
1

1

9. Odds and Ends

Jonathan Schaeffer

jonathan@cs.ualberta.ca

www.cs.ualberta.ca/~jonathan

9/9/02 2

Endgame Databases

 Pre-compute known values in the
search

 Start with the goal state(s)

 Work backwards as far as time and
space permits

 Retrograde analysis [1,2]

9/9/02 3

Using an Endgame Database

Pre-computed values

Whenever search
reaches here, can treat
it as a terminal node.

Normal search here until
the search reaches the
endgame databases.

9/9/02 4

Advantages

 Many more terminal nodes
 Terminal nodes are now closer to the

root
 Reduces the amount of heuristic error in

the search
 Effective search depth is deeper along

some lines of play
 Can be used to solve a game

2

9/9/02 5

Endgame Databases

 Search benefits
 Improves the quality of the evaluations
 Perfect information with no error
 Cuts off the search

 Less search, more accuracy
 Cost in storage
 Program slows down because of I/O accesses

 Benefits usually far out-weigh the costs
 Unfortunately, not possible for all games

(e.g., Ataxx)
9/9/02 6

Databases in Chinook

 Pre-computed all positions with 8 or fewer
pieces on the board
 444,000,000,000 positions
 compressed into 6 gigabytes of data organized for

real-time decompression

 Most game-playing programs are compute-
bound; Chinook is I/O-bound

 Made a massive difference in quality of play
 Working on the 10-piece databases

 12 trillion positions.

9/9/02 7

Opening Databases

 Most games have a single starting state
 Pre-compute the initial moves of the

game, saving time for later moves
 In the past, this has been done using

expert knowledge
 Belle, Chinook books constructed from

human literature
 Human literature is full of errors!

9/9/02 8

Opening Databases

 Want to automatically build an opening
database
 Save a tree on disk

 Have processors expand leaf nodes

 Update tree with new values

 Search tree identifying leaf nodes to
expand

 Buro [3] ; Lincke [4]

3

9/9/02 9

Alpha-Beta Alternatives

 Many algorithms have been proposed
as replacements to alpha-beta

 Most look good on paper, but fail in
practice; usually have far too much
overhead

 Min-max approximation…
 Mega-greedy search…
 BPIP…

9/9/02 10

B* [5]

 Prove that a move is best at the root,
but not necessarily its value

 Evaluation function has two values: an
upper bound and a lower bound on the
true value

 Two search strategies: prove best or
disprove rest

9/9/02 11

B*

 Prove best
 Try to raise one move’s lower bound to be

>= than the upper bound of alternatives

 Disprove rest
 Lower the upper bound of alternatives to

<= that of the best move

9/9/02 12

B* Reality

 Need to have accurate upper/lower
bounds for the algorithm to converge
 In practice, this is very hard to do

 PBA* -- evaluation function is a (simple)
probability distribution [6]

 Values obtained using null-move searches

 Only one known application where B*
has been effective (Scrabble)

4

9/9/02 13

Conspiracy Numbers [7]

 Alpha-beta returns a value, but no
measure of our confidence in that value

 Conspiracy number -- the number of
child nodes that have to change their
value (“conspire”) to cause a change in
the root parent

9/9/02 14

Conspiracy Numbers

 Assume a range of values from 1 to 6
 Leaf node with value 4

 (1, 1, 1, 0, 1, 1)
 0 nodes have to conspire to achieve 4
 1 node must conspire to achieve any other

value

 Terminal node with value 4
 (∞, ∞, ∞, 0, ∞, ∞)

9/9/02 15

Conspiracy Numbers

 Max node: to increase a value requires
only one child to change its value; to
decrease requires all children with
higher values to lower theirs

 ↑(T,v) = 0 for all v <= m and
MIN ↑(T,v) for all v > m

 ↓(T,v) = 0 for all v >= m and
∑ ↓(T,v) for all v < m

9/9/02 16

Conspiracy Numbers

 Min node: to decrease a value requires
only one child to change its value; to
increase requires all children with lower
values to raise theirs

 ↑(T,v) = 0 for all v <= m and
 ∑ ↑(T,v) for all v > m

 ↓(T,v) = 0 for all v >= m and
MIN ↓(T,v) for all v < m

5

9/9/02 17

Example
1

10

01

21

01
(1,1,1,1,0,1,1) (1,1,1,0,1,1,1)

(2,2,2,1,0,1,1) (1,1,1,1,1,0,1) (1,1,1,0,1,1,1) (1,1,1,1,0,1,1)

(1,1,1,0,1,2,2)(1,1,1,1,0,1,2)

(2,2,2,1,0,1,2)

Conspiracy numbers
for the values -3 to +3

9/9/02 18

Conspiracy Numbers

 Search to increase “confidence” in the
root value

 Expand node that promises to give the
most information on the root value

 Use iterative search
 Prove root with a CN of 1
 Then try and prove with CN of 2
 Iterate until time expires

9/9/02 19

Conspiracy Numbers

 Excellent for tactics
 Automatically searches forced lines of play

(low conspiracy numbers)

 Generally not used in practice

 PN (proof number search) variant [8]

 Win, loss, unknown values

 Successfully used to solve several games

9/9/02 20

References
[1] K. Thompson. “Retrograde Analysis of Certain Endgames”, ICCA Journal, vol. 9,

no.3, pp. 131-139, 1986.
[2] R. Lake, J. Schaeffer and P. Lu. “Solving Large Retrograde Analysis Problems

on a Network of Workstations”, Advances in Computer Chess VII, pp. 135-162,
1994.

[3] M. Buro. “Toward Opening Book Learning”, ICCA Journal, vol. 22, no. 2, pp. 98-
102, 1999.

[4] T. Lincke. “Strategies for Automatic Construction of Opening Books”, Computers
and Games, T. Marsland and I. Frank (eds), pp. 74-86, Springer Verlag, 2002.

[5] H. Berliner. “The B* Tree Search Algorithm: A Best First Proof Procedure”,
Artificial Intelligence, vol. 12, pp. 23-40, 1979.

[6] A. Palay. “The B* Tree Search Algorithm -- New Results”, Artificial Intelligence,
vol. 19, pp. 145-163, 1982,

[7] D. McAllester. “Conspiracy Numbers for Min-Max Search”, Artificial Intelligence,
vol. 35, pp. 287-310, 1988.

[8] V. Allis, M. van der Muellen, and J. van den Herik. “Proof-number Search”,
Artificial Intelligence, vol. 66, pp. 91-124, 1994.

