
1

1

6. Evaluation Functions

Jonathan Schaeffer

jonathan@cs.ualberta.ca

www.cs.ualberta.ca/~jonathan

9/9/02 2

Value of a Leaf Node

 What value do you assign to a leaf node?
 If you have perfect information, then life is

easy (leaf node becomes a terminal node)
 Otherwise, need to assign a heuristic value to

the node
 Heuristics value must be correlated with the

true value
 The stronger the correlation, the more useful the

heuristic

9/9/02 3

Granularity

 What is the range of possible values for a leaf
node?

 If too large?
 Search may spend too much time trying to

improve the value by an insignificant amount

 If too small?
 Insufficient resolution to differentiate

 In practice, integers are preferred over
floating point numbers

9/9/02 4

Typical Evaluation Function

 Linear sum of features
 Set of n features f
 Each feature has a weight w

 Evaluation = Σ wi x fi
 Non-linear functions can also be a good

choice, but tend to be less used in practice
 How do you decide on the features?
 How do you decide on the weights?



2

9/9/02 5

Determining the Weights

 Each feature needs a weight
 Marriage proposal evaluation function:

 F1: spouse’s age
 F2: spouse’s pets
 F3: spouse’s clothes
 F4: spouse’s income

 Hopefully, these features are not all
equally important!

9/9/02 6

Determining the Weights

 Traditionally done by hand-tuning
 Tedious, time-consuming, error-prone

 Many automated techniques proposed and all
ineffective until…

 Temporal difference learning! [1]

 Have the program automatically play itself
 After each game, modify the weights
 Make the weights a better predictor of what

actually happened 

9/9/02 7

TDLeaf [2]

 Start with an initial set of (random) weights
 Play a game
 Want to modify the weights so that the Move i

search is a better predictor of Move i+1
search result

 For each position, find the leaf node of the
principal variation (the one responsible for the
value at the root).

 Small change to weights so that the position’s
value is closer to the next search’s value

9/9/02 8

Evaluation Features?

 This is the hard part…

 And it is still mostly black magic

 Ideally would like to automatically
discover them, but in practice this is
very hard

 GLEM -- Michael Buro presentation [3]



3

9/9/02 9

Evaluation Features

 Usually requires an expert to identified
features correlated with success

 Can run experiments to verify that a
feature is correlated with success

 These features do not need to have
anything to do with how humans
evaluate a position!

9/9/02 10

Example: Piece Count

 Human concept of “material balance”
 Count number of pieces for each side

 Pieces may have a weighting

 Trivial calculation that is very effective
in many games

9/9/02 11

Example: Mobility

 Mobility -- popular in many games
 Feature value = #moves( me )

- #moves( you )
 Having more moves to make than the

opponent may imply that you have more
“freedom” and that can be correlated with
success

 No human would ever use such a heuristic,
but many human pieces of knowledge are
captured by mobility

9/9/02 12

Example: Square Control

 Control -- popular in many games
 Feature value = #squarescontrolled( me )

- #squarescontrolled( you )
 “Controlling” a square -- whether actual or just

perceived -- may imply that you “own” more of
the state that the opponent, and that this can
be correlated with success

 Humans use this notion implicitly in some of
their knowledge



4

9/9/02 13

Warnings!

 The features may not be independent of each
other
 Some characteristic may be explicitly and implicitly

over compensated

 May have to adjust weights or modify features to
compensate

 Useful features cover most of the cases
 Be wary of exceptions

 Handle the important ones!

9/9/02 14

Odd/Even Effect

 Iterating one by one depth at a time can
cause an unstable search

 Searching to an odd depth can produce an
optimistic result (why?)

 Searching to an even depth can produce a
pessimistic result (why?)

 Should you be mixing optimistic and
pessimistic results?

9/9/02 15

Odd/Even Effect

 Might see search look like this
 Depth 4

 M1 = 20

 M2 = 25

 Depth 5
 M2 = 12

 M1 = 13

 Depth 6
 M1 = 23

 M2 = 30

Best move keeps changing
resulting in a much larger
search tree being built

9/9/02 16

Odd/Even Effect

 Empirical evidence shows that optimistic
results generally perform better than
pessimistic

 Possible solutions
 Iterate by 2 at a time

 Extend search so that only nodes that are at an
odd depth can be leaf nodes

 Modify the evaluation function to make it less
depth sensitive



5

9/9/02 17

Lose Checkers

 Methodology!?
 Play a few games and try and understand how you

play
 Is the piece differential important?
 Is mobility useful?
 Is control useful?
 Is the center interesting?  The edges?

 Experiment by having your program with
feature set 1 play some games against your
program with feature set 2

9/9/02 18

References
[1] Rich Sutton and Andrew Barto. Reinforcement

Learning: An Introduction, MIT Press, 1998. www-
anw.cs.umass.edu/~rich/book/the-book.html

[2] Jonathan Baxter, Andrew Tridgell, and Lex Weaver.
“Learning to Play Chess with Temporal Differences”,
Machine Learning, vol. 40, no. 3, pp. 243-263, 2000.

[3] Michael Buro.  “From Simple Features to
Sophisticated Evaluation Functions”, Computers and
Games, Springer-Verlag, LNCS 1558, 1998.


