
1

1

4. Trees and DAGs

Jonathan Schaeffer

jonathan@cs.ualberta.ca

www.cs.ualberta.ca/~jonathan

9/9/02 2

Trees and DAGS

 Many search trees are really search
directed acyclic graphs (DAGs)

 Detect cycles and eliminate them

 Detect transpositions and reduce
search effort

9/9/02 3

Cycles

 A path from the root to the current node
contains a repeated position

 For most domains, searching a repeated
state is unproductive and subsequent search
at that node can be eliminated

 Value of a repeated state is application
dependent
 In many games, it is scored as a draw (0)
 In many domains, it is a non-optimal solution and

therefore can be eliminated

9/9/02 4

Cycles

Move M1

Move M2

Undo M1

Undo M2

Identical
states

S1

S2
S2 is a repeat of S1

Score S2 as a draw (0)
without further search

2

9/9/02 5

Cycle Detection

 Use a stack
 Descend - push a state on the stack
 Ascend - pop a state from the stack

 Enter a node
 Search the stack for a state equivalent to the

current state
 Optimization is to mark irreversible states and only

search as far back as the most recent irreversible
state

 Little storage, but can be slow for deep trees

9/9/02 6

Transpositions

 It may be possible to reach the same
state via two different paths

 Want to detect this and (if possible)
eliminate the redundant search

 Need to maintain a history of previously
seen nodes, not just along the current
search path

9/9/02 7

Transpositions

C

C

B

A

B

A

C

B

A

B

AC

Revisiting a
previously
seen state

Reuse the
previous
search result

9/9/02 8

Transposition Table

 Cache of recently visited positions [1,2]

 Usually implemented as a large hash
table (speed)

 Visit a node, search it, and save the
result in the TT

 When visiting a node, check if in the TT
and if found then…

3

9/9/02 9

What if…

 Position in table and was previously
searched d ply deep, but current
position requires a search to depth d’
 d’ < d: a more accurate result than is

needed is available for use!
 d’ = d: the appropriate accuracy is

available
 d’ > d: the entry is not accurate enough to

use

9/9/02 10

What if…

 How do we interpret the value in the table?
 During a search, 3 results are possible:

 If V <= α < β, then V is an upper bound on the
correct value

 If α < V < β, then V is an accurate value

 If α < β <= V, then V is a lower bound on the
correct value

This is a concept that causes many difficulties.
Make sure you understand it!

9/9/02 11

Example

C

C

B

A

B

A Value:
S1 searched with a window of
(12,20) and returns a value of 5

Accuracy:
S1 and S2 both need to be
searched to depth d

S1 S2

Can we use the S1 result for S2?

S1 has an upper bound value of 5
S2 search window is (-10,10)
Thus, S1’s result cannot stop the
search

9/9/02 12

Saving in the TT
void TTSave(state s; int value;

 int alpha; int beta; int depth) {

if(value <= alpha)

 bound = UPPER;

else if(value >= beta)

 bound = LOWER;

else bound = ACCURATE;

AddToTT(s, value, bound, depth);

}

4

9/9/02 13

Checking in the TT
ptr = TTLookup(state);
if(ptr != NULL && ptr->depth >= d) {

if(ptr->bound == LOWER)
alpha = MAX(alpha, ptr->value);

if(ptr->bound == UPPER)
beta = MIN(beta, ptr->value);

if(ptr->bound == ACCURATE)
alpha = beta = ptr->value;

if(alpha >= beta) /* TT causes a cutoff */
return(ptr->value);

}

Note that the
search window
can be
narrowed, even
if a cutoff does
not occur!

9/9/02 14

When to use the TT?
int AlphaBeta(state s, int alpha, int beta, int depth) {

if(terminal node || depth == 0) return(Evaluate(s);
/* Look in TT before searching */
ptr = TTLookup(s);
…
/* If no cutoff, search */
…
/* Save TT result before returning */
TTSave(s, value, alpha, beta, depth);
return(value);

}

9/9/02 15

TT Implementation

 Hash table is most common

 Need a fast way to map a state to a
hash index

 High performance demands incremental
updating of hash index

 Many programs use something similar
to Zobrist hashing [3]

9/9/02 16

Zobrist Hashing

 Table of 64-bit (or more) random
numbers for each state feature

 A state transition causes an XORing of
the features that change.

 The beauty of the idea is that by
XORing, adding a feature and then
removing it brings your hash value back
to the original value.

5

9/9/02 17

Zobrist Example

Move M1

Move M2

Undo M1

Undo M2

S1

S2

HashIndex = 01101011
XOR 11010111
Result = 10111100
XOR 01111000
Result = 11000100
XOR 11010111
Result = 00010011
XOR 01111000
HashIndex = 01101011

Hash Values
M0: 10101100
M1: 11010111
M2: 01111000

9/9/02 18

TT Information

 Need to save the following information
in the transposition table
 State
 Search result

 Value
 Bound
 Accuracy

 Best move (for use later on)
 Date

9/9/02 19

TT State Specification

 Hash table can have collisions, so you
need to include the state in an entry

 Storing a complete state may be too
much storage and too much computing
to compare

 Could use a large random (Zobrist)
number instead (at the risk of a small
chance of error)

9/9/02 20

Adding an Entry

 Hash table can become full

 Need a table replacement scheme:
 Favour deeper searches over shallow ones

 Favour larger searches over smaller ones

 Popular TT is a two-level table
 First entry is the best (deepest/largest)

 Second gives temporal locality [4]

6

9/9/02 21

TT Anomalies

 TT may give a more accurate result
than needed
 May result in a solution that normally

should not be found

 But this may depend on the order in which
successors are expanded

 Several other subtle points… be wary!

9/9/02 22

TT Effectiveness

 Application dependent!
 Checkers: roughly a factor of 10
 Chess: roughly a factor of 5
 Othello: roughly a factor of 1.5

 It will vary considerably, depending on
the root node, the search depth, and the
size of the TT

9/9/02 23

ETC

 Enhanced transposition cutoff
 Before searching the “best” move at a

node, do a quick search to see if an
alternative could achieve the same result
but with less effort

 The best move is the one achieving a
cutoff, but requiring the least search
effort

9/9/02 24

ETC

A B

Search A then B

What if you had searched
B first?

What if the TT entry for
B was sufficient to cause
a cutoff?

ETC does exploratory
work, trying to reuse TT
information

7

9/9/02 25

ETC Results

 Roughly 25% reduction in the number
of nodes examined [5]

 But…
 Runtime cost of all the additional lookups
 Application dependent, but roughly a cost

of 5%
 Cost can be reduced by only doing ETC

where the benefits are highest -- near the
root of the tree

9/9/02 26

Other Issues

 Bigger tables?
 More entries sounds good, but less cache

locality (an interesting research issue!)

 If necessary can limit table access to top of
tree (where the most benefits are)

 If you use between searches:
 Time stamp entries so that “old” ones can

be overwritten with “new” ones

9/9/02 27

Conclusions

 Transposition table can be used for:
 Cycle detection
 Transpositions

 Look ahead:
 Move ordering
 Makes iterative deepening possible

 In general, it is a huge benefit (for many
applications, it is the single most important
enhancement!)

9/9/02 28

References
[1] R. Greenblatt, D. Eastlake and S. Crocker. “The Greenblatt

Chess Program”, Fall Joint Computer Conference, pp. 801-810,
1967. This is the first reference to TTs in the literature.

[2] T.A. Marsland and D. Kopec. “Search”, Chapter 30 in The
Computer Science and Engineering Handbook, A. Tucker (ed.),
pp. 676-696, CRC Press, 1997.

[3] A. Zobrist. “A New Hashing Method with Applications for Game
Playing”, ICCA Journal, vol. 13, no. 2, pp. 69-73, 1990.

[4] D. Breuker, J. Uiterwijk, and J. van den Herik. “Replacement
Schemes and Two-level Tables”, ICCA Journal, vol. 19, no. 3,
pp. 175-180.

[5] A. Plaat, J. Schaeffer, A. de Bruin and W. Pijls, “Exploiting
Graph Properties of Game Trees”, AAAI, pp. 234-239, 1996.

