
1

1

4. Trees and DAGs

Jonathan Schaeffer

jonathan@cs.ualberta.ca

www.cs.ualberta.ca/~jonathan

9/9/02 2

Trees and DAGS

 Many search trees are really search
directed acyclic graphs (DAGs)

 Detect cycles and eliminate them

 Detect transpositions and reduce
search effort

9/9/02 3

Cycles

 A path from the root to the current node
contains a repeated position

 For most domains, searching a repeated
state is unproductive and subsequent search
at that node can be eliminated

 Value of a repeated state is application
dependent
 In many games, it is scored as a draw (0)
 In many domains, it is a non-optimal solution and

therefore can be eliminated

9/9/02 4

Cycles

Move M1

Move M2

Undo M1

Undo M2

Identical
states

S1

S2
S2 is a repeat of S1

Score S2 as a draw (0)
without further search

2

9/9/02 5

Cycle Detection

 Use a stack
 Descend - push a state on the stack
 Ascend - pop a state from the stack

 Enter a node
 Search the stack for a state equivalent to the

current state
 Optimization is to mark irreversible states and only

search as far back as the most recent irreversible
state

 Little storage, but can be slow for deep trees

9/9/02 6

Transpositions

 It may be possible to reach the same
state via two different paths

 Want to detect this and (if possible)
eliminate the redundant search

 Need to maintain a history of previously
seen nodes, not just along the current
search path

9/9/02 7

Transpositions

C

C

B

A

B

A

C

B

A

B

AC

Revisiting a
previously
seen state

Reuse the
previous
search result

9/9/02 8

Transposition Table

 Cache of recently visited positions [1,2]

 Usually implemented as a large hash
table (speed)

 Visit a node, search it, and save the
result in the TT

 When visiting a node, check if in the TT
and if found then…

3

9/9/02 9

What if…

 Position in table and was previously
searched d ply deep, but current
position requires a search to depth d’
 d’ < d: a more accurate result than is

needed is available for use!
 d’ = d: the appropriate accuracy is

available
 d’ > d: the entry is not accurate enough to

use

9/9/02 10

What if…

 How do we interpret the value in the table?
 During a search, 3 results are possible:

 If V <= α < β, then V is an upper bound on the
correct value

 If α < V < β, then V is an accurate value

 If α < β <= V, then V is a lower bound on the
correct value

This is a concept that causes many difficulties.
Make sure you understand it!

9/9/02 11

Example

C

C

B

A

B

A Value:
S1 searched with a window of
(12,20) and returns a value of 5

Accuracy:
S1 and S2 both need to be
searched to depth d

S1 S2

Can we use the S1 result for S2?

S1 has an upper bound value of 5
S2 search window is (-10,10)
Thus, S1’s result cannot stop the
search

9/9/02 12

Saving in the TT
void TTSave(state s; int value;

 int alpha; int beta; int depth) {

if(value <= alpha)

 bound = UPPER;

else if(value >= beta)

 bound = LOWER;

else bound = ACCURATE;

AddToTT(s, value, bound, depth);

}

4

9/9/02 13

Checking in the TT
ptr = TTLookup(state);
if(ptr != NULL && ptr->depth >= d) {

if(ptr->bound == LOWER)
alpha = MAX(alpha, ptr->value);

if(ptr->bound == UPPER)
beta = MIN(beta, ptr->value);

if(ptr->bound == ACCURATE)
alpha = beta = ptr->value;

if(alpha >= beta) /* TT causes a cutoff */
return(ptr->value);

}

Note that the
search window
can be
narrowed, even
if a cutoff does
not occur!

9/9/02 14

When to use the TT?
int AlphaBeta(state s, int alpha, int beta, int depth) {

if(terminal node || depth == 0) return(Evaluate(s);
/* Look in TT before searching */
ptr = TTLookup(s);
…
/* If no cutoff, search */
…
/* Save TT result before returning */
TTSave(s, value, alpha, beta, depth);
return(value);

}

9/9/02 15

TT Implementation

 Hash table is most common

 Need a fast way to map a state to a
hash index

 High performance demands incremental
updating of hash index

 Many programs use something similar
to Zobrist hashing [3]

9/9/02 16

Zobrist Hashing

 Table of 64-bit (or more) random
numbers for each state feature

 A state transition causes an XORing of
the features that change.

 The beauty of the idea is that by
XORing, adding a feature and then
removing it brings your hash value back
to the original value.

5

9/9/02 17

Zobrist Example

Move M1

Move M2

Undo M1

Undo M2

S1

S2

HashIndex = 01101011
XOR 11010111
Result = 10111100
XOR 01111000
Result = 11000100
XOR 11010111
Result = 00010011
XOR 01111000
HashIndex = 01101011

Hash Values
M0: 10101100
M1: 11010111
M2: 01111000

9/9/02 18

TT Information

 Need to save the following information
in the transposition table
 State
 Search result

 Value
 Bound
 Accuracy

 Best move (for use later on)
 Date

9/9/02 19

TT State Specification

 Hash table can have collisions, so you
need to include the state in an entry

 Storing a complete state may be too
much storage and too much computing
to compare

 Could use a large random (Zobrist)
number instead (at the risk of a small
chance of error)

9/9/02 20

Adding an Entry

 Hash table can become full

 Need a table replacement scheme:
 Favour deeper searches over shallow ones

 Favour larger searches over smaller ones

 Popular TT is a two-level table
 First entry is the best (deepest/largest)

 Second gives temporal locality [4]

6

9/9/02 21

TT Anomalies

 TT may give a more accurate result
than needed
 May result in a solution that normally

should not be found

 But this may depend on the order in which
successors are expanded

 Several other subtle points… be wary!

9/9/02 22

TT Effectiveness

 Application dependent!
 Checkers: roughly a factor of 10
 Chess: roughly a factor of 5
 Othello: roughly a factor of 1.5

 It will vary considerably, depending on
the root node, the search depth, and the
size of the TT

9/9/02 23

ETC

 Enhanced transposition cutoff
 Before searching the “best” move at a

node, do a quick search to see if an
alternative could achieve the same result
but with less effort

 The best move is the one achieving a
cutoff, but requiring the least search
effort

9/9/02 24

ETC

A B

Search A then B

What if you had searched
B first?

What if the TT entry for
B was sufficient to cause
a cutoff?

ETC does exploratory
work, trying to reuse TT
information

7

9/9/02 25

ETC Results

 Roughly 25% reduction in the number
of nodes examined [5]

 But…
 Runtime cost of all the additional lookups
 Application dependent, but roughly a cost

of 5%
 Cost can be reduced by only doing ETC

where the benefits are highest -- near the
root of the tree

9/9/02 26

Other Issues

 Bigger tables?
 More entries sounds good, but less cache

locality (an interesting research issue!)

 If necessary can limit table access to top of
tree (where the most benefits are)

 If you use between searches:
 Time stamp entries so that “old” ones can

be overwritten with “new” ones

9/9/02 27

Conclusions

 Transposition table can be used for:
 Cycle detection
 Transpositions

 Look ahead:
 Move ordering
 Makes iterative deepening possible

 In general, it is a huge benefit (for many
applications, it is the single most important
enhancement!)

9/9/02 28

References
[1] R. Greenblatt, D. Eastlake and S. Crocker. “The Greenblatt

Chess Program”, Fall Joint Computer Conference, pp. 801-810,
1967. This is the first reference to TTs in the literature.

[2] T.A. Marsland and D. Kopec. “Search”, Chapter 30 in The
Computer Science and Engineering Handbook, A. Tucker (ed.),
pp. 676-696, CRC Press, 1997.

[3] A. Zobrist. “A New Hashing Method with Applications for Game
Playing”, ICCA Journal, vol. 13, no. 2, pp. 69-73, 1990.

[4] D. Breuker, J. Uiterwijk, and J. van den Herik. “Replacement
Schemes and Two-level Tables”, ICCA Journal, vol. 19, no. 3,
pp. 175-180.

[5] A. Plaat, J. Schaeffer, A. de Bruin and W. Pijls, “Exploiting
Graph Properties of Game Trees”, AAAI, pp. 234-239, 1996.

