
1

1

7. Windows

Jonathan Schaeffer

jonathan@cs.ualberta.ca

www.cs.ualberta.ca/~jonathan

9/9/02 2

Playing with Search Windows

 There are many ways that the search
window can be altered

 Use this to:
 Improve search efficiency

 Answer questions

 Low overhead exploratory searches

9/9/02 3

Improving α

Improve α means
that the children
have a smaller
threshold for
achieving a cutoff

(α+Δ, β)

(-β, -α-Δ)

9/9/02 4

Improving β

Improve β means
that the grand
children have a
smaller threshold
for achieving a
cutoff

(α, β-Δ)

(-β+Δ, -α)

(α, β-Δ)

2

9/9/02 5

Aspiration Search

 Normally search the root using (-∞,+∞)

 What if you have a good idea of where
the root value really is?

 Assume you believe the root value is
close to V, plus or minus Δ?

 Search the root using (V-Δ, V+Δ)

 But…

9/9/02 6

Aspiration Search
 If result of the search is in (V-Δ, V+Δ), then

everything is OK and you have obtained the
root value with less search

 What if the value, v, is <= V-Δ?
 Fail low
 Re-search using window (-∞, v)

 What if the value, v, is >= V+Δ?
 Fail high
 Re-search using window (v, +∞)

9/9/02 7

Aspiration Search

 What is a good guess for the value of a
search?
 Use the value returned for the depth d search as

the guess for the d+1 search

 How big should Δ be?
 Smaller Δ means less search

 Use experimentally

 Note: aspiration search can build trees
smaller than the minimal tree -- why?

9/9/02 8

Aspiration Search
guess = 0;
for(depth = 1; TimeAvailable(); depth++) {

alpha = guess - Δ; beta = guess + Δ;
/* Search moves: maximize score */
if(score >= beta) {

alpha = score; beta = ∞;
/* Search with new window */

} else if(score <= alpha) {
alpha = -∞; beta = score;
/* Search with new window */

}
guess = score;

}

3

9/9/02 9

Narrow Windows

 The idea of narrowing a window can be
taken to the extreme!

 What are the semantics of (v,v+1)?

 Minimal or null window

 Answers a Boolean question:
 Is the value <= v or is it >v

9/9/02 10

CUT Nodes Revisited

 We know that at CUT nodes, with high
probability the best move is being
searched early

 That implies that the rest of the moves
are inferior to the best

 Can we reduce search effort by
exploiting this observation?

9/9/02 11

NegaScout [1] and PVS [2]

 Search best move with the full window
 Search the remaining moves with a minimal

window attempting to prove them inferior to
the best move
 Could be wrong and may need to re-search
 Re-search may not be expensive because of

saved TT results
 With good move ordering, number of re-searches

is usually very small

9/9/02 12

Example

(0,9)Window

Result 2

(2,3)

2

(2,3)

0

(2,3)

3
(3,9)

7

(7,8)

5

4

9/9/02 13

NegaScout
score = -AlphaBeta(Successor(1), -beta, -alpha, d);
if(score < beta) {
 for(child = 2; child <= NumSuccessors(s); child++) {

 lbound = MAX(score, alpha); ubound = lbound + 1;
 result = -AlphaBeta(Successor(child), -ubound, -lbound);
 if(result >= ubound && result < beta) {

result = -AlphaBeta(Successor(child), -beta, -result);
 }
 if(result > score) score = result;
 if(result >= beta) break;
}

}
return(score);

9/9/02 14

Taking MWs to the Extreme

 Pearl first proposed the idea of doing
minimal window searches (Scout) [3]

 Used them to answer a Boolean
question about the search tree

 Can we couch the entire alpha-beta
search as a series of Boolean
questions?

9/9/02 15

Scout Searches

 To determine the value of root do a
series of minimal window searches to
narrow in on the value.

 Could do a divide an conquer approach,
using each search to cut the possible
alpha-beta range in half

9/9/02 16

Scouting

 Assume value lies in range [-100,100]
 Possible values are -100..100

 Search with window [0,1] gives result of 1
 Possible values are 1..100

 Search with window [50,51] gives result 48
 Possible values are [1..48]

 Search with window [24,25] gives result 24
 Possible values are [1..24]

 And so on…

5

9/9/02 17

MTD(f)

 Divide-and-conquer is too slow.

 We have a good idea where the true
value is… start from there.

 Use the value of the previous iteration
to see the starting minimal window.

9/9/02 18

MTD(f) [4,5]

lbound = -∞; ubound = +∞;

score = ResultOfPreviousIteration();

repeat {

if(score == lbound) window = score;

else window = score - 1;

score = AlphaBeta(s, window, window + 1, d);

if(score < window) ubound = score;

else lbound = score;

} until (lbound >= ubound);

9/9/02 19

MTD(f)

 Note that all searches go down (except the
last one), or all go up (except the last one)

 This only makes sense with a TT so that
results of previous searches can be reused

 For chess an average of 3-5 iterations were
needed to converge

 Node reductions of 5-15%

9/9/02 20

MTD(f)

 By changing the initial guess and the
choice of bounds, SSS* and DUAL* can
be derived.

 There are subtle points that may result
in MTD(f) not converging
 Bugs in your algorithm
 Search depth changes
 TT side effects

6

9/9/02 21

References
[1] Alexander Reinefeld. “An Improvement to the Scout Tree

Search Algorithm”, ICGA Journal, vol. 6, no.4, pp. 4-14, 1983.
See also [4].

[2] Murray Campbell and Tony Marsland. “A Comparison of
Minimax Tree Search Algorithms”, Artificial Intelligence, vol. 20,
pp. 347-367, 1983.

[3] Judea Pearl. “Scout: A Simple Game-Searching Algorithm with
Proven Optimal Properties”, AAAI National Conference, 1980.

[4] www.cs.vu.nl/~aske/mtdf.html

[5] Aske Plaat, Jonathan Schaeffer, Wim Pijls, and Arie de Bruin.
“Best-first Fixed-depth Minimax Algorithms”, Artificial
Intelligence, vol. 87, no. 1-2, pp/ 1-38, 1996.

