
1

1

5. Iterative Deepening and
 Move Ordering

Jonathan Schaeffer

jonathan@cs.ualberta.ca

www.cs.ualberta.ca/~jonathan

9/9/02 2

Depth-first Search

 How do you know how deep to search?
 Search to terminal nodes?

 Could be too deep!

 Search to a fixed depth?
 Bad move ordering could make this a big

search
 What if the search depth is set too large?
 What if the search depth is set too small?

9/9/02 3

Iterative Deepening

 Iterate on the search depth
 Search to depth 1, then 2, then 3, until

resources run out
 The advantage is that you get the

deepest possible search depth given
the resource constraints
 Nice property for real-time search [1]

 The disadvantage is wasted search

9/9/02 4

Disadvantage: Extra Search?

 ID seems impractical because of all the
repeated work:
 Assume a growth rate of b and search

depth d

 Size = b + b 2 + b 3 + … + b d-1 + b d

 Aren’t all the early iterations wasted
search?

2

9/9/02 5

Advantages!

 Before searching to depth d+1, order the
moves at the root based on the scores
returned from depth d

 This assumes that the best move at depth d
is a good predictor of the best move at depth
d+1
 For most domains, this is true

 Increases the likelihood that the best move is
searched first on the last (and most
expensive) iteration

9/9/02 6

Example

A
15

B
20

C
13

Depth d

B
30

A
16

C
19

Depth d+1

Reorder root moves

9/9/02 7

More Advantages!

 Much of the ID overhead can be eliminated
by using a transposition table

 Use TT to increase likelihood that the best
move is searched first at all nodes!

 Use the TT to save the best move in a
position

 When the position is revisiting (e.g., on the
next iteration), use the previous best move as
the first move to consider
 Likely best on the newer, deeper search

9/9/02 8

TT Move Ordering
int AlphaBeta(state s, int alpha, int beta, int depth) {

if(terminal node || depth == 0) return(Evaluate(s);
/* Look in TT before searching */
ptr = TTLookup(s);
if(ptr != NULL && ptr->depth >= d) {

…
}
if(ptr != NULL) { /* Note that ptr->depth can be < depth */

/* move ptr->bestmove to head of successors list */
}
…

}

3

9/9/02 9

Extra Search Revisited

 Size = b + b 2 + b 3 + … + b d-1 + b d

 Aren’t all the early iterations wasted
search?

 No!!

 Improved move ordering throughout
the search!

 Invest in the early iterations to improve
the last (most expensive) iteration

9/9/02 10

Move Ordering

 Alpha-beta’s success hinges on
searching the “best” move first

 TT can provide a candidate best move

 What do we do if…
 No matching TT entry?

 TT best move does not cause a cutoff?

 How do we order the remaining moves?

9/9/02 11

Knowledge

 Common to use application-dependent
knowledge heuristics
 Chess: consider checking and capture

moves first

 Constraint problems: consider branches
that address the most tightly constrained
component first

 Finding knowledge can be hard

9/9/02 12

Discovery from the Search

 TT best move ordering was nice
because it is not application dependent
 Knowledge discovered dynamically during

the search

 Is there a correlation between a
property of the application and move
ordering?

4

9/9/02 13

History Heuristic

 In an position p, move m is best
(highest score or causes a cutoff)

 Move m now has a history of being a
good move

 In a new position q, if move m is legal,
prefer to try moves with a history of
success (albeit in a different setting)

9/9/02 14

History Heuristic

 Maintain a table of all possible moves

 When leaving a node, update the history
score of the best move

 When entering a node, sort moves based on
their history heuristic score

 Score should reflect the search depth (deeper
search means more meaningful result)

 HT[m] += (1 << depth) /* 2depth */

9/9/02 15

History Heuristic
int AlphaBeta(state s, int alpha, int beta, int depth) {

…
/* Move ordering -- just HH scores */
for(child = 1; child <= NumbSuccessors(s); child++)

score[child] = HH[Successor(s, child)];
Sort(score);
…
/* Search moves in order of their scores */
…
HH[bestmove] += (1 << depth);
…

}

9/9/02 16

History Heuristic

 Simple form of learning
 Little context -- just a move
 You can add more context

 Better “accuracy”
 Finer granularity

 The extreme case is adding all the
context, in which case you get the entire
position

5

9/9/02 17

Move Ordering

 Try TT move first
 Try knowledge next (static)
 Try search-based knowledge (dynamic)

 History heuristic
 Countermove heuristic
 Inertia heuristic
 Neural move-map heuristic
 …

 HH is simple to implement, low CPU and
space overhead, and effective in many
domains 9/9/02 18

Move Ordering Effectiveness

 The ideal case is to consider only one move
at a CUT node

 Extensive experiments in chess
 Belle (1982): 2.2

 Phoenix (1985): 1.4

 Hitech (1987): 1.5

 Zugzwang (1993): 1.2

 Other game applications report similar results

9/9/02 19

Perspective

 Minimal tree is roughly bd/2

 Assume that you examine an average of 2
successors at a CUT node.

 For a depth 10 tree, average search order is
roughly 25 bd/2 ; a factor of 32 within optimal!

 Improve branching factor at a CUT node to
1.6: a factor of 10.5 within optimal!

 Small improvements a CUT nodes translate
to major performance improvements.

9/9/02 20

References
[1] D. Slate and L. Atkin. “Chess 4.5 -- The

Northwestern University Chess Program”, Chess Skill
in Man and Machine, P. Frey (ed.), Springer-Verlag,
1977.

[2] J.Schaeffer. “The History Heuristic and the
Performance of Alpha-Beta Enhancements”, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, vol. 11, no. 11, pp. 1203-1212, 1989.

