q 8. Search Depth

Jonathan Schaeffer
jonathan@cs.ualberta.ca
www.cs.ualberta.ca/~jonathan

i Search Depth

= So far, we have always assumed that all
searches are to a fixed depth

= Nice properties in that the search is
predictable
= Can compare search tree sizes
= Can compare result of search
= Can predict the result of a search in advance

= But... is this the best way to get the best
result?

9/9/02

i Investing

9/9/02

= Want to make the best investment of a
scarce resource

= You have 1,000 shares and 5 stocks to
invest
A) 200 shares each?

B) Identify likely winners and invest more
than 200 shares in them?

C) Identify likely losers and invest less than
200 shares in them?

i Investing in Search

= ldentify sub-trees with good prospects
and increase their search depth

= ldentify sub-tress with poor prospects
and decrease their search depth

9/9/02

i Search Reductions

= |ldentify cases where deeper search is
unlikely to be beneficial

= Could do it based on the previous search
value (v << a), but then you might cut this
move off forever from further consideration

= Want an adaptive scheme, automatically
discovered from the search

9/9/02 5

i Null Move Search

= For many domains, the option of making a
null move (passing) is illegal

= However, to make a move that is a no-op for
many games would be terrible

= Search the null move case and consider the
result a lower bound on what can be achieved

= Assumes that if you did make a move you could
do better than no move at all

9/9/02 6

i Null Move Search

= If we now consider a null move, in
addition to all other moves, we have not
achieved much
= Increased the branching factor by 1

= Used a reduced depth for the null move
search

= If the reduced depth search can cause
a cut-off, then exit the node!

9/9/02

i Null Move Search

= Basic idea:
= If we give the opponent two moves in a row
and we still have a great position, then
there is no point investing more effort in
this analysis

9/9/02 8

i Null Move Search

[* Before searching any children...
/* Make a null move */
score = -AlphaBeta(s, -beta, -alpha, d-1-r);
/* Unmake a null move */
if(score >= beta)
return(score);
/* Search the children */

9/9/02 9

i Null Move Search

= Can do this recursively

= But don’t have a null move follow a null
move!

= How do you choose r?
= Need at least 1 for any savings
= |s 2 too aggressive?

= Beware of zugzwang!

9/9/02 10

i ProbCut 4

= Another idea for automatically deciding where
search effort is unlikely to be beneficial
= Analyse the program’s behaviour

= Calculate the likelihood that the depth d search
can result in a A change in the score

= Eliminate a node if the score of a depth reduced
search is unlikely to return a score necessary to
be relevant

9/9/02 1"

i Search Extensions

= If there is a line that is interesting,
promising, or volatile, maybe the search
should be extended

= Identify indicators of “interest” and do a
deeper search

= Can use application-dependent
knowledge
= Eg., check moves in chess

9/9/02 12

i Singular Extensions

= Identify forced moves and extend their
search an additional move deeper

= One simple definition of forced is one
move being “significantly better than all
the alternatives”

= Manipulate the alpha-beta windows to
identify a forced move

9/9/02 13

i Singular Extensions

= Applying the algorithm at ALL nodes
has little overhead
= Applying the algorithm at CUT nodes...

= Necessary, or you will miss most forced
moves by one player

= Implies continue searching, even though
you know a cut-off has occurred

= This can be a lot of overhead, so you need
to be much more aggressive with r

9/9/02 14

i Singular Extensions

= Define a forced move as one whose score is
at least A better than all the alternatives

= Best move has score v

= Search remaining moves with a window of (v-
A, v- A +1)

= If any move fails high, revert to a normal
search

= If all moves fail low, then a forced move has
been found

9/9/02 15

i Singular Extensions

= When a forced move is found, re-search
an extra move deeper

= This can happen recursively, resulting
in very deep searches

= Store “forced” move property in TT

9/9/02 16

Search Extensions

= All experiments show that good search
extensions/reductions defeat a program
without this feature

= Chess

= Deep Blue team reported 40-move wins found with
d=12 searches!

= Checkers

= Chinook has a nominal search depth of 19, a
median position evaluation of 26 and a maximum
depth reached of 45!

9/9/02 17

9/9/02

Conclusions

= Fixed depth search is not the best investment
strategy

= Null moves are easy to try and usually are
quite effective

= No “simple” search extension idea; most are
based on application-dependent knowledge

= For Ataxx, try search reductions first they will
probably pay off big!

References

[1] Don Beal. “A Generalized Quiescence Search Algorithm”,
Attificial Intelligence, vol. 43, no. 1, pp. 85-98, 1990.

[2] Chrilly Donninger. “Null Move and Deep Search: Selective-
Search Heuristics for Obtuse Chess Programs”, ICCA Journal,
vol. 16, no.3, pp. 137-143, 1993.

[3] Michael Buro.”ProbCut: An Effective Selective Extension of the
Alpha-Beta Algorithm”, ICCA Journal, vol. 18, no. 2, pp. 71-76,
1995.

[4] Thomas Anantharaman, Murray Campbell and Feng-hsung
Hsu. “Singular Extensions: Adding Selectivity to Brute-Force
Searching”, Artificial Intelligence, vol. 43, no. 1, pp. 99-109,
1990.

9/9/02 19

