
1

1

6. Evaluation Functions

Jonathan Schaeffer

jonathan@cs.ualberta.ca

www.cs.ualberta.ca/~jonathan

9/9/02 2

Value of a Leaf Node

 What value do you assign to a leaf node?
 If you have perfect information, then life is

easy (leaf node becomes a terminal node)
 Otherwise, need to assign a heuristic value to

the node
 Heuristics value must be correlated with the

true value
 The stronger the correlation, the more useful the

heuristic

9/9/02 3

Granularity

 What is the range of possible values for a leaf
node?

 If too large?
 Search may spend too much time trying to

improve the value by an insignificant amount

 If too small?
 Insufficient resolution to differentiate

 In practice, integers are preferred over
floating point numbers

9/9/02 4

Typical Evaluation Function

 Linear sum of features
 Set of n features f
 Each feature has a weight w

 Evaluation = Σ wi x fi
 Non-linear functions can also be a good

choice, but tend to be less used in practice
 How do you decide on the features?
 How do you decide on the weights?

2

9/9/02 5

Determining the Weights

 Each feature needs a weight
 Marriage proposal evaluation function:

 F1: spouse’s age
 F2: spouse’s pets
 F3: spouse’s clothes
 F4: spouse’s income

 Hopefully, these features are not all
equally important!

9/9/02 6

Determining the Weights

 Traditionally done by hand-tuning
 Tedious, time-consuming, error-prone

 Many automated techniques proposed and all
ineffective until…

 Temporal difference learning! [1]

 Have the program automatically play itself
 After each game, modify the weights
 Make the weights a better predictor of what

actually happened

9/9/02 7

TDLeaf [2]

 Start with an initial set of (random) weights
 Play a game
 Want to modify the weights so that the Move i

search is a better predictor of Move i+1
search result

 For each position, find the leaf node of the
principal variation (the one responsible for the
value at the root).

 Small change to weights so that the position’s
value is closer to the next search’s value

9/9/02 8

Evaluation Features?

 This is the hard part…

 And it is still mostly black magic

 Ideally would like to automatically
discover them, but in practice this is
very hard

 GLEM -- Michael Buro presentation [3]

3

9/9/02 9

Evaluation Features

 Usually requires an expert to identified
features correlated with success

 Can run experiments to verify that a
feature is correlated with success

 These features do not need to have
anything to do with how humans
evaluate a position!

9/9/02 10

Example: Piece Count

 Human concept of “material balance”
 Count number of pieces for each side

 Pieces may have a weighting

 Trivial calculation that is very effective
in many games

9/9/02 11

Example: Mobility

 Mobility -- popular in many games
 Feature value = #moves(me)

- #moves(you)
 Having more moves to make than the

opponent may imply that you have more
“freedom” and that can be correlated with
success

 No human would ever use such a heuristic,
but many human pieces of knowledge are
captured by mobility

9/9/02 12

Example: Square Control

 Control -- popular in many games
 Feature value = #squarescontrolled(me)

- #squarescontrolled(you)
 “Controlling” a square -- whether actual or just

perceived -- may imply that you “own” more of
the state that the opponent, and that this can
be correlated with success

 Humans use this notion implicitly in some of
their knowledge

4

9/9/02 13

Warnings!

 The features may not be independent of each
other
 Some characteristic may be explicitly and implicitly

over compensated

 May have to adjust weights or modify features to
compensate

 Useful features cover most of the cases
 Be wary of exceptions

 Handle the important ones!

9/9/02 14

Odd/Even Effect

 Iterating one by one depth at a time can
cause an unstable search

 Searching to an odd depth can produce an
optimistic result (why?)

 Searching to an even depth can produce a
pessimistic result (why?)

 Should you be mixing optimistic and
pessimistic results?

9/9/02 15

Odd/Even Effect

 Might see search look like this
 Depth 4

 M1 = 20

 M2 = 25

 Depth 5
 M2 = 12

 M1 = 13

 Depth 6
 M1 = 23

 M2 = 30

Best move keeps changing
resulting in a much larger
search tree being built

9/9/02 16

Odd/Even Effect

 Empirical evidence shows that optimistic
results generally perform better than
pessimistic

 Possible solutions
 Iterate by 2 at a time

 Extend search so that only nodes that are at an
odd depth can be leaf nodes

 Modify the evaluation function to make it less
depth sensitive

5

9/9/02 17

Lose Checkers

 Methodology!?
 Play a few games and try and understand how you

play
 Is the piece differential important?
 Is mobility useful?
 Is control useful?
 Is the center interesting? The edges?

 Experiment by having your program with
feature set 1 play some games against your
program with feature set 2

9/9/02 18

References
[1] Rich Sutton and Andrew Barto. Reinforcement

Learning: An Introduction, MIT Press, 1998. www-
anw.cs.umass.edu/~rich/book/the-book.html

[2] Jonathan Baxter, Andrew Tridgell, and Lex Weaver.
“Learning to Play Chess with Temporal Differences”,
Machine Learning, vol. 40, no. 3, pp. 243-263, 2000.

[3] Michael Buro. “From Simple Features to
Sophisticated Evaluation Functions”, Computers and
Games, Springer-Verlag, LNCS 1558, 1998.

