
1

1

7. Windows

Jonathan Schaeffer

jonathan@cs.ualberta.ca

www.cs.ualberta.ca/~jonathan

9/9/02 2

Playing with Search Windows

 There are many ways that the search
window can be altered

 Use this to:
 Improve search efficiency

 Answer questions

 Low overhead exploratory searches

9/9/02 3

Improving α

Improve α means
that the children
have a smaller
threshold for
achieving a cutoff

(α+Δ, β)

(-β, -α-Δ)

9/9/02 4

Improving β

Improve β means
that the grand
children have a
smaller threshold
for achieving a
cutoff

(α, β-Δ)

(-β+Δ, -α)

(α, β-Δ)

2

9/9/02 5

Aspiration Search

 Normally search the root using (-∞,+∞)

 What if you have a good idea of where
the root value really is?

 Assume you believe the root value is
close to V, plus or minus Δ?

 Search the root using (V-Δ, V+Δ)

 But…

9/9/02 6

Aspiration Search
 If result of the search is in (V-Δ, V+Δ), then

everything is OK and you have obtained the
root value with less search

 What if the value, v, is <= V-Δ?
 Fail low
 Re-search using window (-∞, v)

 What if the value, v, is >= V+Δ?
 Fail high
 Re-search using window (v, +∞)

9/9/02 7

Aspiration Search

 What is a good guess for the value of a
search?
 Use the value returned for the depth d search as

the guess for the d+1 search

 How big should Δ be?
 Smaller Δ means less search

 Use experimentally

 Note: aspiration search can build trees
smaller than the minimal tree -- why?

9/9/02 8

Aspiration Search
guess = 0;
for(depth = 1; TimeAvailable(); depth++) {

alpha = guess - Δ; beta = guess + Δ;
/* Search moves: maximize score */
if(score >= beta) {

alpha = score; beta = ∞;
/* Search with new window */

} else if(score <= alpha) {
alpha = -∞; beta = score;
/* Search with new window */

}
guess = score;

}

3

9/9/02 9

Narrow Windows

 The idea of narrowing a window can be
taken to the extreme!

 What are the semantics of (v,v+1)?

 Minimal or null window

 Answers a Boolean question:
 Is the value <= v or is it >v

9/9/02 10

CUT Nodes Revisited

 We know that at CUT nodes, with high
probability the best move is being
searched early

 That implies that the rest of the moves
are inferior to the best

 Can we reduce search effort by
exploiting this observation?

9/9/02 11

NegaScout [1] and PVS [2]

 Search best move with the full window
 Search the remaining moves with a minimal

window attempting to prove them inferior to
the best move
 Could be wrong and may need to re-search
 Re-search may not be expensive because of

saved TT results
 With good move ordering, number of re-searches

is usually very small

9/9/02 12

Example

(0,9)Window

Result 2

(2,3)

2

(2,3)

0

(2,3)

3
(3,9)

7

(7,8)

5

4

9/9/02 13

NegaScout
score = -AlphaBeta(Successor(1), -beta, -alpha, d);
if(score < beta) {
 for(child = 2; child <= NumSuccessors(s); child++) {

 lbound = MAX(score, alpha); ubound = lbound + 1;
 result = -AlphaBeta(Successor(child), -ubound, -lbound);
 if(result >= ubound && result < beta) {

result = -AlphaBeta(Successor(child), -beta, -result);
 }
 if(result > score) score = result;
 if(result >= beta) break;
}

}
return(score);

9/9/02 14

Taking MWs to the Extreme

 Pearl first proposed the idea of doing
minimal window searches (Scout) [3]

 Used them to answer a Boolean
question about the search tree

 Can we couch the entire alpha-beta
search as a series of Boolean
questions?

9/9/02 15

Scout Searches

 To determine the value of root do a
series of minimal window searches to
narrow in on the value.

 Could do a divide an conquer approach,
using each search to cut the possible
alpha-beta range in half

9/9/02 16

Scouting

 Assume value lies in range [-100,100]
 Possible values are -100..100

 Search with window [0,1] gives result of 1
 Possible values are 1..100

 Search with window [50,51] gives result 48
 Possible values are [1..48]

 Search with window [24,25] gives result 24
 Possible values are [1..24]

 And so on…

5

9/9/02 17

MTD(f)

 Divide-and-conquer is too slow.

 We have a good idea where the true
value is… start from there.

 Use the value of the previous iteration
to see the starting minimal window.

9/9/02 18

MTD(f) [4,5]

lbound = -∞; ubound = +∞;

score = ResultOfPreviousIteration();

repeat {

if(score == lbound) window = score;

else window = score - 1;

score = AlphaBeta(s, window, window + 1, d);

if(score < window) ubound = score;

else lbound = score;

} until (lbound >= ubound);

9/9/02 19

MTD(f)

 Note that all searches go down (except the
last one), or all go up (except the last one)

 This only makes sense with a TT so that
results of previous searches can be reused

 For chess an average of 3-5 iterations were
needed to converge

 Node reductions of 5-15%

9/9/02 20

MTD(f)

 By changing the initial guess and the
choice of bounds, SSS* and DUAL* can
be derived.

 There are subtle points that may result
in MTD(f) not converging
 Bugs in your algorithm
 Search depth changes
 TT side effects

6

9/9/02 21

References
[1] Alexander Reinefeld. “An Improvement to the Scout Tree

Search Algorithm”, ICGA Journal, vol. 6, no.4, pp. 4-14, 1983.
See also [4].

[2] Murray Campbell and Tony Marsland. “A Comparison of
Minimax Tree Search Algorithms”, Artificial Intelligence, vol. 20,
pp. 347-367, 1983.

[3] Judea Pearl. “Scout: A Simple Game-Searching Algorithm with
Proven Optimal Properties”, AAAI National Conference, 1980.

[4] www.cs.vu.nl/~aske/mtdf.html

[5] Aske Plaat, Jonathan Schaeffer, Wim Pijls, and Arie de Bruin.
“Best-first Fixed-depth Minimax Algorithms”, Artificial
Intelligence, vol. 87, no. 1-2, pp/ 1-38, 1996.

