to generate scripts for
creatures , a dialog pattern is used to generate
conversation scripts and a plot pattern is used to
control the plot of the story being told. In this paper
we discuss only encounter patterns and for brevity, we
focus on scripts that are attached to placeable objects.

The Aurora toolset provides exactly one abstract
kind of object called an Encounter . An Aurora
Encounter consists of a trigger and one of several pre-
defined groups of creatures. To create an Aurora
Encounter, the designer paints the trigger, selects one
of the pre-defined groups of creatures and indicates a
number of creatures. During the game, when a PC
steps on the trigger, the specified number of creatures
from the selected group are created near the trigger. A
ScriptEase encounter pattern is a generalization of an
Aurora Encounter object. In a ScriptEase encounter
pattern, the event is generalized from stepping on a
trigger to any module, area, door, placeable or trigger
event, and the action is generalized from creating a
number of creatures of a particular kind to any
supported actions. In this paper, the term encounter
always refers to a ScriptEase encounter GDP, unless
the term Aurora encounter object is used.

4. ScriptEase Generative Design Patterns

ScriptEase is a tool to help CRPG designers script
their adventures. The goal of ScriptEase is to solve the
four CRPG problems described in Section 1.2, by
allowing game designers to generate scripted
adventures without writing any code. ScriptEase
effectively contains a pattern language [5] for CRPGs.

We present an abbreviated walkthrough of
ScriptEase to highlight the complete scripting process.
We demonstrate how the designer would generate a
script equivalent to the code in Figure 2 for the chest
from Figure 1. The designer starts by creating the
physical layout of a module (called ASE.mod) using
Aurora – without attaching any scripts to any objects.
The module file is then opened in ScriptEase and the
symbol table is read. There are three steps to script an
encounter:
1. Select an encounter pattern and create an instance.
2. Adapt the design pattern for the module.
3. Generate the scripting code.

6

Figure 3 shows the ScriptEase Encounter Builder
being used to create a new instance of the disturb
container – (specific item) toggle door encounter
pattern. The designer adapts the pattern instance for the
context using the information in the symbol table. In
this case, the designer names the encounter instance
(Shield Chest) and binds the parameters: The
Container , The Item, The Door and The X P to
appropriate objects in the module.

Figure 4 shows the Pick a blueprint window being
used to bind the parameter The Item to the Ceremonial
Shield object created earlier using Aurora. All objects
in the module are categorized by type. The icons near
the top of the window (Creatures, Doors, Encounters,
Items, Placeables, Sounds, Merchants, Triggers and
Waypoints) are used to select objects of a particular
type. Icons for inappropriate types are grayed so they
cannot be selected. In this case, since the parameter The
Item has type Item, only the Item icon can be selected.

Each encounter contains one or more situations.
Each situation corresponds to a legal event for the first
encounter parameter. The disturb container – (specific
item) toggle door encounter contains two situations.
Add item applies when an item is added to the
container and Remove item applies when an item is
removed. In this context, the Remove item situation can
be deleted since it is not needed. To specify that the
Add item situation should only apply once (the first
time the specific item is placed in the container), the
designer selects it and clicks the Plot tab in the lower
pane of the window as shown in Figure 5. By clicking
on the middle radio button, the designer ensures that
the actions (door will be toggled) occur only when the
Ceremonial Shield is put into the chest for the first
time. As illustrated by the case study described in
Section 6, one-time situations are common in CRPGs,
so this form of adaptation is useful. The designer can
save the module, generate the scripts and compile them
by selecting a single menu command.

Figure 6 shows the NWScript code automatically
generated for this adapted encounter pattern instance.
The generated code is equivalent to the hand-written
code in Figure 2. It appears longer for four reasons.
First, ScriptEase code is fully commented. Second,
ScriptEase puts variable declarations and assignments
on separate lines. Third, ScriptEase uses a separate
variable for the receiver object (Chest_SE0 =

OBJECT_SELF). Fourth, ScriptEase always computes
the creature that disturbed the container since this
creature is usually referenced in the actions (in this case
it is not). This code can be removed by hand to
improve performance. We plan to automatically remove
such unnecessary computations. The important point is
that the code was generated by the game designer
spending less than a minute selecting items from
menus and using dialogs to pick game objects, instead
of hand-coding.

Figure 3. Creating an encounter.

Figure 4. Adapting an encounter.

Figure 5. Setting a one-time situation.

7

void AddItem_0() {
/* This situation should only execute once, ever. */
 if(GetLocalInt(GetModule(),"SE_ONCE_19") != 0)
 return;

 // All of the variables used in this situation
 object Door_SE5;
 object DisturbedItem_SE2;
 object CeremonialShield_SE3;
 int SameTags_SE4;
 object Chest_SE0;
 object ContainerDisturber_SE1;
 // Attached to following object's OnDisturbed slot
 Chest_SE0 = OBJECT_SELF;
 // When an item is added to Chest
 if(! SE_Ev_ContainerOnDisturbed(Chest_SE0,
 INVENTORY_DISTURB_TYPE_ADDED)) return;
 // Define Container Disturber as the creature that
 // just added to Chest
 ContainerDisturber_SE1 =
 SE_Df_ContainerDisturber(Chest_SE0,
 INVENTORY_DISTURB_TYPE_ADDED);
 // Define Disturbed Item as the item that was added
 DisturbedItem_SE2 = SE_Df_DisturbedItem(Chest_SE0,
 INVENTORY_DISTURB_TYPE_ADDED);
 // Get the object with tag "M1S1Shield"
 CeremonialShield_SE3 = GetObjectByTag("M1S1Shield");
 // Define Same Tags as whether Ceremonial Shield has
 // the same tag as Disturbed Item
 SameTags_SE4 = SE_Df_SameTag(CeremonialShield_SE3,
 DisturbedItem_SE2);

 // Main code - check conditions & execute actions
 // If Same Tags is Positive (True, Yes, On, etc.)
 if(SE_Co_IsPositive(SameTags_SE4)) {
 // Make sure this situation doesn't execute again.
 SetLocalInt(GetModule(), "SE_ONCE_19", 1);
 // Get the object with tag "ShieldDoor"
 Door_SE5 = GetObjectByTag("ShieldDoor");
 // Door* opens Door
 SE_Ac_OpenCloseDoorTodo(Door_SE5, Door_SE5, TRUE);
 // Unlock Door
 SE_Ac_LockUnlockDoor(Door_SE5, FALSE);
 // Destroy Ceremonial Shield
 SE_Ac_DestroyObject(CeremonialShield_SE3);
 // Assign 50 XP to Container Disturber
 SE_Ac_AssignXP(ContainerDisturber_SE1, 50);
 }
}

Figure 6. Script for an adapted pattern.

Figure 7. The Encounter Builder.

5. Solving the Generative Problems

ScriptEase addresses the generality and coverage
problems of GDPs by including general patterns,

together with a rich set of adaptation mechanisms.
Simple parameterization and selection between one-
time and many-time situations does not provide
enough expressive power for adaptation. ScriptEase
supports eight other forms of adaptation:
addition/removal of actions, definitions, conditions,
and situations.

For example, the disturb container – (specific item)
pattern applies any time a specific item is added to or
removed from a container. The game designer is free to
add any series of actions to the pattern instance during
adaptation. Specifically, Chapter One contains a script
that fires when a particular item is removed from a
sarcophagus. The script destroys three nearby doors and
activates three Aurora encounter objects. Each activated
object spawns creatures at the location of one of the
destroyed doors. This script can be generated from a
disturb container – (specific item) pattern by adding
two actions, one to destroy the doors and one to
activate the encounter objects. ScriptEase uses actions
to manipulate game objects. ScriptEase currently
supports 174 actions. Of these, 164 are atomic
actions, which are implemented as direct calls to
NWScript code. The other 10 are called action
encounters and each is just a sequence of actions
(atomic actions or other action encounters).

Figure 7 shows the adapted pattern in the ScriptEase
Encounter Builder. It contains two situations (icon S),
labeled Add item – add actions and Remove item – add
actions. The second situation has also been opened to
reveal its components. A situation always contains a
single event (icon V) that specifies when the situation
is applicable. Each situation also contains 0 or more
definitions (icon D), 0 or more conditions (icon C) and
0 or more actions (icon A). When an instance of a
disturb container – (specific item) encounter is created,
its Remove item situation contains a single placeholder
action (labeled Replace this action placeholder by one
or more actions). Figure 7 shows the two actions in
gray that the designer has added to adapt this pattern,
one to destroy the doors and one to activate the Aurora
encounter objects. The designer can delete the
placeholder action and can also delete the Add item
situation since they are not needed in this context.

The performance problem for GDPs is an important
one in computer games. In fact, in NWN scripts that
do not terminate in a fixed number of virtual machine
instructions are forcibly aborted, since scripts are only
allocated a small portion of the CPU resources.
ScriptEase addresses the performance problem in two
ways.

First, when a specialization of an action is popular,
ScriptEase supports the specialization as a separate
more efficient action. For example, the code generated
by ScriptEase for the action in Figure 7, that destroys
all of the Rusted Door objects, is a call to the atomic
action SE_AcKillObjects shown in Figure 8.

8

void SE_AcKillObjects(Object param_1) {
 int nth = 0;
 string tag = GetTag(param_1);
 effect eDeath = EffectDeath(FALSE, FALSE);
 object anObject = GetObjectByTag(tag, nth);
 while (GetIsObjectValid(anObject) && !
 GetIsPC(anObject))
 {
 SetPlotFlag(anObject, FALSE);
 ApplyEffectToObject(DURATION_TYPE_INSTANT, eDeath,
 anObject);
 nth++;
 anObject = GetObjectByTag(tag, nth);
 }
}

void SE_Ac_DestroyObjectWithAnimation(object parm1) {
 effect death = EffectDeath(TRUE);
 ApplyEffectToObject(DURATION_TYPE_INSTANT, death,
 parm1);
}

Figure 8. Action specialization for
improved execution performance.

Figure 9. The Encounter Designer.

Figure 10. The Atom Designer.
A game designer could use this same atomic action

to destroy a single object. However, to improve
execution efficiency, a second atomic action that
generates code to destroy only a single object is also

provided. Figure 8 also shows the code for this simpler
atomic action, SE_Ac_DestroyObjectWithAnimation.

The second way that ScriptEase addresses the
performance problem is to encourage designers to
delete unused components instead of using run-time
checking. For example, the designer can delete an
unused situation from an instance of disturb container
– (specific item), as described previously (Figure 7).

Finally, ScriptEase solves the evolution problem by
including two tools called the Encounter Designer
(Figure 9) and the Atom Designer (Figure 10). A game
designer without programming experience can use the
Encounter Designer to edit an existing encounter
pattern and save the result as a new encounter pattern or
to create a new encounter pattern. A programmer can
use the Atom Designer to create new basic atomic
actions for ScriptEase, by writing them in NWScript.
These new encounter patterns and atomic actions can
also be exported and shared with other ScriptEase
users.

Here is an example of using the Encounter Designer
shown in Figure 9. When converting the manually
written scripts from Chapter One, it was discovered
that there was a need for three instances of the disturb
container – (specific item) toggle d o o r pattern
described in Sections 3 and 4. Since this pattern did
not exist in ScriptEase before Chapter One was
converted, there were two choices. One choice was to
create three instances of the general disturb container –
(specific item) pattern and adapt each instance by
adding the same set of three actions to unlock and open
the nearest door, to destroy the item placed into the
container and to give XP to the PC. However, since
three separate instances are required and the idea is
general enough to be used in other modules, we
decided to make a new disturb container – (specific
item) toggle door pattern.

Figure 9 shows the newly constructed pattern in the
Encounter Designer. The procedure used to create this
new encounter pattern was to first make a copy of the
original disturb container – (specific item) pattern and
then specialize it. An instance of the original pattern is
shown in Figure 7. However, the original pattern did
not contain the two grayed actions that are shown in
Figure 7, since they were added during adaptation of
that particular pattern instance. In Figure 9, the
parameter tab of the lower pane reveals the encounter
parameters. Since the pattern was copied from the
disturb container – (specific item) pattern, two
parameters were already defined, The Container and
The Item. Two more parameters called The Door and
The XP were added. To finish, the four actions shown
in Figure 9 were added to both the Add item and
Remove item situations of the new pattern

The Encounter Designer can also be used to create
action encounters. The ScriptEase Atom Designer can
be used to create action atoms, along with the event

9

atoms, definition atoms and condition atoms that have
been shown in the figures in this paper. Figure 10
shows the Assign XP action atom from Figure 9 as it
appears in the Atom Designer. Since the Description
tab is selected, we can see the Atom Name and three
other pieces of information for this atom. The Function
Name is the name of the NWScript function that will
be generated by ScriptEase for this atom. The Generic
Description is displayed as a menu item in the
ScriptEase Encounter Builder, so that the designer can
select this atom as an action. The Description
Template is used to display this action atom in the top
pane of the Encounter Builder where the bracketed
parameters (<>) are replaced by the actual parameter
names as shown in Figure 9.

6. Using ScriptEase

In this section we present a summary of a case
study, describe some experiences of ScriptEase users,
and give some statistics about the modules they have
constructed.

6.1 A ScriptEase Case Study

NWN was released with a single adventure that
consisted of seven modules: The Prelude, Chapter
One, Chapter One Finale, Chapter Two, Luskan and
Host Tower, Chapter Three and Chapter Four. Each
module is a self-contained file containing objects and
scripts. To test the efficacy of ScriptEase, we replaced
all of the placeable scripts by scripts generated from
ScriptEase patterns. Since The Prelude and Chapter
One Finale contain few scripts, we combined both of
them with Chapter One into Chapter One*. Summary
statistics are shown in Table 1.

Table 1. ScriptEase pattern statistics.
Chapter script

calls
script
templates

lines of
code

pattern
instances

pattern
templates

One* 153 47 391 108 15

Two 112 40 279 104 14

Luskan 54 28 454 51 10

Three 127 50 669 118 15

Four 51 17 132 50 7

Total 497 182 1925 431 **24**

The second column of Table 1 shows the number of
calls made to scripts by placeable objects. The third
column shows the number of unique scripts that were
referred to by placeable script calls.

The fourth column is the total number of non-
comment lines of hand-written code that were
contained in the placeable scripts for each module. All
1925 lines were replaced by generated code. In

addition, the Prelude (part of Chapter One*) and
Chapter Four each contained an identical copy of a
1450 line script that created a special item whose
characteristics depended on the characteristics of the
PC. The original calls to these separate (but identical)
scripts were replaced by calls to a single ScriptEase
atom. This saving of 1450 lines was not included in
the statistics. There were also two scripts in the Finale
(part of Chapter One*) that were simply converted to
atoms and are not included (61 total lines) in the
statistics either.

The fifth column shows the number of pattern
instances that were used to replace all of these script
calls. Every script call attached to a placeable object
was successfully replaced by a pattern instance. The
sixth column shows the number of patterns that were
used in each module. However, the total for this
column is not the sum of the column entries since
many of the patterns were re-used between modules.
The total (24) is the number of unique patterns used
across all modules. The total for the script templates
column is the sum of the column entries, since none of
the hand-written scripts were re-used across modules.
Note that multiple script templates were often replaced
by a single pattern with multiple situations. For
example, in Chapter One there is a placeable that has
two scripts, one for onOpen events and one for
onDeath events. These scripts are replaced by a single
pattern that has two situations, one for onOpen and one
for onDeath.

ScriptEase is very successful in removing error-
prone tag literals and state literals from the code. A
tag literal refers to an object created using Aurora. For
example, in Figure 2, the tag "M1Q5F03_M1Q5J1" is
used to obtain a particular door object. With
ScriptEase, the designer does not type a tag literal.
Instead the designer uses a pick dialog (Figure 4) to
select the appropriate object. This approach
significantly reduces program errors.

In NWScript, state can be stored in game objects
using a pair of functions to set and get the state. For
example, in Figure 2, the function call:
SetLocalInt(OBJECT_SELF,"NW_L_M1S1Opened",

TRUE) asks a chest object (OBJECT_SELF) to remember
that it has been used to open a door. The function call:
GetLocalInt(OBJECT_SELF,"NW_L_M1S1Opened")

checks the remembered state. Many programming
errors are caused by the state literals used in this state
mechanism. ScriptEase can eliminate some of these
errors by generating state literals from one-time
patterns or from plot tokens (a high-level ScriptEase
mechanism for remembering whether something
important to the plot has happened yet). Table 2 shows
the total number of tag literals and state literals that
appeared in all modules that were attached to
placeables, the number that were eliminated and the
number that remained.

10

Table 2. ScriptEase literal elimination.
original eliminated remaining

Tag literal defs 284 284 0

Tag literal uses 421 421 0

State literal defs 100 52 48

State literal uses 274 221 53

We differentiate between distinct definitions of a
literal and the number of times it is used. Each use
provides another chance for an error in the code. All tag
literals were eliminated using parameter picking
dialogs. A total of 26 state literals were eliminated
using one-time patterns, 9 state literals were eliminated
using plot tokens and 17 state literals were eliminated
using other techniques, including removing useless
code such as the computed integer, nItemBase, shown
in Figure 2.

As the number of ScriptEase patterns grows, fewer
and fewer new ones need to be created to construct new
modules. Figure 11 shows the number of patterns
required to generate the scripts for placeables in
successive modules. The order of module creation was
from left to right as shown in the figure. The first bar
shows that Chapter One* re-used 6 existing patterns
and required 9 new ones. The second bar shows that
Chapter Two re-used 9 existing patterns, re-used 4
patterns created for Chapter One* and required 1 new
pattern. In general, the percentage of new patterns
required for each successive chapter tended to decrease
as the case-study progressed (60%, 7%, 10%, 20%,
0%) with the exception of Chapter Three, which was
the largest module.

6

9 6
7

5

9
4 3

5

1

3 1

1

1 1

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

One* Two Luskan Three Four
Module

N
u
m

b
er

 o
f

p
at

te
rn

s

Original One* Two Luskan Three Four

Figure 11 Pattern re-use by module.
Of the three new patterns created for Chapter Three,

only one was re-used in Chapter Four. In fact, we
could have refrained from creating the other two new
patterns in Chapter Three. We could have adapted
existing patterns instead. For example, we created the
Dead placeable – create placeable pattern, which

applies when a placeable is destroyed. This is a
common idiom in CRPGs, so a new pattern was
created. An alternative would have been to use the
similar pattern called Dead placeable – destroy objects
that was created for Chapter One*. This pattern also
applies whenever a placeable is destroyed. If this
existing pattern was used instead of creating a new
pattern, the instance of the existing pattern would have
to be adapted by replacing the action.

What are good criteria for deciding whether to create
a new pattern or adapt an existing (more general or
more specific) one? A new pattern should be created
when it can be re-used enough times to amortize its
cost of creation (about an hour). In our experience, a
pattern needs to be used about six times to amortize
this cost (about 10 minutes to adapt an existing
pattern). There are two kinds of re-use. Re-use due to
multiple pattern instances in the module being
constructed (internal re-use) and re-use in future
modules (external re-use). The first is easy to
determine. The second requires a good understanding
of the domain. If a pattern is not general enough, it is
likely that all of its re-use will be limited to multiple
instances of internal re-use. In the case study, of the 14
new patterns we created, 6 were re-used externally in
subsequent modules and 8 were only re-used internally
in the same module. As we transformed modules, we
could only guess which patterns we constructed would
be re-used externally. External re-use of 43% is fairly
good and in fact, the patterns that were not externally
re-used may be re-used in other adventures later. Of
course the three patterns created in Chapter Three had
only Chapter Four for potential external re-use in the
case study, so they had the highest probability of no
external re-use during the case study.

In addition, of the 12 placeable /container patterns
that were designed before the case study (for previously
constructed modules), 8 were re-used during the case
study (external re-use). In addition, one other existing
non-placeable pattern (basic conversation) was re-used.
It was more appropriate to generate several scripts that
were attached to placeables in the hand-scripted code
from this conversation pattern instead of from the
placeable object.

6.2 ScriptEase Usage

ScriptEase was released to the NWN community on
November 19, 2003 (http://www.cs.ualberta.ca/~script/
scripteasenwn.html). At the time, BioWare called
ScriptEase “the answer to our nonprogramming
dreams” [2]. Since its release, ScriptEase has been
downloaded more than 6000 times as of June 2004.
Reaction from the community has been positive. The
BioWare forum topics on ScriptEase contained 110
posts during this period. Several designers have sent us
modules scripted entirely using ScriptEase.

11

Before ScriptEase was released, we performed a
small user study to assess how practical it would be for
non-programmers. We implemented part of an area
known as The Temple Ruins from BioWare’s previous
CRPG called Baldur's Gate 2: Shadows of Amn [1].
We chose this area partially because it is in a
commercial CRPG other than NWN and partially
because it contains several interesting encounters. By
specifying all of them in ScriptEase, we demonstrated
its generality. We hired a high-school student to use
ScriptEase for two 1-week periods. The student did not
build any new atoms and did not design any new
patterns. The student was familiar with NWN and the
Aurora Toolset before the user study, but was not
familiar with NWScript. After a week of beta-testing
ScriptEase and reporting bugs (that we fixed), we
requested that the student create The Temple Ruins
module using ScriptEase. It took a little over one day,
mostly taken up by one complex conversation
involving several riddles with a Sphinx-like character.
Not including this conversation, the student took
approximately three hours to script the module and to
debug it by play-testing. The implementation generated
51 scripts from 21 instances of 12 patterns (3 placeable
patterns, 5 trigger patterns, 2 door patterns, 1 creature
pattern and 1 conversation pattern). One of the
ScriptEase authors had implemented the same area by
hand using NWScript. It required over 700 lines of
code, and despite being expert in the use of NWScript,
three days were spent writing and debugging it.

In addition, just before our public release, a
professional writer (non-programmer) was hired to
write a tutorial for the release. She created and scripted
an example module for the tutorial and reported that
ScriptEase was easy to use for non-programmers.

7. ScriptEase Architecture and
Generality

We have written a Java implementation of
ScriptEase to support a specific CRPG, namely NWN.
Picking a specific CRPG was necessary so that
ScriptEase could be used by real developers and so that
real experiments could be conducted to evaluate it and
improve it. However, the idea of using generative
design patterns for computer games transcends NWN
and even CRPGs. In fact, the architecture of ScriptEase
has been constructed so that it can be modified to
support other CRPGs with minimal game-specific
code. Figure 12 is an architectural diagram of
ScriptEase that shows the NWN-dependent components
on the left side and the NWN-independent components
on the right side. Of approximately 41,000 lines of
Java code, only about 15,000 are NWN-dependent.

Figure 12 The ScriptEase architecture.

Table 3. Java code in the ScriptEase
implementation.

NWN-dependent
lines / files

NWN-independent
lines / files

Parsing 3,500 / 31 0 / 0

Parameter pickers 3,000 / 27 0 / 0

Code generation 2,000 / 10* 2,500 / 10* shared

NWN Types 6,500 / 51 0 / 0

Other 0 / 0 23,500 / 307

Total 15,000 / 119 26,000 / 307

Table 3 shows the breakdown of this code into
NWN-dependent and NWN-independent components.
Each game module is represented internally by a
heterogeneous tree whose nodes represent events,
situations, actions, atoms, types, parameter values and
other support objects. Code for situation, action, atom
and support nodes is game independent and distributed
throughout the node classes. Event nodes need to exist
for all CRPG games, although the exact event types are
game-specific. We have abstracted the NWN-dependent
information out of the event nodes so that a ScriptEase
user can create events in ScriptEase itself. Therefore,
the actual event types to support NWN were built
using the ScriptEase Atom Designer and are not “hard-
coded” into the implementation of ScriptEase. By
doing this, the methods for the classes that implement
event nodes are also NWN-independent.

The only NWN-dependent nodes are for types and
parameters. Example types include placeable, creature,
string and number. For example, each type knows the
NWScript symbol that represents it, like object,
string or int . Some parameters are game
independent, such as numbers and strings. Others are
NWN-dependent like journal entries, blueprints and
conversation nodes. Each parameter has code for its
parameter picker, such as the blueprint picker shown in
Figure 4. Naturally, the parameter picker code for the

Module
File Parser

Parameter
Pickers

User
Code

Generator

module

pattern

situation

event

parameters

actions

ScriptEase

NWN-dependent NWN-independent

12

NWN-dependent parameters is NWN-dependent. In all
there are about 13,000 lines of NWN-dependent code in
109 files for parsing, parameter picking and NWN-
dependent type support.

To generate code, ScriptEase calls a
generateCode() method on each tree node object
recursively (using a visitor pattern). The control flow
for code generation is determined by the patterns,
situations, events and atoms that determine the
structure of the tree, so this flow is game independent.
However, the generateCode() methods
ultimately emit NWScript code for operations like
function invocations, opening new lexical scopes, and
making forward declarations of support functions. The
ScriptEase code that emits the NWScript code is
NWN-dependent. To support another game, this code
would either have to be replaced or abstracted into a
family of code generation factories. There are about
5,500 lines of code in 10 files for code generation
including about 2,000 NWN-dependent lines.

To support a CRPG game other than NWN, the
following would need to be done.
1 . Replace the NWN-dependent parts of the Java

classes that represent type and parameter value
nodes.

2 . Write parameter picker code for the parameter
nodes.

3. Write a file format parser for parsing the module
file into the internal ScriptEase representation
(essentially a symbol table).

4. Implement the generateCode() method for the
new target scripting language.

5. Write new event, definition, condition and action
atoms (in ScriptEase – not Java).

8. Conclusion

In this paper, we have shown how GDPs can be
used to generate scripting code for CRPGs.
Specifically, we have shown how the four inherent
problems of GDPs can be handled in the CRPG
domain by partially adapting GDPs before code
generation. We have also shown how GDPs can be
used to cope with the four major scripting problems
faced by game developers. Our case study did not use
an abstract or toy problem. It demonstrated the
strengths of our approach on a real commercial
computer game using real adventure modules.

9. Acknowledgement

This research was supported by research grants from
the (Canadian) Institute for Robotics and Intelligent
Systems (IRIS), the Natural Sciences and Engineering
Research Council of Canada (NSERC), and Alberta’s
Informatics Circle of Research Excellence (iCORE).

We thank the referees for suggestions that improved the
manuscript. We especially thank our many friends at
BioWare for their support and encouragement, with
special thanks to Mark Brockington.

10. References

[1] Baldur’s Gate 2: Shadows of Amn. Bioware Corp. /
Black Isle Studios / Interplay, 2000.
(http://www.bioware.com/games/shadows_amn).

[2] BioWare Corp. Nov. 19, 2003, http://nwn.bioware.com/
archive/nwwed.html.

[3] J. Bosch. Design patterns as language constructs.
JOOP, 11(2), pp. 18-32, 1998.

[4] F. Budinsky, M. Finnie, J. Vlissides, and P. Yu.
Automatic code generation from design patterns.
IBM Systems Journal, 35(2), pp. 151-171, 1996.

[5] J. Coplien and D. Schmidt, eds., Pattern Languages
of Program Design. Addison Wesley, 1995.

[6] TogetherSoft Corporation. TogetherSoft Control
Center tutorials: Using design patterns.
www.togethersoft.com/services/tutorials/index.jsp.

[7] A. Eden, Y. Hirshfeld, and A. Yehudai. Towards a
mathematical foundation for design patterns.
Technical Report 1999-04, Dept. of Information
Technology, University of Uppsala, 1999.

[8] G. Florijn, M. Meijers, and P. van Winsen. Tool
support for object-oriented patterns. In ECOOP, Vol.
1241 of LNCS, pp. 472-495. Springer, 1997.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1994.

[10] R. Johnson and B. Foote. Designing reusable
classes. JOOP, 1(2), pp. 22-35, 1988.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.
Palm, and W. Griswold. An overview of AspectJ.
ECOOP, LNCS #2072, pp. 327-353. Springer, 2001.

[12] S. MacDonald, D. Szafron, J. Schaeffer, J. Anvik, S.
Bromling, and K. Tan, Generative Design Patterns,
Automated Software Engineering, September 2002,
Edinburgh, UK, pp. 23-34.

[13] S. MacDonald. From Patterns to Frameworks to
Parallel Programs. Ph.D. thesis, Dept. of Computing
Science, University of Alberta, 2002.

[14] M. McNaughton, J. Redford, J. Schaeffer, and D.
Szafron, Pattern-based AI Scripting using
ScriptEase, AI 2003, Halifax, June 2003, pp. 35-49.

[15] ModelMaker Tools. Design patterns in ModelMaker.
http://www.modelmakertools.com/mm_design_patterns.htm.

[16] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Vol 2. Wiley,
2000.

