
1

1

8. Search Depth

Jonathan Schaeffer

jonathan@cs.ualberta.ca

www.cs.ualberta.ca/~jonathan

9/9/02 2

Search Depth

 So far, we have always assumed that all
searches are to a fixed depth

 Nice properties in that the search is
predictable
 Can compare search tree sizes
 Can compare result of search
 Can predict the result of a search in advance

 But… is this the best way to get the best
result?

9/9/02 3

Investing

 Want to make the best investment of a
scarce resource

 You have 1,000 shares and 5 stocks to
invest
A) 200 shares each?
B) Identify likely winners and invest more

than 200 shares in them?
C) Identify likely losers and invest less than

200 shares in them?

9/9/02 4

Investing in Search

 Identify sub-trees with good prospects
and increase their search depth

 Identify sub-tress with poor prospects
and decrease their search depth

2

9/9/02 5

Search Reductions

 Identify cases where deeper search is
unlikely to be beneficial

 Could do it based on the previous search
value (v << α), but then you might cut this
move off forever from further consideration

 Want an adaptive scheme, automatically
discovered from the search

9/9/02 6

Null Move Search

 For many domains, the option of making a
null move (passing) is illegal

 However, to make a move that is a no-op for
many games would be terrible

 Search the null move case and consider the
result a lower bound on what can be achieved
 Assumes that if you did make a move you could

do better than no move at all

9/9/02 7

Null Move Search

 If we now consider a null move, in
addition to all other moves, we have not
achieved much
 Increased the branching factor by 1

 Used a reduced depth for the null move
search

 If the reduced depth search can cause
a cut-off, then exit the node!

9/9/02 8

Null Move Search

 Basic idea:
 If we give the opponent two moves in a row

and we still have a great position, then
there is no point investing more effort in
this analysis

3

9/9/02 9

Null Move Search [1]

/* Before searching any children…

/* Make a null move */

score = -AlphaBeta(s, -beta, -alpha, d-1-r);

/* Unmake a null move */

if(score >= beta)

return(score);

/* Search the children */

9/9/02 10

Null Move Search

 Can do this recursively [2]

 But don’t have a null move follow a null
move!

 How do you choose r?
 Need at least 1 for any savings

 Is 2 too aggressive?

 Beware of zugzwang!

9/9/02 11

ProbCut [3]

 Another idea for automatically deciding where
search effort is unlikely to be beneficial

 Analyse the program’s behaviour
 Calculate the likelihood that the depth d search

can result in a Δ change in the score

 Eliminate a node if the score of a depth reduced
search is unlikely to return a score necessary to
be relevant

9/9/02 12

Search Extensions

 If there is a line that is interesting,
promising, or volatile, maybe the search
should be extended

 Identify indicators of “interest” and do a
deeper search

 Can use application-dependent
knowledge
 Eg., check moves in chess

4

9/9/02 13

Singular Extensions [4]

 Identify forced moves and extend their
search an additional move deeper

 One simple definition of forced is one
move being “significantly better than all
the alternatives”

 Manipulate the alpha-beta windows to
identify a forced move

9/9/02 14

Singular Extensions

 Applying the algorithm at ALL nodes
has little overhead

 Applying the algorithm at CUT nodes…
 Necessary, or you will miss most forced

moves by one player
 Implies continue searching, even though

you know a cut-off has occurred
 This can be a lot of overhead, so you need

to be much more aggressive with r

9/9/02 15

Singular Extensions

 Define a forced move as one whose score is
at least Δ better than all the alternatives

 Best move has score v
 Search remaining moves with a window of (v-
Δ, v- Δ +1)

 If any move fails high, revert to a normal
search

 If all moves fail low, then a forced move has
been found

9/9/02 16

Singular Extensions

 When a forced move is found, re-search
an extra move deeper

 This can happen recursively, resulting
in very deep searches

 Store “forced” move property in TT

5

9/9/02 17

Search Extensions

 All experiments show that good search
extensions/reductions defeat a program
without this feature

 Chess
 Deep Blue team reported 40-move wins found with

d=12 searches!

 Checkers
 Chinook has a nominal search depth of 19, a

median position evaluation of 26 and a maximum
depth reached of 45!

9/9/02 18

Conclusions

 Fixed depth search is not the best investment
strategy

 Null moves are easy to try and usually are
quite effective

 No “simple” search extension idea; most are
based on application-dependent knowledge

 For Ataxx, try search reductions first they will
probably pay off big!

9/9/02 19

References
[1] Don Beal. “A Generalized Quiescence Search Algorithm”,

Artificial Intelligence, vol. 43, no. 1, pp. 85-98, 1990.

[2] Chrilly Donninger. “Null Move and Deep Search: Selective-
Search Heuristics for Obtuse Chess Programs”, ICCA Journal,
vol. 16, no.3, pp. 137-143, 1993.

[3] Michael Buro.”ProbCut: An Effective Selective Extension of the
Alpha-Beta Algorithm”, ICCA Journal, vol. 18, no. 2, pp. 71-76,
1995.

[4] Thomas Anantharaman, Murray Campbell and Feng-hsung
Hsu. “Singular Extensions: Adding Selectivity to Brute-Force
Searching”, Artificial Intelligence, vol. 43, no. 1, pp. 99-109,
1990.

