
1

1

5. Iterative Deepening and
 Move Ordering

Jonathan Schaeffer

jonathan@cs.ualberta.ca

www.cs.ualberta.ca/~jonathan

9/9/02 2

Depth-first Search

 How do you know how deep to search?
 Search to terminal nodes?

 Could be too deep!

 Search to a fixed depth?
 Bad move ordering could make this a big

search
 What if the search depth is set too large?
 What if the search depth is set too small?

9/9/02 3

Iterative Deepening

 Iterate on the search depth
 Search to depth 1, then 2, then 3, until

resources run out
 The advantage is that you get the

deepest possible search depth given
the resource constraints
 Nice property for real-time search [1]

 The disadvantage is wasted search

9/9/02 4

Disadvantage: Extra Search?

 ID seems impractical because of all the
repeated work:
 Assume a growth rate of b and search

depth d

 Size = b + b 2 + b 3 + … + b d-1 + b d

 Aren’t all the early iterations wasted
search?

2

9/9/02 5

Advantages!

 Before searching to depth d+1, order the
moves at the root based on the scores
returned from depth d

 This assumes that the best move at depth d
is a good predictor of the best move at depth
d+1
 For most domains, this is true

 Increases the likelihood that the best move is
searched first on the last (and most
expensive) iteration

9/9/02 6

Example

A
15

B
20

C
13

Depth d

B
30

A
16

C
19

Depth d+1

Reorder root moves

9/9/02 7

More Advantages!

 Much of the ID overhead can be eliminated
by using a transposition table

 Use TT to increase likelihood that the best
move is searched first at all nodes!

 Use the TT to save the best move in a
position

 When the position is revisiting (e.g., on the
next iteration), use the previous best move as
the first move to consider
 Likely best on the newer, deeper search

9/9/02 8

TT Move Ordering
int AlphaBeta(state s, int alpha, int beta, int depth) {

if(terminal node || depth == 0) return(Evaluate(s);
/* Look in TT before searching */
ptr = TTLookup(s);
if(ptr != NULL && ptr->depth >= d) {

…
}
if(ptr != NULL) { /* Note that ptr->depth can be < depth */

/* move ptr->bestmove to head of successors list */
}
…

}

3

9/9/02 9

Extra Search Revisited

 Size = b + b 2 + b 3 + … + b d-1 + b d

 Aren’t all the early iterations wasted
search?

 No!!

 Improved move ordering throughout
the search!

 Invest in the early iterations to improve
the last (most expensive) iteration

9/9/02 10

Move Ordering

 Alpha-beta’s success hinges on
searching the “best” move first

 TT can provide a candidate best move

 What do we do if…
 No matching TT entry?

 TT best move does not cause a cutoff?

 How do we order the remaining moves?

9/9/02 11

Knowledge

 Common to use application-dependent
knowledge heuristics
 Chess: consider checking and capture

moves first

 Constraint problems: consider branches
that address the most tightly constrained
component first

 Finding knowledge can be hard

9/9/02 12

Discovery from the Search

 TT best move ordering was nice
because it is not application dependent
 Knowledge discovered dynamically during

the search

 Is there a correlation between a
property of the application and move
ordering?

4

9/9/02 13

History Heuristic

 In an position p, move m is best
(highest score or causes a cutoff)

 Move m now has a history of being a
good move

 In a new position q, if move m is legal,
prefer to try moves with a history of
success (albeit in a different setting)

9/9/02 14

History Heuristic

 Maintain a table of all possible moves

 When leaving a node, update the history
score of the best move

 When entering a node, sort moves based on
their history heuristic score

 Score should reflect the search depth (deeper
search means more meaningful result)

 HT[m] += (1 << depth) /* 2depth */

9/9/02 15

History Heuristic
int AlphaBeta(state s, int alpha, int beta, int depth) {

…
/* Move ordering -- just HH scores */
for(child = 1; child <= NumbSuccessors(s); child++)

score[child] = HH[Successor(s, child)];
Sort(score);
…
/* Search moves in order of their scores */
…
HH[bestmove] += (1 << depth);
…

}

9/9/02 16

History Heuristic

 Simple form of learning
 Little context -- just a move
 You can add more context

 Better “accuracy”
 Finer granularity

 The extreme case is adding all the
context, in which case you get the entire
position

5

9/9/02 17

Move Ordering

 Try TT move first
 Try knowledge next (static)
 Try search-based knowledge (dynamic)

 History heuristic
 Countermove heuristic
 Inertia heuristic
 Neural move-map heuristic
 …

 HH is simple to implement, low CPU and
space overhead, and effective in many
domains 9/9/02 18

Move Ordering Effectiveness

 The ideal case is to consider only one move
at a CUT node

 Extensive experiments in chess
 Belle (1982): 2.2

 Phoenix (1985): 1.4

 Hitech (1987): 1.5

 Zugzwang (1993): 1.2

 Other game applications report similar results

9/9/02 19

Perspective

 Minimal tree is roughly bd/2

 Assume that you examine an average of 2
successors at a CUT node.

 For a depth 10 tree, average search order is
roughly 25 bd/2 ; a factor of 32 within optimal!

 Improve branching factor at a CUT node to
1.6: a factor of 10.5 within optimal!

 Small improvements a CUT nodes translate
to major performance improvements.

9/9/02 20

References
[1] D. Slate and L. Atkin. “Chess 4.5 -- The

Northwestern University Chess Program”, Chess Skill
in Man and Machine, P. Frey (ed.), Springer-Verlag,
1977.

[2] J.Schaeffer. “The History Heuristic and the
Performance of Alpha-Beta Enhancements”, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, vol. 11, no. 11, pp. 1203-1212, 1989.

