
1

1

9. Odds and Ends

Jonathan Schaeffer

jonathan@cs.ualberta.ca

www.cs.ualberta.ca/~jonathan

9/9/02 2

Endgame Databases

 Pre-compute known values in the
search

 Start with the goal state(s)

 Work backwards as far as time and
space permits

 Retrograde analysis [1,2]
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Using an Endgame Database

Pre-computed values

Whenever search
reaches here, can treat
it as a terminal node.

Normal search here until
the search reaches the
endgame databases.
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Advantages

 Many more terminal nodes
 Terminal nodes are now closer to the

root
 Reduces the amount of heuristic error in

the search
 Effective search depth is deeper along

some lines of play
 Can be used to solve a game
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Endgame Databases

 Search benefits
 Improves the quality of the evaluations
 Perfect information with no error
 Cuts off the search

 Less search, more accuracy
 Cost in storage
 Program slows down because of I/O accesses

 Benefits usually far out-weigh the costs
 Unfortunately, not possible for all games

(e.g., Ataxx)
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Databases in Chinook

 Pre-computed all positions with 8 or fewer
pieces on the board
 444,000,000,000 positions
 compressed into 6 gigabytes of data organized for

real-time decompression

 Most game-playing programs are compute-
bound; Chinook is I/O-bound

 Made a massive difference in quality of play
 Working on the 10-piece databases

 12 trillion positions.
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Opening Databases

 Most games have a single starting state
 Pre-compute the initial moves of the

game, saving time for later moves
 In the past, this has been done using

expert knowledge
 Belle, Chinook books constructed from

human literature
 Human literature is full of errors!
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Opening Databases

 Want to automatically build an opening
database
 Save a tree on disk

 Have processors expand leaf nodes

 Update tree with new values

 Search tree identifying leaf nodes to
expand

 Buro [3] ; Lincke [4]
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Alpha-Beta Alternatives

 Many algorithms have been proposed
as replacements to alpha-beta

 Most look good on paper, but fail in
practice; usually have far too much
overhead

 Min-max approximation…
 Mega-greedy search…
 BPIP…
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B* [5]

 Prove that a move is best at the root,
but not necessarily its value

 Evaluation function has two values: an
upper bound and a lower bound on the
true value

 Two search strategies: prove best or
disprove rest
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B*

 Prove best
 Try to raise one move’s lower bound to be

>= than the upper bound of alternatives

 Disprove rest
 Lower the upper bound of alternatives to

<= that of the best move
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B* Reality

 Need to have accurate upper/lower
bounds for the algorithm to converge
 In practice, this is very hard to do

 PBA* -- evaluation function is a (simple)
probability distribution [6]

 Values obtained using null-move searches

 Only one known application where B*
has been effective (Scrabble)
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Conspiracy Numbers [7]

 Alpha-beta returns a value, but no
measure of our confidence in that value

 Conspiracy number -- the number of
child nodes that have to change their
value (“conspire”) to cause a change in
the root parent
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Conspiracy Numbers

 Assume a range of values from 1 to 6
 Leaf node with value 4

 ( 1, 1, 1, 0, 1, 1 )
 0 nodes have to conspire to achieve 4
 1 node must conspire to achieve any other

value

 Terminal node with value 4
 ( ∞, ∞, ∞, 0, ∞, ∞ )
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Conspiracy Numbers

 Max node: to increase a value requires
only one child to change its value; to
decrease requires all children with
higher values to lower theirs

  ↑(T,v) = 0 for all v <= m and
MIN ↑(T,v) for all v > m

  ↓(T,v) = 0 for all v >= m and
∑ ↓(T,v) for all v < m
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Conspiracy Numbers

 Min node: to decrease a value requires
only one child to change its value; to
increase requires all children with lower
values to raise theirs

  ↑(T,v) = 0 for all v <= m and
 ∑ ↑(T,v) for all v > m

  ↓(T,v) = 0 for all v >= m and
MIN ↓(T,v) for all v < m
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Example
1

10

01

21

01
(1,1,1,1,0,1,1) (1,1,1,0,1,1,1)

(2,2,2,1,0,1,1) (1,1,1,1,1,0,1) (1,1,1,0,1,1,1) (1,1,1,1,0,1,1)

(1,1,1,0,1,2,2)(1,1,1,1,0,1,2)

(2,2,2,1,0,1,2)

Conspiracy numbers
for the values -3 to +3
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Conspiracy Numbers

 Search to increase “confidence” in the
root value

 Expand node that promises to give the
most information on the root value

 Use iterative search
 Prove root with a CN of 1
 Then try and prove with CN of 2
 Iterate until time expires
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Conspiracy Numbers

 Excellent for tactics
 Automatically searches forced lines of play

(low conspiracy numbers)

 Generally not used in practice

 PN (proof number search) variant [8]

 Win, loss, unknown values

 Successfully used to solve several games
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