
1

1

9. Odds and Ends

Jonathan Schaeffer

jonathan@cs.ualberta.ca

www.cs.ualberta.ca/~jonathan

9/9/02 2

Endgame Databases

 Pre-compute known values in the
search

 Start with the goal state(s)

 Work backwards as far as time and
space permits

 Retrograde analysis [1,2]

9/9/02 3

Using an Endgame Database

Pre-computed values

Whenever search
reaches here, can treat
it as a terminal node.

Normal search here until
the search reaches the
endgame databases.

9/9/02 4

Advantages

 Many more terminal nodes
 Terminal nodes are now closer to the

root
 Reduces the amount of heuristic error in

the search
 Effective search depth is deeper along

some lines of play
 Can be used to solve a game

2

9/9/02 5

Endgame Databases

 Search benefits
 Improves the quality of the evaluations
 Perfect information with no error
 Cuts off the search

 Less search, more accuracy
 Cost in storage
 Program slows down because of I/O accesses

 Benefits usually far out-weigh the costs
 Unfortunately, not possible for all games

(e.g., Ataxx)
9/9/02 6

Databases in Chinook

 Pre-computed all positions with 8 or fewer
pieces on the board
 444,000,000,000 positions
 compressed into 6 gigabytes of data organized for

real-time decompression

 Most game-playing programs are compute-
bound; Chinook is I/O-bound

 Made a massive difference in quality of play
 Working on the 10-piece databases

 12 trillion positions.

9/9/02 7

Opening Databases

 Most games have a single starting state
 Pre-compute the initial moves of the

game, saving time for later moves
 In the past, this has been done using

expert knowledge
 Belle, Chinook books constructed from

human literature
 Human literature is full of errors!

9/9/02 8

Opening Databases

 Want to automatically build an opening
database
 Save a tree on disk

 Have processors expand leaf nodes

 Update tree with new values

 Search tree identifying leaf nodes to
expand

 Buro [3] ; Lincke [4]

3

9/9/02 9

Alpha-Beta Alternatives

 Many algorithms have been proposed
as replacements to alpha-beta

 Most look good on paper, but fail in
practice; usually have far too much
overhead

 Min-max approximation…
 Mega-greedy search…
 BPIP…

9/9/02 10

B* [5]

 Prove that a move is best at the root,
but not necessarily its value

 Evaluation function has two values: an
upper bound and a lower bound on the
true value

 Two search strategies: prove best or
disprove rest

9/9/02 11

B*

 Prove best
 Try to raise one move’s lower bound to be

>= than the upper bound of alternatives

 Disprove rest
 Lower the upper bound of alternatives to

<= that of the best move

9/9/02 12

B* Reality

 Need to have accurate upper/lower
bounds for the algorithm to converge
 In practice, this is very hard to do

 PBA* -- evaluation function is a (simple)
probability distribution [6]

 Values obtained using null-move searches

 Only one known application where B*
has been effective (Scrabble)

4

9/9/02 13

Conspiracy Numbers [7]

 Alpha-beta returns a value, but no
measure of our confidence in that value

 Conspiracy number -- the number of
child nodes that have to change their
value (“conspire”) to cause a change in
the root parent

9/9/02 14

Conspiracy Numbers

 Assume a range of values from 1 to 6
 Leaf node with value 4

 (1, 1, 1, 0, 1, 1)
 0 nodes have to conspire to achieve 4
 1 node must conspire to achieve any other

value

 Terminal node with value 4
 (∞, ∞, ∞, 0, ∞, ∞)

9/9/02 15

Conspiracy Numbers

 Max node: to increase a value requires
only one child to change its value; to
decrease requires all children with
higher values to lower theirs

 ↑(T,v) = 0 for all v <= m and
MIN ↑(T,v) for all v > m

 ↓(T,v) = 0 for all v >= m and
∑ ↓(T,v) for all v < m

9/9/02 16

Conspiracy Numbers

 Min node: to decrease a value requires
only one child to change its value; to
increase requires all children with lower
values to raise theirs

 ↑(T,v) = 0 for all v <= m and
 ∑ ↑(T,v) for all v > m

 ↓(T,v) = 0 for all v >= m and
MIN ↓(T,v) for all v < m

5

9/9/02 17

Example
1

10

01

21

01
(1,1,1,1,0,1,1) (1,1,1,0,1,1,1)

(2,2,2,1,0,1,1) (1,1,1,1,1,0,1) (1,1,1,0,1,1,1) (1,1,1,1,0,1,1)

(1,1,1,0,1,2,2)(1,1,1,1,0,1,2)

(2,2,2,1,0,1,2)

Conspiracy numbers
for the values -3 to +3

9/9/02 18

Conspiracy Numbers

 Search to increase “confidence” in the
root value

 Expand node that promises to give the
most information on the root value

 Use iterative search
 Prove root with a CN of 1
 Then try and prove with CN of 2
 Iterate until time expires

9/9/02 19

Conspiracy Numbers

 Excellent for tactics
 Automatically searches forced lines of play

(low conspiracy numbers)

 Generally not used in practice

 PN (proof number search) variant [8]

 Win, loss, unknown values

 Successfully used to solve several games

9/9/02 20

References
[1] K. Thompson. “Retrograde Analysis of Certain Endgames”, ICCA Journal, vol. 9,

no.3, pp. 131-139, 1986.
[2] R. Lake, J. Schaeffer and P. Lu. “Solving Large Retrograde Analysis Problems

on a Network of Workstations”, Advances in Computer Chess VII, pp. 135-162,
1994.

[3] M. Buro. “Toward Opening Book Learning”, ICCA Journal, vol. 22, no. 2, pp. 98-
102, 1999.

[4] T. Lincke. “Strategies for Automatic Construction of Opening Books”, Computers
and Games, T. Marsland and I. Frank (eds), pp. 74-86, Springer Verlag, 2002.

[5] H. Berliner. “The B* Tree Search Algorithm: A Best First Proof Procedure”,
Artificial Intelligence, vol. 12, pp. 23-40, 1979.

[6] A. Palay. “The B* Tree Search Algorithm -- New Results”, Artificial Intelligence,
vol. 19, pp. 145-163, 1982,

[7] D. McAllester. “Conspiracy Numbers for Min-Max Search”, Artificial Intelligence,
vol. 35, pp. 287-310, 1988.

[8] V. Allis, M. van der Muellen, and J. van den Herik. “Proof-number Search”,
Artificial Intelligence, vol. 66, pp. 91-124, 1994.

