
1

13. *-Minimax

Introduction

•Perfect information deterministic games?
–Lots of success…

•Imperfect information games?
–Hard because of missing information

–Subject of active research

–Bridge, poker

•Non-deterministic/stochastic games?

–Successes, but using methods unique
to each application domain

–Backgammon, Scrabble

Stochastic Games

•Non-determinism
–Roll of the dice or deal of cards

•Minimax search trees but with the added
complication of chance nodes

–Search-based approaches must take into
account all possibilities at a chance node

–Increases the branching factor making
deep search unlikely

•Hence, many game-playing program rely
less on search and more on knowledge

Deep Search!?

•Deep “brute-force” search has been
effective in deterministic, perfect-
information domains.

•Deep search has also been useful in
some imperfect information domains and
some stochastic games (e.g., sampling,
rollouts).

•Can deep full-width search be effective
in stochastic domains?

2

Deep Search!?

•Two-player
deterministic
perfect information search
has minimax as a starting point and…

•Two-player
stochastic
perfect information search
has expectimax as a starting point.

Expectimax

Expectimax

-5/6 + -10/6 + 0/6 + 1/6 + -10/6 + 3/6 =

*-MiniMax

•Need to add Alpha-beta-like cutoffs to an
Expectimax search

•Idea proposed by Bruce Ballard (1983)
–Family of *-Minimax algorithms

•The idea seems to have been forgotten…
–No implementations in the literature

–No follow-up research

–Few references to Ballard’s work, other than
the occasional mention that *-Minimax exists

3

*-Minimax: Cutoffs

•Leave Max and Min nodes alone in an
alpha-beta search framework

•Add cutoffs to Chance nodes

•Assume that all branches not searched
have the worst-case result

•L = lowest value achievable (-10)

•U = highest value achievable (10)

*-Minimax: Cutoffs

• Beta cutoff:

• Alpha cutoff:

Values seen Values to comeCurrent
value

Values seen Values to comeCurrent
value

*-Minimax: Search Windows

• Alpha-beta bounds passed to C:

*-Minimax: Incremental Updates

•Observation:
–Alpha bound check starts with the highest
possible value (all Vi are unknown and thus
equal to U).

–As each Vi becomes available, the best the
player can do is improved.

–When the best possible score is proven not
to be able to exceed alpha, cutoff.

–Similar for beta cutoffs

•Incrementally update alpha and beta tests

4

*-MiniMax: Star1 Star1 Example
Initial A = 6(-2-10)+10 = -62
Window B = 6(2+10)-10 = 62

After B A = -62+10+ 5 = -47
Result B = 62-10+ 5 = 57

After D A = -27+10-0 = -17
Result B = 57-10+0 = 47

After E A = -17+10-1 = -8
Result B = 47-10-1 = 36

After C A = -47+10+10 = -27
Result B = 57-10+10 = 57

F value <= -10 <= A
Cutoff

9 searched
5 cutoff

Star1 Observations

•Star1 is pessimistic
–Always assumes the worst case.

•Star1 is agnostic
–Does not know what type of node will follow
the current node.

–Even if it did, it cannot take advantage of it.

•For most games, the search tree is a
regular structure.

•Can we exploit this?

Regular *-Minimax Tree

Backgammon has a regular tree structure:
Max node (+), Chance node (*), Min node
(-), Chance node (*), and repeat.

5

*-Minimax: Star2

•Star1 searches each successor
completely before moving to the next
one.

•A successor could be very good or very
bad, and this information might be easy
to obtain.

–If we had this information, the search
bounds could be tightened more quickly.

•Star2 introduces probing: do a quick look
at all successors to bound their score

Star2 (part1)

Do a quick look at all children to
get a bound on their score. Save
the results in w[] so that they do
not have to be repeated.

Star2 (part 2)

If no cutoff has occurred,
then search as in Star1
(but making use of the
probe results).

Probing

The simplest probing function is to search
one child of each successor.
Need heuristic knowledge to choose the
“best” candidate to expand.

6

Star2 Example (1)
Initial A = 6(-2-10)+10 = -62

After B A = -62+10+ 5 = -47

After C A = -47+10+10 = -27

After D A = -27+10+ 0 = -17

After E A = -17+10- 1 = -8

F value <= -10 <= A
Cutoff

5 searched
9 cutoff

Star2 Comments

•With increased branching factor, Star2
becomes more effective, but it can do
well with small branching factors.

•PickSuccessor function needs to be fast
and effective.

•Star2 is not guaranteed to work better
than Star1; it depends on the quality of
the probing.

Star2 Example (2)

Probe phase
completes
without a cutoff;
continue with the
normal search.

Comments

• Transposition table can be a big win
(eliminating repeating the probe
searches).

• Iterative deepening then becomes
practical.

• Can use the equivalent of a fail-soft
enhancement to get slightly better
results.

• Star2.5: use a more sophisticated
probing scheme.

7

*-Minimax Performance Results?

• *-Minimax has been known for over 20
years but…

• Other than Ballard’s original
experiments, there are no published
performance numbers on the algorithm

• Ballard’s results used shallow search
depths and no search enhancements

• How would *-Minimax perform in a real
game-playing program?

Game of Dice

• Toy domain used to better understand
*-Minimax performance

•Rules:
–NxN board

–Win by forming an M-in-a-row line (H,V,D)

–Roll of an N-sided die tells you the column
(1st player) or row (2nd player) to play in

–Player chooses the move to maximize their
chances of winning

Game of Dice

•Game tree is a regular *-Minimax tree

•Chance nodes have an equal probability
of taking on each of N values

•Variable branching factor (0 to N)

•Simple evaluation function based on the
number and size of partial lines on board

•Deeper search should be correlated with
stronger play

Search Depth

•Game tree starts off with a max node

•Count each Max, Min, and Chance node
as a ply

•Thus, a depth 3 tree is a Max, Chance,
Min node

•A depth 7 tree has two moves by each
player

8

Dice: 5x5 Board (Depth 7)

Star1 small advantage over Expectimax

Star2 3X smaller trees than Expectimax

Dice: 11x11 Board (Depth 7)

Star1 small advantage over Expectimax

Star2 10X smaller trees than Expectimax

Dice: Search Depth (11x11) Dice: Time (11x11)

Star1 50% faster than Expectimax

Star2 10X faster than Expectimax

9

Dice: Probe Efficiency Dice: Move ordering

Ballard used random move ordering.

Dice: Tournament

Beyond a depth 5 search, there is
too much noise and further search
yields little benefits.

Backgammon

• Backgammon was the original
motivation for this work.

• Can deep search improve the
performance of backgammon programs?

• Two die (non-uniform probabilities)

• Larger branching factor than dice

• 220 search space

10

Backgammon Programs

• Hans Berliner’s BKG 9.8

• Gerry Tesauro’s Neurogammon and TD-
Gammon

• Tesauro clones: Jellyfish, Snowie, GNU
backgammon

• The top backgammon programs are
likely stronger than the human world
champion

Winning Recipe

• Modern programs uses a neural-net-
based evaluation function tuned using
temporal-difference learning

• Little search
–Cost of an evaluation is very high

–Usually only 1-ply search

–GUNbg has a tournament mode that does
a selective 5-ply search

Non-uniform Chance Nodes Backgammon: Nodes (Depth 5)

11

Backgammon: Time (Depth 5) Backgammon: Time

• Average Time over 500 positions

• Probe Efficiency

Backgammon: Tournament

Deeper search yields little performance
benefits!?

Backgammon: Adding Noise

With a small amount of noise added to the evaluation
function, then deeper search yields significant differences.

Conclusion: GNUbg’s evaluation function is excellent!

12

Conclusions

• Expectimax < Star1 << Star2

• In some stochastic domains, search can
only take you so far (depth 5)

• Full-width depth=5 search is possible in
backgammon in real-time

• Backgammon programs have near-
oracle evaluation functions!

• Other games: Carcassonne, Paris-Paris

Conclusion

Ballard’s work
deserves to be
better known!

