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Playing with Search Windows

 There are many ways that the search
window can be altered

 Use this to:
 Improve search efficiency

 Answer questions

 Low overhead exploratory searches
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Improving α

Improve α means
that the children
have a smaller
threshold for
achieving a cutoff

(α+Δ, β )

(-β, -α-Δ)
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Improving β

Improve β means
that the grand
children have a
smaller threshold
for achieving a
cutoff

(α, β-Δ )

(-β+Δ, -α)

(α, β-Δ )
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Aspiration Search

 Normally search the root using (-∞,+∞)

 What if you have a good idea of where
the root value really is?

 Assume you believe the root value is
close to V, plus or minus Δ?

 Search the root using (V-Δ, V+Δ)

 But…
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Aspiration Search
 If result of the search is in (V-Δ, V+Δ), then

everything is OK and you have obtained the
root value with less search

 What if the value, v, is <= V-Δ?
 Fail low
 Re-search using window (-∞, v)

 What if the value, v, is >= V+Δ?
 Fail high
 Re-search using window (v, +∞)
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Aspiration Search

 What is a good guess for the value of a
search?
 Use the value returned for the depth d search as

the guess for the d+1 search

 How big should Δ be?
 Smaller Δ means less search

 Use experimentally

 Note: aspiration search can build trees
smaller than the minimal tree -- why?
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Aspiration Search
guess = 0;
for( depth = 1; TimeAvailable(); depth++ ) {

alpha = guess - Δ; beta = guess + Δ;
/* Search moves: maximize score */
if( score >= beta ) {

alpha = score; beta = ∞;
/* Search with new window */

} else if( score <= alpha ) {
alpha = -∞; beta = score;
/* Search with new window */

}
guess = score;

}
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Narrow Windows

 The idea of narrowing a window can be
taken to the extreme!

 What are the semantics of (v,v+1)?

 Minimal or null window

 Answers a Boolean question:
 Is the value <= v or is it >v
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CUT Nodes Revisited

 We know that at CUT nodes, with high
probability the best move is being
searched early

 That implies that the rest of the moves
are inferior to the best

 Can we reduce search effort by
exploiting this observation?
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NegaScout [1] and PVS [2]

 Search best move with the full window
 Search the remaining moves with a minimal

window attempting to prove them inferior to
the best move
 Could be wrong and may need to re-search
 Re-search may not be expensive because of

saved TT results
 With good move ordering, number of re-searches

is usually very small
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Example

(0,9)Window

Result 2

(2,3)

2

(2,3)

0

(2,3)

3
(3,9)

7

(7,8)

5
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NegaScout
score = -AlphaBeta( Successor( 1 ), -beta, -alpha, d );
if( score < beta ) {
    for( child = 2; child <= NumSuccessors( s ); child++ ) {

   lbound = MAX( score, alpha ); ubound = lbound + 1;
   result = -AlphaBeta( Successor( child ), -ubound, -lbound );
   if( result >= ubound && result < beta ) {

result = -AlphaBeta( Successor( child ), -beta, -result );
   }
   if( result > score ) score = result;
   if( result >= beta ) break;
}

}
return( score );
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Taking MWs to the Extreme

 Pearl first proposed the idea of doing
minimal window searches (Scout) [3]

 Used them to answer a Boolean
question about the search tree

 Can we couch the entire alpha-beta
search as a series of Boolean
questions?
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Scout Searches

 To determine the value of root do a
series of minimal window searches to
narrow in on the value.

 Could do a divide an conquer approach,
using each search to cut the possible
alpha-beta range in half
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Scouting

 Assume value lies in range [-100,100]
 Possible values are -100..100

 Search with window [0,1] gives result of 1
 Possible values are 1..100

 Search with window [50,51] gives result 48
 Possible values are [1..48]

 Search with window [24,25] gives result 24
 Possible values are [1..24]

 And so on…
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MTD(f)

 Divide-and-conquer is too slow.

 We have a good idea where the true
value is… start from there.

 Use the value of the previous iteration
to see the starting minimal window.
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MTD(f) [4,5]

lbound = -∞; ubound = +∞;

score = ResultOfPreviousIteration();

repeat {

if( score == lbound ) window = score;

else window = score - 1;

score = AlphaBeta( s, window, window + 1, d );

if( score < window ) ubound = score;

else lbound = score;

} until ( lbound >= ubound );
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MTD(f)

 Note that all searches go down (except the
last one), or all go up (except the last one)

 This only makes sense with a TT so that
results of previous searches can be reused

 For chess an average of 3-5 iterations were
needed to converge

 Node reductions of 5-15%
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MTD(f)

 By changing the initial guess and the
choice of bounds, SSS* and DUAL* can
be derived.

 There are subtle points that may result
in MTD(f) not converging
 Bugs in your algorithm
 Search depth changes
 TT side effects
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